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Executive Summary

Deliverable D4.3 reinforces and generalizes the results of the research activities
conducted and summarised in deliverable D4.1 on “Initial results on adaptive direc-
tional LOS and NLOS reliable connectivity”. In this direction, the present deliverable
focuses on optimization and machine learning techniques tailored to the physical and
medium access layers requirements of fully reconfigurable environments.

More specifically, this deliverable consists of six chapters whose contribution is
briefly summarized as follows.

In Chapter 1, we apply one special type of deep neural networks (DNNs) framework,
known as model-driven deep unfolding neural network, to reconfigurable intelligent sur-
face (RIS)-aided single-input multiple-output (SIMO) systems. We focus on uplink cas-
caded channel estimation, where known and fixed base station combining and RIS
phase control matrices are considered for collecting observations. To boost the esti-
mation performance and reduce the training overhead, the inherent channel sparsity of
high frequency channels is leveraged in the deep unfolding method. It is verified that
the proposed deep unfolding network architecture can outperform the least squares
(LS) and atomic norm minimization (ANM) methods with a relatively smaller training
overhead and online computational complexity.

In Chapter 2, we present a comprehensive reconfigurable intelligent surface (RIS)
power consumption model that captures its main power-consuming electronic compo-
nents and we propose an energy harvesting model used for extracting the RIS har-
vested power and for formulating the optimization problem of interest. In particular, we
focus on the optimal RIS placement as well as the amplitude and phase response ad-
justment of the reflective units (RUs) for maximizing the end-to-end signal-to-noise ratio
(SNR), subject to the harvested power being sufficient for RIS autonomous operation.
In addition, an analytical solution is provided for the amplitude and phase response
optimal values of the RUs. Through simulations, we provide a range of average power
consumption of the RIS electronics that guarantees its autonomous operation.

In Chapter 3, we present four typical RIS-aided multi-user scenarios with special
emphasis on medium access control (MAC) schemes. We then propose and elaborate
upon centralized, distributed and hybrid artificial-intelligence (AI)-assisted MAC archi-
tectures in RIS-aided multi-user communications systems. Finally, we discuss some
challenges, perspectives and potential applications of RISs as they are related to MAC
design.

Page 6
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In Chapter 4, we describe the upgrade of a system level simulation model for D-band
networks in realistic environments that was introduced in D4.2. In comparison with the
initial aspect of the system simulation model, this version is enhanced in several di-
rections. The main differences concern user’s mobility model and path loss modelling.
Particularly, the trajectories of the user have extra degrees of randomness and there-
fore, they have a greater diversity. Regarding the path loss modelling, in this refined
version of the model a large scale fading term was added to the received power bal-
ance. This term forces user’s received power to change into a stochastic quantity.

In Chapter 5, we analyze the challenges and opportunities for machine learning in
the channel modeling domain for both line of sight (LOS) and non-line of sight (NLOS)
scenarios in order to understand the feasibility of predicting LOS connectivity at the
physical layer. We present analysis and results on the application of machine learning
to predict LOS blockages, instead of just identifying them using computationally expen-
sive blockage identification methods.

In Chapter 6, we study the relation between the received power and the position,
orientation and size of RISs. In this context, we perform simulations to understand the
RIS efficiency under both full and partial illumination.

Overall, the results reported in this deliverable allowed us to assess the major per-
formance gains that the deployment of RISs in high frequency bands bring about for
application to future wireless communication systems.

Page 7
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Chapter 1

Deep Unfolding for Estimating
RIS-Aided Channels

1.1 Introduction

Reconfigurable intelligent surfaces (RISs) have recently been introduced for en-
hanced energy efficiency (EE), spectrum efficiency (SE), positioning accuracy, as well
as network/physical-layer security [1–5]. The RIS, either being passive, active, or a
hybrid combination of the former two, is used to smartly control the radio propagation
environment, by virtue of multi-function capabilities, e.g., reflection, refraction, diffrac-
tion, scattering, and even absorption [6]. In the literature, the RIS is commonly used
as an intelligent reflector, which breaks the well-known law of reflection [7], to mitigate
the blockage effect and expand the connectivity range, especially for millimeter wave
(mmWave) communications and terahertz (THz). However, the RIS is commonly as-
sumed to be nearly-passive. That is, no power amplifiers and baseband processing
units are available at the RIS. Besides, in order to compensate for the additional path
loss in the reflection route via the RIS, a large number of RIS elements must be em-
ployed. These make the channel state information (CSI) acquisition difficult to tackle
in practice. Note that the channel estimation (CE) can only be performed either at the
base station (BS) or at the mobile station (MS).

Since the RIS phase control and joint active and passive beamforming are sensitive
to the CSI accuracy, the full potential of RIS cannot be achieved when the CE is poorly
performed. Therefore, accurate yet efficient CE methods for the individual channels or
the cascaded channel are of vital importance. In our previous works, we took advan-
tage of the inherent channel sparsity and rank-deficiency features of high frequency
multiple-input multiple-output (MIMO) channels and we applied the iterative reweighted
method and the atomic norm minimization (ANM) method for estimating the channel
parameters of RIS-aided MIMO systems [8, 9]. In another recent work [10], sparse
matrix factorization and matrix completion were exploited in a sequential manner to fa-
cilitate the CE process. These works fall into the category of conventional model-based
approaches, which suit only for a small- or medium-sized RIS, BS, and MS.

As the number of RIS elements and BS/MS antennas continues to grow (this is
an inevitable trend at high frequencies), more training overhead to obtain adequate
CE performance, within the channel coherence time, via conventional model-based
methods is required. Besides, the associated computational complexity will become
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inevitably high. These considerations motivate the application of data-driven or hybrid
approaches for CE in RIS-aided communications [11,12]. In [13], a convolutional neural
network (CNN) was considered for RIS CE in a multi-user scenario. Therein, however,
each user needs to first estimate its own channel and then map the estimate to the
corresponding ground-truth channel, which naturally increases the computational com-
plexity. Therefore, in this study, we resort to a model-driven deep unfolding approach,
which has already been used in MIMO detection and sparse signal recovery [14, 15],
for estimating the cascaded channel in RIS-aided mmWave single-input multiple-output
(SIMO) systems [16]. To the best of the authors’ knowledge, the concept of deep un-
folding has not yet been considered for RIS CE. Also, unlike the fully-connected neural
network with received pilot signal being the input and cascaded channel being the
output, deep unfolding is capable of learning and capturing the dynamics of the time-
varying wireless channels.

Deep unfolding mimics the operation of conventional (projected) gradient descent
algorithms, and it is capable of directly mapping the received pilot signals to the cas-
caded channel. Its computationally intensive training process can be executed offline
and the online implementation/prediction phase only entails low-complexity calcula-
tions, e.g., matrix multiplications and additions, and element-wise operations. Besides,
the step sizes and regularization parameters can be combined and optimized during
the training of the deep unfolding model, which is not possible in traditional gradient de-
scent methods. In this study, specifically, the rank-deficiency property of the cascaded
channel is explicitly considered in the deep unfolding framework. It is verified that the
deep unfolding scheme can outperform the least squares (LS) estimation and the ANM
methods [9] in terms of normalized mean square error (NMSE) with a smaller training
overhead and a reduced online computational complexity.

Notations: A bold lowercase letter a denotes a vector, and a bold capital letter A
denotes a matrix. (·)T and (·)H denote the matrix or vector transpose and Hermitian
transpose, respectively. diag(a) denotes a square diagonal matrix with the entries of
a on its diagonal, 𝔼[·] is the expectation operator, 0 denotes the all-zero vector, I𝑀
denotes the 𝑀 × 𝑀 identity matrix, and 𝑗 =

√
−1. ∥ · ∥F and ∥ · ∥∗ denote the Frobenius

norm and nuclear norm of a matrix, respectively, and ∥ · ∥2 denotes the Euclidean norm
of a vector.

1.2 System Model

We consider a nearly-passive RIS-aided SIMO network, where the MS communi-
cates with the BS via the RIS, as shown in Fig. 1.1. The BS and RIS are equipped with
multiple antennas and with nearly-passive scattering elements, respectively, while the
MS is equipped with a single antenna. We further assume that the direct MS-BS chan-
nel is blocked.1 The RIS-BS channel, which is denoted as H1 ∈ ℂ𝑀×𝑁 with 𝑀 and 𝑁

being the number of antennas and scattering elements at the BS and RIS, respectively,

1When the direct MS-BS channel exists, we can estimate it by setting the RIS into an absorption
mode. Then, we can estimate the cascaded channel by subtracting the direct MS-BS channel. Such
a two-stage procedure is sufficient for estimating all the channel components between the BS and MS.
However, in this work, we only focus on the cascaded channel estimation, appearing at the second
stage.
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H2020-2018-2020, ICT – ARIADNE (GA ID: 871464)
D4.3: Final Results on Adaptive Directional LOS and

NLOS Reliable Connectivity

RIS elements

BS

MS

Blockage

LoS
LoS

NLoS
RIS

NLoS

Figure 1.1: A typical scenario for maintaining the connectivity by deploying an RIS in a SIMO
network.

can be written as

H1 =

𝐿1∑︁
𝑖=1

𝑔1,𝑖𝜶(𝜙1,𝑖)𝜶H(𝜃1,𝑖) = A(𝝓1)diag(g1)AH(𝜽1), (1.1)

where 𝐿1 ≪ min{𝑀, 𝑁} is the number of channel paths, including one line-of-sight
(LoS) path (with 𝑖 = 1) and multiple non-line-of-sight (NLoS) paths (with 𝑖 > 1), and 𝑔1,𝑖 ∈
ℂ, 𝜃1,𝑖 ∈ ℝ, and 𝜙1,𝑖 ∈ ℝ denote the propagation path gain, the angle of departure (AoD),
and the angle of arrival (AoA) associated with the 𝑖th propagation path. The array
response vector 𝜶(𝜙1,𝑖) ≜ [1, 𝑒 𝑗𝜋 sin(𝜙1,𝑖) , . . . , 𝑒 𝑗 (𝑀−1)𝜋 sin(𝜙1,𝑖)]T ∈ ℂ𝑀×1 is obtained by
assuming half-wavelength inter-element spacing, and 𝜶(𝜃1,𝑖) ∈ ℂ𝑁×1 can be formulated
in the same manner. We assume 𝑔1,1 ∼ CN(0, 𝜎2

LoS), and define the vectors g̃1 ≜

[𝑔1,2, . . . , 𝑔1,𝐿1]T ∼ CN(0, 𝜎2
NLoSI𝐿1−1), g1 ≜ [𝑔1,1, g̃T

1 ]
T, 𝝓1 ≜ [𝜙1,1, . . . , 𝜙1,𝐿1]T, 𝜽1 ≜

[𝜃1,1, . . . , 𝜃1,𝐿1]T, A(𝝓1) ≜ [𝜶(𝜙1,1), . . . ,𝜶(𝜙1,𝐿1)], and A(𝜽1) ≜ [𝜶(𝜃1,1), . . . ,𝜶(𝜃1,𝐿1)].
Similarly, the MS-RIS channel h2 ∈ ℂ𝑁×1 can be written as

h2 =

𝐿2∑︁
𝑖=1

𝑔2,𝑖𝜶(𝜙2,𝑖) = A(𝝓2)g2. (1.2)

All the channel parameters in h2 are defined as those in H1. We also assume 𝑔2,1 ∼
CN(0, 𝜎2

LoS), g̃2 ≜ [𝑔2,2, . . . , 𝑔2,𝐿2]T ∼ CN(0, 𝜎2
NLoSI𝐿2−1), and define g2 ≜ [𝑔2,1, g̃T

2 ]
T and

A(𝝓2) ≜ [𝜶(𝜙2,1), . . . ,𝜶(𝜙2,𝐿2)] with 𝐿2 ≪ 𝑁.
The end-to-end uplink MS-RIS-BS channel (including the effect of the RIS) can be

written as
h = H1𝛀h2 = H1diag(h2)𝝎, (1.3)

where 𝛀 = diag(𝝎) is the RIS phase control matrix, with 𝝎 = [𝜔1, . . . , 𝜔𝑁 ]T and |𝜔𝑖 | = 1
for ∀𝑖 [1]. We are interested in low-cost and low-complexity implementations of RISs, we
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hence focus on RISs that can control only the phase response. It is worth noting that an
RIS may be composed of an array of amplifiers with increased power consumption and
hardware complexity [17]. In this case, the unit-modulus constraint on each element 𝜔𝑖
can be relaxed.

In (1.3), H1diag(h2) is referred to as the cascaded channel. By knowing it, we can
optimize the RIS phase control matrix and BS beamforming/combining vector. Let us
define it as H𝑐 ∈ ℂ𝑀×𝑁 , i.e.,

H𝑐 = H1diag(h2). (1.4)

Based on the considered assumptions, we have rank(H1) = 𝐿1 and rank(diag(h2))
= 𝑁. Thus rank(H𝑐) ≤ min{rank(H1), rank(diag(h2))} = 𝐿1. The inherent channel
sparsity (represented by the rank deficiency of the cascaded channel) can be applied
in order to enable an efficient yet accurate CE of (1.4).

1.3 Learning to Estimate

In this section, we first introduce the channel sounding procedure, and then describe
the optimization problem formulation for recovering the cascaded channel by using con-
ventional (model-based) methods. Finally, we describe the model-driven deep unfold-
ing method for estimating the rank-deficient cascaded channel.

1.3.1 Channel Sounding

During the sounding process, pilot signals are sent from the MS to the BS via the
RIS. A different RIS phase control matrix is considered for each channel use while
the combining matrix at the BS is fixed. The received signal at channel use 𝑘, for
𝑘 = 1, . . . , 𝐾, can be written as

y[𝑘] = WH [𝑘]H1𝛀[𝑘]h2𝑠[𝑘] +WH [𝑘]n[𝑘], (1.5)

where W[𝑘] ∈ ℂ𝑀×𝑁W is the combining matrix at the BS with 𝑁W denoting the number
of columns,2 𝑠[𝑘] is the pilot signal sent by the MS, and n[𝑘] ∼ CN(0, 𝜎2) is the additive
white Gaussian noise (AWGN) at the BS.

The received signal y[𝑘] in (1.5) can be reformulated as

y[𝑘] = WH [𝑘]H𝑐𝝎[𝑘]𝑠[𝑘] +WH [𝑘]n[𝑘], (1.6)

where 𝛀[𝑘] = diag(𝝎[𝑘]).
Without loss of generality, we assume 𝑠[1] = 𝑠[𝐾] = 1 and W[1] = W[𝐾] = W. The

received signals Y = [y[1], . . . , y[𝐾]] can be rewritten as

Y = WHH𝑐�̄� +WHN, (1.7)

where �̄� = [𝝎[1], . . . ,𝝎[𝐾]] and N = [n[1], . . . , n[𝐾]]. An additional vectorization step
is considered for all the terms in (1.7), resulting in

y = (�̄�T ⊗ WH)h𝑐 + n, (1.8)
2We consider an analog combining matrix, which is a suitable choice for fulfilling the requirements of

reduced-complexity hybrid precoding architectures commonly assumed for MIMO transceivers. When
𝑁W > 𝑁RF, with 𝑁RF being the number of radio frequency (RF) chains at the BS, we need 𝐾 ⌈𝑁W/𝑁RF⌉
channel uses to complete the sounding process. Otherwise, 𝐾 channel uses are sufficient.
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where y = vec(Y), h𝑐 = vec(H𝑐), and n = vec(WHN). Based on the vectorized received
signal y, we need to estimate the vectorized cascaded channel h𝑐. Let us define 𝚿 =

�̄�T ⊗ WH. Then, (1.7) can be simplified as y = 𝚿h𝑐 + n. Based on the obtained
signal model, the objective of this work is to extract h𝑐 from the noisy received signal
y by assuming that the matrix 𝚿 is known. This is accomplished by using the deep
unfolding method, which is detailed next.

1.3.2 Optimization Problem Formulation

In order to recover h𝑐 from the noisy observation y, we formulate the following regu-
larized optimization problem

ĥ𝑐 = argmin
h𝑐

∥y − 𝚿h𝑐∥22 + 𝜆 rank(H𝑐), (1.9)

which takes into consideration the rank deficiency of the cascaded channel H𝑐 and the
impact of noise [18]. The regularization parameter 𝜆 > 0 is introduced to control the
tradeoff between the data fitting and the rank of the cascaded channel. The optimiza-
tion problem in (1.9) can be further reformulated as

ĥ𝑐 = argmin
h𝑐

∥y − 𝚿h𝑐∥22 + 𝜆∥H𝑐∥∗, (1.10)

which is obtained by relaxing rank(H𝑐) with its nuclear norm, i.e., ∥H𝑐∥∗. This is a
convenient approach because rank(H𝑐) is a noncovex function of H𝑐. In addition,
∥H𝑐∥F ≤ ∥H𝑐∥∗ ≤

√
𝑟 ∥H𝑐∥F with 𝑟 ≥ 1. Notably, when rank(H𝑐) = 1 (e.g., H1 has

only the LoS path), we have ∥H𝑐∥∗ = ∥H𝑐∥F. Also, the singular values of H𝑐 have a high
probability to fulfill the following condition: 𝜎1 ≫ 𝜎2 > · · · > 𝜎𝐿1 with 𝜎𝑖 being the 𝑖th
largest singular value of H𝑐, which results in ∥H𝑐∥∗ ≈ ∥H𝑐∥F. Thus, we further replace
rank(H𝑐) in (1.10) with ∥H𝑐∥F, i.e., ∥h𝑐∥2, which yields

ĥ𝑐 = argmin
h𝑐

∥y − 𝚿h𝑐∥22 + 𝜆∥h𝑐∥2. (1.11)

To accurately solve this optimization problem, we need to carefully choose the regu-
larization parameter 𝜆. The optimal value of 𝜆 is, however, difficult to obtain. As a

reference, 𝜆 is chosen equal to 4𝜎2
√︃
𝑀𝑁 (𝑀+𝑁) log(𝑀+𝑁)

𝑁W𝐾
[18].

1.3.3 Model-Driven Deep Unfolding

Deep unfolding is a deep neural network framework that mimics the conventional
gradient descent method. The difference lies in that deep unfolding is able to learn
from a large amount of (synthetic) data with enhanced performance and reduced online
implementation complexity and number of iterations. Typically, this is exemplified in a
reduced number of layers in the deep unfolding network. When solving the optimization
problem in (1.11) by using the (conventional) gradient descent method, we iteratively
update h(𝑖)

𝑐 , with (𝑖) denoting the iteration index, as follows

h(𝑖)
𝑐 = h(𝑖−1)

𝑐 − 𝛽∇ 𝑓 (h(𝑖−1)
𝑐 ), (1.12)
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where 0 < 𝛽 < 1 is the step size and ∇ 𝑓 (h(𝑖−1)
𝑐 ) is the gradient of 𝑓 (h𝑐) = ∥y − 𝚿h𝑐∥22 +

𝜆∥h𝑐∥2 evaluated at h(𝑖−1)
𝑐 , which can be expressed as

∇ 𝑓 (h(𝑖−1)
𝑐 ) = (𝚿H𝚿h(𝑖−1)

𝑐 − 𝚿Hy) + 𝜆h(𝑖−1)
𝑐 /∥h(𝑖−1)

𝑐 ∥2, (1.13)

when 𝜆 is fixed. The initial value, i.e, h(0)
𝑐 , can be set equal to the all-zero vector. In

this case, the denominator ∥h(𝑖−1)
𝑐 ∥2 in the last term of (1.13) needs to be modified as

∥h(𝑖−1)
𝑐 ∥2 + 𝜖 with 𝜖 > 0 when 𝑖 = 1.
Substituting (1.13) into (1.12), we obtain

h(𝑖)
𝑐 = h(𝑖−1)

𝑐 − 𝛽𝚿H𝚿h(𝑖−1)
𝑐 + 𝛽𝚿Hy − 𝛽𝜆h(𝑖−1)

𝑐 /∥h(𝑖−1)
𝑐 ∥2. (1.14)

The Gram matrix 𝚿H𝚿, the compressed statistics 𝚿Hy, and h(𝑖−1)
𝑐 , are needed to ap-

ply the gradient descent algorithm. Therefore, these three terms constitute the input
variables of the deep unfolding neural network model.

To be specific, the 𝑖th layer of the deep unfolding model for mimicking the gradient
descent iteration in (1.14) is introduced in Fig. 1.2.

:  input

:  learnable parameters

:  output

Activation

:  known parameters

Figure 1.2: The 𝑖th layer of the deep unfolding network model for estimating the cascaded
channel vector.

The accuracy and convergence speed of the channel estimate in (1.14) highly de-
pends on the specific choice of the step size 𝛽 and the regularization parameter 𝜆.
In the considered deep unfolding model, these parameters are learnable parameters
that are automatically determined during the data-driven training phase. To this end,
we introduce three generalized learnable parameters 𝛿(𝑖)1 ∈ [−1, 0], 𝛿(𝑖)2 ∈ [0, 1], and
𝛿
(𝑖)
3 ∈ [−1, 0], for the 𝑖th layer of the deep unfolding model in Fig. 1.2. In (1.14),

more specifically, −𝛽 and 𝛽 in the second and third term are replaced by 𝛿(𝑖)1 and 𝛿(𝑖)2 ,
respectively, and the product −𝛽𝜆/∥h(𝑖−1)

𝑐 ∥2 in the last term is unfolded in the learn-
able parameter 𝛿(𝑖)3 . As shown in Fig. 1.2, in order to further enhance the prediction
capabilities of the deep unfolding network model, we serially concatenate the term
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h(𝑖−1)
𝑐 + 𝛿(𝑖)1 𝚿H𝚿h(𝑖−1)

𝑐 + 𝛿(𝑖)2 𝚿Hy + 𝛿(𝑖)3 h(𝑖−1)
𝑐 with a learnable weight matrix M(𝑖), a bias

vector b(𝑖), and a non-linear activation function.
The complete deep unfolding network model is illustrated in Fig. 1.3 and it comprises

𝐿 layers from Fig. 1.2. In particular, the observations {𝚿H𝚿,𝚿Hy} are input to all the
layers of the deep unfolding network model. The online computational complexity of
the proposed scheme is O(𝑀2𝑁2𝐿), which is smaller than the ANM based scheme that
requires O((𝑀 + 𝑁)6) per iteration [9]. In the later studied case with 𝑀 = 16, 𝑁 = 32, we
have 𝑀2𝑁2𝐿 ≪ (𝑀 + 𝑁)6𝐿 by assuming that 𝐿 iterations are needed for ANM as well.

Layer 

#1 

Layer 

#2 

Layer 

#L
…

Figure 1.3: Complete deep unfolding network model for channel estimation, which comprises
𝐿 layers from Fig. 1.2

1.4 Numerical Results

In this section, we evaluate the performance of the proposed deep unfolding network
model against two benchmark schemes: (i) the LS estimator and (ii) the direct solution
of (1.11) by using the CVX toolbox.3 We evaluate the impact of the training overhead,
the training SNR, the number of paths, and the angular parameter distribution. As
far as the RIS phase control matrices as concerned, their diagonal elements are set
equal to the column vectors of a discrete Fourier transform (DFT) matrix. A set of
orthonormal vectors are considered for W, e.g., the normalized column vectors from a
DFT matrix. It is worth mentioning that we transform the data from the complex-valued
domain to the real-valued domain before applying the deep unfolding network model.
The channel h(0)

𝑐 is set equal to the all-zero vector. In the first 𝐿 − 1 layers, we use relu
activation functions, while no activation function is applied in the last layer. The loss
function during the training phase is the NMSE between the output cascaded channel
vector and the ground-truth cascaded channel vector. The Adam algorithm is used for
training, whose learning rate is 0.001 during the first 20 epochs and it is halved in the

3The scripts of the implementation are available at https://github.com/jiguanghe/RISCE.
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remaining epochs, and the batch size is 64. We use 1𝑒5 samples for training and 1𝑒4
samples for testing. The parameter setup is summarized in Table 1.1.

In the sequel, we study the impact of the training overhead, the number of paths, the
training SNR, and the angular parameter distribution on the estimation performance in
detail.

Table 1.1: Parameter Setup.

Parameter Value Parameter Value

𝐿1 {1, 2, 3} h(0)
𝑐 0

𝐿2 {1, 2, 3} Optimizer Adam

𝜎2
LoS 1 Learning rate 0.001, 0.0005

𝜎2
NLoS 0.01 Batch size 64

𝑀 16 𝜌(·) relu

𝑁 32 Training samples 1𝑒5

𝐿 15 Testing samples 1𝑒4

sin(𝜽1) U[0, 1] Loss NMSE

sin(𝝓1) U[0, 1] sin(𝝓2) U[0, 1]

𝑁W 8 𝐾 {24, 28}

1.4.1 Impact of the Training Overhead

Fig. 1.4 shows the NMSE for a 1 × 16 SIMO system (i.e., 𝑀 = 16) by using the
proposed deep unfolding approach as a function of the training overhead. During the
training phase, the SNR is 𝛾 = 1/𝜎2 = 20 dB. From Fig. 1.4, we see that the proposed
scheme with 𝐾 = 24 channel uses for training outperforms the LS estimator even if
the latter uses a longer training phase with 𝐾 = 32. Also, as expected, the higher the
training overhead is, the lower the NMSE of the proposed scheme is. It is worth noting
that the proposed deep unfolding method outperforms the numerical solution of (1.11)
by using CVX, and the ANM algorithm. This is attributed to the learning capability of
the deep unfolded network through the learnable parameters introduced in Fig. 1.2.4

1.4.2 Impact of the Number of Paths

In this subsection, we study the impact of the number of paths, which is increased
from one to two and three. The SNR for training is 𝛾 = 20 dB and 𝐾 = 28. The
corresponding NMSE is shown in Fig. 1.5. When the number of paths increases, the
rank of the cascaded channel increases accordingly. In this case, Fig. 1.5 shows that
the NMSE increases as the number of paths increases. In other words, by keeping the

4If the regularization parameter 𝜆 in (1.11) can be optimally designed, better performance can be
expected. However, finding the optimal 𝜆 is still an open problem.
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Figure 1.4: Impact of training overhead on estimating the cascaded channel for a 1 × 16 SIMO
system with 𝑁 = 32 and 𝐿1 = 𝐿2 = 1. Deep unfolding vs. LS estimation, ANM [9], and the direct
solution of (1.11) [18].

training overhead fixed, the proposed deep unfolding method benefits from the sparsity
of the channel, i.e., the number of paths is small.

0 5 10 15 20
SNR

10-2

10-1

100

N
M

SE

Deep Unfolding, 1 path per channel
Deep Unfolding, 2 paths per channel
Deep Unfolding, 3 paths per channel

Figure 1.5: Impact of the number of paths on estimating the cascaded channel for a 1×16 SIMO
system with 𝑁 = 32.
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1.4.3 Impact of the Training SNR

In this subsection, we study the impact of the training SNR on the estimation perfor-
mance. Two SNR values, i.e., 𝛾 = 0 dB, 𝛾 = 20 dB, and an SNR that varies in the set
𝛾 ∈ {0, 5, 10, 15, 20} dB are considered. The corresponding NMSE is shown in Fig. 1.6.
We observe that the proposed deep unfolding method provides the best NMSE when
it is trained at a high SNR except if the operating SNR during the test phase is too low.
In other words, nearly noise-free training samples bring the best performance in the
high SNR regime, and vice versa, as depicted in Fig. 1.6. Since the data are generated
in real-time according to the statistics of the channels and noises, the performance in
terms of NMSE may not always decrease as a function of SNR. This may be caused by
the fact that the trained model is more suitable for certain SNR values (e.g., high SNR
with almost noise-free training samples) than others. Intuitively, the training SNR plays
a critical role in the prediction performance of the deep unfolding models.5

0 5 10 15 20
SNR

10-2

10-1

100

N
M

SE

Figure 1.6: Impact of the training SNR on estimating the cascaded channel for a 1 × 16 SIMO
system with 𝑁 = 32.

1.4.4 Impact of the Angular Parameter Distribution

Unlike the previous study in which the angular parameters are distributed as U[0, 1],
in this subsection, we evaluate the impact of the angular parameter distribution when
estimating the cascaded channel. The corresponding NMSE is shown in Fig. 1.7.
We observe that the NMSE decreases when the range of sin(𝜽1), sin(𝝓1), sin(𝝓2) de-
creases. In other words, the estimation accuracy of the proposed deep unfolding
method increases when the individual channels are subject to a reduced variability.

5If the SNR value(s) can be incorporated into the proposed deep unfolding structure, better perfor-
mance is expected, which is left for our future investigation.
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Figure 1.7: Impact of the angular parameter distribution on estimating the cascaded channel
for a 1 × 16 SIMO system with 𝑁 = 32.

1.5 Conclusion

In this chapter, we have introduced a deep unfolding model for efficiently estimating
the end-to-end RIS channel in SIMO systems. With the aid of simulation results, we
have shown that the proposed approach can outperform three benchmark schemes
based on the LS method, a CVX-based numerical solution of the channel estimation
problem, and the ANM algorithm. The impact of the number of paths, the training
SNR, and the angular parameter distribution on the estimation accuracy has been in-
vestigated. In addition, the proposed deep unfolding network model has a low online
prediction complexity, since it requires the computation of vector matrix multiplications
and additions. On the other hand, the LS estimation methods usually require a matrix
inversion.
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Chapter 2

Autonomous Reconfigurable
Intelligent Surfaces Through Wireless
Energy Harvesting

2.1 Introduction

As the wireless world moves towards the sixth-generation (6G) era, the data-rate de-
mands exponentially increase. To prevent a possible capacity crunch, one candidate
solution that has been put forward is the migration to frequency bands in the millimeter-
wave, sub-terahertz, and terahertz (THz) range [19]. However, the higher blockage
susceptibility in those bands make the coverage patchy. To overcome this issue, active
relaying and the use of passive reflectors, such as dielectric mirrors, have been pro-
posed. However, the main drawback of active relaying is need for a dedicated power
supply for amplification, while the drawback of passive reflectors is their limited impact
on the coverage due to the inability to dynamically control the reflection angle [20]. A
promising solution that combines the benefits of both technologies without their dis-
advantages has been brought forward by the reconfigurable intelligent surfaces (RISs)
paradigm [21–23].

RISs are artificial structures consisting of a dielectric substrate that embeds con-
ductive elements, named reflective units (RUs), of sub-wavelength size and distance
between adjacent elements. Typical RUs are comprised of either dipoles, patches,
or string resonators, indicatively. By properly tuning their impedance through the use
of semiconductor components, such as positive-intrinsic-negative (PIN) diodes, field-
effect transistors (FETs), and radio-frequency micro-electromechanical systems (RF-
MEMS), their amplitude and phase response, with respect to an impinging electromag-
netic wave, can be altered. Hence, besides reflecting an impinging beam towards an
arbitrary direction or point, they can also act as absorbers of the impinging electromag-
netic energy. In addition, an amount of power is needed for their reconfigurability, but
not during a constant reflection configuration [22]. This is the reason why the RIS op-
eration has been characterized as nearly passive. If the reconfiguration is infrequent,
the power consumption is arguably smaller than when operating an active relay.

With respect to RIS deployment in communication networks, there has been an
intensive investigation in various domains [21]. In addition, when compared to ac-
tive relaying, which also allows beamforming in an arbitrary direction, several works
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showcase that sufficiently large RISs can in fact outperform their relay counterparts
[22,24–26].

An important question that the RIS’s nearly-passive feature raises is whether they
can achieve power autonomy by covering their needs through wireless energy harvest-
ing. The vast majority of RIS related works dealing with wireless power transfer employ
the RISs for assisting the transfer of power to end users and not for powering the RISs
[27], [28]. To the best of our knowledge, only [29] and [30] consider wirelessly powered
RISs. However, the related works lack RIS power consumption and energy harvest-
ing models nor introduce the RIS electronic modules that drive its power consumption.
This is essential towards the identification of the advances needed in ultra-low power
electronics that can realize the vision of autonomous RISs. Motivated by this, the con-
tribution of this chapter can be summarized as follows:

• We present a comprehensive RIS power consumption model that captures its
main power-consuming electronic components.

• We propose an energy harvesting model that is used for extracting the RIS har-
vested power and for formulating the optimization problem of interest. In particu-
lar, we focus on the optimal RIS placement as well as the amplitude and phase
response adjustment of the RUs for maximizing the end-to-end signal-to-noise
ratio (SNR), subject to the harvested power being sufficient for RIS autonomous
operation.

• An analytical solution is provided for the amplitude and phase response optimal
values of the RUs.

• Through the simulations, we provide a range of average power consumption of
the RIS electronics that guarantees its autonomous operation.

2.2 System Model and Power-Consuming Modules

In this section, we present the system model under consideration and identify the
RIS modules that consume power.

2.2.1 System Model

As illustrated in Fig. 2.1, we consider a fixed-topology street-level scenario in which
a transmitter (TX) communicates with a receiver (RX) through an RIS located in the far
field of both the TX and RX. Additional, 𝑟1,ℎ, 𝑟2,ℎ, and 𝑟ℎ denote the horizontal TX-RIS,
RIS-RX, and TX-RX distances, respectively, while ℎ𝑡 , ℎ𝑠, and ℎ𝑟 are the TX, RIS, and
RX heights, respectively. The incidence and departure angles of the electromagnetic
wave with respect to the center of the illuminated area (RIS center) are respectively
denoted by 𝜃𝑖 and 𝜃𝑟 . The considered TX-RIS and RIS-RX blockage-free links consti-
tute an alternative path to the direct TX-RX link that is assumed to be blocked. Such a
scenario can be a typical future street-level fronthaul/backhaul setup. To countermea-
sure the high pathloss in such bands, both the TX and RX are equipped with highly
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Figure 2.1: Illustration of the system model and notation.

directional antennas. We consider parabolic antennas with diameters 𝐷𝑡 and 𝐷𝑟 , re-
spectively. As a result, their maximum gain, denoted by 𝐺𝑚𝑎𝑥

𝑚 , 𝑚 ∈ {𝑡, 𝑟}, for 𝐷𝑡 , 𝐷𝑟 ≫ 𝜆,
where 𝜆 represents the wavelength, is given by [31]

𝐺max
𝑚 = 𝑒𝑚

(
𝜋𝐷𝑚

𝜆

)2
, 𝑚 ∈ {𝑡, 𝑟}, (2.1)

where 𝑒𝑚 is their efficiency. Note that this type of antennas has been extensively used
for wireless backhaul/fronthaul scenarios (see [32] and reference therein), due to their
capability to support pencil-beamforming transmissions. In addition, we assume that
the TX and RX antennas are pointing towards the center of the illuminated RIS re-
gion so the maximum gain is achieved. Furthermore, we note that even in such fixed-
topology scenarios the RISs need to be occasionally reconfigured such as in the case
of backhaul links in a mesh architecture [33].

We assume that the RIS has been deployed to have a line-of-sight path to the TX
and RX. As far as the channel model is concerned, for both the TX-RIS and RIS-RX
channels, we assume that the direct path dominates (as it has been reported through
measurements in the mmWave bands [34]) and use the free-space propagation model.

The RIS, consisting of 𝑀𝑠 = 𝑀𝑥 × 𝑀𝑦 RUs of size 𝑑𝑥 × 𝑑𝑦, is configured to act as
a beamformer, which, by proper adjustment of the RU phase response, is capable of
steering an incident wave from any direction towards the angular direction 𝜃r to the RX
direction. Each RU is an electrically-small low-gain element with gain pattern that can
be expressed as [31]

𝐺𝑠 (𝜃) = 4cos (𝜃), with 0 ≤ 𝜃 < 𝜋/2. (2.2)

Moreover, it is assumed that the transmission power is 𝑃𝑡 and that the received signal
is subject to additive white complex Gaussian noise with power 𝜎2 [31], computed in
dBm as

𝜎2 = −174 + 10 log10 (𝑊) + FdB, (2.3)
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where FdB is the noise figure in dB and 𝑊 is the bandwidth.

Remark 1. The assumption of a fixed-topology scenario does not preclude the validity
of the outcomes of this work also for mobile scenarios. In particular, we can envisage a
future urban scenario abundant in RISs that are mounted on fixed structures, such as
buildings. In such a case, the equivalent question that can be answered by the results
of this work is which RIS should be chosen in order to maximize the SNR subject to
the harvested power being sufficient for RIS autonomous operation. In such a case,
we can still assume that the free-space TX-RIS-RX propagation model approximately
applies considering the elevation of the RIS with respect to the positions of the TX
and RX.

2.2.2 RIS Power-Consuming Modules

Impedance-adjusting semiconductor components This power consumption is char-
acterized by two factors, namely the static power consumption and the dynamic power
consumption. The first factor corresponds to their continuous power consumption due
to leakage currents originating from the bias voltages when they operate in steady
state. Usually, the resulting direct-current (DC) power consumption is virtually negligi-
ble for FETs and RF MEMS. [35]. On the other hand, the dynamic power consumption
constitutes a non-negligible factor related to the charging and discharging of internal
capacitors during bias voltage level changes needed for RU phase and amplitude re-
sponse adjustment. It is present only when the semiconductor components change
state, which means that its effect is alleviated in low-mobility scenarios.

Energy-harvesting modules For the RF-to-DC power conversion that is needed to
power the RIS semiconductor components, we consider corporate feed networks in
which the accumulated energy by a group of RUs is driven to a single rectifying circuit
instead of dedicating one rectifying circuit per RU [36]. The rectifying circuits can be
either passive that exhibit negligible power consumption or can be active by incorporat-
ing active diodes that increase the conversion efficiency, but result in a non-negligible
power consumption.

Control network As described in [37], the RIS needs to receive external commands
regarding the configuration state it needs to assume. This can be achieved by either of
two basic approaches: i) detached microcontroller architecture; ii) integrated architec-
ture. In this work, we consider the integrated architecture since it has a strong potential
for enabling autonomous RIS operation due to expected low power consumption, as
suggested by [37]. In such an architecture, the reconfiguration requests that are wire-
lessly received by the RIS are dispatched to an integrated network of communicating
chips, which involve controllers that read the RU state and adjust the bias voltages of
the impedance-adjusting semiconductor elements. The chip circuits that receive, inter-
pret, and apply the commands exhibit their own static and dynamic power consumption
due to leakage and transistor switching, respectively [38]. In addition, they are likely to
use asynchronous logic due to the resulting small power consumption [39].
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Figure 2.2: The proposed energy harvesting model.

2.3 RU Reflection Coefficient, Energy-Harvesting, and
Power Consumption Models

In this section, we first present the considered model for the RU reflection coefficient
and, subsequently, the energy-harvesting together with the power consumption model.

2.3.1 RU Reflection-Coefficient Model

We assume that the phase 𝜑𝑝,𝑙 and amplitude 𝐴𝑝,𝑙 response of the
(
𝑝, 𝑙

)
th RU can be

tuned independently from each other. Although the RU phase and amplitude response
are physically coupled [40], there are design approaches that substantially alleviate
such an inter-dependency [41]. Hence, the proposed model can serve as an upper
bound on the achievable performance.

2.3.2 Energy Harvesting Model

Our proposed energy harvesting model is depicted in Fig. 2.2. We assume that each
RU can act as both an energy harvester and as a reflector of the impinging electromag-
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netic radiation. The fraction of power that is absorbed (excluding the ohmic and other
losses) is equal to 1 − 𝐴2

𝑝,𝑙
, while the fraction of reflected power is 𝐴2

𝑝,𝑙
. As depicted

in Fig. 2.2, the amount of RF energy that is absorbed by a group of RUs is converted
into DC electricity through a rectifying circuit. The total DC energy output of the rec-
tifying circuits charges one of two batteries/capacitors depicted in Fig. 2.2. While one
is charging, the other is discharging by providing power supply to both the controller
chips that adjust the response of the RUs and the rectifying circuits. Once one of the
batteries/capacitors is charged and the other one is discharged,1 the switch depicted
in Fig. 2.2 swaps between them.

2.3.3 Power Consumption Model

For the RIS power consumption, denoted by 𝑃RIS, by assuming one chip per RU it
holds2

𝑃RIS = 𝑀𝑠 𝑃𝑐 + 𝑀rect 𝑃rect, (2.4)

where with 𝑃𝑐 we incorporate both the power consumption of the control chip and the
one of the impedance adjusting semiconductor component. Futhermore, 𝑃rect is the
power consumption of each of the 𝑀rect rectifying circuits. We can consider 𝑃𝑐 as an
equivalent continuous power consumption level (average value). For example, by de-
noting the static power consumption of the chip as 𝑃static, its dynamic one as 𝑃dynamic,
and the percentage of time that the RIS needs to be reconfigured (this depends on the
switching frequency and the reconfiguration duration) by 𝑝𝑟 , it holds that

𝑃𝑐 = 𝑃static + 𝑝𝑟𝑃dynamic. (2.5)

2.4 Problem Formulation and Solution

In this section, we first compute the SNR and, subsequently, we present the total
harvested RIS power model. Finally, we formulate and solve the optimization problem
of interest.

2.4.1 Signal-to-Noise Ratio

The SNR at the RX, which is given by

𝜌𝑠 =

(
𝜆

4𝜋

)4
𝑃𝑡𝐺

𝑚𝑎𝑥
𝑡 𝐺𝑚𝑎𝑥

𝑟 𝐺𝑠 (𝜃𝑖)𝐺𝑠 (𝜃𝑟)
𝑟21𝑟

2
2𝜎

2

��������
𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

𝐴𝑝,𝑙 exp
©«− 𝑗

©«𝜑𝑝,𝑙+
2𝜋

(
𝑟1𝑝,𝑙

+𝑟2𝑝,𝑙

)
𝜆

ª®®¬
ª®®®¬
��������
2

.

(2.6)

1Assuming, ideally, the same charging and discharging rates.
2The assumed linear dependency of the power consumption on the number of electronic chips (𝑀𝑠𝑃𝑐)

can be considered as an upper bound on the amount that is expected in practice. This is due to the fact
that the percentage of the electronic chips contributing to a steering angle change depends on the
previous and targeted angle [42].
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This formula can be obtained by following similar steps as in [31, Appendix C]. The pa-
rameters 𝑟1𝑝,𝑙

and 𝑟2𝑝,𝑙
are the distances between the TX center and the

(
𝑝, 𝑙

)
element,

and between the
(
𝑝, 𝑙

)
element, and the RX center, respectively, given by

𝑟1𝑝,𝑙
=

√︃(
𝑟1,ℎ−𝑑𝑝

)2+𝑦2𝑠 +(ℎ𝑠−ℎ𝑡−𝑑𝑙)2, 𝑟2𝑝,𝑙
=

√︃(
𝑟1,ℎ−𝑑𝑝

)2 + 𝑦2𝑠 +(ℎ𝑠−ℎ𝑡−𝑑𝑙)2. (2.7)

where 𝑑𝑝 and 𝑑𝑙 denote the distances between the RIS center and the
(
𝑝, 𝑙

)
RU in the

𝑥- and 𝑦-axis, respectively. Furthermore, 𝑟1 and 𝑟2 are the distances between the TX
and the RIS center and between the RIS and RX center, respectively. They are given
by

𝑟1=

√︃
𝑟21,ℎ+𝑦

2
𝑠+(ℎ𝑠 − ℎ𝑡)2, 𝑟2=

√︃(
𝑟ℎ − 𝑟1,ℎ

)2+𝑦2𝑠 +(ℎ𝑠−ℎ𝑟)2. (2.8)

Moreover, 𝜃𝑖 and 𝜃𝑟 are given by

𝜃𝑖 = tan−1
©«
√︃
𝑟21,ℎ + (ℎ𝑠 − ℎ𝑡 )2

𝑦𝑠

ª®®®¬ , (2.9)

𝜃𝑟 = tan−1
©«
√︃(
𝑟1,ℎ − 𝑟ℎ

)2 + (ℎ𝑠 − ℎ𝑟 )2

𝑦𝑠

ª®®®¬ . (2.10)

2.4.2 RIS Harvested Power Model

The absorbed power of the
(
𝑝, 𝑙

)
RU element, which we denote by 𝑃𝑎𝑏𝑠𝑝,𝑙 , can be

obtained as

𝑃abs𝑝,𝑙 =

(
1 − 𝐴2

𝑝,𝑙

)
𝑃𝑖𝑝,𝑙 =

(
𝜆

4𝜋

)2 𝑃𝑡

(
1 − 𝐴2

𝑝,𝑙

)
𝐺𝑚𝑎𝑥

𝑡 𝐺𝑠 (𝜃𝑖)

𝑟21

. (2.11)

Hence, the total absorbed power of the RIS per communication time slot is the sum of
𝑃abs𝑝,𝑙 across all RUs. We let 𝜖conv ∈ (0, 1) the RF-DC conversion efficiency, which is the
same for all the employed rectifying circuits. The total harvested power from the RIS is
then given by

𝑃harv = 𝜖conv

𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

𝑃abs𝑝,𝑙 . (2.12)

For enabling the perpetual (autonomous) operation of the RIS, it should hold that
𝑃harv ≥ 𝑃RIS. By plugging (2.2), (2.8), and (2.9) into (2.11), 𝑃harv as a function of 𝑟1,ℎ
and A =

{
𝐴𝑝,𝑙

}
is given by

𝑃harv
(
𝑟1,ℎ,A

)
= 4𝜖conv

(
𝜆

4𝜋

)2
𝑃𝑡𝐺

𝑚𝑎𝑥
𝑡

𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

1 − 𝐴2
𝑝,𝑙

𝑟21,ℎ + 𝑦
2
𝑠 + (ℎ𝑠 − ℎ𝑡)2

cos

©«
tan−1

©«
√︃
𝑟21,ℎ + (ℎ𝑠 − ℎ𝑡)2

𝑦𝑠

ª®®®¬
ª®®®®¬
.

(2.13)
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2.4.3 Problem Formulation and Solution

The problem of interest is formulated as

maximize
𝑟1,ℎ,A,𝜑

𝜌𝑠
(
𝑟1,ℎ,A, 𝜑

)
subject to 𝑃harv

(
𝑟1,ℎ,A

)
= 𝑃RIS, 0 < 𝐴𝑝,𝑙 < 1, (2.14)

where 𝜑 =
{
𝜑𝑝,𝑙

}
and 𝜌𝑠

(
𝑟1,ℎ,A, 𝜑

)
is given by

𝜌𝑠
(
𝑟1,ℎ,A, 𝜑

)
= 16𝑃𝑡𝐺

𝑚𝑎𝑥
𝑡 𝐺𝑚𝑎𝑥

𝑟

(
𝜆

4𝜋

)4 cos ©«tan−1
(√︃

𝑟21,ℎ+(ℎ𝑠−ℎ𝑡 )
2

𝑦𝑠

)ª®¬ cos ©«tan−1
(√︃

(𝑟1,ℎ−𝑟ℎ)2+(ℎ𝑠−ℎ𝑟 )2
𝑦𝑠

)ª®¬(
𝑟21,ℎ + 𝑦

2
𝑠 + (ℎ𝑠 − ℎ𝑡)2

) ( (
𝑟ℎ − 𝑟1,ℎ

)2 + 𝑦2𝑠 + (ℎ𝑠 − ℎ𝑟)2
)
𝜎2

×

��������
𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

𝐴𝑝,𝑙 exp
©«− 𝑗

©«𝜑𝑝,𝑙 +
2𝜋

(
𝑟1𝑝,𝑙

(
𝑟1,ℎ

)
+ 𝑟2𝑝,𝑙

(
𝑟1,ℎ

) )
𝜆

ª®®¬
ª®®®¬
��������
2

. (2.15)

By employing (2.2), (2.8), (2.9), and (2.10) into (2.6). As a constraint for the harvested
power, we consider that it should be equal to the required amount needed to power
the RIS electronics and not larger in order to devote more power to the information
transmission.

For the optimal values of 𝜑𝑝,𝑙 , 𝐴𝑝,𝑙 , and 𝑟1,ℎ, denoted by 𝜑∗
𝑝,𝑙

, 𝐴∗
𝑝,𝑙

, and 𝑟∗1,ℎ, respec-
tively, it holds that

𝜑∗𝑝,𝑙 = −
2𝜋

(
𝑟1𝑝,𝑙

+𝑟2𝑝,𝑙

)
𝜆

, (2.16)

𝐴∗
𝑝,𝑙=

√√√√√√√√√√√√√√√√√√1−
𝑃RIS

((
𝑟∗1,ℎ

)2
+ 𝑦2𝑠 + (ℎ𝑠 − ℎ𝑡 )2

)
4𝑀𝑠𝜖conv

(
𝜆
4𝜋

)2
𝑃𝑡𝐺

𝑚𝑎𝑥
𝑡 cos

©«tan
−1
©«
√︂(

𝑟∗
1,ℎ

)2
+(ℎ𝑠−ℎ𝑡 )2

𝑦𝑠

ª®®¬
ª®®®¬

(2.17)

and 𝑟∗1,ℎ is the value of 𝑟1,ℎ that maximizes 𝐺
(
𝑟1,ℎ

)
, given by

𝐺
(
𝑟1,ℎ

)
=

cos
©«tan−1

(√︃
𝑟21,ℎ+(ℎ𝑠−ℎ𝑡 )

2

𝑦𝑠

)ª®¬ cos ©«tan−1
(√︃

(𝑟1,ℎ−𝑟ℎ)2+(ℎ𝑠−ℎ𝑟 )2
𝑦𝑠

)ª®¬(
𝑟21,ℎ + 𝑦

2
𝑠 + (ℎ𝑠 − ℎ𝑡)2

) ( (
𝑟ℎ − 𝑟1,ℎ

)2 + 𝑦2𝑠 + (ℎ𝑠 − ℎ𝑟)2
)
𝜎2

×

©«
1 −

𝑃RIS

(
𝑟21,ℎ + 𝑦

2
𝑠 + (ℎ𝑠 − ℎ𝑡)2

)
4𝑀𝑠𝜖conv

(
𝜆
4𝜋

)2
𝑃𝑡𝐺

𝑚𝑎𝑥
𝑡 cos

©«tan−1
(√︃

𝑟21,ℎ+(ℎ𝑠−ℎ𝑡 )
2

𝑦𝑠

)ª®¬

ª®®®®®®®®¬
. (2.18)

Proof: The proof is provided in the appendix.
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2.5 Numerical Results

We consider the parameter values of Table 2.1. In Fig. 2.3, we depict the optimal
SNR, denoted by 𝜌∗𝑠 , obtained by the optimal RIS placement, together with 𝑟∗1,ℎ and 𝐴∗

𝑝,𝑙

versus 𝑃𝑐 for three values of 𝑦𝑠. From Fig. 2.3(a), we observe that the higher 𝑃𝑐 is, the
lower 𝜌∗𝑠 becomes until the RIS’s power consumption cannot be covered by harvesting.
In addition, we observe that as 𝑦𝑠 increases, the range of 𝑃𝑐 for which autonomous
operation can be sustained is smaller. This is due to the higher TX-RIS distance.

Furthermore, from Fig. 2.3(b), we observe that the higher 𝑃𝑐 is, the closer to the TX
the RIS needs to be placed. This trend is justified as follows: For relatively small values
of 𝑃𝑐, the vast majority of the propagating energy should be dedicated to the SNR
maximization since the RIS power needs can be covered by just a small amount of that
energy, as it is verified by Fig. 2.3(c). In such a case, the optimal RIS location could,
depending on the configuration, be even closer to the middle of the TX-RX distance
than the TX, especially for large 𝑦𝑠, as it is verified in [31]. On the other hand, for
notable 𝑃𝑐 values, the RIS inevitably needs to be placed very close to the TX so that
the highest possible amount of energy is harvested, as it is again verified by Fig. 2.3(c).

Table 2.1: Parameter values used in the simulation.

Parameter Value Parameter Value

𝑃𝑡 1 W 𝑀rect 100

𝑃rect 0 (passive rectification) ℎ𝑠 12 m

𝑟ℎ 100 m ℎ𝑡 , ℎ𝑟 3 m

𝑊 2 GHz 𝐷𝑡 , 𝐷𝑟 30 cm

FdB 10 dB 𝑒𝑡 , 𝑒𝑟 0.7

𝑀𝑥, 𝑀𝑦 50 𝑒conv 0.6

2.6 Conclusion

The case for RIS-aided communications, compared to active relaying, relies on the
belief that the power consumption can be made lower. However, if the RIS still requires
a wired power supply, the power reduction might be practically insignificant. The pur-
pose of this work was to determine under which conditions, in terms of placement and
element response, an autonomous RIS operation through energy harvesting from in-
formation signals is possible. The numerical results reveal that this is indeed possible
if the average power consumption of the RIS electronic components does not exceed
few microwatts. While the SNR over an RIS-aided communication link is the same
when the TX and RX switch roles, the same does not apply for energy harvesting: the
RIS should be close to the transmitter. The results from this study can help the system
designer to identify the design requirements of future ultra-low power components in
order to materialize such a vision.
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Figure 2.3: 𝜌∗𝑠, 𝑟∗1,ℎ, and 𝐴∗
𝑝,𝑙

vs. 𝑃𝑐.
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Appendix

We notice that (2.15) is maximized when the complex terms in the norm are co-
phased, which is achieved by (2.16). Hence, by plugging (2.16) into (2.15), (2.14)
becomes

maximize
𝑟1,ℎ ,𝐴𝑝,𝑙

𝐹
(
𝑟1,ℎ

) ©«
𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

𝐴𝑝,𝑙
ª®¬
2

subject to 𝐻
(
𝑟1,ℎ

) 𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

𝐴2
𝑝,𝑙 = 𝑃RIS, 0 < 𝐴𝑝,𝑙 < 1, (2.19)

where 𝐹
(
𝑟1,ℎ

)
and 𝐻

(
𝑟1,ℎ

)
depend only on 𝑟1,ℎ and can be extracted from (2.15) and

(2.13), respectively. We now define

Λ
(
𝑟1,ℎ,A, 𝜇

)
= 𝐹

(
𝑟1,ℎ

) ©«
𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

𝐴𝑝,𝑙
ª®¬
2

− 𝜇 ©«𝐻
(
𝑟1,ℎ

) 𝑀𝑥∑︁
𝑝=1

𝑀𝑦∑︁
𝑙=1

𝐴2
𝑝,𝑙 − 𝑃RIS

ª®¬ , (2.20)

where 𝜇 is the Lagrange multiplier. By taking the first derivative of Λ
(
𝑟1,ℎ,A, 𝜇

)
with

respect to each 𝐴𝑝,𝑙 and equating it to zero, it holds that 𝐴𝑝,𝑙 should be equal for each
other, given by (2.17) by replacing 𝑟∗1,ℎ with 𝑟1,ℎ. Subsequently, by plugging 𝐴𝑝,𝑙 into
the objective function of (2.19), (2.18) is obtained from which 𝑟∗1,ℎ can be obtained by a
linear search.
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Chapter 3

AI-Assisted MAC for Reconfigurable
Intelligent Surface-Aided Wireless
Networks: Challenges and
Opportunities

3.1 Introduction

With the ever-increasing demands on wireless networks, research in wireless com-
munications continues to focus on meeting the challenges of improving the energy
efficiency (EE) versus spectral efficiency (SE) trade-offs. Advances in meta-materials
have fuelled research in reconfigurable intelligent surfaces (RISs) for beneficially re-
configuring the wireless communication environment with the aid of a large array of
low-cost reconfigurable elements. This new design paradigm results in migration from
traditional wireless connections to “intelligent-and-reconfigurable connections". The
intelligently controlled features of RISs lead to potential benefits for future wireless net-
works, such as their coverage enhancement, EE/SE performance improvement, lead-
ing to improved throughput and security [43]. Because of these potential benefits, RISs
are eminently suitable for addressing various challenges of wireless communications;
hence they have been extensively investigated in diverse applications. Although the
benefits of RISs in the physical layer have already been validated in practice, their
performance is still constrained by the medium access control (MAC) layer, since the
real-time configuration of RISs is complex and hence costly. To address this prob-
lem and improve the benefits of RISs, artificial intelligence (AI)-based methods can be
applied to design MAC protocols for RIS-aided wireless networks.

Most of the existing research activities on RISs focus on physical layer issues, such
as the issues of RIS deployment and their sustainable operation, flexible beamforming
reconfiguration, EE/SE performance improvement and their compatibility with emerg-
ing technologies such as non-orthogonal multiple access (NOMA), as well as mas-
sive multiple-input multiple-output (MIMO) aided millimeter-wave (mmWave)/terahertz
(THz) communications [44]. Following the recent breakthrough in the fabrication of
programmable metamaterials, RISs have been employed in various wireless networks.
Some of the MAC-related issues have also been investigated in order to support seam-
less connectivity [45–55]. However, these explorations of the MAC layer have focused
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Figure 3.1: RIS-aided wireless network applications in multi-user communication systems.

primarily on the single-user uplink (UL) or multi-user downlink (DL). But there is a
paucity of promising multi-user uplink solutions, since this scenario has not attracted
significant attention to date. With the continued development of RIS technology and its
integration with AI, the latency-sensitive services/applications supported by RISs are
of salient importance in the 6G area, including RIS-aided vehicular, drone, or robotic
communications, as shown in Fig. 3.1. Moreover, handling the massive number of RIS-
aided sensors or Internet-of-things (IoT) devices represents a significant challenge in
terms of the EE/SE. Finally, RISs are eminently suitable for supporting the emerg-
ing mmWave/sub-THz/THz communications in pursuit of high quality of service (QoS).
Clearly, compelling MAC designs have to be conceived for fully exploiting the potential
of RIS-aided wireless networks.

Against this background, we first present four typical scenarios (S) of RIS-aided
multi-user wireless communications, with special emphasis on their MAC protocol de-
sign. Then, we propose three types of AI-assisted MAC structures designed for the
RIS-aided multi-user uplink and discuss their protocols and applications. Next, we dis-
cuss some potential challenges facing AI-assisted MAC protocols. Furthermore, we
evaluate the proposed AI-assisted MAC solutions to quantify their system throughput.
Finally, we conclude with the trends in designing AI-assisted MAC protocols for RIS-
aided wireless networks.

3.2 Scenarios, Protocols and Objectives

In this section, we commence by presenting our typical MAC scenarios seen in Fig.
3.2 and then review the existing MAC protocols and their design objectives.

3.2.1 Scenarios

- S1: Single RIS-aided multiple-Tx single-Rx. In S1, a single RIS is deployed
to coordinate the uplink transmissions of multiple transmitters (Txs) to a base
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Figure 3.2: AI-assisted MAC scenarios in RIS-aided wireless communications.

station (BS), e.g., 𝐾 Txs to a BS via an RIS. Note that the single-input single-
output scenario is a special case when 𝐾 = 1.

- S2: Single RIS-aided multiple-Tx multiple-Rx. In S2, a single RIS is deployed
to coordinate the uplink transmissions of multiple Txs to multiple receivers (Rxs),
e.g., 𝐾 Txs to 𝑀 Rxs via an RIS.

- S3: Multiple RIS-aided multiple-Tx single-Rx. In S3, multiple RISs are coordi-
nated to support the uplink transmissions of multiple Txs to a BS, e.g., 𝐾 Txs to
a BS via 𝑁 RISs.

- S4: Multiple RIS-aided multiple-Tx multiple-Rx. In S4, multiple RISs are coor-
dinated to assist the uplink transmissions of multiple Txs to multiple Rxs, e.g., 𝐾
Txs to 𝑀 Rxs via 𝑁 RISs.

For future networks with the ultra dense deployment of users, the coordination of
massive users for meeting their QoS demands in the scenarios with a single RIS (e.g.,
S1 and S2) becomes challenging. For the scenarios having multiple RISs (e.g., S3 and
S4), the user-RIS association (also known as RIS allocation) becomes more attractive,
since serious interference may occur among the RISs.

3.2.2 MAC Protocols

Conceiving MAC protocols (P) for RIS-aided multi-user wireless communications
have become essential. Both the conventional orthogonal multiple access (OMA) and
the emerging NOMA schemes have already been investigated [45–55].

RIS-aided OMA. It aims for improving the SE/EE, for enhancing the QoS and for
increasing the number of network connections by reconfiguring the wireless propaga-
tion environment[45–52]. The available OMA technologies integrated with RISs are
enumerated as follows.

- P1: RIS-aided time division multiple access (TDMA). It enables multiple users
to transmit their data via RISs on the same frequency in different time slots [47–
52].
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- P2: RIS-aided frequency division multiple access (FDMA). It enables mul-
tiple users to transmit their information via RISs in the same time slot on non-
overlapping domain frequency channels [45,46,51].

- P3: RIS-aided spatial division multiple access (SDMA). It enables multiple
users to transmit their data via RISs either in unique angular direction or by ex-
ploiting the users’ unique channel impulse responses (CIRs) by spatial multiplex-
ing [53].

- P4: RIS-aided carrier sensing multiple access (CSMA). It enables multiple
users to transmit their signals via RISs relying on random contention-based mul-
tiple access protocols, where some control information exchange is required be-
fore the RIS-aided payload transmission [44,55].

RIS-aided NOMA. With the assistance of RISs, NOMA schemes are capable of
avoiding having to distinguish multiple users on the same resource block by their power
levels, which may improve their SE/EE and latency. Hence, NOMA-assisted RIS-aided
multi-user downlink communications have been explored in [53, 54], concluding that
the performance of NOMA is not always preferable compared to OMA. For example,
NOMA may perform worse than angularly-orthogonal SDMA or TDMA.

3.2.3 Objectives

The objectives (O) of MAC designs conceived for RIS-aided multi-user systems in-
clude the following potential aspects.

- O1: System throughput. The throughput is directly linked to the SE, which can
be increased by increasing the number of transceivers and/or the time/ frequency/
space/ RISs resources.

- O2: EE performance. The EE is given by the capacity normalized by the MAC’s
energy consumption, which can be readily improved by the directional communi-
cations of RISs, which is mitigating the interference by directional beams and/or
enhancing the strength of the desired signal reflected by passive elements. From
a specific MAC design perspective, the EE can be further improved by avoiding
access collisions. Therefore, a critical aspect of EE in the MAC is that of exploiting
the angular focusing capabilities of RISs for multiple users.

- O3: Fairness. The rate fairness of different users should be guaranteed without
degrading the overall system performance, especially when the resources are
limited. In this context, avoiding these starvations of users suffering from low
link quality becomes a pivotal criterion when designing an appropriate MAC for
RIS-aided wireless networks.

- O4: Overhead. The overhead of user access-grant directly affects both the com-
munication and computational complexity in terms of the RIS channel estimation,
reconfiguration and resource allocation. Additionally, the wireless handshake of
the MAC design may impose extra costs. How to implement the MAC protocol at
a low-cost in RIS-aided wireless networks is a challenging dilemma.
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- O5: Latency. The MAC design needs to meet the low-latency requirement of
delay-sensitive applications with the aid of RISs.

Table 3.1: RIS-AIDED TRANSMISSION PROTOCOL DESIGN: STATE OF THE ART

Refs. ScenariosProtocols ObjectivesApproaches ApplicationsKey features
Centralized

[45] S1 P1, P2 O1,
O2

Iterative
algorithm IoT

An RIS-aided transmission protocol
with the RIS group partition for long
distance transmission.

[46] S1 P1, P2 O1 SDR, STM mmWave,
IoT

An RIS-aided transmission proto-
col with frequency-selective chan-
nels for delay-sensitive applications.

[47] S1 P1 O1 Iterative
algorithm Wi-Fi

A pilot-assisted block transmission
protocol for RIS channel estimation
and passive beamforming with dis-
crete phase-shift.

[48] S1,
S3 P1 O4

Iterative
algorithm,
supervised

learning

RF
sensing

A periodic configuring protocol aims
to perform RIS-aided human pos-
ture.

[50] S1 P1 O5
Iterative

algorithm
(BCD)

Edge
comput-

ing

RIS aided TDD transmission is in-
vestigated in mobile edge computing
systems.

[49] S1 P1 O1
Iterative

algorithm
(SCA)

Drone
communi-

cations

Jointly optimizing UAV trajectory and
RIS beamforming for RIS-aided UAV
communications.

[51] S3 P1, P2 O1,
O2

Iterative
algorithm

IoT,
massive

RIS-aided transmission combined
TDD with OFDMA is discussed by
jointly considering the user schedul-
ing and power control.

[52] S1 P1 O1,
O2

Alternating
optimization

(BCD)
Wi-Fi

RIS-aided TDD transmission with
considering perfect channel state in-
formation (CSI) and imperfect CSI.

[53] S3 P3,
NOMA O1

Cauchy-
Schwarz
inequality

Edge
comput-

ing

RIS-aided NOMA transmissions are
used to serve multiple users on each
orthogonal spatial direction.

[54] S1 NOMA O1,
O2

Iterative
algorithm

(BCD, SDR)

Massive,
low-

latency

An RIS-aided NOMA with
combined-channel-strength is
proposed while ensuring the fair-
ness among users.

Distributed

[43,
44]

S1-
S4 f× O1-

O3 f×

Wi-Fi,
D2D,

mmWave,
IoT

Randomly access with information
exchange in RIS-aided multi-user
system.

[55] S1,
S2

P1, P2,
P4 O1 Alternating

optimization
IoT, D2D,

Wi-Fi
Randomly reserved access in RIS-
aided multi-user system.

Existing contributions on the MAC design of RIS-aided communication systems are
summarized at a glance in Table 3.1, with an emphasis on their design objectives
and critical features. In the table, the acronyms SDR, STM, SCA, and BCD represent
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semidefinite relaxation, strongest tap maximization, successive convex approximation
and block coordinate descent, respectively. Notably, with the context of the coming
wireless intelligence era, AI will give impetus to the MAC designs in RIS-aided networks
by enabling the users and BS to “think-and-decide".

3.3 AI-Assisted MAC for RIS-Aided Networks

In this section, we design three AI-assisted MAC architectures for RIS-aided wire-
less networks, namely for centralized, distributed and hybrid schemes. We discuss
their differences from the perspective of their overall framework, protocol design, com-
putational aspects and promising applications. In particular, the centralized and hybrid
MAC protocols are time-frame based, while the distributed MAC protocol is based on
a random access scheme. The centralized MAC design obeys a central schedule, the
distributed MAC design uses a contention-based model, and the hybrid MAC design
combines both features. Additionally, deep learning and reinforcement learning solu-
tions are adapted to the different MAC protocols.

3.3.1 Centralized AI-Assisted MAC

Framework

In the proposed centralized AI-assisted MAC framework, the BS tightly coordinates
the multiple access of users. Explicitly, the BS enables each of the RIS-controllers
to beneficially configure the wireless propagation environment via deep learning for
multiple users. Here, the RISs are assumed to be passive, simply reflecting the in-
cident signals without sensing or processing. More explicitly, the BS has to estimate
the concatenated BS-RIS-user link, calculate the RIS phase reconfiguration, and allo-
cate resources via deep learning, as it will be detailed below in the ‘computation’ part.
As shown in Fig. 3.3, each sub-frame is divided into three periods: the pilot period,
computing period and scheduled transmission period. The pilot period and scheduled
transmission period can be further divided into 𝐾 pilot slots and 𝐽 data slots, respec-
tively. The users transmit their data in the 𝐽 data slots over the 𝑁 non-overlapping
sub-channels. Based on this, the centralized AI-assisted MAC protocol is designed by
giving full cognizance to both channel estimation as well as phase computation and
data transmission.

Protocol

The protocol of the centralized AI-assisted MAC is shown in Fig. 3.3, which is in-
tegrated with TDMA and FDMA, where each user obeys the time division scheme in
each sub-channel. In particular, after synchronization, each user initiates pilot trans-
mission to the BS in dedicated pilot slots. During the computational period, the BS first
estimates the concatenated RIS link, followed by time, frequency and power resources
allocation and RIS phase configuration. Then the BS instructs each RIS-controller to
configure its reflection parameters and schedules the access of users, who transmit
their data to the BS via the RISs.
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Figure 3.3: Hybrid AI-assisted MAC structure with centralized and distributed designs, an illus-
tration of Case 1.

Computation

Given the excessive complexity of high-dimensional full-search-based centralized
MAC protocols, a deep learning-based computational model trained offline can be em-
ployed at the BS for finding a near-optimal solution at a reduced complexity. The input
of the trained deep learning model can be the number of users, the number of sub-
frames, the number of channels, the number of RISs and the RIS channel information.
The online inference that moves the complexity to offline training is performed at the
BS, which relies on a model-based training for determining the RIS phase-shift config-
uration, the RIS-deployment strategy and the resource allocation strategy, which are
related to each other. More explicitly, these related learning tasks share the same
input parameters, thus learning multiple related tasks jointly improves the prediction
accuracy and generalization capability compared to learning them separately.

Applications

Given the centralized implementation and deep learning-based computation model
considered, the centralized AI-assisted MAC design advocated can be readily applied
to the scenarios S1 and S3 for supporting low-power RIS-aided communications.

3.3.2 Distributed AI-Assisted MAC

Framework

In contrast to the centralized scheme, in the proposed distributed AI-assisted MAC
framework, each user configures the multiple access and computes the RIS config-
uration by itself based on the RIS-aided network environment. In this case, no BS
assistance is necessary. Each RIS is assumed to be passive and to occupy a non-
overlapping frequency channel. In contrast to the centralized MAC design, the user has
to negotiate with the RIS-controller for channel access. The corresponding RIS-aided
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data transmission as illustrated in Fig. 3.3. In particular, channel sensing and com-
putation are carried out at the user side via reinforcement learning (RL) to determine
the RIS configuration. Once a channel is idle, the user sends the RIS configuration
information to the RIS-controller to negotiate the ensuing RIS-aided data transmission.

Protocol

The protocol of the proposed distributed AI-assisted MAC is shown in Fig. 3.3,
which is integrated with CSMA and FDMA, where each user follows the distributed
coordination function (DCF) based scheme in each channel. In particular, a competing
user senses the state of each sub-channel. Once a channel is sensed to be idle,
the user contends for the access to the channel. Waiting for a DCF inter-frame space
(DISF) and backoff, the user computes its RIS configuration based on RL and sends an
RIS configuration request to the RIS-controller. If the RIS is available for the user, the
RIS-controller configures its reflection parameters and sends its feedback to the user
after a short inter-frame spacing (SIFS). Following the elapse of a SIFS, the user then
transmits the data to the BS via the RIS. Note that the feedback from the RIS-controller
is sent without a transmit radio frequency chain. Moreover, the access collisions of
users can be alleviated by the RIS-controller.

Computation

In the distributed MAC protocol, an RL-based computational model can be employed
by each user to solve the resource allocation and RIS configuration problems because
no RIS channel-information exchange is required. The RL model includes the following
aspects: the current RIS configuration, the current RIS deployment, and the currently
occupied resources (e.g., power) of each user. The model actions include three as-
pects: the update of RIS configuration, the motion-trajectory of the user and the occu-
pied resources updates. The reward function is decided by the throughput requirement
of the user. When the action taken by the user improves its data rate, the user obtains
a positive reward. By contrast, for throughput reductions, the user receives a negative
reward (also termed the penalty). The RL-based computational model is more suitable
for small RISs to avoid potential dimensionality problems. If the RIS is large, the RIS
elements may be partitioned into groups, where each group maintains the same RIS
configuration.

Applications

Due to the distributed implementation and the RL-based computational model, the
distributed AI-assisted MAC design can be applied to all the scenarios S1 to S4 for
meeting low-latency requirements.

3.3.3 Hybrid AI-Assisted MAC

Based on the centralized and distributed MAC frameworks proposed, we now dis-
cuss three types of hybrid AI-assisted MAC designs, where the centralized and dis-
tributed implementations are integrated into a single frame.
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Case 1

In this hybrid framework, the scheduled and the competing transmissions relying on
RISs are combined after the pilot transmissions and computing, while enabling users
to switch between them for meeting different QoS demands, as illustrated in Fig. 3.3.
Each frame is partitioned into four parts, namely, the pilot period, the computing period,
the scheduled transmission period and the competing transmission period. According
to the proposed distributed AI-assisted MAC design, the scheduled users transmit their
data to the BS via RISs in the scheduled transmission period. After that, based on the
distributed AI-assisted MAC design, the unscheduled users (i.e., the unserviced users
that have sent their pilots and the new requesting users) transmit their data to the BS
or the Rxs via RISs during the competing transmission period. Given the dynamic
switching between two transmission modes, this scheme is capable of maintaining the
target-rate, and it may be suitable for all scenarios (i.e., S1 to S4).

Case 2

In this hybrid framework, the competing requests and the scheduled RIS-aided
transmissions are combined into a single frame. Each frame consists of the competing
request period, the computing period and the scheduled transmission period. The user
sends a request to the BS and when a sub-channel becomes available during the com-
peting request period, then the BS issues a feedback for acknowledgment. Based on
the requests received, the BS controls the RISs and sends the scheduling information
to users during the computing period. Afterwards, the scheduled users transmit their
data to the BS via RISs in the scheduled transmission period. Due to the competitive
access of Case 2, it can be applied in scenarios S1 and S3 for supporting RIS-aided
smart homes or smart factories.

Case 3

This hybrid framework is similar to Case 2, since it combines the competing requests
and the reserved RIS-aided transmissions into a single frame. The slight difference is
that computing in Case 3 is carried out at the user, rather than at a BS or RIS-controller.
When a sub-channel becomes idle, the user occupies the channel, then computes the
required resources and RIS configuration based on RL and sends a request to the
RIS-controller for reserving the resources for future RIS-aided transmissions. The RIS-
controller sends a feedback to the user once a request is registered and controls the
RIS. When the reserved transmission period arrives, the user transmits the data to the
Rx or the BS via the RIS in the reserved slots. Since RL is mainly used for complexity
reduction, Case 3 can be applied in all the scenarios S1 to S4 for supporting RIS-aided
periodic communications.

In practice, due to the implementation constraints, the phase shifts applied by the
RIS elements belong to a discrete set. Hence, the RIS configuration may be viewed
as a classification problem, which can be tackled by using deep learning. If the phase
shifts can be configured continuously, e.g., for varactor-based RIS designs, the optimal
configuration of the phase shifts of the RIS can be regarded as a regression problem.
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Figure 3.4: System throughput vs. the number of transmitters, where N=2.

3.4 Performance Evaluation

This section evaluates both the system throughput and the EE of the three AI-
assisted MAC frameworks proposed for RIS-aided wireless networks. We opt for Case
1 as the hybrid MAC protocol. We consider a scenario that consists of a BS, 2 RISs
having 128 RIS-elements each, and 100 single-antenna Txs, where the Tx-RIS and
RIS-BS distances are 50 m and 30 m, respectively. A Rician fading channel model is
assumed, where the Tx-RIS and RIS-BS channels benefit from the existence of LoS
links having a path loss exponent of 2.2, while the Tx-BS channels are NLoS links with
a path loss exponent of 3.6. The power dissipated at each user is 10 dBm, the noise
power is -94 dBm, and the number of sub-channels is 2. Furthermore, we assume that
each RIS occupies a single sub-channel as a benefit of interference cancellation, and
each Tx is only allowed to use a single RIS to communicate with the Rx at a time.

3.4.1 System Throughput vs. the Number of Txs

Figure 3.4 shows the system throughput of RIS-aided wireless communications ver-
sus the number of Txs in the three types of AI-assisted MAC proposed. Firstly, it is
observed that the system throughput of each AI-assisted MAC is improved compared
to the MAC without AI, since AI methods have the potential of reducing the comput-
ing time. Observe from Fig. 3.4 that the throughput of each MAC initially increases,
but then tends to saturate as the number of Txs increases. This is because the com-
putation time ratio within each frame is reduced upon increasing the length of each
frame. Also, the system throughput of the distributed MAC exhibits a slight lesion after
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saturation due to the competition collisions. Additionally, the system throughput of the
distributed MAC is best when the number of Txs is low (e.g., less than 20). As the
number of Txs increases, the system throughput of centralized MAC becomes higher
than that of the distributed MAC and the system throughput of hybrid MAC (Case 1) is
in the middle.

3.4.2 EE Performance vs. the Number of Txs

Figure 3.5: Energy efficiency vs. the number of RISs, where K=100.

Figure 3.5 shows the EE versus the number of RISs for all three types of AI-assisted
MAC. It is observed that the EE of each type decreases as the number of RISs in-
creases due to the increased computational complexity associated with extra comput-
ing time. Additionally, the EE of the centralized AI-assisted MAC is better than that of
the distributed AI-assisted MAC, when the number of RISs is 1 or 2. As the number of
RISs increases to 4, 8 or 16, the EE of the distributed AI-assisted MAC has the edge,
because the overhead imposed by the centralized AI-assisted MAC is increased. In
other words, the centralized AI-assisted MAC is suitable for a small number of RISs,
while the distributed AI-assisted MAC is recommended for a large number of RISs.

3.5 Conclusion

In conclusion, we have presented four typical scenarios of RIS-aided multi-user com-
munications. We then have reviewed the family of MAC solutions conceived for RIS-
aided wireless networks and highlighted a range of competing MAC designs conceived
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for AI-assisted MAC structures relying on centralized, distributed and hybrid implemen-
tations. In particular, the centralized AI-assisted MAC excels in satisfying the target
QoS of users, while the distributed AI-assisted MAC is more capable of meeting the
random or unpredictable requirements of users. Finally, the family of hybrid AI-assisted
MAC solutions strikes a beneficial trade-off between them. As performance evalua-
tions revealed, distributed AI-assisted MAC schemes are more applicable to networks
with small numbers of users associated with a large number of RISs. By contrast, the
centralized AI-assisted MAC schemes are more suitable for a large number of users in
conjunction with small numbers of RISs.
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Chapter 4

Development of a System Level
Simulation Model for D-band Networks

4.1 Introduction

This chapter describes the update of the system level simulation model for D-band
networks in realistic environments, which was initially introduced in D4.2. Specifically, a
square geographical area is simulated, where four rectangular obstacles are deployed.
Moreover, we assume the presence of one mobile user and a specific number of access
points which are placed in predefined coordinates inside the simulated area. Also, time
evolution is incorporated in the simulations, as user’s coordinates change over time
according to a specific mobility model. In comparison with the initial setup of the system
simulation model, this version is enhanced in several sections. The main differences
concern user’s mobility model and path loss modelling. Particularly, the trajectories of
the user have extra degrees of randomness and therefore they have a greater diversity.
Regarding path loss modelling, in this version a large scale fading term was added to
the received power balance. This term forces user’s received power to change into a
stochastic quantity.

The main objective of the system level simulation procedure focuses on the produc-
tion of data that will used by AI-based techniques for blockage forecasting, proactive
handover and efficient resource allocation. The specific kinds of data that will be ex-
ploited for that purpose are the coordinates and velocity of the user for every time
moment of a simulation session, as well as the received power of the user from every
access point. In general, the parameters of the simulations can be adjusted in order
to demonstrate several scenarios and use cases of interest. For example, we can ad-
just the dimensions of the simulated area and the number of users and access points,
in order to correspond to an indoor environment (Scenario 2.1 – Deliverable 1.1), to
an urban, suburban or rural environment etc. Moreover, simpler cases concerning the
mobility of transmitters (Tx) and receivers (Rx), respectively, could be demonstrated.
Such an example is the case of outdoor backhaul/fronthaul networks of fixed topology
(Use Case 1 – Scenarios 1.1 and 1.2 – Deliverable 1.1). Finally, the most important
contribution of this tool, will be the simulation of several schemes that will constitute
the necessary inputs for the software demonstrator in the framework of WP5 (Task 5.4:
Intelligent D-Band network demonstration).
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4.2 System Level Simulation Model

The updated system level model which has been further developed to produce the
sets of data which are used by the AI based techniques for blockage forecasting and
proactive handover, is described as follows. Firstly, there is a geographical area, which
is considered as a square with dimensions 50 𝑚× 50 𝑚. Secondly, there are four
obstacles within this area, which are modelled as rectangular parallelepipeds with di-
mensions 9.5 𝑚 × 10 𝑚 × 5 𝑚. They are located uniformly and symmetrically in the
simulated area. Moreover, there are six access points, which are fixed in predefined
coordinates. They are placed at height of 2 𝑚 from the ground. Also, we assume the
presence of one mobile user, who is demonstrated by a point placed in the simulated
area. Access points and users cannot be placed on the obstacles. In order to involve
time evolution, it is assumed that a simulation session has duration 𝑇 . Each session
is divided in successive time slots. Each of them has duration 𝑑𝑡. For the mobility of
the user, we exploit the following model. At first, user’s initial place is chosen randomly
within the simulated area. Then, user tries to reach a random destination point. The
destination point changes randomly every 𝑇

3 , in order to achieve diversity of user’s tra-
jectories. This is a significantly different mobility model compared with the one that was
deployed in the previous version of the system level simulation model. Specifically, in
D4.2/Chapter 4, user’s destination was set at the beginning of each simulation session
and did not change until the end. Therefore, the generated trajectories were simpler.
Due to this fact, AI processing techniques were not so efficient. Also, the movement
of a mobile user takes into account the obstacles of the environment. These affect the
movement pattern of the users. Specifically, a user node has to change its trajectory
when encounters an obstacle [56]. Furthermore, velocity 𝑉 of a user is constant during
a specific time slot. Its value is a random variable, which is uniformly distributed over
the interval [0, 𝑉𝑚𝑎𝑥]. 𝑉𝑚𝑎𝑥 is the maximum allowable value of user’s velocity. Thus, the
displacement 𝑑𝑆 of a user during a time slot is: 𝑑𝑆 = 𝑉 × 𝑑𝑡. The direction of 𝑑𝑆 is
determined by the relevant mobility model. Such examples are depicted in Fig. 4.1 and
Fig. 4.2, respectively. Specifically, the top view of the simulation area is depicted and
user’s trajectory is represented by successive dots of specific colour. The biggest dot
corresponds to the first time slot of the simulation, while the smallest one corresponds
to the last time slot. The corresponding simulation parameters, as well as the coordi-
nates of the access points (purple dots), which are the same for both cases, are shown
in 4.1 and 4.2, respectively.

Finally, each mobile user is allocated to the nearest LOS access point during the
first time slot of the simulation and remains allocated to the same access point until
the end of the simulation, independently of the condition of the link between user and
serving access point (LOS or not) during the next time slots. We have to mention that
the policy regarding the allocation of a user to a specific access point, the number and
coordinates of the access points as well as simulation parameters can be modified
depending on the scope of the simulation scenarios.
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Figure 4.1: Indicative simulation example for six access points and one user (a).

Figure 4.2: Indicative simulation example for six access points and one user (b).

Table 4.1: Simulation parameters for Fig.1 and Fig.2

𝑇 (𝑠𝑒𝑐) 300

𝑑𝑡 (𝑠𝑒𝑐) 0.05

𝑉𝑚𝑎𝑥 (𝑚/𝑠𝑒𝑐) 16
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Table 4.2: Coordinates of access points

𝑥(𝑚) 𝑦(𝑚)

Access Point 1 -8.37 17.65

Access Point 2 -2.88 20.22

Access Point 3 23.34 1.62

Access Point 4 10.82 -16.03

Access Point 5 -8.17 -15.61

Access Point 6 2.43 -22.56

4.3 Path Loss Modeling

In order to map the received power of a user from every access point at a specific
time slot, we make use of Friis’s equation [57],[58]:

𝑃𝑅 = 𝑃𝑇 + 𝐺𝑇 + 𝐺𝑅 + 20𝑙𝑜𝑔
𝜆

4𝜋 × 𝑑0
− 10𝑛 × 𝑙𝑜𝑔 𝑑

𝑑0
− 𝜒𝜎 (4.1)

where 𝑃𝑅 is the received power (in 𝑑𝐵𝑚), 𝑃𝑇 is the transmitted power (in 𝑑𝐵𝑚), 𝐺𝑇 and
𝐺𝑅 are the gains of the Tx and Rx antennas, respectively (in 𝑑𝐵𝑖), 𝜆 is the free space
wavelength (in 𝑚), 𝑛 is the Path Loss Exponent (PLE), 𝑑0 is the reference distance
(in 𝑚 – usually 𝑑0 = 1𝑚), 𝑑 is the distance between Tx and Rx (in 𝑚) and 𝜒𝜎 is the
large-scale fading (a zero mean Gaussian random variable with a standard deviation
in dB).

We have to mention that the difference between the above Path Loss model and
the one that was deployed in D4.2/Chapter 4 is the incorporation of the large-scale
fading term 𝜒𝜎. Specifically, 𝜒𝜎 is a term which modifies user’s received power from
a deterministic quantity to a stochastic one. This is something that makes simulations
more realistic. The PLE values and the respective standard deviation of large-scale
fading in an urban microcell or a small-cell environment, where carrier frequency is
considered as 𝑓 = 142 𝐺𝐻𝑧, are set as follows [58]:

- 𝑛 = 2.1 and 𝜎 = 2.84 dB for LOS links (non blocked channel
- 𝑛 = 3.1 and 𝜎 = 8.25 dB for Non-LOS links (partially blocked channel)
- or 𝑛 = 3.6 and 𝜎 = 9.10 dB for Non-LOS links (partially blocked channel).
If the wireless channel between a user and an access point is totally blocked, the

received power of a user is considered to be equal to the default noise level. A detailed
classification of the states of the wireless channels (i.e. non blocked, partially blocked
or totally blocked channels), is described in detail in D4.2/Chapter 4.

4.4 Mapping of Received Power

Two typical examples of the power that user receives from every access point as
function of time is mapped in Fig. 4.3 and Fig.4.4, respectively. Specifically, 4.3. corre-
sponds to the case of Fig.4.1 simulation session, while Fig.4.4 corresponds to the case
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of Fig.4.2 simulation session. In both scenarios, we assume that carrier frequency is
𝑓 = 142 𝐺𝐻𝑧 as it is mentioned previously, the transmitted power is 𝑃𝑇 = -7 dBm, the
gains of the user and the access points antennas are 𝐺𝑇 = 𝐺𝑅 = 12 dBi and the default
noise level is -128 dBm. Regarding Fig. 4.3 and Fig.4.4, we have to note the following.
When the link between user and access point is not totally blocked, the value of user’s
received power, is mainly determined by the distance between them and the value of
PLE in each case, according to channel state (non blocked or partially blocked). Ac-
tually, large-scale fading term causes an oscillation of the received power around this
deterministic value. Moreover, we can observe that there are long time intervals during
a simulation session where the wireless link between each access point and user is
LOS or totally blocked. On the other hand, the partially blocked state of the wireless
channel, lasts significantly less time. Also, there is a great number of transitions from a
LOS link to a totally blocked link and vice versa, between user and access points. This
results from the randomness of the shape and the length of user’s trajectory within sim-
ulated area. Finally, it is mentioned that in Fig. 4.3, there is one time interval during
the first time slots of the simulation session where all of the access points are totally
blocked to the user, while in Fig.4.4, Access Point 4 and Access Point 5 are always to-
tally blocked. In all of these cases, the received power from the corresponding access
points, is constantly equal to the default noise level (-128 dBm).

Figure 4.3: Received Power vs Time for user of Fig.1.
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Figure 4.4: Received Power vs Time for user of Fig.2.

4.5 Conclusion

In this chapter, an updated system level simulation model for D-band networks was
presented. Specifically, within the simulated geographical area, we assume the pres-
ence of four rectangular obstacles, a number of access points which are randomly
placed and one mobile user. The main differences compared with the previous ver-
sion of this simulation model focus on a user’s mobility model and path loss modeling.
Specifically, user’s trajectories are now more random and complex. Hence, they have
a greater diversity. Regarding the path loss model, in this version a stochastic term
which corresponds to the large scale fading, was added to the received power balance.
These additions could be exploited by AI based techniques, in order to become more
efficient in the forecast of forthcoming blockage effects.
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Chapter 5

AI/ML Applications for Line-of-Sight
Aware Connectivity

5.1 Introduction

In the era of wireless communication, the heterogeneous nature enabling numerous
access networks, frequency bands and cells together with overlapping coverage areas
poses various network design and implementation related issues for wireless networks.
Even though, the use of machine learning and artificial intelligence in wireless commu-
nication networks is still in its development phase, it will expand over time to create
smarter and reliable networks with an expansion of Internet of Things (IoT) devices.
Machine learning (ML) and artificial intelligence (AI) play a crucial role in deploying,
operating, and managing 5G networks. ML and AI may be applied to a variety of use
cases to assist wireless networks in transitioning from a human-driven management
paradigm to self-driven autonomous management, thereby revolutionizing network op-
erations and maintenance processes. However, in order to achieve reduced network
latencies, enabling event-driven analysis and a real-time processing, a paradigm shift
from today’s centralized and virtualized cloud-based AI to a distributed AI architecture
with decision-making intelligence will be required. The availability of high-performing
and efficient computing resources is one of the primary facilitators of a sustainable AI
integration. Indeed, 5G systems aim to provide high throughput and ultra-low latency
communication services. Moreover, machine learning enables to discover various pat-
terns in large datasets for data enrichment to make better predictions and decisions
about where and how to deploy resources to avoid demand crunches and system fail-
ures.[59][60][61]

The layout of this chapter is as follows. Firstly, we present an initial analysis of the
challenges and opportunities for machine learning in the channel modeling domain for
both line of sight (LOS) and non-line of sight (NLOS) scenarios. The objective here is to
understand the feasibility of predicting LOS connectivity at the physical layer. Secondly,
extended version of channel modeling prediction and to analyze statistical relation be-
tween condensed parameters of multi-dimensional mobile channels and geometrical
link condition, which is an ongoing work together with our partner Aalto university. Last
but not the least,we will share analysis and results on the application of ML to predict
LOS blockages, instead of just identifying them using computationally expensive block-
age identification methods. These predictions can act as input to quickly construct the
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feature-set, required by the “assignment and blockage minimization” predictor. This
hierarchical use of predictors is another direction of our work that holds the potential
to simplify and speed up connectivity establishment in real-time. We conclude by hint-
ing on potential future extension of presented works, such as expanding the scope of
problem definitions to a dynamic network where user equipment (UE) to access point
(AP) assignments and predicting LOS connectivity are more challenging.

5.1.1 Problem Definition

The problem landscape in ARIADNE includes various connectivity scenarios, that
have been structured under various use cases in the deliverable report D-1.1. These
include indoor, outdoor environments, where LOS and NLOS links need to be estab-
lished. Such scenarios can be addressed at different network layers individually or
jointly. At the physical layer, it may be of interest to predicting signal strength, direc-
tionality and existence of LOS connectivity of the multi-path channels based on the
propagation environment. At the link level, the connectivity scenarios may take into ac-
count the topological properties of the network, such as the AP and UE densities that
reflect the habitation, structural or ad hoc aspects of the network or its environment.
The objective here is to tap the potential of these upcoming network entities to break
the limitations imposed by LOS links, thereby increasing the number of feasible UE-
to-AP assignments beyond what is possible to-date. However, Formulating an AI/ML
problem is sometimes not obvious from the start and requires analysis, and data level
understanding, which is often divided among multiple people, who need to collaborate
in a structured and targeted manner. The established procedure to organize such in-
teractions is “Cross-Industry Standard Process for Data Mining” (CRISP-DM) [62] and
this is indeed the methodology that has been used in ARIADNE. CRISP-DM approach
has helped to build domain-level and data-level understanding, framing and solving the
data mining (AI/ML) problems and iterating over solutions. With this methodological
background clarified, we now proceed to present our framework, and subsequently the
results from applying it to the directional LOS connectivity use case.

5.2 ML Model for Environment-Specific LOS Connec-
tivity

Starting with the preliminary stage, data was collected from various routes where
the UE moves. The transmitter (Tx) and receiver (Rx) information from the different
locations(between the start and end location of the route of the moving UE) were in-
terpolated and fed into the machine learning model, along with the channel attributes
of Multipaths, including complex amplitude, delay, departure angle (AAoD), departure
angle(EAoD), arrival angle (AAoA), arrival angle (EAoA), Delay spread angle (DSA),
Azimuth angle (AA). After pre-processing the data, the statistical characteristics of the
channel(including expectations and the extension of these parameters) were obtained
to train ML algorithms. One of the main challenges at the physical layer is to predict
the properties of the channel on the receiver side. Since the current available datasets
had a limited feature set and observed error margins such as the root mean square
errors (RMSEs), our approach relies on investigating the existence of pattern within
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the available features as well as bringing geographic location as a first step to include
environmental features to examine the density according to the user mobility for pre-
dicting LOS connectivity. Initial analysis reveals a certain degree of correlations among
attributes when location information is included, but the predictive modeling aspects
require further engineering of features for developing and deploying various KPI’s fo-
cusing accuracy, fading statistics, correlations, complexity, and versatility which can find
the hidden non-linear relationships among different features and can indeed improve
the feasibility and viability of the model. In general, we aim to deliver more dynamic
settings that changes over user mobility and can be incorporated in form of real time
simulations. In particular, real world scenarios have moving users towards certain di-
rections resulting in loss of connectivity approaching an object or wall. So the data
generated will be used by AI based techniques to access the efficacy of LOS connec-
tivity. Gradually this process will trigger a pro-active handover process in order to iden-
tify the patterns depending on user mobility on different routes under outdoor/indoor
environment.

5.2.1 Explorative and Predictive Challenges

The problem with channel related predictions was further divided into two parts,
where one part can focus on the behaviour of raw or fine granular form of individual
path data and the second part can focus on aggregate (coarse granular) data subject
to feature engineering. The former can be used to predict the presence of the LOS or
NLOS path, pathloss for higher gain, or higher power, delay spread, etc. Determining
LOS or NLOS is a major challenge in wireless communication, where we can bridge
the gap with machine learning algorithms as the current literature has not extensively
explored this area. The latter holds the promise to predict the link level behaviours e.g.,
for a given location, the properties of a link proportional to the received power. Pre-
vious investigations examined datasets with 2 routes and then 13 routes representing
LOS and NLOS but were limited to extract patterns using machine learning algorithms.
However, more/extended sites/routes would have helped to predict the coverage power
more effectively. Real values from available data was classified to extrapolate the range
of average values between two (start and end) locations of the users and observe other
characteristics in this range of values. Moreover, with the information on start and end
location coordinates of MS routes,intermediate MS location were derived by linear in-
terpolation of the distance between the start and end locations. In order to understand
the complex inter-relationships, commonalities or dissimilarities in data, the main ob-
jective was further extended by gradually linking the environment-related attributes like
the user’s location/position, density, etc.to be appended to data, to realize more gen-
eralized concept. This approach would hopefully help in understanding the relation
of environmental traits and may also lead to a more comprehensive analysis. So for
the potential future direction of this work, additional features from the ray tracing map,
which acts as a blueprint of the original environment was measured considering chan-
nel data. Assuming that this may help to further refine the scope of the problem e.g.,
by examining the density or user mobility. Uncovering the influence of environmental
characteristics, such as mobility or structural properties may also help shape the pre-
diction problem. Additionally, a multi-path propagation approach would help in many
scenarios such as how the link distance diffuses dispersion patterns for small scale
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Figure 5.1: Summary of LOS and NLOS routes dataset

and big scale problems with the angular distribution of the signal wave. Other micro-
and macro-cellular scenarios and other parameters that are essential for evaluating
the potential of two polarized MIMO systems are also the goals worth pursuing to see
if they outperform the conventional methods.

5.2.2 Data Generation and Extraction

To extend the study for environment aware connectivity, the data was extracted from
Helsinki-Vantaa airport Terminal 2 ray-tracing based on expert knowledge that allows
to generate a specific network scenarios. Dataset includes 3,987,488 rows and 18
columns/feature where we simulate geographic location of 2 BS locations, 1412 MS
location and 1412 human body locations. Table 1 shortly present the attributes/feature
set of the datasets. The structure of files are seen in Table 5.1 and Figure 5.1

Table 5.1: Dataset extracted from Helsinki-Vantaa airport Terminal 2 ray-tracing
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5.3 AI-Constrained Optimization for Adaptive UE-AP
Association

Another central problem which has been addressed in WP4 is the allocation of re-
sources i.e. optimally associating each UE to an AP which can satisfy resources re-
quired by the UE and with whom, the partial LoS blockers are completely avoided or
minimized. This problem along with its system model, data generation and a hybrid
AI/ML based solution has been contributed in the previous deliverables (chapter 4 of
D4.1 and chapter 7 of D4.2). Further extension of this important problem is work in
progress, where the aim is to address some of the more challenging but also more
realistic aspects in terms of resolving the UE-AP association problem in an evolving
network. Thus, the association problem in this next phase, transforms into a recurring
problem to be solved on a continuous basis, because the network is always evolving
and hence the AI/ML needs to deliver an adaptive solution in real time.

To enscope the recurring UE-AP association problem and evaluate the AI/ML so-
lutions, additional concepts need to be defined that allow to emulate an evolving or
changing network. The solution can then be evaluated for its quality and algorithmic
performance. First, the concept of triggers is being addressed. A trigger in this context
is an event that changes the state of the network in terms of its system model. A non
exhaustive list of triggers have been identified as follows:

• Addition or removal of a UE

• Removal of an AP

• Movement of a UE

As a result of any of the above triggers, the state of network model changes, which
requires the AI solution, for instance, the optimization to adapt as fast as possible by the
underlying hardware. Adaptation means to recover the current best solution, which now
represents outdated and infeasible associations. The quality of the next best solution
(UE-AP assignment plan) naturally depends on how much time the solver is granted
before the next best solution is retrieved. Hence, online optimization techniques can
be employed to continuously monitor for the trigger events, update the network system
model in the working memory of solver and remain in the active solving phase.

To emulate a changing network based on user controlled triggers, a GUI framework
design is being conceived. Considering the nature of stated triggers, the optimization
constraints (as defined in Deliverable D4.1 chapter 4) can be solved in a two-staged
implementation process. First, the resource allocation constraint can be satisfied and
in the next stage, the minimization of partial LoS blockages can be added because of
the computational and integration complexity of the latter constraint.

Relation with ML model: The ML model that predicts the UE-AP association is based
on training data that is generated from the best solution as found by the optimizer. In
the case of adaptive UE-AP association, where the network undergoes changes and
continuous optimization is employed, multiple snapshots of the best solutions can be
stored. These can then be converted to training datasets (refer to Deliverable D4.1,
chapter 4 for details). Hence, the ML model can be regularly retrained and updated in
the background, which increases the intelligence of the model to be able to deal with
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different network situations and still deliver a reliable and high quality solution in an
efficient manner.

5.4 Conclusion

The proposed approaches employ AI and ML algorithms to establish reliable con-
nectivity. Considering important challenges inherent in dynamic planning problems,
we devised to deliver a predictive outcome using a design time approach in which the
solution is engineered to understand the dimensions of the problem and estimate the
quality of the solution using experimental frame/GUI developed using react (Java script)
and RapidMiner studio for interactive exploration of predictive models. The proposed
predictive GUI framework will allow us to map out many options such as risks, objec-
tives, profits and finally evaluate which course of action has the best chance of success
while avoiding unnecessary risks or undesired outcomes.

Moreover, ongoing work is exploring promising research directions like online opti-
mizations that have the potential to adaptively solve the recurring UE-AP association
problem in an evolving network. The multiple best solutions that can be retrieved from
such a changing network would make it possible to retrain and update the ML model
that predicts the UE-AP association without the need for continuous optimization at de-
ployment time. Hence, this contribution would further extend the hybrid AI/ML frame-
work presented in chapter 4 of the deliverable D4.1.
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Chapter 6

Optimal RIS Placement and
Orientation

6.1 Introduction

The successful incorporation of RISs requires understanding of their performance
under different RIS sizes, placements, and orientations. The RIS size relative to the
footprint of the incident beam affects the received power, the RIS placement can reduce
the blindspots of the RIS (e.g. with the walls restricting the motion of the user), while
the RIS orientation can reduce the blindspots of the RIS or increase the in one direction
to favour an area of interest.

There are several works that cover the assessment of optimal RIS placement in re-
lation to the position of the access point (AP) and the user equipment (UE) [63–69].
The authors in [63] find the optimal placement of the RIS with respect to the signal-to-
noise-ratio (SNR) at the receiver. When the footprint of the incident beam on the RIS
is much larger than the RIS area, the optimal RIS placement is found to be near the
UE, near the AP, or between the AP and the UE. When the footprint is smaller than the
RIS, the optimal placement of the RIS is near the UE. In [64] the optimal placement
of the RIS is studied in line-of-site (LoS) and non-line-of-sight (nLoS) environments for
both single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) sys-
tems. The authors find that with SISO systems the optimal RIS position is near the
transmitter or the received. With MIMO systems, the optimal RIS position depends on
the environment (LoS or nLoS). In LoS environments, the RIS can be placed close to
or far from the transmitter and the receiver, while yielding a substantial gain in rate. On
the other hand, in nLoS environments, the optimal RIS placement is close to the trans-
mitter or the receiver. In [65], the author presents a strategy for the RIS deployment
with the prospect of minimizing the blockage probability in the base station (BS)-RIS
and RIS-UE links. In [66], the authors explore the difference between the centralized
deployment with one RIS near the AP and the distributed deployment with two RIS near
two users, each with half the number of elements of the centralized deployment.

However, the RIS orientation has so far not been studied thoroughly. In [67] the
cell coverage is maximized by optimizing the RIS position and orientation. The authors
deduce that the RIS normal pointing towards the BS is the optimal RIS orientation, but
their analysis assumes full RIS illumination and fails to provide insight on their choices
regarding the receiver. In [68,69] the RIS placement and orientation are jointly studied
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Figure 6.1: System model.

with the prospect of maximizing the received power in an indoors mobile user environ-
ment. Furthermore, in most of the previous works, the RIS is larger than the incident
beam footprint and therefore it is fully illuminated. As THz frequencies are expected to
be supported by pencil beams, it is necessary to understand the RIS efficiency under
both full and partial illumination.

6.2 System Model

To study the effect of the RIS size relative to the size of the incident beam footprint
and the RIS orientation on the RIS efficiency, the system model presented in Fig. (1)
is considered. The centre of the RIS is considered to be at the origin of the local
coordinate system and the RIS size is M×N elements. The AP-RIS distance is 𝑑𝐴𝑃 as
shown in Fig. 6.1(b) with azimuth and elevation angles, relative to the RIS, 𝜙𝐴𝑃 and
𝜃𝐴𝑃 respectively. Similarly, the UE is at distance 𝑑𝑈𝐸 from the RIS. The RIS elements
are positioned with periodicity 𝑑𝑥 and 𝑑𝑦 along the 𝑥 and 𝑦-axis respectively. The AP
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is equipped with a direction antenna of tuneable gain, and it transmits towards the
centre of the RIS, which redirects the towards the position of the UE. Both the AP-RIS
and the RIS-UE links are without misalignment. The received power at the UE can be
calculated as

𝑃𝑟 = 𝑆𝑟𝐴𝑟 ≡
|𝐸𝑟 |2
2𝑍𝑜

𝐴𝑟 , (6.1)

where 𝑆𝑟 and 𝐴𝑟 = (𝐺𝑟𝜆2)/4𝜋 and 𝐸𝑟 are the power density, effective aperture and
electric field at the position of the UE. The characteristic impedance of the air is 𝑍𝑜, 𝐺𝑟
is the antenna gain of the UE and 𝜆 is the wavelength. The total electric field at the UE
is given by

𝐸𝑟 =

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝐸𝑚,𝑛, (6.2)

where the contribution of each (𝑚, 𝑛) RIS element to the total electric field is [70,71]

𝐸𝑚,𝑛 =
√︁
2𝑍𝑜𝑃𝑡𝐺 𝑡𝐴𝑅𝐼𝑆𝐺𝑅𝐼𝑆

√
𝑈𝑡𝑈𝑅𝐼𝑆,𝑡𝑈𝑅𝐼𝑆,𝑟𝑈𝑟

4𝜋𝑙𝑡𝑚,𝑛𝑙
𝑟
𝑚,𝑛

|𝑅𝑚,𝑛 | exp
(
− 𝑗𝜙𝑚,𝑛

)
exp

(
− 𝑗 2𝜋

𝜆
(𝑙𝑡𝑚,𝑛 + 𝑙𝑟𝑚,𝑛)

)
.

(6.3)

The transmitted power and the antenna gain of the AP are 𝑃𝑡 and 𝐺 𝑡 , respectively
and the effective aperture and gain of the RIS elements are 𝐴𝑅𝐼𝑆 and 𝐺𝑅𝐼𝑆. Further-
more, the 𝑙𝑡𝑚,𝑛 and 𝑙𝑟𝑚,𝑛 are the distances between the (𝑚, 𝑛) element and the AP, UE
respectively, while 𝑅𝑚,𝑛 = |𝑅𝑚,𝑛 | is the complex reflection coefficient introduced by the
(m,n) RIS element. The normalized radiation pattern of the AP, UE and the (m,n) RIS
element are 𝑈𝑡 , 𝑈𝑟 and 𝑈𝑅𝐼𝑆,𝑡/𝑟 , where the superscript 𝑡/𝑟 denotes the direction of the
AP and the UE relative the RIS elements. In order to steer the reflected beam towards
the UE, the linear phase gradient that the RIS imposes on the incident wave is given
by [70,71]

𝜙𝑚,𝑛 =
2𝜋

𝜆
[(sin 𝜃𝑈𝐸 cos 𝜙𝑈𝐸 + sin 𝜃𝐴𝑃 cos 𝜙𝐴𝑃)𝑥𝑚

+ (sin 𝜃𝑈𝐸 sin 𝜙𝑈𝐸 + sin 𝜃𝐴𝑃 sin 𝜙𝐴𝑃)𝑦𝑛],
(6.4)

where 𝑥𝑚 = 𝑚 ∗ 𝑑𝑥 and 𝑦𝑛 = 𝑛 ∗ 𝑑𝑦 are the coordinates of the (𝑚, 𝑛) RIS element, with
𝑚 = 1, . . . , 𝑀 and 𝑛 = 1, . . . , 𝑁. The main lobe of the transmitted beam can be modelled
as a Gaussian beam [72]. For normal incidence, the footprint of the incident beam on
the RIS is circular, however under oblique incidence the footprint becomes elliptical with
the ellipticity depending on both the angle 𝜃𝐴𝑃 and distance 𝑑𝐴𝑃. The power density of
the incident beam footprint on the RIS can be expressed as [73]

𝑆𝑅𝐼𝑆 =
2𝑃𝑡

𝜋
𝑤2
𝑅𝐼𝑆

cos(𝜃𝐴𝑃)

𝑒

−2 𝑥2

𝑤2
𝑅𝐼𝑆

cos(𝜃𝐴𝑃 )2 𝑒
−2 𝑦2

𝑤2
𝑅𝐼𝑆 , (6.5)

where 𝑤𝑅𝐼𝑆 is the radius of the incident beam footprint at normal incidence and 𝑥 and 𝑦
are confined on the local coordinate system. The above equation accounts for oblique

Page 56



H2020-2018-2020, ICT – ARIADNE (GA ID: 871464)
D4.3: Final Results on Adaptive Directional LOS and

NLOS Reliable Connectivity

incidence on the horizontal, 𝑥 − 𝑧, plane and results in the footprint being elongated
along the 𝑥−axis. For normal incidence and partial RIS illumination, the power density
at the UE can be estimated simply as [74]

𝑆𝑟 =

2𝑃𝑡
𝜆𝑧𝑅

|𝑅 |2√√(
1 +

𝑑2
𝑈𝐸

𝑧2
𝑅

) (
1 +

𝑑2
𝑈𝐸

𝑧2
𝑅
cos4 𝜃𝑈𝐸

) . (6.6)

where

𝑧𝑅 =
𝑘𝑤2

𝑅𝐼𝑆

2
=
4𝑘𝑑2

𝐴𝑃

𝐺 𝑡

. (6.7)

is the Rayleigh length and 𝑑𝑈𝐸 the RIS-UE distance.

6.3 Impact of the Steering Angle on Received Power

The RIS is considered lossless, and the total power of the reflected beam remains
the same regardless of the steering direction of the UE. However, the beam begins
to spread as it propagates towards the position of the UE, with the spreading becom-
ing more notable with the increase of the steering angle, 𝜃𝑈𝐸 . Consequently, the local
power density of the reflected beam, and therefore the received power, depends con-
siderably on the steering angle as shown in Fig.6.2. In the left panels, the RIS is fully
illuminated and in the right panels it is partially illuminated. The top panels show the
received power for all possible positions of the UE and the bottom panels show the
received power of the three steering angles depicted with the coloured solid lines in the
top panels, namely 𝜃𝑈𝐸 = 0𝑜, 20𝑜 and 40𝑜, along the grey dashed lines in the top panels.
In the fully illuminated RIS case, due to the finite RIS size, sidelobes are generated be-
sides the main lobe, while in the partially illuminated RIS case, where the RIS is much
larger than the footprint of the incident beam, the reflected beam propagates as a single
lobe. In both the full and partial illumination cases the reflected beam spreads as 𝜃𝑈𝐸
increases. As a result, because the total beam power is conserved, the peak power
decreases and, consequently, the power received by the UE decreases accordingly.

6.4 Optimal RIS Placement and Orientation

The position of the RIS in conjunction with its orientation can significantly affect the
received power as shown in Fig. 6.3, where the received power at all possible positions
of the UE is presented for two different RIS placements and orientations. In (a), the RIS
is placed at the center of the right wall with the RIS normal pointing towards the center
of the left wall and in (b), the RIS is placed at the top right corner with the RIS normal
pointing towards the bottom left corner of the room. The transmitted power is 30 dBm,
the radius of the circular incident beam footprint on the RIS is 5 cm and the antenna
gain of the UE is 20 dB. The green dashed line shows the orientation of the RIS. As
shown in Eq. 6.6, the power received by the UE decreases with the increase of 𝑑𝑈𝐸
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Figure 6.2: Spatial distribution of received power.

and 𝜃𝑈𝐸 . Hence, the position and orientation of the RIS must minimize the maximum
of both their values for all possible positions of the UE in the area of interest, in order
to maximize the received power. It is observed that in (a), the minimum received power
is determined by the region where 𝜃𝑈𝐸 = 90𝑜 and the received power there is reduced
considerably. As a result, the minimum received power in (a) is −4.8 dBm. On the
other hand, in (b) the position and orientation of the RIS eliminate this region as the
maximum 𝜃𝑈𝐸 is 51𝑜. The minimum received power in (b) is 3.8 dBm. However, in the
area of interest marked with the blue rectangles, the situation is reversed. The RIS
position and orientation in (a) favours the area of interest, as the minimum received
power there is 5 dBm, while in (b) it is 4.2 dBm. The reason for this is that in (a) the
maximum values of 𝑑𝑈𝐸 and 𝜃𝑈𝐸 in the area of interest are lower than their values in
(b). As a consequence, the optimal position and orientation are determined by the area
of interest.
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Figure 6.3: Received power in a 4 × 5 m2 room with different RIS placements. In (a) the RIS is
placed at the center of the right wall and is oriented towards the center of the left wall, while in
(b) it is placed at the top right corner and is oriented towards the bottom left corner.
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6.5 Full vs. Partial RIS Illumination Efficiency

With a fully illuminated RIS, only a part of the AP beam power is reflected, and the
amount of power strongly depends on both the AP-RIS distance, 𝑑𝐴𝑃, and the angle
𝜃𝐴𝑃. On the other hand, with a partially illuminated RIS all the power of the AP beam is
reflected, and the position of the AP does not affect the total power that is reflected but
the size of the incident beam footprint. In Fig. 6.4, the received power for all possible
UE positions is presented with two different AP placements that are equidistant from the
RIS and marked with a blue cross, and for both illumination conditions. The room size
is 10× 4 m2 and the RIS is placed at [4, 0, 10], which is the top right corner of the room,
depicted with a black dot. The middle panels show the illumination conditions of the
RIS. The top panel depicts the full illumination condition in (a) and (b) and the bottom
panel the partial illumination condition in (c) and (d). For the partial RIS illumination
case, the RIS size is 1000 × 250 RIS elements, which is large enough to capture the
entire elliptical footprint and for the full illumination case, the RIS size is 250 × 250
elements. In (a) and (c) the AP, namely AP 1, is placed at [0, 0, 5], which is the centre
of the left wall and in (b) and (d) the AP, AP 2, is placed at [4, 0, 3.6], which is on the
right wall with equal distance from the RIS as AP 1. The distance, 𝑑𝐴𝑃, is equal to
6.4 m, the direction of the AP in relation to the RIS is depicted with a blue dashed line
and the RIS orientation, depicted with the green dashed line, is towards AP 1. This
means that for AP 1 in (a) and (c), 𝜃𝑜 = 0𝑜 and for AP 2 it is equal to 38.6𝑜. As 𝑑𝐴𝑃
is fixed for both positions of the AP, in (a) and (c) the received power is affected only
by 𝜃𝐴𝑃. More specifically, the received power is proportional to 𝑐𝑜𝑠(𝜃𝐴𝑃) (Eq. 6.5)
as for relatively low AP gain, 𝑆𝑅𝐼𝑆 → 2

𝜋𝑤𝑅𝐼𝑆
𝑐𝑜𝑠(𝜃𝐴𝑃). This is the result of the full RIS

illumination and the difference in received power between (a) and (c) can be simply
estimated as 10𝑙𝑜𝑔10

(
𝑐𝑜𝑠(𝜃𝐴𝑃1)
𝑐𝑜𝑠(𝜃𝐴𝑃2)

)
. In (a) and (c), the difference is 1 dB. Though with full

illumination the incident beam footprint is fixed and depends only on the dimensions of
the RIS, with partial illumination the footprint can change depending on the position of
the AP. This leads to a footprint-dependent performance. As an example, in Fig. 3 (c)
the incident beam footprint is circular as 𝜃𝐴𝑃 = 0𝑜, but in (d) it is elliptical as 𝜃𝐴𝑃 = 38.6𝑜.
As a result, the received power in (d) is higher than in (c).

As the RIS orientation and illumination condition affect the received power, the room
coverage that is provided by the RIS (or RIS efficiency) is also affected. Room cov-
erage expresses the percentage of the area of the room with received power at least
equal to a threshold. The RIS efficiency as a metric, helps identify the optimal RIS
position and orientation by showing which position and orientation achieves a certain
power threshold in the entire room. As an example Fig. 6.5 shows the RIS orientation
efficiency for the same room and topologies as in Fig. 6.4. In Fig. 6.5(a), the RIS is
fully illuminated as the antenna gain of the AP is 35 dB and in Fig. 6.5(b) the RIS is
partially illuminated as the AP antenna gain is 55 dB. The orientation angle, 𝜃𝑜, is the
angle between the top wall and the RIS normal as shown in (c). The power thresholds
in (a) are 𝑃𝑡ℎ = −15,−12,−10 and −8 dBm, whle in (b) 𝑃𝑡ℎ = −5,−2.5, 0 and 2.5 dBm.
Furthermore, although the AP-RIS distance is the same for both AP 1 and AP 2, their
𝜃𝐴𝑃 changes with 𝜃𝑜. For AP 1, 𝜃𝑜 = 0𝑜 means 𝜃𝐴𝑃 = 51𝑜, while for AP 2 𝜃𝐴𝑃 = 90𝑜. With
full RIS illumination, the received power differs for AP 1 and AP 2 as shown in Fig. 6.4.
Thus, the RIS orientation efficiency is also different between the two AP placements.
In Fig. 6.5(a), the RIS orientation efficiency of AP 2 is observed to be lower than the
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Figure 6.4: Received power in a 10 × 4 m2 room with different, but equidistant from the RIS, AP
placements, for both partial and full illumination cases.

efficiency of AP 1 for the majority of 𝜃𝑜 values. This is the result of the 𝜃𝐴𝑃 of AP 2
being higher than the 𝜃𝐴𝑃 of AP 1. When 𝜃𝑜 = 70𝑜 the RIS normal points towards the
opposite corner of the room ([0, 0, 0]). With this orientation the efficiency of both AP
placements is the same as 𝜃𝐴𝑃 is the same for both of them. For 𝜃𝑜 > 70𝑜 the efficiency
of AP 2 is higher than the efficiency of AP 1 as 𝜃𝐴𝑃 is lower for AP 2 than for AP 1. In
the case of partial illumination shown in Fig. 6.5(b), the footprint of the incident beam
is elongated as 𝜃𝐴𝑃 increases and therefore the results are observed to be opposite to
the full illumination case. The efficiency of AP 2 is higher than the efficiency of AP 1 for
most values of 𝜃𝑜.

6.6 Conclusion

In this chapter, the position and orientation of the RIS was studied in terms of re-
ceived power and efficiency. In order to understand how the received power depends
on the position, orientation and size of the RIS, simulations were performed for both
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Figure 6.5: RIS orientation efficiency vs orientation angle 𝜃𝑜.

fully and partially illuminated RISs, with different positions and orientations. It was
shown that the minimum received power in an area of interest is significantly dependent
on the position and orientation of the RIS. Furthermore, the RIS efficiency depends on
the RIS orientation in relation to the position of the UE as the orientation directly affects
the angle 𝜃𝑈𝐸 . In the simulations, a D-band indoor scenario was assumed, but the
findings can be extended to an outdoor with different frequency band.
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Conclusions

In conclusion, the results reported in deliverable D4.3 clearly substantiate the po-
tential gains of using RISs for making data transmission and communication in high
frequency wireless networks both reliable and efficient with the aid of machine learn-
ing. In particular, the main obtained results and findings can be summarized as follows.

In chapter 1, a deep unfolding model for efficiently estimating the end-to-end RIS
channel in SIMO systems has been introduced. The proposed approach outperformed
three benchmark schemes based on the LS method, a CVX-based numerical solution
of the channel estimation problem, and the ANM algorithm, taking into account: the im-
pact of the number of paths, the training SNR, and the angular parameter distribution
on the estimation accuracy.

In chapter 2, an RIS power consumption model capturing the RIS main power-
consuming electronic components was proposed. The autonomous operation was
guaranteed by a provided range of average power consumption of the RIS electron-
ics.

In chapter 3, four typical scenarios of RIS-aided multi-user communications have
been presented. As performance evaluations revealed, distributed AI-assisted MAC
schemes are more applicable to networks with small numbers of users associated with
a large number of RISs. In contrast, the centralized AI-assisted MAC schemes are
more suitable for a large number of users in conjunction with small numbers of RISs.

In chapter 4, the ARIADNE updated system level simulation model for D-band net-
works focusing on user’s mobility model and path loss modelling was presented.

In chapter 5, ML algorithms to establish reliable connectivity were presented. Con-
sidering important challenges inherent in dynamic planning, we devised to deliver a
predictive outcome using a design time approach in which the solution is engineered to
understand the dimensions of the problem and estimate the quality of the solution us-
ing experimental frame/GUI developed using react (Java script) and RapidMiner studio
for interactive exploration of predictive models.

In chapter 6, the position and orientation of an RIS was studied in terms of received
power and efficiency. Results show that the minimum received power in an area of
interest depends on the position and orientation of the RIS. Furthermore, the RIS effi-
ciency depends on the RIS orientation in relation to the position of a UE.
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Deliverable D4.3 constitutes a major advance of WP4 within the ARIADNE project.
Overall, the results reported in this deliverable allowed us to assess the major perfor-
mance gains that the deployment of AI-enhanced RISs in high frequency bands bring
about for application to future wireless communication systems.
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