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Abstract—Multiple-input multiple-output (MIMO) technology
has significantly impacted wireless communication, by providing
extraordinary performance gains. However, a minimum inter-
antenna space constraint in MIMO systems does not allow its
integration in devices with limited space. In this context, the
concept of fluid antenna systems (FASs) appears to be a potent
solution, where there is no such restriction. In this paper, we
investigate the average level crossing rate (LCR) of such FASs.
Specifically, we derive closed-form analytical expressions of the
LCR of such systems and extensive Monte-Carlo simulations
validate the proposed analytical framework. Moreover, we also
demonstrate that under certain conditions, the LCR obtained
coincides with that of a conventional selection combining-based
receiver. Finally, the numerical results also provide insights
regarding the selection of appropriate parameters that enhance
the system performance.

Index Terms—Fluid antenna systems, spatial correlation, level
crossing rate, selection combining, diversity.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) can be considered
as one of the most popular wireless technologies in recent
years. The concepts of diversity and multiplexing gain form
the basis of MIMO systems, which led to its extraordinary
performance for wireless communication links. However,
there must be a minimum distance of λ

2 between the antennas
in MIMO systems, where λ is the transmission wavelength
[1]. This limits the integration of MIMO systems inside
mobile devices such as tablets and mobile phones, where the
physical space is very limited.

To overcome the aforementioned limitation of MIMO, the
novel concept of fluid antenna system (FAS) was proposed in
[2]. FAS is essentially a single antenna system with N fixed
locations (referred as “port”) distributed over a given space.
The idea of FAS is originally motivated by the increasing
trend of using ionized solutions or liquid metals for antennas
[3]–[5]. The most interesting aspect of FAS is that an antenna
element is no longer kept fixed at a particular location, but
it can switch to a relatively more favorable location inside
the boundaries, if required. Apparently, the objective of FAS
resembles that of traditional transmit antenna selection (TAS)
systems [6], where multiple antennas are deployed at different
locations and the antenna with the strongest signal is selected.
However, unlike TAS systems, the single antenna element in
FAS can change position among the predetermined ports. In
this way, an FAS exploits the phenomenon of spatial diversity
and the received signal from the port with the strongest
channel condition is selected. Furthermore, there is no limi-
tation of maintaining a minimum inter-port distance and as a
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Fig. 1. The considered topology consisting of a single antenna transmitter
and a FAS-based mobile device.

result, the space making up the FAS may be small with large
number of ports. The work in [2] evaluates the theoretical
performance of such systems in terms of outage probability.
It is shown that even with a small space and a practically
feasible number of ports, FAS can significantly outperform
conventional maximum ratio combining-based systems. The
work in [7] investigates the second order statistics of a FAS-
based receiver. In particular, the work evaluates its perfor-
mance in terms of the level crossing rate (LCR), average fade
duration (AFD), and also ergodic capacity.

As stated above, FAS does not have any constraint on
the inter-port distance. This, unlike in conventional MIMO
systems, makes the aspect of spatial correlation a crucial
factor in characterizing its performance limits. However, the
work in [7] does not make this consideration. Motivated
by this, in this work, we investigate the FAS second or-
der statistics by taking the spatial correlation into account.
Specifically, we derive closed-form analytical expressions of
the LCR as a function of both the number of ports and the
associated spatial correlation. We demonstrate that in certain
scenarios, the FAS LCR coincides with that of a conventional
selection combining (SC)-based system with independent and
identically distributed (i.i.d.) channels. To the best of our
knowledge, this is the first work that presents a complete
analytical framework to characterize the LCR for a FAS, by
taking into account its practical constraints and limitations.

II. SYSTEM MODEL

We consider a simple point-to-point topology, where we
have a single antenna transmitter and a N -port FAS-based
mobile receiver, as depicted in Fig. 1. As shown in the figure,
a typical FAS-based receiver is essentially a single antenna
system with a single radio-frequency (RF) chain. The N ports
are evenly distributed in a linear space of Wλ, where λ is the
transmission wavelength and the antenna can switch locations
instantly among the ports [2]. Fig. 1 illustrates that the first
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port is the reference and the liquid antenna is always switched
to the port with best channel conditions. The channels at these
ports are characterized as [2]

h1 = σx0 + jσy0

hk = σ
(√

1− µ2
kxk + µkx0

)
+jσ

(√
1− µ2

kyk + µky0

)
for k = 2, · · ·, N,

(1)

where x0, · · · , xN , y0, · · · , yN are independent Gaussian ran-
dom variables with zero mean and variance 1

2 , and µk ∀ k
are the parameters that control the spatial correlation between
the channels. Accordingly, we have E[|hk|2] = σ2 ∀ k and
[2]

µk = J0

(
2π(k − 1)

N − 1
W

)
, for k = 2, . . ., N, (2)

where J0(·) is the zero-order Bessel function of the first kind.
Note that due to the oscillatory nature of J0(·), for a given
N , µk ∀ k is not a monotonically decreasing function of W .
It may happen that, multiple values of W result in identical
µk. Hence, to obtain a reasonable range of W, we consider
J0(·) till the point where it reaches the first zero. Accordingly,
irrespective of N , we obtain W ∈ [0, 0.38]. The FAS always
selects the port with the strongest channel condition, i.e.

|hFAS| = max{|h1|, |h2|, . . ., |hN |}. (3)

As the ports in an FAS are very close to each other, the aspect
of spatial correlation plays a crucial role in determining which
of the N ports is selected. Accordingly, the joint probability
distribution function (PDF) of |h1|, |h2|, · · · , |hN | is [2]

p|h1|,··· ,|hN |(x1, . . . , xN )

=

N∏
k=1

(µ1,0)

2xk
σ2(1− µ2

k)
e
− x2k+µ2kx

2
1

σ2(1−µ2
k
) I0

(
2 µkx1xk
σ2(1− µ2

k)

)
, (4)

for x1, . . ., xN ≥ 0, where I0(·) is the zero-order modified
Bessel function of the first kind. It is important to note that
the mutual coupling does not affect an FAS, as only one
antenna element is activated at each time. Hence, (4) is not a
conventional N -variate random variable, but a product of N
bi-variate random variables.

III. LEVEL CROSSING RATE FOR FAS
In this section, we characterize the LCR of an FAS, which

is an important parameter in characterizing the dynamics
of any random process. It facilitates to evaluate the impact
of the time-varying channel on the FAS performance. The
LCR enables to estimate the statistics of error occurrence in
signal detection. The LCR of a random process r at threshold
rth essentially gives the number of times per unit duration
that r crosses rth in the negative (or positive) direction [8].
Mathematically it defined as

L(rth) =

∫ ∞
0

ṙpṘR(ṙ, rth)dṙ, (5)

where ṙ is the time derivative of r and pṘR(ṙ, r) is the joint
PDF of r(t) and ṙ(t) in an arbitrary instant t. For an isotropic
scattering scenario, the time derivative of the signal envelope
is Gaussian distributed with zero mean, irrespective of the

fading distribution [9]. As we aim to analyze the LCR of a
FAS, we propose the following theorem in this direction.

Theorem 1. The LCR for a N -port FAS is given by (6).

Proof. See Appendix A.

We observe from (6) that the LCR is a function of the
spatial correlation, the number of ports, the decision threshold,
and the maximum Doppler frequency of the channel. This
LCR of an FAS is different from that of a conventional SC-
based receiver, primarily because of the unique PDF of the
channels at the N ports (as it can be seen from (4)) and also
the aspect of the associated spatial correlation. For the sake of
completeness, we consider the following two extreme cases:
µk = 0, 1 ∀ k = 1, · · · , N . The LCR L(xth) corresponding
to µk = 0 ∀ k, i.e. for a no spatial correlation scenario, is
given below.

Corollary 1. For a scenario without spatial correlation, i.e.
µk = 0 ∀ k, L(xth) is

L(xth) = N
√
2πfD

xth
σ
e−

x2th
σ2

(
1− e−

x2th
σ2

)N−1
. (7)

The above corollary follows directly from Theorem 1, by
replacing µk = 0 ∀ k = 1, · · · , N and using

Q1(0, b) =

∫ ∞
b

xe−
x2

2 dx = e−
b2

2 for b ≥ 0. (8)

Without a spatial correlation, for a given set of system
parameters, L(xth) obtained in (7) coincides with the LCR
of a conventional SC-based receiver with i.i.d. channels [10,
Eq. 18]. The case with µk=1 ∀ k essentially corresponds to
the scenario where the N ports are identical, i.e., there is no
need of any switching of the liquid antenna among the ports.

Corollary 2. For a scenario with µk=1 ∀ k, we have

L(xth) =

√
2π

σ
fDxthe

− x
2
th
σ2 . (9)

Proof. See Appendix B.

It is interesting to note from the above corollary, that in
case of identical channels, the FAS LCR is independent of
N . Nevertheless, the analytical expression of L(xth) derived
in Theorem 1, being too involved, does not provide any
insightful analysis. Hence, we consider a simple case of
N = 2.

Corollary 3. For a two-port FAS, the LCR is given by

L(xth) =
2
√
2πfDxth

σ3(1− µ2)
e

(
− x2th
σ2(1−µ2)

)

×
∞∑
k=0

(µxth)
2k

(k!)2 (σ2(1− µ2))
k−1 γ

(
k + 1,

x2th
σ2(1− µ2)

)
. (10)

Proof. See Appendix C.

The above corollary demonstrates the effect of parameters
such as xth, µ, and σ on the LCR. For example, we observe
from (10) that L(xth) is the product of an unimodal function
and an increasing function with respect to xth. This implies
that L(xth) is also unimodal, i.e. L(xth) initially increases
with xth, but it starts decreasing after a certain point.
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L(xth) =

√
2πxthfD
σ

{
e−

x2th
σ2

N∏
k=2

[
1−Q1

(√
2µ2

k

σ2(1− µ2
k)
xth,

√
2

σ2(1− µ2
k)
xth

)]
+

N∑
i=2

1

(1− µ2
i )
e
− x2th
σ2(1−µ2

i
)

×
∫ xth

0

2x1
σ2

e
− x21
σ2(1−µ2

i
) I0

(
2 µixthx1
σ2(1− µ2

i )

) N∏
k=2
k 6=i

[
1−Q1

(√
2µ2

k

σ2(1− µ2
k)
x1,

√
2

σ2(1− µ2
k)
xth

)]
dx1

}
. (6)

Fig. 2. Verification of proposed analysis via Monte-Carlo simulations.

IV. NUMERICAL RESULTS

We now validate our theoretical analysis with extensive
Monte-Carlo simulations. Without any loss of generality, we
consider unit power channels, i.e. E[|hk|2] = σ2 = 1 ∀
k = 1, · · · , N , where N is the number of ports in the FAS
and a carrier frequency of 900 MHz.

Fig. 2 demonstrates the variation of the normalized LCR
(NLCR) L(xth)/fD versus the decision threshold xth for
two scenarios with W = 0.1 and 0.3, respectively. In this
figure, we have considered a N -port FAS, with N = 2, 3,
and 4, respectively. Note that the values considered are solely
for illustration. We observe that the theoretical results (lines)
match very closely with the simulation results (markers);
this verifies our proposed analytical framework. The figure
supports our claim that LCR depends on both xth and µ. It can
be further noted that the LCR increases with increase of xth
until it reaches its maximum and then it decreases. Moreover,
this particular value of xth depends on the value of W , which
corroborates the claims made in [11] regarding the effect of
optimum threshold selection. Furthermore, we observe that,
the choice of W also has an impact on the NLCR. Finally, the
closed-form expression for NLCR derived in [7] significantly
deviates from the simulation results.

Fig. 3 illustrates the effect of N on the NLCR performance.
For an identical N , a marginal increase of W leads to a
significant improvement in performance; for example, observe
the performance gap at N = 16 between W = 0.1, 0.2,
and 0.3, respectively. It is worth to note, that the best
performance is observed when the channels are independent
at the ports, i.e. µk = 0 ∀ k = 1, · · · , N . Finally, the figure
demonstrates that irrespectively of the choice of W , an FAS
asymptotically attains the optimal performance in terms of

Fig. 3. Impact of spatial correlation on NLCR; xth = 28 dBm.

NLCR, as N → ∞; greater the value of W , faster is the
convergence. However, from (2), we know that W cannot be
increased arbitrarily due to the oscillatory nature of J0(·); in
this way, the spatial correlation affects the FAS performance.
Furthermore, we also observe that the change of W or N
does not affect the NLCR, as in [7].

Fig. 4 depicts the variation of NLCR with N for multiple
values of xth. We observe that for both the cases, i.e. (6) and
[7], a lower threshold results in a lower NLCR. Furthermore,
we observe that, as also seen in Fig. 3, [7] is invariant to N
(from the dashed lines). On the contrary, NLCR as derived
in (6) is significantly affected with increasing N ; the NLCR
decreases with N . This demonstrates the key benefit of an
FAS, where it is advantageous to have higher N without any
inter-port distance constraint.

V. CONCLUSION

In this paper, motivated by the practical constraints of a
FAS, we proposed a novel and general analytical framework
for the exact evaluation of an important second order statis-
tical parameter of FAS, namely the LCR. In particular, by
considering the effect of the time-varying nature of fading
channels, we investigated the aspect of spatial correlation
in characterizing this performance metric. Closed form ex-
pressions for the LCR were analytically derived and it was
demonstrated that in certain scenarios, they coincide with the
LCR of an SC-based receiver with i.i.d. channels. Finally,
we validate our proposed framework by extensive Monte-
Carlo simulations. Based on the framework presented in this
paper, an immediate extension of this work is to investigate
the second order statistics of a multiple FAS-based topology
with a heterogeneous geometry.
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Fig. 4. Impact of spatial correlation on NLCR; W = 0.2.

APPENDIX

A. Proof of Theorem 1

In this context, the N -variate joint PDF p|ḣ|,|h|(ẋ, x) is
given by [12, 8.42]

p|ḣ|,|h|(ẋ, x) =

N∑
i=1

p|ḣi|(ẋ)

×
∫ x

0

· · ·
∫ x

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1, . . . , xi = x, · · · , xN )

× dx1 · · · dxk · · · dxN︸ ︷︷ ︸
(N−1)−fold

k 6=i

, (11)

where |ḣi| is the time derivative of the signal envelope at the
i-th port. Hence, from (5), we obtain the LCR as

L(xth) =

∫ ∞
0

ẋp|ḣ|,|h|(ẋ, x)dẋ

=

∫ ∞
0

ẋ

N∑
i=1

p|ḣi|(ẋ)

×
∫ xth

0

· · ·
∫ xth

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1, . . . , xi = xth, · · · , xN )

× dx1 · · · dxk · · · dxN︸ ︷︷ ︸
(N−1)−fold

k 6=i

dẋ. (12)

Furthermore, in case of an identically distributed Rayleigh
fading scenario, p|ḣi|(ẋ) ∀ i = 1, · · · , N, follows a zero mean
Gaussian PDF [9] with variance σ2

Ẋ
= π2σ2f2D, where fD is

the maximum Doppler frequency. As a result, we obtain∫ ∞
0

ẋp|ḣi|(ẋ)dẋ =
σẊ√
2π

=

√
π

2
σfD, ∀i = 1, · · · , N. (13)

By combining (12) and (13), we have

L(xth) =

√
π

2
σfD

×
N∑
i=1

∫ xth

0

· · ·
∫ xth

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1, . . . , xi = xth, · · · , xN )

× dx1 · · · dxk · · · dxN︸ ︷︷ ︸
(N−1)−fold

k 6=i

. (14)

The summation term in (14) is alternatively written as
N∑
i=1

∫ xth

0

· · ·
∫ xth

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1, . . . , xi = xth, · · · , xN )

× dx1 · · · dxk · · · dxN︸ ︷︷ ︸
(N−1)−fold

k 6=i

=

∫ xth

0

· · ·
∫ xth

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1 = xth, · · · , xN ) dx2 · · · dxN︸ ︷︷ ︸
(N−1)−fold

+

N∑
i=2

∫ xth

0

· · ·
∫ xth

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1, . . . , xi = xth, · · · , xN )

× dx1 · · · dxk · · · dxN︸ ︷︷ ︸
(N−1)−fold

k 6=i

. (15)

The first term of (15) is evaluated as∫ xth

0

· · ·
∫ xth

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1 = xth, · · · , xN ) dx2 · · · dxN︸ ︷︷ ︸
(N−1)−fold

(a)
=

2xth
σ2

e−
x2th
σ2

∫ xth

0

· · ·
∫ xth

0

N∏
k=2

2xk
σ2(1− µ2

k)
e
− x

2
k+µ2kx

2
th

σ2(1−µ2
k
)

× I0
(
2 µkxthxk
σ2(1− µ2

k)

)
dx2 · · · dxN

=
2xth
σ2

e−
x2th
σ2

N∏
k=2

∫ xth

0

2xk
σ2(1− µ2

k)
e
− x

2
k+µ2kx

2
th

σ2(1−µ2
k
)

× I0
(
2 µkxthxk
σ2(1− µ2

k)

)
dxk

(b)
=

2xth
σ2

e−
x2th
σ2

N∏
k=2

[
1−Q1

(√
2µ2

k

σ2(1− µ2
k)
xth,√

2

σ2(1− µ2
k)
xth

)]
, (16)

where (a) follows from (4), Q1(·, ·) is the first-order Marcum
Q-function, and (b) follows from [13, Eq. 10]. Hereafter, the
second term of (15) is expanded as (17), where (c) is based
on [13, Eq. 10] and the fact that the joint PDF stated in (4)
is not a regular multivariate Rayleigh PDF. This distribution
is a product of N pairs of bi-variate Rayleigh PDFs, with
the first port of the FAS being the reference point for all the
remaining N − 1 ports. By combining (14), (15), (16), and
(17), we obtain (6), which completes the proof.

B. Proof of Corollary 2

The case of µk = 1 ∀ k implies identical channels at all
the ports. As a result, we obtain

L(xth) =

∫ ∞
0

ẋp|ḣ|,|h|(ẋ, xth)dẋ
(a)
= p|h|(xth)

∫ ∞
0

ẋp|ḣ|(ẋ)dẋ

=
2xth
σ2

e−
x2th
σ2

∫ ∞
0

ẋp|ḣi|(ẋ)dẋ
(b)
=

√
2π

σ
fDxthe

− x
2
th
σ2 , (18)
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N∑
i=2

∫ xth

0

· · ·
∫ xth

0︸ ︷︷ ︸
(N−1)−fold

p|h1|,··· ,|hN |(x1, . . . , xi = xth, · · · , xN ) dx1 · · · dxk · · · dxN︸ ︷︷ ︸
(N−1)−fold

k 6=i

=

N∑
i=2

∫ xth

0

· · ·
∫ xth

0

2xth
σ2(1− µ2

i )
e
− x

2
th+µ2i x

2
1

σ2(1−µ2
i
) I0

(
2 µixthx1
σ2(1− µ2

i )

) N∏
k=1
k 6=i

2xk
σ2(1− µ2

k)
e
− x2k+µ2kx

2
1

σ2(1−µ2
k
) I0

(
2 µkxkx1
σ2(1− µ2

k)

)
dx1 · · · dxk · · · dxN

(c)
=

N∑
i=2

2xth
σ2(1− µ2

i )
e
− x2th
σ2(1−µ2

i
)

∫ xth

0

2x1
σ2

e
− x21
σ2(1−µ2

i
) I0

(
2 µixthx1
σ2(1− µ2

i )

) N∏
k=2
k 6=i

[
1−Q1

(√
2µ2

k

σ2(1− µ2
k)
x1,

√
2

σ2(1− µ2
k)
xth

)]
dx1.

(17)

where (a) follows from p|ḣ|,|h|(ẋ, x) = p|ḣ|(ẋ)p|h|(x) [9, Eq.
2.97] and (b) follows from (13). Hence, the proof.

C. Proof of Corollary 3
Since we are considering a two-port scenario, we take into

account the joint PDF of the channel at these two ports.
Hence, by replacing N = 2 in (4), the joint PDF becomes

p|h1|,|h2|(x1, x2) =
4x1x2

σ4(1− µ2
2)
e
− x21+x22
σ2(1−µ22)

× I0
(

2µ2x1x2
σ2(1− µ2

2)

)
, for x1, x2 ≥ 0.

(19)

Thus, by replacing N = 2 in (6) and after some trivial
algebraic manipulations, we obtain

L(xth) =

√
π

2
σfD

(∫ xth

0

p|h1|,|h2|(xth, x2)dx2

+

∫ xth

0

p|h1|,|h2|(x1, xth)dx1

)
(a)
=
√
2πσfD

∫ xth

0

p|h1|,|h2|(xth, x2)dx2

=
4
√
2πσfDxth

σ4(1− µ2)
exp

(
− x2th
σ2(1− µ2)

)∫ xth

0

x2

×exp
(
− x22
σ2(1− µ2)

)
I0

(
2µxthx2
σ2(1− µ2)

)
dx2, (20)

where (a) follows from (19) and the integral∫ xth

0
x2exp

(
− x2

2

σ2(1−µ2)

)
I0

(
2µxthx2

σ2(1−µ2)

)
dx2 is obtained

as∫ xth

0

x2 exp

(
− x22
σ2(1− µ2)

)
I0

(
2µxthx2
σ2(1− µ2)

)
dx2

(b)
=

∫ xth

0

x2 exp

(
− x22
σ2(1− µ2)

)∞∑
k=0

1

(k!)2

(
µxthx2

σ2(1− µ2)

)2k
dx2

(c)
=

∞∑
k=0

1

(k!)2

(
µxth

σ2(1− µ2)

)2k

×
∫ xth

0

exp

(
− x22
σ2(1− µ2)

)
x2k+1
2 dx2

=
1

2

∞∑
k=0

(µxth)
2k

(k!)2 (σ2(1− µ2))
k−1 γ

(
k + 1,

x2th
σ2(1− µ2)

)
.

(21)

Here (b) follows from [14, 8.445] and by assuming 0 < µ <
1, (c) follows from changing the order of summation and

integration, and γ(·, ·) denotes the lower incomplete Gamma
function. As a result, by substituting (21) in (20), we finally
obtain (10).
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