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Here we will consider a function of κ-statistics, the κ-Weibull distribution, and
compare it to the well-known Weibull distribution. The κ-Weibull will be also compared

to  the 3-parameter extended Weibull function, obtained according to the Marshall–
Olkin extended distributions. The log-logistic distribution will be considered for
comparison too, such as the exponentiated Weibull, the Burr and the q-Weibull

distributions. The most important observation, coming from the proposed calculations,
is that the κ-Weibull hazard function is strongly depending on the values of parameter
κ, a parameter which is deeply influencing the behaviour of the tail of the probability

distribution. As a consequence, the  κ-Weibull function turns out to be quite relevant for
generalizations of the Weibull approach to modeling failure times. Discussions about
the Maximum Likelihood approach for Weibull, κ-Weibull and Burr distributions will

be also given.
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Introduction

In Volume 28 of the “Methods in Experimental Physics”, it is noted that, although there
is no limit  to the number of possible univariate probability  distributions that can be
theoretically  proposed,  only  a  limited  number  of  them  is  occurring  repeatedly  in
scientific work. Seven of these popular distributions are discussed by Laurent Hodges in
the  Chapter  on  univariate  distributions  [Hodges,  1994]:  three  are  the  discrete
distributions (binomial, Pascal or negative binomial, Poisson distributions) and four are
the continuous distributions (Gaussian or normal, log-normal, exponential, and Weibull
distributions). 

In  introducing  the  Weibull  distribution  [Weibull,  1951],  in  [Hodges,  1994]  it  is
observed that, for experiments characterized by continuous random variables, a best fit
of the related probability distributions can be easily obtained by means of functions
involving two or more parameters, because of a consequent greater freedom in fitting
the experimental results. Actually, the Weibull distribution falls into this category of
functions,  being  it  a  two-  parameter  generalization  of  the  exponential  distribution
[Hodges, 1994). The two parameters of Weibull distribution are known as “scale” and
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“shape” parameters.

Besides  being  used  to  describe  several  empirical  distributions  [Weibull,  1951],  the
Weibull distribution is widely involved in modeling the failure times. This use has its
origin in  the great  variety of shapes of probability  curves  that  can be generated  by
different choices of scale and shape parameters [Hodges, 1994]. “Weibull distributions
range from exponential distributions to curves resembling the normal distribution. The
exponential  distribution limit  corresponds to a “memoryless” failure rate (the failure
rate of an individual item is independent of its current age), while the other Weibull
distributions correspond to distributions of failure times that are peaked at certain ages
and skewed in different fashions” [Hodges, 1994]. 

Here, we will discuss the Weibull distribution. Then, we will consider its generalization
in  the  form  of  the  κ-Weibull  distribution.  This  function  has  been  obtained  in  the
framework  of  the  κ-calculus  [Kaniadakis,  2013],  a  calculus  which  has  its  roots  in
special relativity and is used for statistical analyses involving power law tailed statistical
distributions.  The  κ-Weibull  distribution  is  featuring  the  κ-deformed  exponential
function,  which is  a continuous one parameter  deformation of the Euler  exponential
function. Then, the Weibull distribution, the shape of which can be widely changed, can
be further adjusted in its tail, by means of the κ-exponential. The consequence is that we
have the possibility of a different investigation of failure times.

Besides  a  comparison  of  Weibull  and  κ-Weibull  function,  we  consider  also  the  3-
parameter extended Weibull according to Marshall–Olkin extended distributions. The
log-logistic  distribution  will  be  considered  for  comparison  too,  such  as  the
exponentiated  Weibull  and  Burr  distributions.  As  we  will  see  in  the  following
discussion,  the  most  important  observation  that  we  can  obtain  from  the  proposed
comparisons is that the κ-Weibull hazard function is strongly depending on the values
of parameter  κ, a parameter which is deeply influencing the behaviour of the tail of the
probability  distribution.  For  this  reason,  the  κ-Weibull  function  turns  out  to  be
interesting for generalizations of the Weibull approach to modeling failure times.

1. Weibull distribution

The Weibull distribution is a continuous probability distribution. Its probability density
function (pdf) is given by:

f (x |λ ,k )= k
λ ( xλ )

k−1
e−(x/λ )k , per x≥0    (1)

If  x<0 , f (x |λ ,k )=0 .

The ratio x /λ  is dimensionless. In the case that x indicates a position (dimension:
length,  L) or a time interval (dimension: time,  T),  λ has dimension  L or  T
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respectively.  k is  a  dimensionless  parameter.   Function  f (x |λ ,k ) has  the
dimension of x , then  integral ∫ f (x |λ ,k )dx is dimensionless.

In the distribution, k>0  is the shape parameter and λ>0  is the scale parameter.
The Weibull  distribution is  related to a number of other probability  distributions.  If

k=1 , we have the exponential distribution: f (x |λ ,1)= 1
λ e

−(x /λ) .

Let us note that, from (1), the Rayleigh distribution is given by k=2 . λ=√2σ .

f (x |σ )= x

σ 2
e−x

2/(2σ 2)         (2)

If the quantity  x  is a "time-to-failure", the Weibull distribution gives a distribution
for which the failure rate is proportional to a power of time. 

The cumulative and reliability functions are given by [Hodges, 1994]:

F(x |λ ,k )=1−e−(x/λ )k  ;  R(x |λ , k)=e−(x /λ )
k

The failure rate (hazard function) is given by [Hodges, 1994]: 

 f /R  =  h(x |λ , k )= k
λ ( xλ )

k−1
.

Mean, median and variance are (Γ is the Gamma function) [Hodges, 1994]:

λ Γ(1+ 1
k )   ;   λ (ln 2)x /k   ;  λ2Γ(1+ 2

k )−[λ Γ(1+ 1
k )]

2

In the formalism of [NCSS], the Weibull probability density function (pdf) is defined
as:

3



May 3, 2022

f (t |B ,C ,D)=B
C ( t−D

C )(B−1)
e
−( t−DC )B

         (3)

where B>0 ,  C>0 ,  −∞<D<∞ ,  t>D . 

When D=0 , Eq. (3) becomes:

f (t |B ,C ,0)= B
C ( tC)

(B−1)
e
−( tC)

B

.

Symbol t is representing the random variable. The distribution is suitable to analyse
time-series,  where  t  is the elapsed time.  Parameter  D is the threshold, which is
therefore  representing  the  minimum  value  of  time.  If  D=0 ,  it  means  that  the
threshold time is zero.

To compare with (1), let us pose B=k , C=λ , t−D=x , and we find again:

f (x |λ ,k )= k
λ ( xλ )

k−1
e
−(x/λ )k .

B is the shape parameter, which controls the overall shape of the probability density
function.  Its  value  usually ranges  between  0.5  and  8.0  [NCSS].   The  Weibull
distribution  includes  other  useful  distributions  [NCSS].  If  B=1 ,  we  have  the
exponential distribution. For B=2 , we have the Rayleigh distribution. For B=2.5
and  B=3.6 , the Weibull distribution approximates the log-normal distribution and
the normal distribution respectively.

The scale parameter  C changes the scale of the probability density function along the
time axis  (that is from days to months or from hours to days). It does not change the
actual shape of the distribution [NCSS]. Parameter C is known as the characteristic life.
In [NCSS], it is stressed that “No matter what the shape, 63.2% of the population fails
by  t  = C+D  ”.  It is also told that “Some authors use  1/C instead of  C  as the scale
parameter ”. 

Let us put α=B , γ=1/C , τ =D . Eq. (3) becomes:

 f (t |α ,γ ,τ )=α γ (γ⋅(t−τ ))α−1e−(γ⋅(t−τ ))α
              (4)
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Then, using β=γα :

f (t |α ,γ ,τ )=α β⋅(t−τ )α−1e−β (t−τ )α               (5)

Another formalism gives the Weibull distribution in the following form:

f (x | k ,b)=b k xk−1e−b x
k

        (6)

In (6),  x=t−τ ,  b=β ,  k=α .  (6)  is  the form of  the Weibull  pdf  used for
applications in medical statistics and econometrics  [Collett, 2015],[Cameron et Trivedi,
2005]. 

2. κ-Weibull distribution

Let  us  consider  the  analogue  of  Weibull  pdf  in  the  κ-statistics  [Kaniadakis,  2002],
[Kaniadakis, 2001]. The κ-Weibull probability distribution function (pdf)  is described
by [Kaniadakis et al., 2020] in the form:

f κ (x |α ,β )= α β xα−1

√1+κ 2β 2 x2α
 expκ (−β xα )          (7)

where the κ-exponential is defined in the following manner (see Appendix for further 
discussion):  

expκ (u)=(√1+κ 2u2+κ u)1/κ         (8)

Parameters  α,β are related to the shape and scale parameters of Weibull distribution,
whereas κ is the index of κ-distribution, that is the statistical distribution introduced by
Giorgio Kaniadakis, Politecnico di Torino, in [Kaniadakis, 2002],[Kaniadakis, 2001].
Recently, the use of the distribution has been proposed in epidemiology [Kaniadakis et
al. 2020],[Sparavigna, 2021]. Let us note that κ is a dimensionless parameter. β
has dimensions [x−α ] .

Eq. 7 is the derivative of the lifetime distribution function [Kaniadakis et al., 2020]: 
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Lκ=1−expκ (−β xα ) .

In [Hristopulos et al., 2015], we can find discussed and defined the κ-Weibull. 

In the formalism of the given reference:

f κ=
m
xs (

x
xs)

m−1

 
expκ (−[x / xs]

m)
√1+κ 2(x / xs)

2m
       (9)

In  [Hristopulos  et  al.,  2015],   authors  had  investigated  the  systems  that  obey  the
weakest-link scaling (WLS) principle. In this case, the system response, the material
strength  for  instance,  is  controlled  by the  weakest  link.  “The Weibull  model  is  the
archetypical probability distribution for WLS systems and is widely used in reliability
modeling”.  In  the  Ref.  [Hristopulos  et  al.,  2015],  a  list  of  applications  and  related
references are given. Models of fracture strength of brittle- and quasi-brittle materials,
geologic media, waiting times between earthquakes, wind speed, annual hydrological
maxima are mentioned.

In Eq.(9),  x  is the random variable.  In the formalism of [NCSS],  with time and
threshold, Eq.(9) becomes:

f κ (t |B ,C ,D)=
B
C ( t−D

C )
B−1

 
expκ {−[(t−D)/C ]B}
√1+κ 2((t−D)/C)2B

   (10)

Let us put α=B , γ=1/C . τ =D ,  (10)  becomes:

f κ (t |α ,γ ,τ )=αγ γ α−1 (t−τ )α−1  
expκ {−γ α (t−τ )α }

√1+κ 2γ 2α (t−τ )2α
   (11)

Then, using β=γα :  

f k(t |α ,β ,τ )=
α β (t−τ )α−1

√1+κ 2β 2(t−τ )2α
 expκ (−β (t−τ )α )      (12)
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which is the expression of κ-Weibull used in [Kaniadakis et al., 2020]. 

When κ→0 , we find the Weibull distribution as we can see in the following figure.

Figure 1 (a) – Comparing Weibull and κ-Weibull. The Weibull pdf is given in red. Parameters
are α=3.5 , β=2.0×10−7 ,  and τ =0 . The κ-Weibull curves have different κ

values: 0.25, 1, 2 and 3. See also Ref. [Sparavigna, 2021].

Figure 1 (b) – Comparing Weibull and κ-
Weibull in a log-log graph. 

Figure 1 shows the comparison of Weibull pdf with those of  κ-Weibull for different κ
values.  We can see that the value of  κ parameter is strongly affecting the tail of the
distribution. Increasing the value, the tail becomes a “long” tail, that is, a portion of the
distribution having many occurrences far from the head of the distribution.  Note also
the behaviour of the left tail, which is almost the same from t=0 to a value  tκ ,
determined by the parameter κ.
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3. Mixture density 
In the case that  the distribution is  showing two peaks,  a mixture of Weibull  or  κ-
Weibull can be considered, in the form:

f=f 1+f 2=ξ f κ 1
(t |α 1 ,β 1 ,τ 1)+(1−ξ ) fκ 2

(t |α 2 ,β 2 ,τ 2)    (13)

Parameter ξ, the mixing parameter, is ranging from zero to 1. It is used to generalize the
addition of peaks, as proposed for the Weibull distribution [Razali et Salih, 2009]. It is
also  a  rough  manner  to  consider  the  fact  that  the  set  of  population,  involved  by
pandemic  (see  discussion  in  [Sparavigna,  2021]),  changed  for  sure  during  the
considered time period.
In the case that we have three peaks,  (13) becomes:

f=f 1+f 2+f 3=ξ 1 fκ 1
(t |α 1 ,β 1 ,τ 1)+ξ 2 fκ 2

(t |α 2 ,β 2 ,τ 2)+ξ 3 f κ 3
(t |α3 ,β 3 ,T τ 3)

                       
                                                                                                            (14)

In (14), we must have ξ 1+ξ 2+ξ 3=1 .  
Being a finite sum, the mixture is known as a finite mixture,  and the density is the
"mixture  density".  Usually,  “mixture  densities”  can  be  used  to  model  a  statistical
population with subpopulations.  Each component is related to a subpopulations, and its
weight is proportional to the given subpopulation in the overall population. 

Figure 2 – An example of
mixture density (see Ref.
[Sparavigna, 2021]). The
larger peak is related to

the spread of the α-variant
of Sars-Cov-2 infections.
Data are concerning the
population in London.
The onset of the larger

peak is corresponding to
November 25, 2020.

4. A 3-parameter extended Weibull distribution

The Weibull distribution is based on two parameters, which  are the shape and the scale.
We can consider the threshold as a third parameter. For instance, at the web page of
www.real-statistics.com, the author Charles Zaiontz. Eq. (3) is defined as describing a
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three-parameter  Weibull  distribution.  However,  let  us  add  a  third  parameter  in  the
different manner discussed in the following.

In  [Caroni,  2010],  we  can  find  an  approach,  based  on  Marshall–Olkin  extended
distributions  [Marshall  et  Olkin,  1997],  to the Weibull  distribution.  In Ref.  [Caroni,
2010], the 2-parameter Weibull appears as:

f (x |β ,λ )=β λ β xβ−1e−(λ x )
β

,   x≥0     (15)

The 3-parameters extended distribution is given as:

f (x |α ,β ,λ )=
α β λ (λ x)β−1 e−(λ x)β

[1−~α e−(λ x )
β ]2

       (16a)

In (16a), x>0 , α ,β ,λ>0 , ~α=1−α .  In the formalism of Eq. (1):

f (x |λ ,k )= k
λ ( xλ )

k−1
e−(x/λ )k    Weibull

 (16a) becomes:

f (x |α ,λ ,k )=
α k (x / λ)k−1 e−(x /λ )

k

λ [1−~α e
−(λ x)k ]2

  3-parameter Weibull     (16b)

 

Let us compare to κ-Weibull. Here we rewrite Eq.(7) in the same formalism as (16a):

 f κ (x |β ,λ)=
β λ (λ x )β−1

√1+κ 2λ2β x2 β
 expκ (−λ β xβ )    (17).

It is clear that, from the point of view of dimensional analysis, it would be better to use
the formalism (16b). However, from now on, and just for a convenience in writing the

formulae, let us assume λ having dimensions [x−1] .

Let us compare (16a) and (17).  In the following figures, ξ=λ x . 
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Figure 3: Comparing functions (16a) and (17). Parameters used for the calculation: β=3.5 ,
λ=0.25 , κ=0.5 , α=1.1 .

Fig. 4: In the case we change parameter κ  in κ=0.05 , with the same other parameters
( β=3.5 , λ=0.25 , α=1.01 ), the curves are indistinguishable.

We can note again the role of parameter κ in determining the tail of the function.
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Fig. 5 : In the plot given above, parameters are β=3.5 , λ=0.25 , κ=0.9 ,
α=1.1 .

Fig. 6 : In the plot given above, the 3-parameter Weibull is given for parameters  β=3.5 ,
λ=0.25 . Values of  α . are 1.01 (red), 1.1 (green), 1.5 (blue) and 2.0 (violet).

Form the Figure 6, we can see that, in the 3-parameter Weibull, parameter α is 
changing the left part of the curve.

5. Cumulative κ-Weibull

In the following Figure, and in the formalism of (17), the cumulative function of  κ-
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Weibull, for three different values of parameter κ.

Fig. 7 : Cumulative function of κ-Weibull for parameters β=3.5 , λ=0.25 . Numbers in
the image are referring to the values of parameter κ.

In the Figure 7, we have shown the cumulative function related to the κ-Weibull 
distribution. This function, let us call it F(x) , is defined as:

f (x )=
dF (x)
dx

where f (x ) is the pdf. Every probability distribution supported on the real numbers,
discrete  or  "mixed"  as  well  as  continuous,  is  uniquely  identified  by  an  upwards
continuous monotonic increasing cumulative distribution function [Çakallı, 2015]. 

The cumulative function is linked to the reliability function.

6. Reliability Function (Weibull)

In the formalism of [NCSS], we have seen before that the Weibull pdf is:

f (t |B ,C ,D)=B
C ( t−D

C )(B−1)
e
−( t−DC )B
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where B>0 ,  C>0 ,  −∞<D<∞ ,  t>D .  The reliability (or survivorship) function,
R(t) , is giving the probability of surviving beyond the time t .  For the Weibull 

pdf, we have that the reliability is:

R(t)=e
−( t−DC )B

       (19)

The reliability function is one minus the cumulative distribution function. That is:

R(t)=1−F (t )          (20)

where: F(t |B ,C ,D)=∫
−∞

t

f (t ' |B ,C ,D) dt ' .

7. Reliability Function (κ-Weibull)

Defining the function as in (20) and using the formalism of Eq. (17), we have that the
reliability of κ-Weibull is depending on κ parameter as in the following figure. 

Fig. 8: Reliability function of κ-Weibull for parameters β=3.5 , λ=0.25 . Numbers in
the image are referring to the values of parameter κ.
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8. Hazards in reliability analysis

The hazard function is a conditional failure rate. In fact, it  is conditional because an
organism or device had actually survived until time t  . In this manner, the function at
year 10 only applies to organisms or devices (items) who were actually alive in year 10.
It doesn’t count those who died or failed in previous periods.

The hazard function are frequently associated with products and applications. 

Usually,  the  hazard  functions  are  featured  as  increasing,  constant  and  decreasing
function. An increasing hazard function indicates that items are more likely to fail with
time. For instance, mechanical items subjected to stress or fatigue have an increased risk
of  failure  over  the  lifetime  of  the  product.  A  decreasing  hazard  function  indicates
failures that are more likely to occur early in the life of an item.  An example is errors in
a computer program; they are more likely near the release of a new software program,
decreasing as time passes with improved releases. A constant hazard function indicates
failures that are equally likely to occur at any time in the item's life.

Products exist having failure rates that follow a "bathtub" curve. The name of the curve
is derived from the cross-sectional shape of a bathtub, which has steep sides and a flat
bottom. These items have hazard rate which is high initially and low in the centre. Then
the hazard is high again at the end of item’s life. For this reason, a bathtub curve is
widely used in reliability engineering and in the models of deterioration (Wikipedia)

In particular, a bathtub hazard function which comprises three parts:

1) The first part is a decreasing failure rate, known as early failures.

2) The second part is a constant failure rate, known as random failures.

3) The third part is an increasing failure rate, known as wear-out failures.

Fig. 9- Bathtub failure rate, Image
Courtesy: Wikipedia, McSush 

Many electronic consumer product life cycles strongly exhibit the bathtub curve [Lienig
et  Bruemmer,  2017].  In  reliability  engineering,  the  cumulative  distribution  function
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corresponding to a bathtub curve may be analysed using a Weibull  chart  [Lienig et
Bruemmer, 2017].

9. Hazard Function (Weibull)

The hazard function represents the instantaneous failure rate. The rate is given by the
function:

h(t )=
f (t )
R(t)

=B
C ( t−DC )B−1

   (21)

In the following figure, it is shown the behaviour of function  (λ x)(β −1) , for three
different  values  of  β .  As  discussed  in  [Kızılersü  et  al.,  2018],  it  is  helpful  to
visualise  the differences  between values  of  β  in  the hazard function by using a
“bathtub” diagram, such as that given in the Figure 2 of [Kızılersü et al., 2018]. Hazard
function for β <1  we have a “likely to fall at the start”. When β∼1 . “failure rate
is fairly constant”. When β >1 , the  “failure rate increases as the time goes by”.

Fig. 10: Function (λ x)(β −1)  for parameter λ=0.25 . Numbers in the image are referring
to the values of parameter β .

10.  Hazard Function (κ-Weibull)

The hazard function of the κ-Weibull, is given by: hκ (x |λ ,β )=
f κ (x |λ ,β )

Rκ
. In the
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following figure, the hazard function is given for three different values of parameter  κ.
The formalism is the same of the Figures 3 to 7.

 Fig. 11: Hazard function of κ-Weibull  for parameters β=3.5 , λ=0.25 . Numbers in
the image are referring to the values of parameter κ.

Fig. 12: Hazard function of κ-Weibull for parameters β=3.5 , λ=0.25 . Numbers in the
image are referring to the values of parameter κ.
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Let us remember that in [Kaniadakis et al., 2020], pdf  is proposed as the following
function:

f κ (t |α ,β )= α β tα−1

√1+κ 2β 2 t2α
 expκ (−β tα )

In the same reference, the hazard function  is given as: 

 hκ (t |α ,β )= α β tα−1

√1+κ 2β 2 t2α
   (22)

Eq. (22) in the formalism of (17) becomes:  hκ (t |β ,λ)=
β λ (λ x )β−1

√1+κ 2(λ x)2α
   (23)

Fig. 13: Hazard function of κ-Weibull for parameters κ=0.5 , λ=0.25 . Numbers in the
image are referring to the values of parameter β .

In the Figure 13, it is given the hazard function of κ-Weibull, where parameter  κ  has a
value fixed to κ=0.5 . As in the previous figures, λ=0.25  . Numbers in Fig. 13
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are referring to the values of parameter  β .  We can see that, due to the role of κ
parameter in the tail of the distribution, the behaviour is different from that given in the
Figure 10 for function (λ x)(β −1) , referring to the Weibull distribution. Then, also a
“bathtub” diagram  is modified for the κ-Weibull. 

In  the  following  Figure,  a  real  case  is  proposed  as  that  in  the  Figure  2  of  Ref.
[Kaniadakis et al., 2020]. 

Fig. 14 : This plot is illustrating the
Figure 2 of Ref. [Kaniadakis et al.,

2020].

In the  Figure 2 of  [Kaniadakis  et  al.,  2020],  among other  functions,  the theoretical
continuous  curve  and empirical  dots  are  plotted  for  the  κ-Weibull   hazard  function
versus time (see [Kaniadakis et al., 2020] for parameters). The data are those concerning
Covid-19 in China, at the beginning of the pandemic.

The hazard function is unimodal with a large tail, as in the Figure 12.

Let us consider Ref. [Kartsonaki, 2016]. Its told that “A Weibull distribution allows a
monotonic  (either  continuously  increasing  or  decreasing  hazard)  and  a  log-logistic
distribution allows either  a monotonic or a unimodal  hazard function.”  The figures
given  above  show  unimodal  behaviours  for  κ-Weibull.  For  this  reason,  a  further
comparison to the log-logistic function, mentioned in [Kartsonaki, 2016], is interesting.

11. Log-logistic function

In the formalism (16a) used before, the log-logistic function is given by:

f (x |λ ,β )=
λ β (λ x )(β−1)

[1+(λ x )β ]2
   (24)

In r-project.org, see please  https://search.r-project.org/... html/Llogis.html . 
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In the following figure, this function is compared to the 3-parameter Weibull and the κ-
Weibull.

Fig. 15 : In the plot given above, we can see the log-logistic pdf in red colour, given for
parameters  β=3.5 , λ=0.25 . The same parameters are used for the  3-parameter

Weibull (in green) , with α=1.01 . Two κ-Weibull are considered for κ=0.5 (blue)
and κ=2.0  (violet).

Fig. 16 : Log-logistic pdf for thee different values of  parameter β  ( 3.5 for the curve in red,
3.0 for the green curve and 4.0 for the blue one). The three curves are plotted with  parameter

λ=0.25 . 
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Fig. 17 : Hazard functions of log-logistic (red) and κ-Weibull (green).  Parameters are
β=3.5 and  λ=0.25 . The κ-Weibull is given for κ=1.5 .

Both log-logistic and κ-Weibull functions have unimodal hazard functions, as shown in
the Figure 17. Note that different behaviour exists for the decreasing risk of failure over
the lifetime of the organism or device. 

12. The logistic distribution

The log-logistic distribution is the probability distribution of a random variable whose
logarithm has  a  logistic  distribution.  As we have seen,  the log-logistic  is  given by:

f (x |λ ,β )=
λ β (λ x )(β−1)

[1+(λ x )β ] 2
. However, how is the logistic distribution?  In the same

formalism, it is given as:

f (x |λ ,μ)= λ e−λ(x−μ)

[1+e−λ(x−μ)] 2

where 1/ λ is the scale parameter and μ is the location parameter. We can also 
write the distribution in the following form:

f (x |λ ,μ)= λ
[eλ (x−μ)/2+e−λ(x−μ)/2] 2

= λ
4

sech2 (λ (x−μ)/2) .
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The cumulative function is given by:

F(x |λ ,μ)= 1

1+e−λ(x−μ)
= 1

2
+1

2
tanh (λ (x−μ)/2)

Fig.18 – The cumulative function of logistic distribution (in red), and of the κ-logistic
for different values of parameter κ ( κ=0.25 green, κ=0.5 blue, κ=1.0 violet,
κ=2.0 dark blue). Parameters are λ=1.0 , μ=0.0 .

13. κ-logistic distribution

In [Kaniadakis, 2021], the author is introducing new classes of statistical distributions,
which  are  the  κ-deformed  version  of  known  distributions  such  as  the  Generalized
Gamma,  Weibull,  Logistic.  In  the  given  reference,  the  author  categorize  the
distributions in five types.
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Type I, corresponding to the Generalized Gamma distribution

Type II,                                  Weibull distribution

Type III,                                 Generalized Logistic distribution

Type IV,                                 not defined

Type V,                                   Exponential distribution

The κ-logistic is given by: 

Fκ (x |λ ,μ)= 1
1+expκ−λ (x−μ)

14. The κ-exponential to deform Gumbel and Gompertz distributions

As  previously  seen,  the  κ-exponential  can  be  used  to  modify  distributions  which
contains  exponentials.  Besides  those mentioned in   [Kaniadakis,  2021],  we can add
other distributions such as the Gumbel and Gomperts functions, which can be turned
into  κ-Gumbel and κ-Gompertz distributions.

The Gumbel  distribution  is  used  to  model  the  distribution  of  the maximum (or  the
minimum) of a number of samples of various distributions.  It is also known as the log-
Weibull distribution and the double exponential distribution.  The Gumbel distribution
was proposed  in [Gumbel, 1935, 1941].  The cumulative distribution is given, in the
formalism that we are using here as:

F(x |μ ,λ)=exp(−exp (−λ (x−μ)))    

Then, we can define the cumulative function  κ-Gumbel:

Fκ (x |μ ,λ )=expκ (−expκ (−λ (x−μ)))    

The  Gompertz  distribution  is  a  continuous  probability  distribution,  named  after
Benjamin Gompertz (1779 – 1865). 

The cumulative function is: 
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F(x |b ,β )=1−exp (−β (exp(bx)−1))    

with two parameters b ,β .   The κ-deformed cumulative function is:

Fκ (x |b ,β )=1−expκ (−β (expκ (bx)−1))     

In  [Nadarajah,  2006],  it  is  proposed  an  exponentiated  Gumbel  distribution,  in  the
framework of climate applications. In the introduction of the article, the authors tells
that the Gumbel distribution is perhaps the most widely applied distribution for climate
modeling. Application include the global warning problems, fllod frequency analysis,
offshore modeling, rainfall modeling, and wind sped modeling.

In [Nadarajah, 2006], the cumulative F(x |μ ,λ)=exp(−exp (−λ (x−μ)))  becomes:

F(x |μ ,λ)=1−[1−exp(−exp(−λ (x−μ)))]α    

We can have an exponentiated  κ-Gumbel distribution:

Fκ (x |μ ,λ )=1−[1−expκ (−expκ (−λ (x−μ)))]α   

For plots see please https://doi.org/10.5281/zenodo.6425678

It is necessary to stress that we can have two different κ parameters, for instance, a κκ-
Gumbel distribution which is given by:

Fκ 2 ,κ 1
(x |μ ,λ )=expκ 2

(−expκ 1
(−λ (x−μ)))   

  

In the following figure, the cumulative function (upper panel)  and the pdf (lower panel)
of the Gumbel distribution (in red) are given with parameters  μ=0.0 , λ=1.0 . The
same  parameter  are  used  for  the  κκ-Gumbel.  The  green  curve  has  parameters
κ 1=0.05 ,  κ 2=2.0 and the blue curve has . κ 1=2.0 ,  κ 2=0.05 .
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Fig.  19 – Gumbel (red) and κκ-Gumbel 

(green, κ 1=0.05 ,  κ 2=2.0 ; blue, κ 1=2.0 ,  κ 2=0.05 ).

15. The Gamma distribution

We have previously mentioned the Kaniadakis Type I distributions, corresponding to
the  Generalized  Gamma  distribution  [Kaniadakis,  2021].  Then,  let  us  consider  this
distribution, which contains, as shown in [Rinne, 2008], the Weibull distribution as a
specific  case.  In  [Rinne,  2008],  the  four-parameter  gamma  distribution,  also  name
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generalized gamma distribution is written in the following form:

f (x |a,b ,c , d)=
c (x−a)cd−1

bcd Γ(d)
exp[−( x−ab )c]

Among the  special  cases  of  the  generalized  gamma distribution  we can  find  three-
parameter Weibull distribution ( Γ(1)=1 )

f (x | a,b ,c ,1)=
c(x−a)c−1

bc
exp[−( x−ab )c]

that we can easily compare to (3):

f (t |B ,C ,D)=B
C ( t−D

C )(B−1)
e
−( t−DC )B

Let us add reference to [Preda, 1985]. The article shows that the generalized gamma
distribution  can  be  obtained  by means  of  the  principle  of  maximum entropy.  “The
principle  of  maximum  entropy  was  established,  independently  by  Ingarden  (1963),
Jaynes (1957), Kullback and Leibler (1951). According to this principle we choose the
probability  distribution  which  maximizes  the  entropy  compatible  to  some  set  of
restrains. Using this principle,  Jaynes (1957), Kampé de Fériet (1963), Ingarden and
Kossakowski  (1971),  Preda  (1982,  1984)   obtained  some  usual  probability
distributions”.

16. The Student distribution

In a certain manner,  the log-logistic  distribution is  linked to  a distribution which is
fundamental for statistical analyses. This distribution is the Student distribution. About
it, let us just mention what is told in [Yang, 2017].

“The Student's t-test is a very powerful method for testing the null hypothesis to see if
the means of two normally distributed samples are equal. This method was designed by
W. S. Gosset in 1908 and he had to use a pen name ‘Student’ because of his employer's
policy  in  publishing  research  results  at  that  time.  This  is  a  powerful  method  for
hypothesis testing using small-size samples. This test can also be used to test if the slope
of the regression line is significantly different from 0. It has become one of the most
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popular methods for hypothesis testing. The theoretical basis of the t-test is the Student's
t-distribution for a sample population with the unknown standard deviation σ, which of
course can be estimated in terms of the sample variance S2 from the sample data”.

The Student's t-distribution (or simply the t-distribution) is symmetric and bell-shaped,
like the normal distribution, but it has heavier tails. It means that the distribution is more
prone to give values that fall far from its mean. The distribution is given by:

f (t |ν )=
Γ(ν +1

2 )
√ ν π Γ(ν2 )[1+

t2

 ν ]−
ν +1

2    (25)

where ν   is the number of degrees of freedom and Γ is the gamma function. 

Let us assume  ν=3 , we have:

f (t |3)= 2
π √3 [1+ t2

 ν ]
−2

= 2

π √3(1+ t
2

3 )
2

    (26)

Just to play with distributions, let us consider  x=t  , λ=1/√3 (in this case, with

dimension [x−1] ), we have :

f (x |λ ,2)= 2λ
π (1+(λ x)2)2

   (27)

Generalizing, by inserting (λ x)(2−1) instead of 1/π , we remove the symmetry and
have:

f (x |λ ,2)=
2λ (λ x )(2−1)

(1+(λ x)2)2
    (28).

Therefore, in (28), we have the log-logistic for β=2 .

About  the Gamma function, here a remarkable link:
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https://www.robertobigoni.it/Matematica/Trascendenti/f11/f11.htm

17. The paralogistic distribution

At the  link docs.plm.automation.siemens, it is given the paralogistic  distribution, that
we compare to the log-logistic:

f (x |λ ,β )=
λ β (λ x )(β−1)

[1+(λ x )β ]2
      log-logistic   (24)

f (x |λ ,β )=
λ β 2(λ x )β

(λ x)[1+(λ x)β ]β +1
paralogistic    (30)

18. Unimodal Hazard 

Let us consider again the hazard function, to stress some facts.

In Ref.[Greenwich, 1992], it is stressed that a unimodal hazard rate function is mainly
used for modelling “a failure rate that has a relatively high rate of failure in the middle
of expected life time. This unimodal hazard rate function has two shape parameters.
One of the parameters indicates the location (time) of the mode and the other controls
the height of the mode. In effect,  these two parameters index the class of unimodal
hazard rate functions. The reliability function and the failure density function of the
unimodal  hazard  rate  function  are  relatively  uncomplicated  and  mathematically
tractable.”  Abstract  of  [Greenwich,  1992]  also  stresses  that  unimodal  hazard  rate
functions are “particularly useful when the time of the peak failure rate is of prime
interest. The failure distribution provides a practical way of estimating the peak failure
time”.

The peak is important, but it is also important the tail of the risk of failure.

19. Bathtub and Unimodal Hazard Curves 

Let us consider Ref. [Lacey et Nguyen, 2015]. In this discussion it is told that the shape
of the hazard function “allows us to see changes in risk over time for data modeled with
lifetime distributions.  For  example,  in the  typical  bathtub shape,  the flat  line  at  the
bottom represents the useful lifetime. The longer that flat line is, the longer lifetime the
distribution can model. A V-shaped bathtub with a very short flat line is more suitable
to model shorter lifetimes, such as the lifetime of a mosquito, but a wider U-shaped
bathtub with a longer flat line would be more suitable for modeling the lifetime of a
human.  On  the  other  hand,  parametric  lifetime  distributions  with  unimodal  hazard

27

https://docs.plm.automation.siemens.com/content/plant_sim_help/15/plant_sim_all_in_one_html/en_US/tecnomatix_plant_simulation_help/simtalk_reference/simtalk_reference_1/predefined_functions/mathematical_functions/distribution_functions/paralogistic_distribution.html
https://www.robertobigoni.it/Matematica/Trascendenti/f11/f11.htm


May 3, 2022

shapes can be used to model situations such as survivability after surgery, where risk
quickly  increases  due  to  the  chances  of  complications  such  as  infection,  and  then
decreases as the patient recovers”.

20. Survival and Reliability Analysis

In the Reference [NCSS], an overview is proposed. In the Introduction it is stressed that,
when the analysis is concerning “a biological event associated with animals (including
humans), it is usually called survival analysis”.  When the event concerns “machines in
an industrial setting, it is usually called reliability analysis”. It is also important to note
that  Ref.  [NCSS]  assumes  the  survival  analysis,  as  emphasizing a  nonparametric
estimation  approach  (Kaplan-Meier  estimation),  while  the  reliability  analysis  is
emphasizing a  parametric  approach  (Weibull  or  lognormal  estimation). However,
‘reliability’  and  ‘survival’ are two terms referring to the same type of analysis.

Survival analysis is the study of the distribution of life times. 

It means that the survival analysis is the study of “the elapsed time between an initiating
event (birth, start of treatment,  diagnosis, or start of operation) and a terminal event
(death, relapse, cure, or machine failure). The data values are a mixture of complete
(terminal event occurred) and censored (terminal event has not occurred) observations”
[NCSS].  According to available  data values,  a survival  analysis allows to have some
statements about the survival distribution of the failure times. 

Let  t be the elapsed time until  the occurrence  of  a  specified  event.  The probability
distribution of  t may be specified using one of the basic functions that we have seen
before. Let us note that, once one of these functions has been specified, the others may
be derived using mathematical relationships [NCSS]. Basic functions are:

1) the Probability Density Function, f (t ) , that is the probability that an event occurs
at time t;

2)  the  Cumulative  Distribution  Function,  F(t ) ,  which  is  the  probability  that  an
individual survives until time t;

3)  the  Survival  Function,  S(t )  or  Reliability  function,  R(t) .  This  is  the
probability that an individual survives beyond time t. As told in [NCSS], this function is
the first  usually studied.  It  may be estimated using the nonparametric  Kaplan-Meier
curve or one of the parametric distribution functions;

4) the  Hazard  Rate,  h(t ) ,  which  is  the  probability  that  an  individual  at  time  t
experiences  the  event  in  the  next  instant.  It  is  a  fundamental  quantity  in  survival
analysis.  It  is also known as the conditional  failure rate in reliability.   Ref.  [NCSS]
stresses  that  the  empirical  hazard  rate  may  be  used  to  identify  the  appropriate
probability distribution of a particular mechanism, since each distribution has a different
hazard rate function. “Some distributions have a hazard rate that  decreases with time,
others have a hazard rate that increases with time, some are constant, and some exhibit
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all three behaviors at different points in time” [NCSS];

5) Cumulative Hazard Function, H (t ) .

21. Nonparametric estimators

Two competing nonparametric  estimators of the survival distribution,  S(t),  available,
according to [NCSS].  The first  is  the Kaplan-Meier  Product  limit  estimator  and the
second is the Nelson-Aalen estimator of the cumulative hazard function, H (t ) .

The Kaplan-Meier Product limit  estimator is defined as follows in the range of time
values for which there are data [NCSS]:

Ŝ(t ) ={ 1     if t<t i
∏
i:  t i≤t

[1−d i /Y i ]     if  t1≤t
     (31)

In (31), d i  represents the number of failures at time t i and Y i  and  represents
the number of individuals who are at risk at time t i  .

An alternative estimator is Nelson-Aalen Hazard Confidence Limit of H (t ) :

Ĥ (t ) ={          0           if t<t1

   ∑
i:  t i≤t

d i /Y i      if  t1≤t
     (32) 

22. Parameter estimation by means of the maximum likelihood

The parameters, such as those in the Weibull reliability distribution, can be estimated
with different methods. Two methods are based on the maximum likelihood or on the
least squares regression to the probability plot. The probability plot method allows to
have  a  nice  “visual  analysis  of  the  goodness  of  fit  of  the  distribution  to  the  data”
[NCSS]. A maximum likelihood estimation is usually preferred in statistical analyses
because it allows to provides estimates of standard errors and confidence limits. In the
Ref. [NCSS], it is noted that “there are situations in which maximum likelihood does
not do as well as the regression approach”. As an example it is proposed the estimation
of  the threshold parameter. The Reference suggests to find the threshold parameter by
means of  a  regression  and then apply the  maximum likelihood estimation,  with the
threshold value assumed as a known quantity.
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Let us consider shortly the maximum likelihood estimation (MLE) method. It allows to
find  the  most  "likely"  values  of  the  distribution  parameters,  from a  set  of  data,  by
maximizing the value of a likelihood function. This function is based on the probability
density function. Let us consider a generic pdf: 

f (x |θ 1 ,θ 2 , ... ,θ k)

Here,  x  is representing the time-to-failure and  α 1 ,α 2 , ... ,α k  are the parameters
to be estimated. For the given data, the likelihood function is a product of of the pdf, so
that: 

L=∏
i=1

n

f (x i |α 1 ,α 2 , ... ,α k)

(here, we use a formalism such as that of  LINK , ReliaSoft).

In  this  function,  n  is  the number  of  failure  data  points  and is  the  i-th  failure  time.
Mathematically,  it is easier to manipulate  not the function but its  logarithm of it. This
log-likelihood function then has the form:

Λ=ln L=∑
i=1

n

ln f (xi |α 1 ,α 2 , ... ,α k)   (33)

Then, we have to find the values  of  parameters,  for which it is   resulting  the highest
value for function (33). It happens when: 

∂Λ
∂α i

=0 ,    j=1,2 , ... ,k     (34)

As a consequence, we have a number of equations with an equal number of unknowns,
the parameters.   The solution can be relatively  simple,  in  the case that  if  there are
closed-form for the partial  derivatives;  otherwise, some numerical techniques  can be
used. 

The process  given above,  can be  easily  illustrated  in  the case of the  one-parameter
exponential distribution. Since there is only one parameter,  let us call it  λ , there is
only one  equation to be solved. First, let us write the likelihood function:
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L(λ , t
1
, t

2
, ... , t

n
)=∏

i=1

n

f (t
i
)=∏

i=1

n

λ e
−λ ti=λnexp(−λ∑

i=1

n

t
i)

Let us pass from the likelihood function to the log-likelihood function, which has has 
the form:

Λ=ln L=n ln λ−λ∑
i=1

n

t i

Taking the derivative of this equation, we have: 

∂Λ
∂λ = n

λ −∑
i=1

n

t i=0

Then,  we  find  the  estimation  of  the  parameter   
~λ=n /(∑

i=1

n

t
i) .  The  tilde  mark

indicated that this is an estimation of the parameter. In the case of the one-parameter
exponential function, we have a closed-form solution for a MLE (maximum likelihood
estimator) value for its parameter. 

Let  us  consider  the  Weibull  distribution.  The  maximum  likelihood  approach  is
described in Ref. [Evans et al., 2019]. Here, let us use the notation of this reference, so

that the Weibull distribution is given as  f (x )=a b−1(x /b)a−1exp[−xa /ba] . 

The likelihood function is:

L(x1 , x2 , ... , xn ;a ,b)=∏
i=1

n

(a/b)(xi/b)
a−1exp [−xi

a/ba ]   (35)

Using the logarithm, we have: Λ=n lna−n a lnb+(a−1)∑
1

n

ln x
i
−∑

1

n xi
a

ba
 [Yang et 

al., 2019]. Appling the partial derivations:

∂ ln L
∂a

= n
a
−n lnb+∑

1

n

ln xi−∑
1

n

(xi/b)
a ln (xi/b)=0     (36)
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∂ ln L
∂b

=−n a
b
+ a

ba+1∑
1

n

xi
a=0                         (37)

From the second equation: ba= 1
n∑1

n

xi
a .  Eliminating b , and simplifying, we 

obtain:

[∑1

n

xi
a  ln xi

∑
1

n

xi
a

− 1
a ]=1

n
∑

1

n

ln xi     (38)

Solving this equation, we have an estimate for the shape parameter, denoted by â . 
Then, we have the other parameter: 

b̂=∑
i

n

xi
â/n      (39)

The circumflex mark means that this is an estimate. The solution can be obtained by a 
numerical approach.

22.1 Excel’s solver

See how to use  Excel

https://www.real-statistics.com/distribution-fitting/distribution-fitting-via-maximum-
likelihood/fitting-weibull-parameters-mle/ ,

archived here.

23. The maximum likelihood in the case of κ-Weibull

Before considering the estimation of Weibull parameters by means of a plot model, let 
us address the problem of the maximum likelihood in the case of the κ-Weibull. It hass 
been discussed in Ref. [Clementi et al, 2008].

In this reference, the probability density function is given in the form (7):
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f κ (x |α ,β )= α β xα−1

√1+κ 2β 2 x2α
 expκ (−β xα )

The reference is defining the complementary cumulative distribution function (ccdf) of 
the κ-statistics: 

P>(x |α ,β )=expκ (−β xα )     (40)

The  complementary  cumulative  distribution  function  is  also  known  as  the  tail
distribution or exceedance, and is defined as: 

P>(x)=1−F(x )

where  F(x ) is the cumulative function. We have already seen the ccdf: in survival
analysis, it is called the survival function, while the term reliability function is common
in engineering.

Ref. [Clementi et al, 2008] is giving the moments of κ-Weibull. As told in the reference,
assuming that all observations are independent, the likelihood function is:

L=∏
i=1

n

fκ (xi |α ,β )=(α β )n∏
i=1

n xi
α−1

√1+κ 2β 2 x
i
2α

 expκ (−β x
i
α )   (41)

As  told  by  the  authors  in  the  article,  “obtaining  explicit  expressions  for  the  ML
estimators  of  the  three  parameters  is  difficult,  making  direct  analytical  solutions
intractable,  and  one  needs  to  use  numerical  optimization  methods”.  However,  it  is
possible to obtain an expression of  parameter  β  as a function of the parameters
κ ,α :

33



May 3, 2022

β= 1
2κ [Γ( 1

α ) Γ( 1
2κ

− 1
2α )

κ +α Γ( 1
2κ

+ 1
2α ) ]

α

    (42)

The problem is reduced to find the other two parameters κ ,α  (see Clementi et al.,
2008, for further discussions).

Let us consider the form  (17) of κ-Weibull:

f κ (x |β ,λ)=
β λ (λ x )β−1

√1+κ 2λ2β x2 β
 expκ (−λ β xβ )

Assuming λ=1 , and  a dimensionless x̄ : f κ ( x̄ |β )= β x̄β−1

√1+κ 2 x̄2β
 expκ (− x̄β ) . 

The likelihood function and its logarithm become:

L=∏
i=1

n

fκ ( x̄i |β )=β n∏
i=1

n x̄i
β −1

√1+κ 2 x̄i
2β

 expκ (− x̄i
β )

Λ=n ln β +(β −1)∑
i=1

n

x̄i−
1
2∑1

n

ln(1+κ 2 x̄i
2β )+∑

i=1

n

ln (expκ (− x̄i
β ))

We could determine, numerically, parameter β , assuming  κ as a fixed data.

24. A plot model for Weibull

Another  manner  to  estimate  the  parameter  is  to  use  a  plot;  that  is,  the  estimation
procedure uses the data from the probability plot. Let us see how. 

The Weibull cumulative distribution function is:

F(t )=1−e
−( t−DC )B

     (43)
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Let us assume D=0 , then ln (1−F (t ))=−(t /C)B   and: 

 ln (−ln (1−F (t )))=−B lnC+B ln (t)

Let us introduce: y=ln (−ln (1−F (t ))) , x=ln t , we have:

y=−B lnC+B x    (44)

In this manner, the plot is that of a straight line.

In [Hodges, 1994], this fact is stressed, in the following manner. Let us consider the
cumulative distribution function F(x |β ,α ) . We can easily derive:

ln ln( 1
1−F(x |β ,α ))=β ln(x /α )=−β lnα+β ln x     (45)

This relation gives a straight line when ln ln [.] is plotted against ln x. Therefore, we
have a useful method of determining whether the Weibull  distribution is appropriate
[Hodges, 1994] . Moreover, it is  also possible to find the intercept and slope of the
straight line, and , as a consequence, the parameters of the Weibull distribution. The plot
will also identify an exponential function, if β=1 .

In [Hodges, 1994], it is also proposed an example from Ref. [Berrettoni, 1964].

Fig. 20: An example from [20].

35



May 3, 2022

The straight line in the figure is from an experiment in [Berrettoni, 1964]. It is a plot of
capacitor  failure  data.  The  random  variable  is  hours  to  failure.  The  straight  line
corresponds to a Weibull distribution having parameters as β=0.70 and α=310 .

24.1 Regression - See the example at

https://www.real-statistics.com/distribution-fitting/fitting-weibull-regression/ ,

archived here.

24.2 MATLAB and curve fitting -  "I have some data and I want to fit  a Weibull
distribution. What MATLAB functions can I use to do Weibull curve fitting?" Here an
example.

25. The exponentiated Weibull distribution and others

In the reliability analysis, the Weibull distribution is commonly used. Then, it is not
surprising that several generalizations of it have been proposed, in order to improve its
performance.  One  of  them  is  appearing  in  [Zacks,  1984].  In  the  given  reference,
complex mechanical systems, such as cars and air-planes are considered. These systems
have two phases in their life, the second one -  the wear-out phase - being characterized
by a higher failure rate. Between the two phases there is a change point. The problem
consists in the estimation of this point. In this framework, in [Zacks, 1984] we find
introduced  a  new  distribution,  defined  as  “Weibull-exponential”  distribution.  It  is
similar  to  the  exponentiated  Weibull  distribution,  introduced  in  [Mudholkar  et
Srivastava, 1993]. 

The exponentiated  Weibull  family  of  probability  distributions  was introduced as  an
extension of the Weibull family, by adding a second shape parameter. The cumulative
distribution function for the exponentiated Weibull distribution is (for threshold D = 0) :

F(t )=[1−e−(t /C )B ]E  instead of F(t )=1−e−(t /C )B     

Here B is the first shape parameter, and E is the second shape parameter. 

The density function is given by:

f (t )=E B
C

(t /C )B−1 e−(t /C)
B [1−e−(t /C )B]E−1

    (46)
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Let  us  remember  that  the  probability  density  is  the  derivative  of  the  cumulative
distribution function. 

There are two important special cases of the exponentiated distribution. When E = 1, we
have  the  Weibull  distribution.  If  B =  1,  we  find  the  exponentiated  exponential
distribution,  introduced by Gupta and Kundu [Kundu et Gupta, 1999]:  

f (t )=E
C

e−(t /C) [1−e−(t /C )]E−1
      (47)

 

The  3-parameter  Weibull  (Marshall–Olkin  based)  and  the  exponentiated  Weibull
distributions are two of the many continuous modifications of the Weibull distribution.
In  Ref.  [Almalki  et  Nadarajah,  2014],  we  can  find  the  Inverse  Weibull,  the  Log-
Weibull,  the  Compound  Weibull  distributions,  the  Reflected  Weibull,  the  Gamma
Weibull,  the  Kies  and  Phani's  modified  Weibull  distributions,  the  Exponentiated
Weibull  (that  we have previously discussed),  the Generalized  Weibull,  the Additive
Weibull,  the  Extended  Weibull  (that  is  the  Marshall–Olkin  based  one),  the  Power
Lindley distribution, the Generalized power Weibull distribution, the Modified Weibull
extension,  the  Beta  Weibull  distributions,  the  Odd  Weibull,  the  Flexible  Weibull
extension,  the  Generalized  modified  Weibull,  the  Sarhan  and  Zaindin's  modified
Weibull  distribution,  the  Kumaraswamy  Weibull  distribution,  and  the  Almalki  and
Yuan's modified Weibull distribution.

For comparison, let us write Weibull, exponentiated Weibull and  κ-Weibull:

f (t |B ,C)=B
C

(t /C )(B−1)
e
−(t /C )B  (Weibull), 

f (t |B ,C , E)=E
B
C

(t /C )B−1 e−(t /C)
B [1−e−(t /C )B]E−1

(exponentiated Weibull)

f κ (t |B ,C)=
B
C

( t /C )B−1  
expκ {−(t /C )B}

√1+κ 2(t /C)2B
   (κ-Weibull), 
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In the different formalism (16a) previously used:

f (x |β ,λ )=β λ (λ x )β−1  exp(−λβ xβ )

f (x |β ,λ ,ϵ )=ϵ β λ (λ x)β−1  exp(−λ β xβ )[1−exp(−λ β xβ )]ϵ−1

f κ (x |β ,λ)=
β λ (λ x )β−1

√1+κ 2λ2β x2 β
 expκ (−λ β xβ )

Fig. 21 : In the plot given above, we can see the Weibull pdf in red colour, given for parameters
β=2.0 , λ=0.25 .  The other curves are the exponentiated Weibull  for the same

β ,λ  parameters for and ϵ=1.1 ,  1.5  and 2.0 . The  κ-Weibull, plotted in dark blue, is
given also for comparison, with the same β ,λ  parameters and κ=2.0 .
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Fig. 22: Here the Weibull pdf in red colour, given for parameters β=1.0 , λ=0.25 .and
ϵ=1.0  The other curves are the exponentiated Weibull  for the same β ,λ  parameters

for and ϵ=1.1 ,  1.5  and 2.0 . In this case, being β=1.0 ,the exponentiated Weibul is
the exponentiated exponential. 

Fig. 23 – Here the exponentiated exponential distribution, in a screenshot of an application at
the web site of Geogebra, https://www.geogebra.org/m/rGXMGrV4, author of the page
Manoel Wallace. Many thanks to the author for this applications, where parameters cha ne

changed to see how the distribution modify itself.
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26. Burr Type XII distribution

Previously,  we have compared the Weibull  distribution and the  κ-Weibull.  We have
also considered the comparison of κ-Weibull and log-logistic. Now, let us consider the
Burr Type XII distribution, or simply Burr distribution [Burr, 1942]. It is also known as
the  Singh–Maddala  distribution  [Singh  et  Maddala,  1976].  The  Burr  distribution  is
sometimes  called  the  "generalized  log-logistic  distribution".  It  is  used  for  modeling
household income.

Let us write the Burr pdf in the following form, and the other previously used:

f (x |β ,λ ,ϵ )=ϵ β λ (λ x)β−1  [1+λ β xβ ]−ϵ−1
  (Burr)          (48)

f (x |β ,λ )=β λ (λ x )β−1  exp(−λβ xβ )             (Weibull)

f (x |β ,λ ,ϵ )=ϵ β λ (λ x)β−1  exp(−λ β xβ )[1−exp(−λ β xβ )]ϵ−1

(exponentiated Weibull)

f κ (x |β ,λ)=
β λ (λ x )β−1

√1+κ 2λ2β x2 β
 expκ (−λ β xβ )    (κ-Weibull)

Let us note that <,when ϵ=1 , the Burr distribution is the log-logistic distribution.

In the following figure, we can see the comparison.
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Fig. 24 :  In the plot, we used parameters β=2.0 , λ=0.25 . In red, it is given the
Weibull pdf ,  The other curves are the exponentiated Weibull  (blue) with ϵ=1.5 . The  κ-

Weibull, plotted in green, is given  for κ=2.0 .  The pink curve is the Burr distribution, with
ϵ=1.5 .

Fig. 24:5 In the plot, we used parameters β=3.5 , λ=0.25 . In red, it is given the κ-
Weibull. The other curves are Bull distributions (green, ϵ=1.0 , blue, ϵ=1.25 , pink

ϵ=1.5 ).
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27. The q-Weibull

Let us consider  the  q-Weibull  [Picoli et al., 2003],  in the formalism (16a) here used
( q≠1 ):

f (x |β ,λ ,q)=(2−q)β λ (λ x)β−1  [1+(q−1)λβ xβ ]1/(1−q)   (49)

In https://en.wikipedia.org/wiki/Q-Weibull_distribution , it appears the q-exponential. 

Let us compare (39) to the Burr distribution:

 

f (x |β ,λ ,ϵ )=ϵ β λ (λ x)β−1  [1+λ β xβ ]−ϵ−1

Posing q=(2+ϵ )/(1+ϵ ) , we have (2−q)=ϵ /(1+ϵ ) , (q−1)=1 /(1+ϵ ) . Then:

f (x |β ,λ ,ϵ )= ϵ
1+ϵ

β λ (λ x )β−1  [1+ 1
1+ϵ

λ β xβ ]−ϵ−1

Assuming 1/(1+ϵ )=χ β , we have:

f (x |β ,λ ,ϵ )=ϵ χ β β λ (λ x)β −1  [1+ χ β λβ xβ ]−ϵ−1

= ϵ β χ λ ( χ λ x)β −1  [1+ χ β λβ xβ ]−ϵ−1

Therefore, we find the Burr distribution, when we change the scale in Λ=χ λ :

f (x |β ,Λ ,ϵ )=ϵ β Λ(Λ x )β−1  [1+Λβ xβ ]−ϵ−1
    (50)
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28. Maximum likelihood and Burr distribution

Let us consider the  Burr distribution.  An approach to solve the maximum likelihood
problem for complete and censored data is given in Refs. [Hakim et al., 2021], [Saei et
al.,  2019].  In  these  references,  the  Burr  distribution  is  written  as

f (x )=k c xc−1(1+xc)−(k+1)
. 

In  the  expressions  (48)  of  the  Burr  distribution  given  above,  it  means  to  assume
λ=1 :

f (x |β ,λ ,ϵ )=ϵ β xβ−1  [1+xβ ]−ϵ−1

The likelihood function is:

L(x1 , x2 , ... , xn ; β ,ϵ )=∏
i=1

n

ϵ β xi
β−1(1+xiβ )−(ϵ+1)

Using the logarithm, we have:

 Λ=n ln β +n lnϵ+(β−1)∑
1

n

ln xi−(ϵ−1)∑
1

n

ln(1+xiβ )  

Appling the partial derivation:

 
∂ ln L
∂ϵ = n

ϵ −∑
1

n

ln(1+xi
β )=0

Therefore:

ϵ̂= n

∑
i=1

n

ln (1+xi
β̂ )

   (51)

In this relation, we have parameter  β̂ ; then we need the second equation, coming 
from the other partial derivative ∂ ln L /∂ β=0 , and after substitution:
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n

β̂
+∑

i=1

n

ln x i − [ n

∑
i=1

n

ln(1+xi
β̂ )
+1]∑i=1

n xi
β̂ ln x i

1+x i
β̂

= 0   (52)

Equations (51) and (52) can be solved by numerical method.

29. Cumulative Burr functions 

In  [Hakim et al., 2021], we can find also the list of all the  cumulative Burr functions.

The Burr f (x )=k c xc−1(1+xc)−(k+1)
has the cumulative F(x )=1−(1+xc )−k .

Here the list [Hakim et al., 2021]: 

I)    F(x )=x , interval (0,1)

II)   F(x )=(1+e−x)−k  ,  interval   (−∞ ,∞)

III)  F(x )=(1+x−c )−k  , interval   (0 ,∞)

IV)  F(x )={1+[ x−1(c−x)]1/c}−k , interval   (0 , c)

V)    F(x )=(1+c e−tan(x ))−k   , interval   (−π /2 ,π /2)

VI)   F(x )=(1+c e−r sinh(x))−k   , interval    (−∞ ,∞)

VII)  F(x )=2−k (1+tanh (x))k    , interval (−∞ ,∞)

VIII) F(x )=[2π−1arctan (ex)]−k    ,  interval   (−∞ ,∞)

IX)    F(x )=1−2{2+c [(1+ex)k−1]}−1 , interval  (−∞ ,∞)

X)      F(x )=(1−e−x2)k    , interval  (0 ,∞)

XI)     F(x )=[ x−(2π )−1sin (2π x )] k   ,  interval (0,1)

XII)    F(x )=1−(1−x c)−k   ,   interval (0 ,∞)

In the list given above, x is dimensionless.

The reference tells that the “most important distribution in Burr system is Burr Type XII
distribution which has two positive parameters  k and  c. Burr Type XII distribution is
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discussed in more detail by Burr and has gained special attention [Nasir et Al-Anber,
2012]”. As given by the reference, the distribution can be used in the various fields of
sciences, including reliability analysis [Lewis, 1981], [Zimmer et al., 1998], life testing
[Gupta  et  al.,  1996],  survival  analysis  [Ghitany  et  Al-Awadhi,  2002],  actuaries
[Burnecki et al., 2004], economics [McDonald, 2008], forestry [Lindsay et al., 1996],
hydrology [Shao et al., 2004], and meteorology [Usta et Kantar, 2012]. "Because of its
popularity, Burr Type XII distribution is commonly known as Burr distribution”. 

30. The origin of Weibull distribution (Particle size distribution)

Let us continue to propose further information about background and application of the
Weibull distribution. In [Jonasz et Fournier, 2007], we can find that it was involved in
the particle size distribution. 

Reference [Jonasz et Fournier, 2007] tells that the Weibull function was introduced in
order to describe the size distribution of a particle population formed by fragmentation
(crushing).  The  distribution  was  formulated  by  Tenchov  and  Yanev  (1986),  in  the
following form:

n(D)  = n0
c
b (

D−D
0

b )
c−1

exp[−(D−D0

b )
c]   (53)

In the formula (53), n0 is the particle concentration (scale) factor with a dimension of
number of particle per unit of volume. D0 is the smallest particle diameter, related to
the extent of fragmentation. In [Jonasz et Fournier, 2007], it is specified that, as in the
case  of  the  log-normal  and  modified  gamma  distributions,  the  Weibull  distribution
yields a finite total number of particles. 

Tenchov and Yanev (1986)  give also the value of the peak:

D peak=D0+b( c−1
c )1/c

   (54)

and other quantities related to the distribution [Jonasz et Fournier, 2007].

Ref. [Jonasz et Fournier, 2007] explains that “the Weibull distribution is a result of a
random  fragmentation  process  where  the  probability  of  splitting  a  particle  into
fragments depends on the particle size. If that probability is independent of the particle
size,  the  log-normal  size  distribution  results.  Both  distributions  can  be  made  quite
similar,  and  the  experimental  errors  may  prevent  one  form  reaching  a  definite
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conclusion on which one is a better fit to experimental data”, as shown by [Tenchov et
Yanev, 1986].

Brown and Wohletz [Brown et Wohletz,  1995] have demonstrated that “the Weibull
distribution  arises  naturally  as  a  consequence  of  the  fragmentation  process  being
fractal”  [Jonasz et   Fournier,  2007].  “Fragmentation  process is  a cleavage of  bonds
between  the  component  particles  that  can  also  be  proven  to  lead  to  the  Weibull
distribution” [Tenchov et  Yanev, 1986],[Jonasz et Fournier, 2007]. According to the
derivation  of  Brown  and  Wohletz,   exponent  c in  (41)  is  related  to  the  three-
dimensional  fractal  dimension  d describing  the  fragmentation  process  as  follows
[Jonasz et Fournier,  2007]: 

c−1=d
3

31. Rosin and Rammler distributions

In [Jonasz et Fournier, 2007], it is told that Brown and Wohletz, in [Brown et Wohletz,
1995],  also  show  that  the  Weibull  distribution  is  linked  to  the  Rosin-Rammler
distribution (Rosin and Rammler, 1993, [Rosin et Rammler, 1933]) that has been used,
in particular, for describing the size distribution of fragments in coal processing and in
geology.  The  Rosin-Rammler  distribution  is  a  cumulative  distribution  expressed  as
follows [Brown et Wohletz, 1995]:

N (D)=NT exp[−( DD0 )
r]    (55)

N (D)  is  the number of particles with sizes greater that  D .  NT is the total
number of particles, r is a dimensionless constant, and D0 is related to the average
particle diameter. Note that the simple fitting of this distribution to experimental data, to
avoid using a direct non-linear fitting process, requires taking double logarithms which
greatly reduces the effect the features of the data set may have on the values of the fit
parameters [Jonasz et Fournier, 2007].

As historical background, in [Brown et Wohletz, 1995] we can find told that, in 1933
[Rosin  et  Rammler,  1933],  Rosin  and  Rammler  proposed  the  use  of  an  empirical
distribution  for  the  description  of  particle  sizes,  which  they  obtained  from  data
describing the crushing of coal and other materials. In 1939 [Weibull, 1939], Weibull
proposed the same distribution,  obtained from the study of the fracture of materials
under repetitive stress. The description proposed was empirically based, until Austin et
al. [Austin et al., 1972] derived it to describe batch grinding in 1972. Then, Peterson et
al.  (1985),  Brown  (1989)  and  Wohletz  et  al.  (1989)  independently  rederived  the
distribution.
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32. Size distribution of fly ash

In [Weibull, 1951], among the first proposed applications of the distribution, we can
find Waloddi Weibull evaluating the distribution to the size of fly ash. The fly ash, also
known as flue-ash or simply ash, is a fine powder consisting mostly of particles that are
produced as a byproduct in coal-fired power stations. Let us observed that this complex
anthropogenic material is a product which has pozzolanic properties; this means that it
reacts with lime to form cementitious compounds [Paya et al.,  2001]. In [Xu et Shi,
2018],  due to a  good performance,  it  can be involved in  materials  as alternative  to
ordinary Portland cement. In fact, the fly has has several other potential applications. In
[Yao  et  al.,  2015],  we  can  find  a  review  about  the  generation,  physicochemical
properties and hazards of coal fly ash and the applications, including use in the soil
amelioration, ceramic industry, catalysis, depth separation, zeolite synthesis, etc. [Yao
et al., 2015]. 

The fly ash is a coal combustion product, composed of the particulates that are driven
out of combustion chambers with the flue gases. In modern coal-fired power plants, the
particulate is generally captured by electrostatic precipitators or other particle filtration
devices, before the flue gases reach the chimneys. The composition of fly ash is varying
considerably,  according to  the burned coal;  however  all  fly  ash includes  substantial
amounts of silicon dioxide (SiO2), aluminium oxide (Al2O3) and calcium oxide (CaO),
which are the main mineral compounds in coal-bearing rock strata.  Since the particulate
is rapidly formed while suspended in the exhaust gases, the fly ash is made of particles,
generally spherical in shape, ranging in size from 0.5 µm to 300 µm.

In [Sparavigna,  2017],  it  has  been proposed a  measurement  of  the  particle  size,  by
means of an image segmentation. 

Fig. 26 – The result of the image segmentation of particles from Ref. [Sparavigna,
2017]. 
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33. The statistical distribution of the strength of fibres

From Ref.  [Pickering et Murray, 1999], we can read that “an accurate model for the
strength of such a composite will rely on accurately characterising the strength of the
fibres. The strength of a particular type of carbon fibre cannot be fully described by a
single value. Carbon fibres are brittle and have strengths, as described by Griffith theory
[Griffith, 1920], determined by the flaws which occur along the length of the fibres. …
The strength of a particular fibre depends on the variation of flaws or more precisely,
the  worst  flaw that  exists  along  its  length”.  The strengths  of  fibres  are  statistically
distributed,  and the  statistical  is  usually  described  by means  of  the  two-para#meter
Weibull equation. 

In the Eq. 3 of Ref. [Pickering et Murray, 1999], we find that the strengths for lengths
L1 , L2 are linked by the relation:

σ
2
/ σ

1
=(L1

/ L
2)1/w    (56)

In this equation, w is the shape parameter of the Weibull model. The shape parameter
is also defined as the Weibull modulus.

The equation given above contains the principle of ‘weak-link scaling’ (or ‘weakest-link
scaling’ (WLS) in [Hristopulos et al., 2015]).  A plot of the logarithm of characteristic
strength versus the logarithm of length should give a straight line if weak link scaling is
observed. From such a plot,  the Weibull modulus can be obtained from the reciprocal
of the gradient [Pickering et Murray, 1999].

34. The weak-link effect

In Section 2 we have introduced the κ-Weibull distribution and mentioned [Hristopulos
et al., 2015] and, as previously told, the weakest-link scaling (WLS) principle.

Let us add that the “weakest link hypothesis” is an hypothesis which is implying that the
strength of a structure depends on the most important defect (flaw) in the material under
the application of a specific load [Chasiotis et Knauss, 2003]. In its simple form, the
weak-link effect can be expressed in the following manner, as proposed in [Morton et
Hearle, 2008]. “Suppose that we could determine the strength at every point along the
length of a fibre. We should find that it varied from point to point, ... If a gradually
increasing load is applied to this whole specimen, it will break at  its weakest point,
giving a strength S1 , but if the specimen is tested in two half-lengths, each will break
at its own weakest place, one giving the value S1 , and the other a value S2 , which
is necessarily greater than  S1 . The mean strength, measured on half-lengths, is the
mean of S1  and S2 , and must therefore be greater than the strength measured on
the whole length”.  Going to quarter-lengths,  we get  four values.  The mean strength
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from these values is greater still. “This increase will continue until at very short lengths
the mean strength tends to the value S0 , which gives equal areas of the curve above
and below the line  S=S0 , since each small element will break at its own value of
strength”.

35. The weak link in a chain

Let us consider the discussion in the Ref. [Gustafsson, 2014]. Let us start with a link in
a  chain,  on  which  we  apply  the  tensile  force  F. The  Weibull  model  tells  that  the
cumulative probability distribution function for the strength of the link is: 

S(F) ={       0               if F<0

1−e
−(F /F

o
)m

    if  F≥0
   (57)

S(F)  is the probability that the link will fail if loaded from zero up to the load F .
In  the  expression  given  above,  Fo  and  m  are  parameters  which  define  the
properties  of the link.   The Weibull  weakest link model is  used for analyses of the
strength of structural elements, that is the strength of a chain made up of several links.

Fig. 27 - S(F) for
m=5 , Fo=200 kN .

From this plot, we can find that a failure probability, for instance equal to S=0.21 , is
corresponding to  F=150kN . It means that the 21 % of  links have a strength less
than or equal to F=150kN [Gustafsson, 2014]. We can calculate the corresponding
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distribution as dS /dF .

Fig. 28 - dS(F)/dF for
m=5 , Fo=200 kN .

The plot shows a failure probability density dS /dF=0.0061  kN−1  for F=150kN
. The 0.61% of the links fail for each  1kN  increase of the load, when the load is
close to 150kN  [Gustafsson, 2014].  Note that the same probability density, 0.61%,
is also observed for 225kN .

Let  us  suppose  to  consider  n  links.  The  probability  that  a  link  can  carry F is:

e
−(F /Fo)m . The probability that, in the chain with n links, the i−link  can carry

a load Fi is [Gustafsson, 2014]:

e
−(F1 /Fo )m e

−(F2 /Fo)m⋯ e
−(Fn/Fo)m=e

−∑
i=1

n

(Fi /Fo)m
   (58)

In the case that Fi=F , the failure probability is:

1−e
−∑

i=1

n

(F i /Fo )m
=1−e

−n(F /Fo)m=1−e
−(F/ ~Fo)m       (59)

where ~Fo=F o /n
1 /m .  In the case of proportional loading, Fi=FMλ i , we find:

1−e
−∑

i=1

n

(FM λ i /Fo)m
=1−e

−n(FM /Fo )m∑
i=1

n

λ i
m

=1−e
−(FM / ~F

o )m     (60)
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where ~Fo=Fo /(∑
i=1

m

λ i
m)

1/m

. The distributions for one link and for a chain with n

links  differ  for  a  scaling  factor  [Gustafsson,  2014].  Lecture  [Gustafsson,  2014]
continues with bulk materials.

36. Weibull distribution for pseudorandom numbers

Besides the reliability analysis, the evaluation of the size distribution and the strength of
fibres, the Weibull function can be used for numerical calculus. Routine RNWIB can be
used to  generate  pseudorandom numbers,  starting  from a  Weibull  distribution,  with
shape parameter A and unit scale parameter, so that:

f (x )=A x A−1 e−x
A

,  x≥0      (61)

https://help.imsl.com/fortran/6.0/stat/default.htm?turl=rnwib.htm

Appendix – κ-exponential 

Giorgio Kaniadakis, Politecnico di Torino, derived the κ-exponential from the energy–
momentum relation, determined by special relativity. The energy–momentum relation is
the relativistic dispersion relation, relating total energy (relativistic energy) to invariant
mass (the rest mass) and momentum.  It can be written as the following equation:

E2=( pc)2+(moc
2)2

In  this  equation,  E  is  the  total  energy,  mo  the  invariant  mass,  p  the
momentum and constant  c  the speed of light. The dispersion relation assumes the
special relativity case of flat spacetime. 

Let us write the relation in the following form:

E2− p2c2  =  mo
2c4 , then E2

m
o
2 c4

− p2 c2

m
o
2 c4

 = 1
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( E

mo c
2
− p c

mo c
2 )( E

moc
2
+ p c

mo c
2)=1

Being  E=√ p2 c2+mo
2 c4 , we can write E=moc

2√1+( p
moc )

2
.

(√1+( p
moc )

2
− p
mo c )(√1+( p

moc )
2
+ p
mo c ) = 1

Let us write: κ q= p
moc

, the previous relation becomes:

(√1+κ 2q2−κ q)(√1+κ 2 q2+κ q)  =  1

(√1+κ 2q2−κ q)1/κ  (√1+κ 2q2+κ q )1/κ  =  1

This is the constituent equation of the κ-exponential:

 expκ (−q)  expκ (q)  = 1
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