
Ruprecht-Karls Universität Heidelberg

Institute of Computer Science

Research Group Parallel and Distributed Systems

Bachelor Thesis

Performance Visualization for the PVFS2 Environment

Name: Withanage Don Samantha Dulip
Supervisor: Prof. Dr. Thomas Ludwig
Enrollment Number: 2371809
Date of Submission: November 5, 2005

Ich versichere, dass ich diese Bachelor-Arbeit selbstständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

..

Abgabe Datum: November 5, 2005

Abstract

This document describes how to use the functionalities of SLOG21 trace file format in order
to facilitate complex visualization concepts in parallel environments. How to analyze trace
files generated by parallel I/O activities using MPE 2 for PVFS2 3 is the basis of this anal-
ysis. Implemented set of utilities help improve the user defined performance analysis and
visualization of SLOG2 trace files.

Chapter 1 takes an overview of the parallel file system, tracing libraries, logging formats,
and visualization programs. Chapter 2 specifies the needs in visualizing the PVFS2 servers
and clients together in order to do performance measurements. Chapter 4 describes the used
design methods. Chapter 5 describes some of the implementation methods used to achieve the
specified goals. An example illustration using the implemented tools is included in chapter 6.
Chapter 7 describes the conclusions. Chapter 8 and 9 respectively describe the future works
and possible future enhancements.

Key Words : Parallel systems, Interval file format, Trace visualization, Parallel Virtual
File System, Scalable Log File Format, Multi-process Environment, Jumpshot, MPI

1Scalable log file Format
2Multi-process environment
3Parallel Virtual File System

3

Contents

Contents 4

1 General goals of thesis 6

2 System Overview 7
2.1 The Parallel Virtual File System PVFS2 . 7
2.2 The Concept of Tracing . 8
2.3 Tracing in MPI via MPE . 10
2.4 Jumpshot . 10

2.4.1 Introduction . 10
2.4.2 Why Jumpshot? . 11
2.4.3 Limitations . 12

2.5 SLOG2 . 12
2.5.1 Primitive drawable . 14
2.5.2 Primitive drawable types . 14
2.5.3 Composite drawable . 14

3 Specification of the Goals 15
3.1 Requirements . 15
3.2 Representation . 16

4 Design methods 17
4.1 Design of trace management . 17
4.2 Design of graphical management . 17

4.2.1 Composite generation . 18
4.2.2 Rearrange the composites . 18
4.2.3 Line Id map generation . 18
4.2.4 Arrow generation . 18

4.3 Approach . 18
4.4 Designing of Slog2ToCompositeSlog2, CompositeSlog2TOLineIDMap, and

Slog2ToArrowSlog2 . 19
4.4.1 General functions . 19

4.5 Slog2ToCompositeSlog2 . 20
4.5.1 Make composite drawables according to the identification number . . 21

4.6 CompositeSlog2TOLineIDMap . 22
4.6.1 Generation of time-line id maps . 23

4

CONTENTS 5

4.7 Slog2TOArrowSlog2 . 23

5 Implementation 25
5.1 Get the number of time-lines in the input SLOG2 file 25
5.2 Category generation . 25
5.3 Generate a composite drawable . 26
5.4 Time-line id map generation . 26
5.5 Read the info value . 27
5.6 General issues . 27

6 Example 28
6.1 Execute the test MPI program . 28
6.2 Generate the trace files . 28
6.3 Convert the trace files into SLOG2 . 29
6.4 Compile and run the trace management programs 29

6.4.1 Compile and run MergeSlog2 . 30
6.4.2 Compile and run Slog2TOCompositeSlog2 30
6.4.3 Compile and run CompositeSlog2TOLineIDMap 31
6.4.4 Compile and Run Slog2TOArrowSlog2 32

7 Conclusions 34

8 Future works 35
8.1 Server name . 35
8.2 Change the height of the drawable . 35
8.3 Change the color depth of a category . 36

9 Possible future enhancements 37
9.1 Automatic color changing . 37
9.2 Integrate searching facility for activities . 37
9.3 Two time-line windows at the same time . 38

10 PVFS2 installation with mpe 39

Bibliography 43

Chapter 1

General goals of thesis

Post mortem analysis of trace files has become a well-accepted technique in performance
analysis in current parallel program environments. MPICH21 is one of the widely used MPI2

implementations that use MPI semantics to optimize the communication activities in parallel
programs. MPE23 which is included in MPICH2 offers a number of performance analysis
tools based on post processing approach. PVFS24 is a parallel file system which is tailored
specially for using in parallel computer environments.

Main goal of the whole project is to visualize the PVFS2 servers using the tools in MPE2.
In terms of PVFS2 server behavior analyzation lots of enhancements are needed although the
basic functionalities already exist. Most tools have to be modified because of the complexity of
activities which occur during PVFS2 I/O. The goals in the scope of this thesis is to determine
and implement tools that address the visualization issues on PVFS2 servers.

Most of the modifications that should be done in the MPE2 tools are common needs in the
trace analyzation processes. Therefore the tools have to be flexible enough to address general
needs in the parallel program trace analyzing community.

1A portable implementation of MPI
2Message Passing Interface
3 Multi-Processing Environment
4Parallel Virtual File System

6

Chapter 2

System Overview

2.1 The Parallel Virtual File System PVFS2

Job scheduling

Client API

Job schedule

BMI FLOW

Client Server

BMI FLOW TROVE

Client
 1

Client
 2

Client
 3

N
E
T

W
O
R
K

 2
Server

Disk

Disk

Server
 1

Request processing

Figure 2.1: PVFS2 software structure

Large parallel computer systems, also called computer clusters are now widely used for sci-
entific computation. In these computer clusters I/O subsystem consists of many disks in
number of different nodes. The software that organizes these disks into a coherent file system
is called a ”parallel file system”. Applications can access files that are physically distributed

7

CHAPTER 2. SYSTEM OVERVIEW 8

among different nodes in the cluster using the parallel file system software.

Parallel Virtual File System, also called PVFS2 is one of the most popular parallel file systems
designed for efficient reading and writing of large amounts of data across the nodes. To achieve
this PVFS2 is designed as a client-server architecture as shown in the figure 2.1.

PVFS2 Server runs on nodes that store either file system data or meta-data. According to
the type of storage, servers can be categorized into I/O servers and meta-data servers. I/O
servers store data in a round robin manner, typically striped over multiple nodes using the
UNIX file system. Meta-data servers store all the information about files such as permissions,
time stamps, directory hierarchy, and distribution parameters in a Berkeley DB database. A
computer node can be configured as either a meta-data server, an I/O server, or both at once.

PVFS2-client Clients run on nodes that read and write the data from the PVFS2 servers.
They are implemented as user space daemons. At least one client must run on a node that
wishes to access the Parallel Virtual File System.

low level interfaces PVFS2 contains several low level interfaces for performing various types
of I/O. Some of the important interfaces are BMI, TROVE, FLOW, and Job scheduling layer.

Buffered Messaging Interface (BMI) provides a nonblocking network interface which is
used in file system servers and clients. Currently BMI modules exist for high performance
network fabrics such as TCP/IP or Infiniband.

Trove storage object This interface provides access to local files and databases. Trove
storage objects, called data spaces consist of byte streams and keyword/value pairs.

Flow interface combines the functionalities of BMI and TROVE in a single transfer and is
also responsible for buffering and datatype processing.

Job scheduling layer is a single API that binds all the other I/O interfaces such as BMI,
Flow, and Trove. This layer makes scheduling decisions and it is also responsible for thread
management.

For more detailed information on PVFS2 refer to [5], [6] and [7].

2.2 The Concept of Tracing

Event tracing is one of the most important ways to analyze program behavior in order to
debug or determine the performance bottlenecks of a program. Storing of time-stamped
events (e.g. entering a function or sending a message) during the runtime of a program into a
log file is generally understood as tracing. Trace files can be fed into graphical programs for
visualization and analyzation processes. Some of the well known trace analyzation programs
are Jumpshot [3] and Vampir [8].

A simple trace file consists of time-lines of event records . An event record is a timestamp and
some data describing some information. A collection of event records that belongs logically
together (e.g. events for a process or processor) is identified as a time-line. Trace-data
organized in that way can be displayed as GANNT charts. A GANNT chart for a trace

CHAPTER 2. SYSTEM OVERVIEW 9

Header

Frame Frame Frame Frame Frame FrameDirectory

Link to directory

Thread table Records

Directory

Figure 2.2: Structure of an self-defining interval file

file consists of x-axis as time and y-axis as time-line number. Most of the current available
visualization techniques use GANNT chart approach.

Event records are not powerful enough to display performance data.The reason for this is
that an event record is only a time-point in the time-line thus making it useless for complex
analyzation. Therefore trace libraries and visualization programs use interval records instead
of event records. An interval record is an event with an extra field to indicate the duration of
the event. In the simple case, an event starts, continues for a period of time and ends. Then
an interval record is generated for type complete. This approach is not always applicable. For
an example interval record of a thread usually doesn’t have a constant time-line for beginning,
continuation, and end. When the thread is de-scheduled during its execution, it is only pieces
of interval records that represent the thread.

Activities in the nodes are locally stored as interval trace files when an application is running.
After the application ends all the trace files from different nodes are merged into a single trace
file. Considering the critical resources in a parallel environment such as network bandwidth
above approach is one of the best alternatives. This trace file is later fed into the visualization
program for analysis.

Trace files can be large, if the capacity of the parallel environments and the number of different
activities that are profiled are large. Profiling them and handling them such as merging or
manipulating the contents can consume a lot of time and resources.

Therefore special file formats are designed to support trace files with large amounts of data.
They can be categorized into pre-defined file formats and self-defining file formats.

In a pre-defined file format, the record format is fixed. That means the length of the data
records cannot be changed. In an Example, a record can contain 6 integer numbers and a 12
character string. To add a record type of 7 integers and one 12 character string into this file
format is impossible. With pre-defined file format it is easy to parse different files together,
but it is not easily possible to add more fields.

Self-defining data format only describe how a valid data record syntax looks like but not the
way the data is stored in file. Adding different new record types is easy in this format. A
valid file is simply a trace file which follows the data record syntax. As shown in picture 2.2
multiple frames of data can be defined for easy access using the directory structure.

Multiple frames can be accessed only by reading the beginning of the frame with the help of
self-defining file format making it unnecessary to read the whole data ahead of them. This
approach help to solve the problem of accessing large trace files by defining multiple frame

CHAPTER 2. SYSTEM OVERVIEW 10

directories for different frames in the file. [1] An abstract tracing approach in interval based
self-defined file formats is illustrated in the figure 2.2.

2.3 Tracing in MPI via MPE

MPE is a complete software package, consisting multiple trace analyzing programs. MPE
profiling library was developed for MPI 1 in MPICH2, but can also be used in any other
MPI implementation. It provides useful facilities for different levels of trace handling such as
creating trace files, visualizing and debugging. A convenient way to do this is to link MPICH
with MPE library which will profile MPI activities in the given program.

Users can select automatic profiling or customized profiling for the MPI application tracing.
Mored detail on profiling methods see the ”profiling libraries” section in User’s guide for MPE
[2].

MPE defines and supports several trace-file formats. Two of the most important and widely
used trace-file formats are CLOG2 and SLOG2. CLOG2 is an event-based file format (see
section 2.2 on event-based file formats) which is designed for profiling in MPI with a low
performance overhead. SLOG2 stores its data in a self-defining interval file format. (see
section 2.2 on interval file format)

2.4 Jumpshot

2.4.1 Introduction

Jumpshot is the most advanced graphical performance visualization program that is included
in MPE. It is written in java swing and understands the trace files from SLOG2 format (refer
to section 2.5 on SLOG2). Following is a brief explanation of the main windows of Jumpshot.

When invoked, Jumpshot has a main window which controls the other sub windows. Included
sub windows are log conversion window, time-line window, Infobox, histogram, and legend
window.

Log conversion window This window allows the transformation of special log-formats into
SLOG2 which is understandable by Jumpshot. Currently the conversion of UTE, CLOG,
CLOG2 and RLOG is supported. The log file types mentioned above are mostly specific to
special needs of profiling (e.g UTE is used in IBM clusters) therefore almost no documentation
is available on them. After these formats are converted into SLOG2, they can be viewed by
Jumpshot’s time-line window.

Time-line window This window is the most important graphical window in Jumpshot where
the complete trace file is visualized. All the trace-data is displayed as a GANNT Chart in
order to support a good analyzing approach. In this window there are general analyzing

1Message passing interface
2one of the portable implementations of MPI

CHAPTER 2. SYSTEM OVERVIEW 11

facilities such as search, scroll, or zoom. Jumpshot time-line window can be seen in figure
2.3.

Time−line
Activity

Figure 2.3: Time-line window

The legend window shows the description of the different activities that are used in time-
line window. In legend window the user can change different characteristics of the different
categories 3 such as search-ability and visibility. Different colors are defined in the legend
window to identify different activities in the time-line window. As an example, see the job
activity defined in legend window in figure 2.4. In the time-line window in figure 2.3 we can
identify the job activity in the same color. User can also change the colors in the legend
window that will also change in the time-line window accordingly.

Histogram window A histogram window is also supplied to get more specific information on
a user-selected time interval of the time-line. This window helps to analyze specific statistics
in the area that was selected from time-line window.

Infobox Each event in the time-line can be further analyzed with the Infobox window that
takes user specified information as a pop-up window. This window is helpful to visualize extra
data which was generated from the tracing API. Helpful information such as duration of an
operation or server id can be traced in order to be used by Infobox.

2.4.2 Why Jumpshot?

Jumpshot visualizes SLOG2 file format which is specially defined for trace files in MPE en-
vironment. One of the most influential aspects of Jumpshot it that its ability to handle

3the different activities identified by SLOG2. e.g. MPI SEND and MPI SENDRECV

CHAPTER 2. SYSTEM OVERVIEW 12

Searchability

Activities

Visibility

Figure 2.4: Legend window

trace-files which can be extremely large4. Handling large trace files is necessary, regarding
the complexity in visualizing PVFS2 environments. As an example the number of nodes in
PVFS2-installed large clusters can vary from several hundreds to numbers of several thou-
sands. [3]

2.4.3 Limitations

Take a parallel environment where MPICH, MPE, and PVFS2 is installed. We can get the
trace files of the MPI communication from the PVFS2 clients in that environment. These
trace files can be directly viewed in Jumphot. It is also necessary to see the activities which
occur in the PVFS2 servers for performance tuning purposes.

2.5 SLOG2

SLOG2 is a self-defining interval trace file format used in MPE.

In the figure 2.5 we see a possible ordering of the SLOG2 format. Note that the SLOG2 API
describes only a possible representation of objects in SLOG2 file. This means that any file
which is organized according to this order can be recognized by the SLOG2 API as a valid
file.

Different parts of a SLOG2 file is briefly described here that are discussed in more detail in
the SLOG2-Draft [4].

4according to authors, Jumphot-4 can handle extremely large files reaching gigabyte limit. [3]

CHAPTER 2. SYSTEM OVERVIEW 13

Local
Category
Info

Local
Coord
Map

Simple
Drawable

Treenode

Coord Map

SLOG2 File Structure

TreenodesHeader Global
Category

Method
Definitions

Header Other
Coords

AnnotationsTree
Directory

Postamble

Block Block
Data
Popup

Global

Figure 2.5: SLOG2 file structure

Header Information about the file is stored in header. Possible information are SLOG2
version, and other meta-data information.

Global category info Different categories used in the SLOG2 file are described in Global
category info. As an Example we can identify the different MPI calls which were profiled
as categories. A category contains information about the activities such as name, color, and
meta information fields. Category information is directly read by the legend window, which
was described in section 2.4 on Jumpshot.

Global coord map A table in which y axis is mapped to different time-lines is called the
global coord map. It contains the title of the map, column id and label id. A sample global
coord map is shown below.

colum lineID IineID
1 0 : 0
2 1 : 2
3 2 : 1

Table 2.1: Global Coordination map

In the above map, all the drawables which have the line id 0 will be mapped to first time-line.
Drawables with time-line id 1 will be drawn in 3rd time-line and etc.

Method definition Information Different methods which can be defined in order to specify
pop-up data in the Infobox. Visualizing methods is in the primary states of development in
Jumpshot.

Tree directory The drawable objects in SLOG2 are ordered as tree data structures. Tree
directory defines offset for each treenode from the beginning of the SLOG2 file and the start
and end time.

Annotations User defined information and viewing history is stored in annotation part.

Postamble The locations of the global category info, global-coord-map, method-definition,
tree-directory, and the annotation blocks are stored here in 4 byte-intger values.

Treenode Treenode is divided into different blocks for better identification. The smallest
treenode, called a simple drawable will be discussed here.

Header Meta-data information about the other parts of the treenode.

CHAPTER 2. SYSTEM OVERVIEW 14

Drawable A drawable has a fixed length structure. It consists of the start and end times,
category id, y coordinate, and offsets into the next two blocks.

Other coords block This is an extra block to describe the other coordinates for complex
descriptions about the drawable.

Pop-up data block Data for the pop-up methods, used by Infobox in Jumpshot which was
discussed in section 2.4.

Drawables can be further categorized into two groups called primitive and composite.

2.5.1 Primitive drawable

Primitive drawable is the smallest element visualized by Jumpshot. This is an instance of the
drawable. Currently three different types of primitive drawables are supported. Event, State
and Arrow are the three of them and they are the basic elements in the SLOG2 file.

2.5.2 Primitive drawable types

Event is a one time-stamped point in the time-line, which consists of a time-line id and a
time-stamp. Events are drawn in time-line canvas in Jumpshot as a vertical line.

State is defined by two time-stamps that are inside one time-line. States are drawn in
Jumpshot as a rectangle.

Arrow is also defined as a state with two time-stamps, but not necessarily in same time-line.
Arrows are often drawn between states and are mostly used to show the relationships between
two different states.

2.5.3 Composite drawable

Composite drawable is a collection of primitive drawables with an optional category and
optional text string. It is easy to combine lots of primitive drwawables which can be grouped
into one logical unit with the concept of a composite drawable.

As an example, take all the BMI activities that occur during the application run-time. We
can profile the name of the server as extra information during for BMI activity. Later the
BMI activities from one server can be grouped into one composite drawable. Then we need
only to refer to the composite drawable other than referencing to all the primitive drawables
to address all the BMI activities of a specific server.

Chapter 3

Specification of the Goals

3.1 Requirements

In order to analyze the PVFS2 file system behavior, it is necessary to profile specified activities
in the servers and clients for performance measurements.There are lots of communication
activities in the high level and low level interfaces when the servers are running. Not only the
number of types of different communication activities are large but also the number of their
occurrences. Therefore they generate a lot of overhead when profiling all of them. After the
trace-data from servers and clients are included in one trace file, there are lots of activities
that are mostly overlapped. Large number of activities make the visualization useless because
they fill up the display of the graphical program and make the debugging and analyzation
nearly impossible. Therefore a thorough study is needed in order to specify which activities
should be profiled into the traces according to specific needs.

When an application ends there are two trace-files. One for the PVFS2 client-server activities
and one for the MPI communication. These two trace files have to be merged in order to
analyze the whole system behavior for the application. This should be done with the help of
a merging tool.

Because of the tight association of the servers and clients and the names of the interfaces are
mostly the same, it is extremely difficult to differentiate servers and clients. Therefore after
merging there should be methods to identify the server and client activities.

Because of the overlappings much of the communication is not easily visible in the graphical
program. The problem of overlapping have to be solved in the mean time addressing the
problem of server-client identification. As client-server activities and MPI activities are re-
lated to each other, a general concept of identification must be implemented to address the
overlapping problem. How the overlapping should be dissolved is illustrated in the figure 3.1.

In the figure 3.1 there are two large overlapping activities. They have a number of small
activities inside them. As they are in one time-line we cannot see some of the hidden small
activities. Small activities become visible after the large activities are ordered into two time-
lines without the overlapping.

15

CHAPTER 3. SPECIFICATION OF THE GOALS 16

Overlapping activities

Overlapping dissolved activities

T2

T1

T1

Figure 3.1: Approach on overlapping dissolving

3.2 Representation

GANNT charts are one of the famous and effective ways to visualize the parallel program
activities as discussed in Chapter 2.2. MPE uses events, states, and arrows to represent the
MPI communication and MPI I/O activities. Up to some level this approach is adequate to
represent the PVFS2 server activities. Most of the server activities can be presented with
events and states. Therefore the generated trace files which are in CLOG2 format (an event-
based file format in MPE) can be used as the preliminary trace log file format. CLOG2
trace-files should be converted into SLOG2 for better identification and analyzation. The
reason for this is that SLOG2 has a well-defined API. [4]

Chapter 4

Design methods

The main designing process can be categorized into two, namely trace management and
graphical management.

4.1 Design of trace management

There are two CLOG2 files after a program has ended. The first one is for the PVFS2 client-
server activities and the second one is for the MPI activities. Both CLOG2 files are converted
separately into SLOG2 format using the converting tool clog2TOslog2 which is a java-based
program that Clog2TOslog2 is already included in MPE.

Thereafter the two SLOG2 files have to be merged together. This is done by MergeSlog2 1.
After the two SLOG2 files are merged, activities such as Job (see section 2.1) can be analyzed
to understand the system behavior in detail. It was decided to use the maximum capacities
of the SLOG2 to reach this goal because of the flexibility in handling SLOG2 files.

4.2 Design of graphical management

Not moving far away from the goal to implement tools that will address general issues, com-
posite drawable approach to identify activities that belong logically together was taken. After
the SLOG2 files are converted into SLOG2 files with composite drawables, it has to be re-
organized to make the hidden activities visible. A program called Slog2ToCompositeSlog2
will be written in order to make composite drawables. Another program called Compos-
iteSlog2TOLineIDMap will be implemented in order to resolve the ovelappings in the
composite drawables. Time-lines of the drawables can be changed after composite drawable
overlappings are dissolved. Therefore it is necessary to find a solution to store the original
time-lines and show them accordingly in the new SLOG2 file. Since these two approaches are
lying technically close to each other, it was decided to integrate this also to the Compos-
iteSlog2TOLineIDMap.

1MergeSlog2 is a java-based log converting tool, which was implemented by Julian Kunkel

17

CHAPTER 4. DESIGN METHODS 18

4.2.1 Composite generation

It is necessary to identify under which pre-conditions composite drawables have to be gener-
ated. All the drawables that fulfill a given pre-condition are put together into one composite
drawable.

4.2.2 Rearrange the composites

Overlapping dissolving is done after the composite drawables are generated. Overlapped
composite drawables are relocated to another time-lines. All the original time-lines from the
SLOG2 file are stored and they will be used to rearrange the drawables to their respective
time-lines.

4.2.3 Line Id map generation

In SLOG2 file format, there is a concept called line id mapping. This is for Jumpshot to
understand how many time-lines exist in a given SLOG2 file. Therefore every SLOG2 file
has at least one default line id map. This is realized as a Hashtable in java. Because of
Jumpshot’s ability to support multiple time-line id maps, CompositeSlog2TOLineIDMap will
define more time-line id maps to show the relationships.

One of the main advantages of adding more time-line id maps is that it effectively saves the
valuable working-memory space which is needed for the SLOG2 files2. Another important
aspect is that Jumpshot already supports multiple line id maps making it unnecessary at
this level to make changes in Jumpshot. This makes SLOG2 files generated with the tools
described here also usable in MPE environments other than that in the development versions
in Universität Heidelberg.

4.2.4 Arrow generation

Arrows are mostly used in performance visualization programs to show relationships. They
can also be used to emphasize points in the graphical canvas. Using arrows makes the analyz-
ing and manipulation easy in particular cases. Hence arrows are also states, they can also be
included in composite drawables providing more flexibility in graphical analyzation process.
Therefore a program which can be configured to add the arrows to a given SLOG2 file has
to be written for possible future enhancements. A program called SLOG2TOArrowSlog2 is
implemented to illustrate how the arrows work, as a reference for the future implementers.

4.3 Approach

Following picture describes the tracing approach taken to visualize the PVFS2 client-server
activities in the MPE environment.

2this is important because a different approach like adding old time-line information on every drawable
should always be multiplied by the number of drawables which can be really large.

CHAPTER 4. DESIGN METHODS 19

MPI I/O and MPI communication

PVFS2 activities

CLOG2 CLOG2

CLOG2CLOG2 ++

+

CLOG2 CLOG2 clog2TOSlog2

= clog2TOSlog2CLOG2

= SLOG2

Slog2TO
CompositeSlog2

CompositeSlog2
TOLineIDMap

SLOG2 MergeSlog2

SLOG2

ArrowSlog2
Slog2TO

SLOG2

SLOG2

SLOG2

Client1 Client2 Client3

Server1 Server2

Figure 4.1: PVFS2 tracing approach

4.4 Designing of Slog2ToCompositeSlog2, CompositeS-
log2TOLineIDMap, and Slog2ToArrowSlog2

Programming methods of the three programs will be discussed below in detail. Explanations
are kept close to the program code in order to help the future code implementers to understand
the code easily. Abstract file conversion process can be figured as below as all the implemented
programs convert one SLOG2 file to another SLOG2.

Do some
Input SLOG2

read write
Output SLOG2operations

Figure 4.2: Abstract tool structure

4.4.1 General functions

Two functions, which are used in all the programs mentioned above are readFile function and
the function to write a single drawable into output SLOG2 file called addDrawable.

Read SLOG2 file (readFile)

After checking for possible exceptions, number of children per node and the leaf size of the
original SLOG2 file is read into the memory(Note that the SLOG2 file data is stored as tree-
structures for fast reading in Jumpshot). Later these values are initialized for the new output
SLOG2 file. Category map, shadow category map3, time-line id map, and drawables are read

3shadow categories are designed for visual enhancements for the smallest events in Jumpshot. e.g. with
shadow category we can show a number of tiny drawables from time x to time y with a one large drawable
that expands from x to y

CHAPTER 4. DESIGN METHODS 20

from the input SLOG2 file. Note that the drawables are stored in a re-sizable array list4 in
order to simplify the manipulation.

Add drawable (addDrawable)

Drawables have to be added to the output SLOG2 file after the the necessary modifications
for the drawables in the SLOG2 file are done. This function supports adding a drawable into
the output SLOG2 file after checking the time order5.

4.5 Slog2ToCompositeSlog2

Current Slog2ToCompositeSlog2 can make composite drawables for a given category (e.g. user
can choose which category should be analyzed as the main category). The second option is to
build composite drawables according to extra information, which is defined by the profiling
process (e.g different identification numbers are given to all the BMI activities that occur
during the program runtime, thereby making composite drawables for all the BMI activities
that have the same identification number).

Make the composite drawables according to categories (makeComposite-
ForSLOG2)

makeCompositeForSLOG2 is the main method that generates the composite drawables ac-
cording to categories defined by command line. The procedure can be divided into further
steps as explained below. First the the whole SLOG2 file will be searched for the drawables
in the category that will be used as the composite drawable category (from here on called as
major-category). After finding the drawables for major category, it will be checked whether
they have drawables within their boundary. Hereby all the drawables are searched for the
category that the user defined for inclusion (from here on minor-category).

Find drawables in a drawable (findDrawablesInADrawable)

This method takes one primitive drawable from the major-category as argument and search
the whole time-line for drawables from minor-categories that are within it’s boundaries. Note
that if a primitive drawable from minor-category is inside two or more drawables from the
major-category, it will be included in the major-category drawable which has the earliest
beginning time.

Make composite drawable (makeCompositeDrawable)

After all the minor-category drawables are found for one major-category drawable, the desired
composite drawable is built. This is done by makeCompositeObject(). Array of minor-category

4See java.util.ArrayList in java documentation
5check weather begin time is smaller than end time, otherwise gives an error.

CHAPTER 4. DESIGN METHODS 21

drawables are concatenated with the major-category drawable and the composite drawable is
generated. Note that building composite drawables has to be done with extreme care due to
the possible information loss. An example of generating a composite drawable is illustrated
in the implementation section 5.

Add the rest primitive drawables

Rest drawables are the drawables that don’t belong neither to major-category nor to minor-
category. These rest drawables are also added to their respective time-lines without change
during the composite drawable making process.

Add rest drawables from minor category (makeRestDrawabes)

This function is defined to add the rest drawables from the minor-category. Remember that
the above function also added the drawables which didn’t belong to both major and minor-
categories. Thus the rest drawables are from the minor-categories and they don’t fit in the
boundaries of any major-category drawable.

Add all drawables into new SLOG2 (addAllDrawables)

All the manipulated drawables are stored in a temporary array list after all the above steps
are finished. Note that the temporary array list now contains all the drawables but they
are not necessarily in the correct time order due to the insertion of composite drawables and
removing of primitive drawables. Because the drawables should be written to the SLOG2 file
in the increasing end time order they are ordered according to their end time and written to
the output SLOG2 file.

4.5.1 Make composite drawables according to the identification number

Second variation of Slog2ToCompositeSlog2 is to use the extra information (such as line id
number) as the major condition for composite drawable building. All the drawables in a
time-line that have the same information will be grouped into one composite drawable. This
function is implemented for id number identification in PVFS2 servers and clients, but can
also be used for any other relevant information identifying processes.

Find drawables with the same id (findDrawablesWithSameID)

Different information values are fed into the Infobox in SLOG2. This information is fetched
back to make the composite drawable objects. As the info values are not known early, first
a list of all the different info values are generated after searching the whole SLOG2 file.
Hereafter all the primitive drawables for each single time-line is compared with these values
and the drawables that have the same identification number are grouped into a composite
drawable using makeIDComposite.

CHAPTER 4. DESIGN METHODS 22

Make a composite drawable (makeIDComposite)

After a group of primitive drawables are given, one composite drawable will be generated with
a new category. During this process only drawables from the type ”composite” are generated
unlike the category selecting method. After the composite drawables are generated, they will
be written into the output SLOG2 file with the help of the addAllDrawables method defined
in sub section 4.5.

4.6 CompositeSlog2TOLineIDMap

This program is implemented to dissolve the overlappings in composite drawables and make
the necessary adjustments to the line id map. Note that if this program runs on an input
SLOG2 file with primitive and composite drawables or only composite drawables, all the
overlappings of the composite drawables are resolved. When there is only primitive drawables
in the SLOG2 file no change will be done.

Read and insert drawables

For reading drawables from a given SLOG2 file and inserting them into the output SLOG2
file refer to section 4.5 of the Slog2ToCompositeSlog2.

Overlapping dissolving

Before dissolving overlappings old time-line id is stored in order to refer to where the drawable
belonged. This is because of the possibility of composite drawables moving into another time-
lines. Different methods can be used to dissolve this problem. After considering methods
which could deal better with SLOG2 files, the method of a moving point6 was selected.

In the moving point method, the end-time of the first composite drawable is selected as the
moving point because surely the first composite drawable doesn’t collide with other composite
drawables. Then it is checked whether the next composite drawable’s begin-time collides with
the moving point. If the composite drawable doesn’t collide with the moving point it will
be added to the current time-line and the moving point will get the end-time of the added
composite-drawable. With this method all the composite drawables that don’t collide with
the moving point will be added to the time-line. Then a new time-line will be initialized as
a sub line. After defining the moving point for the new time-line the above procedure is run
again. This is repeated until all the composite drawables in the time-line are finished. Then
this will be repeated for all the time-lines. Primitive drawables are added to their respective
time-lines without checking for overlapping.

6The author refers this method as moving point method, because a time point which moves from the
beginning to the end of the time-line will help dissolve overlappings.

CHAPTER 4. DESIGN METHODS 23

4.6.1 Generation of time-line id maps

A time-line id map is a Hashtable7 where the mapping of the SLOG2 file is stored. After
the necessary information was collected during the overlapping dissolving, a new time-line id
map has to be generated for the newly defined SLOG2 file. Remember the input SLOG2 file
usually contains only a simple time-line id map describing the number of time lines and the
way they are ordered.

The new time-line id map will be designed as a two level time-line id map where we see
the original time-line id number and the number of sub lines which were added during the
overlapping dissolving.

Designing the new time-line id map is discussed below. For the interested implementers an
example on how to generate a time-line id map is included in the chapter 6.

The line-id map consists of rows that represent the number of levels and the column numbers
that represent the number of lines in a level. These values are stored in a one-dimensional
array simply calculated from the number of raws and number of columns.

Labels LineID 1 LineID 2
0: 0 0
1: 0 1
2: 0 2
3: 0 3
4: 0 4
5: 1 0
6: 1 1
7: 1 2
8: 1 3

Table 4.1: A two level Time-line ID map

In the figure 4.1 we see an example of a two level time-line id map. In the ”lineID 1” column
we see the original time-lines of the SLOG2 file. In ”lineID 2” we see to how many sub-lines
the original time line is extended. As an example the time-line number ”0” is splitted into 5
sub-lines.

As we see in the system overview Jumpshot is already equipped with facilities to visualize
different time-line id maps. Changing the time-line id maps as discussed above and in specifi-
cation on chapter 3 is recommended, because adding user defined time-line id maps will help
to improve the analyzation possibilities in the same time saving memory.

4.7 Slog2TOArrowSlog2

Currently Slog2TOArrowSlog2 facilitates adding arrows to composite drawables which are
lying after each other.

7see the JDK documentation on java.util.Hashtable

CHAPTER 4. DESIGN METHODS 24

An arrow is defined as a state drawable that consists of two events. Therefore arrows can
be generated from any point of a time-line to another point of a time-line in the graphical
canvas.

Before declaring a new arrow drawable in SLOG2, we must specify its characteristics. This
information is given by defining the category for the arrow. Therefore before generating the
arrows a category is defined with arrow characteristics. How to define a category is illustrated
in section 5.

The category is identified with its index. Great care should be taken to avoid possible overlap-
pings of the new index with consisting indexes that were already used. After the category for
the arrow is defined, it should be added to the global category map otherwise the drawables
will not be ordered according to the category.

Generating arrow drawables according to given speciications will be done after category defini-
tion. All the categories are written into the array list where the other drawables from SLOG2
also exist. Then all the drawables are ordered according to their end-time. Then they are
written into the output SLOG2 file with the help of addAllDrawables method discussed on
sub section 4.5.

Chapter 5

Implementation

In this chapter, general issues considering the implementation process are explained. All the
programs are implemented in java. Source code for the slog2 software development kit in
MPE2 is located under <PATH TO MPE2>/src/<PATH TO SLOG2SDK>/src/

5.1 Get the number of time-lines in the input SLOG2 file

Following function can be use to get the number of time-lines after the time-line id map is
read into memory.

Iterator itr = lineIDmap.iterator() // Initialize a new iterator
while (itr.hasNext())
{

LineIDMap IDMap = (LineIDMap) itr.next() // Read the line id map
}
YCoordMap ymap = IDMap.toYCoordMap() // Convert it into ycoormap
num rows=ymap.getNumOfRows() // Get the number of rows

5.2 Category generation

Defining a new category is always needed when generating both primitive and composite
drawables. Class Category.java defines the characteristics of categories and is located under
slog2sdk/src/base/drawable/Category.java. Following constructor is one of the most conve-
nient from all the available constructors for generating a category.

public Category(int idx, String name, Topology in topo,
ColorAlpha in color, int in width)

25

CHAPTER 5. IMPLEMENTATION 26

index = in idx; // id number for the category
name = in name; // name of the category (e.g. BMI)
topo = in topo; // Topology o=event, 1=state and 2=arrow
color = in color; // ColorAlpha is a sub class of

java.awt.Color with transperency
width = in width; // width of the line
infokeys = null; // This is for extra information. This

can be used to set InfoKeys
infotypes = null; // infotypes are defined in

base.drawable.InfoType.java
methods = null; // see base.drawable.Method.java
summary = new CategorySummary(); // base.drawable.CategorySummary.java
hasBeenUsed = false; // verify weather the category is used.
isVisible = true; // make the drawables of this

category visible in jumpshot time-line
isSearchable = true; // make the drawables of this

category searchable in jumpshot time-line

5.3 Generate a composite drawable

There are different ways to generate a composite drawable as defined by constructors in the
bas.drawable.Composite.java. But the following method is encouraged because it lets the info
values of the primitive drawables to be included in the composite drawable.

1.Generate an empty composite drawable defining how many primitive drawables will be
inserted inside.

Composite newComposite= new Composite(int Nprimes);

2.Add the primitive drawables into the composite drawable

newComposite.setPrimitives(final Primitive[] in primes);

3.Integragte a new category into the composite drawable.

newComposite.setCategory(final Category in type);

Attributes of the composite drawable can be changed using the methods defined in
basa.drawable.Composite.java

5.4 Time-line id map generation

Line id maps can be generated for simple time line identification or for complex relationships
illustration. An example is shown how to generate a time-line id map.

1.Generate a YcoordMap using above values

YCoordMap ycoordmap =new YCoordMap(numberofraws,numberofcolumns
,title,columnnames,emap elems,map methodIDs);

CHAPTER 5. IMPLEMENTATION 27

int numberofraws; // number of raws
int numberofcolumns; // number of columns
String title; // user defined title for the map(visible in jumpshot)
String []columnnames; // user defined names for the columns(visible in jumpshot)
int raw column; // numberofraws*numberofcolumns, values are saved

// in a one dimesional array
int emap elems[]; // values for the table
int number of method ids; // number of methods
int []map methodIDs; // method values

2.Generate the time-line id map using the above ycoord map.

LineIDMap newlineIDmap =new LineIDMap(ycoordmap);

3.Add the newly generated line id map to the LineIDMapList

LineIDMapList.add(newlineIDmap);

5.Write the lineIDMapList to the output slog2 file.

OutputLog.writeLineIDMapList(lineIDmaps);

5.5 Read the info value

SLOG2 info value can be used for user defined analyzation. Following method can be used
to read the info value of a specific drawable.

1.Get one of the drawables from the drawable array list.
Drawable newDrawable=(Drawable) drawableArrayList.get(i);

2.Get the info value of the position n
draw.getInfoValue(n);

5.6 General issues

Tools that are discussed here serve mainly in order to manipulate SLOG2 files. All the tools
read a SLOG2-file as input and write another SLOG2 file as output. During this process
drawables are modified under given specifications. During the rewriting process all the draw-
ables should be inserted according to increasing drawable end-time order. This phenomenon
is not visible during the drawable writing process because SLOG2 generation process runs
smoothly without generating warnings. It is later visible in Jumpshot or slog2print. (Only a
section of the drawables are inserted in the SLOG2)

Chapter 6

Example

6.1 Execute the test MPI program

Before running a program with tracing support, PVFS2 environment should be configured
correctly with MPE tracing library support. Because this installation process has to be done
with maximum care and some of the software versions are only available in development
versions, there is a special installation script attached in the document describing how to
install PVFS2 with MPE support.

Test programs can be compiled and run as illustrated in section 6.2 after the installation.
The example test program illustrates writing data into a file by many MPI processes.

6.2 Generate the trace files

Compiling the program and generating the trace files are done as in the fol-
lowing example. Assume that the test file ”mpi-write-test.c” is located in
<PATH TO PVFS2 SRC>/test/client/mpi-io/ where other numerous test programs from the
developers are also located.

cd <PATH TO PVFS2 SRC>/test/client/mpi-io/
mpicc mpi-write-test.c -o mpi-write-test -llmpe -lmpe
pvfs2-set-eventmask -m /pvfs2 -a 0xFFFF -o 0xFFFF;
mpiexec -np n ./mpi-write-test -f pvfs2://pvfs2/test; // n = number of nodes
pvfs2-set-eventmask -m /pvfs2 -a 0 -o 0;

PVFS2 client-server trace file (pvfs2-server.clog2) is generated in /tmp direc-
tory after the application is finished. MPI activity trace file is generated in
<PATH TO PVFS2 SRC>/test/client/mpi-io as mpi-write-test.clog2. Both clog2 files
are converted using clog2TOslog2 conversion tool.

28

CHAPTER 6. EXAMPLE 29

6.3 Convert the trace files into SLOG2

1. clog2TOslog2 pvfs2-server.clog2

Figure 6.1 shows the pvfs2-server.slog2 in Jumpshot.

JOB FLOWBMI

Figure 6.1: PVFS2 client-server SLOG2 time-line window

2. clog2TOslog2 mpi-write-test.clog2

Figure 6.2 shows the mpi-write-test.slog2 in Jumpshot.

MPI_AllreduceMPI_File_open MPI_File_write

Figure 6.2: MPI activity SLOG2 time-line window

6.4 Compile and run the trace management programs

All the SLOG2 converting programs are copied to <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/

CHAPTER 6. EXAMPLE 30

6.4.1 Compile and run MergeSlog2

Compile with java
javac <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/MergeSlog2.java

-classpath <PATH TO SLOG2SDK>/src/

Run with java
java <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/MergeSlog2

-classpath <PATH TO SLOG2SDK>/src/ mpi-write-test.slog2
pvfs2-server.slog2

The result is shown in figure 6.4.1.

JOB

MPI_Allreduce

MPI_File_open

FLOW

BMI

Figure 6.3: Merged SLOG2 time-line window

6.4.2 Compile and run Slog2TOCompositeSlog2

Compile with java
javac <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/Slog2ToCompositeSlog2.java

-classpath <PATH TO SLOG2SDK>/src/

Run with java
java <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/Slog2ToCompositeSlog2

-classpath <PATH TO SLOG2SDK>/src/ -c1 job -c2 bmi

CHAPTER 6. EXAMPLE 31

mpi-write-test merge.slog2

First possible option is to make the composite drawables using the categories. This is done
be defining -c1 <MAJOR CATEGORY> -c2 <MINOR CATEGORIES>. With this option
users can dissolve the overlappings in the major-category. Users can select one or more
minor-categories which can be included in the major-category. In the above command we
make composite drawables for JOB activities. Inside the JOB activities we include the BMI
activities.

The other option is making composite drawables using an identification number defined in
the primitive drawables. This can be used by defining Slog2ToCompositeSlog2 -idorder
<INPUT FILE>. With this option composite drawables are made for all the primitive draw-
ables that have the same identification number.

When the primitive drawables are changed into composite drawables, it is not visible in the
graphical program. To identify the composite drawables we can use the slog2print which has
a text output.

slog2print mpi-write-test composite.slog2

A part of the composite included SLOG2 file text output is displayed below.

Composite[infobox[TimeBBox(82.18133902549744,82.18139600753784)
Category=Category[index=801, name=COMP TYPJob, topo=State,
color=(255,0,0,255,true), isUsed=true, width=1, vis=true,
search=true, ratios=0.0,0.0, count=0]:] Primitive[infobox[
TimeBBox(82.18133902549744,82.18139600753784) Category=Category[
index=301, name=Job, topo=State, color=(255,0,0,255,true), isUsed=true,
width=1, vis=true, search=true, ratios=1.8972532,1.2359624, count=3030
]:] (82.181335, 3) (82.1814, 3)] bsize=32 Primitive[infobox[
TimeBBox(82.18137192726135,82.18139100074768) Category=Category[index=304,
name=BMI, topo=State, color=(255,255,0,255,true), isUsed=true, width=1,
vis=true, search=true, ratios=0.66205966,0.66122276, count=2925]:]
(82.18137, 3) (82.18139, 3)] bsize=32]

6.4.3 Compile and run CompositeSlog2TOLineIDMap

Compile with java
javac <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/CompositeSlog2TOLineIDMap.java

-classpath <PATH TO SLOG2SDK>/src/

Run with java
java <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/CompositeSlog2TOLineIDMap

-classpath <PATH TO SLOG2SDK>/src/ mpi-write-test composite.slog2

In figure 6.4.3 we see the time-line id map generated after overlapping dissolving. We see JOB
and BMI composite drawables are pushed into other lines to make them overlapping-free. The

CHAPTER 6. EXAMPLE 32

FLOW JOB BMI

Line ID

Overlapping

Line ID’s

Time−Line
ID Map

dissolved

Figure 6.4: SLOG2 overlapping dissolved file- time-line window

original time-line is expanded to number of different time-lines in the the time-line ID map.
(Note that only a part of the whole file is displayed for better identification)

6.4.4 Compile and Run Slog2TOArrowSlog2

Compile with java
javac <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/Slog2TOArrowSlog2.java

-classpath <PATH TO SLOG2SDK>/src/

Run with java
java <PATH TO SLOG2SDK>/src/logformat/slog2/pipe/Slog2ToArrowSlog2

-classpath <PATH TO SLOG2SDK>/src/ mpi-write-test lineIDmap.slog2

In figure 6.4.4 we can see the the generated arrows running to and from nearby lying composite
drawables. As explained in the designing chapter 4, this tool is only experimental.

CHAPTER 6. EXAMPLE 33

Arrows from/to composite drawables

Figure 6.5: SLOG2 time-line window with generated arrows

Chapter 7

Conclusions

As we want to explicitly use the features of profiling libraries, we find that most of the
general functionalities are not enough to achieve our goals. Multi-processing Environment
(MPE) although well recognized and widely-used in the world can be pushed to its limits
when the PVFS2 server’s low level I/O activities come into play. Well defined trace file
format ”SLOG2” has the capability to facilitate maximum portability and easy manipulation
in trace files. Although Jumpshot is good for rendering trace data and modifications can be
done to facilitate different problems, most of the unused but powerful features in SLOG2 can
also be used to address the same.

Conversion tools can be written to manipulate the contents of the SLOG2 file format
effectively and accurately than MPE’s event based file format CLOG2. Analyzing features
such as search-ability and visibility in Jumpshot are helpful to identify invisible activities
in the graphical program allowing more freedom in performance analysis. Above discussed
programs such as Slog2ToCompositeSlog2 show that the drawable manipulation is possible
when done with maximum care.

34

Chapter 8

Future works

This section describes most of the features that is currently needed for performance visualiza-
tion in PVFS2 that are recommended by Prof.Dr.Thomas Ludwig. Possible implementation
approaches from the author are explained below.

8.1 Server name

As shown in above capitals the time-line id is available only as a integer number in Jump-
shot. To show a string name instead of a integer for the time-line id is currently needed by
the development team in Universität Heidelberg and should be integrated to Jumpshot in
near future. As this is a general limitation in Jumpshot this was referred to the Jumpshot
implementers in Argonne National Laboratory1.

8.2 Change the height of the drawable

In Jumpshot it is possible to define states (e.g a primitive drawable) that has a fixed height.
The height is fixed and change it is impossible. It is better to give more information by
defining the height of the drawable in some practical situations. Hereby defining the height
of a drawable can be used to represent more information.

There can be two alternatives to solve this problem.

First one is to add extra information to a state drawable that can be identified by Jumphshot
and accordingly displayed in the graphical canvas. This will be less time intensive to develop
and will need only changes in Jumpshot time-line window. But the changes will only speak
this particular need and future enhancements will be complicated.

Second idea is to define a new state, which has a variable height or the height as percentage
that can be integrated into SLOG2 drawable format and also to Jumpshot.

1currently the main developer of Jumpshot is Anthony Chan and he can be contacted with chan@mcs.anl.gov

35

CHAPTER 8. FUTURE WORKS 36

This approach will by more time intensive than the first because SLOG2 API should also
be changed accordingly to accommodate the new defined state. But this will be a more
meaningful general feature that each trace implementer can use.2

8.3 Change the color depth of a category

Currently Jumpshot identifies all the drawables in a particular category with a color that
is defined in the SLOG2 file. If this feature can be modified to display more colors for a
particular category, it will be more helpful in analyzation processes.

As an example take the BMI activity in PVFS2. After profiling how many bytes were sent
during each BMI activity, this information can be used to visualize the BMI activities which
lasted longer in a different color than the ones which had a shorter duration.

Author suggests to integrate this feature in the SLOG2 drawable as a separate information
field. Jumpshot should be modified to identify this as separate information and give the color
accordingly to the drawables.

Another possible approach is to modify the SLOG2 to group the categories into sub categories.

As an example BMI activity category can be divided into LONG LASTING BMI and
SHORT LASTING BMI. This can be done by adding an identifying algorithm in SLOG2
conversion tool. This algorithm can insert the short lasting BMI activities into BMI SHORT
and the long lasting BMI activities to BMI LONG. Original category of BMI is now divided
into BMI LONG and BMI SHORT. Thereby defining two new categories and deleting the
old one. No changes to Jumpshot is needed. This is generally applicable if the number of
categories is small. But if there is a large number of categories this approach is not suitable.

2this was referred to Anthony Chan

Chapter 9

Possible future enhancements

9.1 Automatic color changing

After adding the modifications discussed in the section 8, Jumpshot will facilitate more colors
to improve optical identification of drawables. Now the trace implementer will need to specify
colors more carefully, because of the number of colors will large and he has to take care not
to use the same color twice that will make the visualization useless. Defining user-friendly
colors is desirable and can be done by trace implementer but this can also be given to the
graphical program.

A possible solution for this is to add pre-defined color schemes to Jumpshot that the end-user
can select. This will also help to overcome the problem of different color schemes in different
monitors. If the colors defined in SLOG2 are not acceptable for a particular user he can
switch to a different color scheme which will render a better picture for him. Therefore it is
recommended to give the possibility of adding color schemes that can be changed by the user.
Author suggests that this feature can be integrated into time-line window because redrawing
(or refreshing) facility already exists in the time-line window.

9.2 Integrate searching facility for activities

Currently users of Jumpshot are provided with the options of visibility and search-ability for
single primitive drawables. Users see all the categories in the search window and they can
click the category for their visibility and search-ability. (see more on Jumpshot user’s guide
[3] about this feature) Clicking over a large number of buttons can be time consuming and
confusing if there is a large number of different categories and the user has to filter some
of them. A searching facility can help to solve this problem if the categories are named
accordingly. As an example we can take our approach of profiling MPI and PVFS2. If
we name all the MPI activities as MPI XXX and PVFS2 activities as PVFS2 XXX then a
search phrase like MPI will filter all the MPI related categories. Search functionality can be
integrated in legend window by enhancing its current capabilities. (Don’t confuse the search-
ability with the search option. Search-ability option in legend window make single drawables

37

CHAPTER 9. POSSIBLE FUTURE ENHANCEMENTS 38

searchable within the time-line window)

9.3 Two time-line windows at the same time

Time-line windows depend on the time-line id map. Jumpshot lets the user choose a time-line
id map in main window and redraw a new time-line window accordingly. It makes sense to
assume that this approach was taken to save main memory(RAM) because two or more time-
line windows for a large SLOG2 file will take a long time to be drawn in the monitor. But
if there are enough resources after adding different line id maps, a second time-line window
will be helpful for better analyzation purposes. To illustrate this in an example, take a MPI
Program that is visualized in Jumpshot. Program has run on more than one node. We want
to see how it looks like when we exchange the node numbers referring to the the original time-
line window at the same time. Currently this is not possible as the first time-line window is
automatically closed when the second one is started. One may argue that starting Jumpshot
with the same trace file twice will avoid this necessity. Therefore author suggests that this
function can be added as an additional feature in the main window.

Chapter 10

PVFS2 installation with mpe

Edited by Julian Kunkel and Stephan Krempel. Translated by Dulip Withanage.

Both PVFS2 and MPICH2 can be built, with the help of ”VPATH” principle. That means,
simply not to use the the directory tree of the source code for compiling and configuring. This
help to resolve possible problems with the revision control system. This approach also makes
possible to have different configurations from the same source code(which is a necessity in
having 2 parallelly installed MPICH2 versions)

Assumptions:

$HOME/local/mpich2-src // MPICH2 Source Tree
$HOME/local/mpichPLAIN // Destination for MPICH2 without PVFS2
$HOME/local/mpichPLAIN.build // Build-directory for MPICH2 without PVFS2
$HOME/local // Destination for MPICH2 with PVFS2
$HOME/local/mpich2.build // Build-directory for MPICH2 with PVFS2
$HOME/local/pvfs2-src // PVFS2 Source Tree
$HOME/local/pvfs2.build // Build-directory for PVFS2
master1,node01,node02,node03 // PVFS2 I/O Servers
master1 // Meta- Data Server

Steps on how to install PVFS2 with changes

MPICH2 without PVFS2

mdkir $HOME/local/mpichPLAIN.build
cd $HOME/local/mpichPLAIN.build
$HOME/local/mpich2-src/configure - -with-mpe - -prefix=$HOME/local/mpichPLAIN
make ; make install

PVFS2 with MPE and mpiexec

mkdir $HOME/local/pvfs2.build
cd $HOME/local/pvfs2.build

39

CHAPTER 10. PVFS2 INSTALLATION WITH MPE 40

$HOME/local/pvfs2-src/configure - -with-mpiexec=$HOME/trace/
mpichPLAIN - -with-mpe=$HOME/trace/mpichPLAIN - -prefix=$HOME/trace

Before make, change the permissions of the shell scripts of the following directory, to avoid
”change of permission, denied”

chmod 755 $HOME/trace/pvfs2-src/maint/*.sh
make ; make install

MPICH2 with PVFS2

cd $HOME/local
mkdir mpich2.build
cd $HOME/local/mpich2.build
export CFLAGS="-I$HOME/trace/include"
export LDFLAGS="-L$HOME/trace/lib"
export LIBS="-lpvfs2 -lpthread"
$HOME/local/mpich2-src/configure - -enable-romio - -with-file-system=ufs+nfs+pvfs2
- -prefix=$HOME/trace - -with-mpe
make ; make install

Start the MPI environment

Be careful!
Cluster can be already configured to take the MPI in it’s PATH. Then you have to change
the PATH to use self-compiled version. This can be done as follows.

export PATH=$PATH/local/bin/:$PATH/local/sbin:$PATH Set MPD password:

cd $HOME

echo "secretword=blubb" > /.mpd.conf

Define MPD hosts

echo -e master1\nnode01\nnode02\nnode03" > mpd.hosts

Start the MPD’s

cd $HOME
mpdboot - -totalnum=4 - -rsh=rsh - -file=mpd.hosts

Test the MPD’s

mpdtrace

Result should be like this:

master1
node03

CHAPTER 10. PVFS2 INSTALLATION WITH MPE 41

node02
node01

Configure PVFS2

cd $HOME/local/pvfs2-src/

Please change the variables for port and log file pvfs2-kunkel and pvfs2-kunkel.log ac-
cordingly to avoid two users using the same port and same storage directory.

pvfs2-genconfig - -protocol tcp - -tcpport 3449 - -ioservers
master1,node01,node02,node03 - -metaservers master1 fs.conf server.conf
- -storage /tmp/pvfs2-kunkel - -logfile /tmp/pvfs2-kunkel.log

Set the storage space:

cd $HOME
mpiexec -np 4 pvfs2-server -d -f fs.conf server.conf

Start PVFS2:

cd $HOME
mpiexec -np 4 pvfs2-server -d fs.conf server.conf

Result:

After last command the terminal should hang on . With the following Command program
can be started in background.

mpiexec -np 4 pvfs2-server -d fs.conf server.conf&

Set up the pvfs2tab and define the port for PVFS2:

cd $HOME
echo "tcp://localhost:3449/pvfs2-fs /pvfs2 pvfs2 default,noauto 0 0" >
pvfs2tab

Set the $PVFS2TAB FILE (Add it to the profile as default, otherwise you should define every
time you want to log in)

export PVFS2TAB FILE=$HOME/pvfs2tab

Test PVFS2 export PVFS2TAB FILE=$HOME/pvfs2tab
pvfs2-ping -m /pvfs2

CHAPTER 10. PVFS2 INSTALLATION WITH MPE 42

Compile a test program and test

cd $HOME/local/pvfs2-src/test/client/mpi-io/
mpicc mpi-io-test.c -o mpi-io-test -llmpe -lmpe
pvfs2-set-eventmask -m /pvfs2 -a 0xFFFF -o 0xFFFF;
mpiexec -np 4 ./mpi-io-test -f pvfs2://pvfs2/test;
pvfs2-set-eventmask -m /pvfs2 -a 0 -o 0;

Comments:

Remove the /tmp/pvfs2-server.clog2, as others may not be able to write their files if you
don’t remove it. You can remove it using
mv /tmp/pvfs2-server.clog2 $HOME

Bibliography

[1] Ewing Lusk Anthony Chan and William Gropp. From Trace Generation to Visualization
A Performance Framework for Distributed Parallel Systems.

[2] Ewing Lusk Anthony Chan and William Gropp. User’s Guide for MPE: Extensions for
MPI Programs. http://www-unix.mcs.anl.gov/mpi/mpich/docs/mpeman/mpeman.htm,
2002.

[3] Rusty Lusk Anthony Chan, David Ashton. Jumpshot 4 Users Guide. http://www-unix.
mcs.anl.gov/perfvis/software/viewers/jumpshot-4/, 2005.

[4] Anthony Chan, William Gropp, and Ewing Lusk. Scalable Log Files for Parallel Program
Trace Data. ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2-draft.pdf, 2000.

[5] Thomas Ludwig Julian Kunkel and Hipolito Vasquez. Weit verteilt - Dateisystem für
parallele Systeme: PVFS, Version 2 . 2004.

[6] Robert ross Rob Latham, Neil Miller and Phil Carns. A Next-Generation
Parallel File System for Linux Clusters. http://www.pvfs.org/pvfs2/files/
linuxworld-JAN2004-PVFS2.ps, 2004.

[7] PVFS2 Development Team. Parallel Virtual File System, Version 2. http://www.pvfs.
org/pvfs2/pvfs2-guide.html, september 2003.

[8] Vampir. Performance Analyzer. http://www.hlrs.de/organization/par/services/
tools/performance/vampir.html.

43

http://www-unix.mcs.anl.gov/mpi/mpich/docs/mpeman/mpeman.htm
http://www-unix.mcs.anl.gov/perfvis/software/viewers/jumpshot-4/
http://www-unix.mcs.anl.gov/perfvis/software/viewers/jumpshot-4/
ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2-draft.pdf
http://www.pvfs.org/pvfs2/files/linuxworld-JAN2004-PVFS2.ps
http://www.pvfs.org/pvfs2/files/linuxworld-JAN2004-PVFS2.ps
http://www.pvfs.org/pvfs2/pvfs2-guide.html
http://www.pvfs.org/pvfs2/pvfs2-guide.html
http://www.hlrs.de/organization/par/services/tools/performance/vampir.html
http://www.hlrs.de/organization/par/services/tools/performance/vampir.html

	Contents
	General goals of thesis
	System Overview
	The Parallel Virtual File System PVFS2
	The Concept of Tracing
	Tracing in MPI via MPE
	Jumpshot
	Introduction
	Why Jumpshot?
	Limitations

	SLOG2
	Primitive drawable
	Primitive drawable types
	Composite drawable

	Specification of the Goals
	Requirements
	Representation

	Design methods
	Design of trace management
	Design of graphical management
	Composite generation
	Rearrange the composites
	Line Id map generation
	Arrow generation

	Approach
	Designing of Slog2ToCompositeSlog2, CompositeSlog2TOLineIDMap, and Slog2ToArrowSlog2
	General functions

	Slog2ToCompositeSlog2
	Make composite drawables according to the identification number

	CompositeSlog2TOLineIDMap
	Generation of time-line id maps

	Slog2TOArrowSlog2

	Implementation
	Get the number of time-lines in the input SLOG2 file
	Category generation
	Generate a composite drawable
	Time-line id map generation
	Read the info value
	General issues

	Example
	Execute the test MPI program
	Generate the trace files
	Convert the trace files into SLOG2
	Compile and run the trace management programs
	Compile and run MergeSlog2
	Compile and run Slog2TOCompositeSlog2
	Compile and run CompositeSlog2TOLineIDMap
	Compile and Run Slog2TOArrowSlog2

	Conclusions
	Future works
	Server name
	Change the height of the drawable
	Change the color depth of a category

	Possible future enhancements
	Automatic color changing
	Integrate searching facility for activities
	Two time-line windows at the same time

	PVFS2 installation with mpe
	Bibliography

