
PSSOH 2021, DOI: https://doi.org/10.5281/zenodo.5554570

AN ENGINEERING TEXTBOOK
TYPESETTING USING SPHINX
DOCUMENTATION GENERATOR

Vladimir Milovanović

Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
e-mail: vlada@kg.ac.rs

Abstract / Резиме
One of the things that the ongoing Information age has recently brought is reading books on various
handheld and portable electronic devices. Novel e-book formats enable inclusion of more interactive
contents that is not only generally convenient but is also suitable for engineering and scientific text-
books. Besides the established portable document format (PDF) that presents de facto standard for
physical book printing and publishing, e-reader and theWeb book editions are becoming more popular.
This paper describes a typesetting workflow which is based on Sphinx documentation generator that
can produce different output formats out of a single plain text input source code. It is elaborated how
the text can be formatted and how different book elements such as figures, diagrams and video clips
can be built-in with a special Sphinx directives. However, the accent was placed on embedding source
code into the textbook itself and giving readers the ability of copying and executing it with ease. The
presented concept is practically demonstrated for an example case of a programming textbook which
is made available in three different formats and open under a permissive license. An automated contin-
uous integration and new release delivery is supported and implemented to allow and facilitate quick
and widespread book adaption with a hope that electrical engineering and computer science students
would be intrigued and that their learning process would be more efficient as well as more productive.

Једна од ствари коју је текуће информатичко доба донело јесте читање књига на разним џепним
и преносивим електронским уређајима. Нови формати електронских или е-књига омогућавају
укључивање интерактивних садржаја који нису погодни само у општем смислу, већ су надасве
прикладни и за уџбенике из инжењерских, научних и техничких дисциплина. Поред такозваног
PDF формата који представља дефакто стандард за објављивање штампаних књига, интернет
издања, баш као и издања за читаче е-књига постају све популарнија. Овај рад описује поступак
слагања текста заснованог на Sphinx генератору документације који из јединственог чисто текст-
уалног улазног изворног кода може да произведе и врати различите излазне формате. Изложено
је како се текст може форматирати и како се различити књишки елементи, као што су слике
и дијаграми могу уградити користећи се посебним Sphinx директивама. Међутим, акценат
је ипак стављен на уграђивање изворног кода унутар самог уџбеника и на давање читаоцима
могућности лаког копирања и извршавања истог. Представљени концепти су демонстрирани
на практичном примеру уџбеника програмирања који је направљен тако да буде доступан у три
различита формата под допусном лиценцом. Аутоматизован начин за непрекидну интеграцију
и испоруку нових издања је подржан и имплементиран како би се омогућила и олакшалаширока
употреба књиге уз наду да ће студенти електротехнике и рачунарства бити заинтересовани за
изложене концепте и да ће самим тим и њихов процес учења бити ефикаснији и продуктивнији.

Keywords: documentation generator, e-book formats, source code, textbook, typesetting.

Кључне речи: генератор документације, е-књига, изворни код, слагање текста, уџбеник.

33

https://doi.org/10.5281/zenodo.5554570
mailto:vlada@kg.ac.rs


1 Introduction
The world has changed drastically over the past few decades. Living an everyday life people often
take technological gadgets for granted, seldom digressing to observe the long-term impact that the
so-called Digital Revolution has brought. The digital, or also by many considered the Third Industrial
Revolution which started in the second half of the 20th century simultaneously marked the beginning
and has brought the society to the Information Age. Central to the aforementioned revolution is the
mass production of integrated and solid-state circuits, themselves based on transistors, and the derived
products and technologies such as computers, cellular/mobile and smartphones, as well as the Internet.

Although the Information age, also known as the New Media Age [1], is enabled by the development
of semiconductor devices, it is foremost characterized by the onset of use of information technology.
This period has also beenmarked by the expansion of communicationswith awidespread use ofmobile
phones and the Internet, which have caused fundamental changes in individuals’ personal lives and the
whole human society. Generation Z are the first social group that has grown up with access to portable
digital technology and the Internet from an infancy and childhood thus commonly being dubbed as
“digital natives”. Most members of Generation Z are not only children of, but are also being taught in
schools and universities, trained in sports activities, and supervised in general by Generation X.

In spite of profound transformations in the overall surroundings between generations X and Z, a rare
medium that has not become obsolete and that is still resisting an essential modification is certainly a
book. As one of the cornerstones of civilization, books have been around for millennia adapting slowly
from clay and wax tables, over papyrus scrolls, up to present day e-books (short for electronic book)
which are keeping pace with the current media age. Book selling and collection storing points such
as bookstores and libraries also exist, even though website-based versions of both are omnipresent.

Contentwise, common book separation is in fiction and non-fiction ones. While many literary book
forms such as novels, poetry and even comic books published today fall in the former broad category,
all other material can be included under the umbrella of the latter one. Fiction books today dominantly
consist of plain text and optional figures and images whose use ranges from occasional to prevalent
such as in comics and graphical novels. Constituting elements of the non-fictional books can generally
be more diverse. As opposed to fictional books, it is not seldom that non-fiction books are not intended
to be read or studied from cover to cover but can rather serve as a reference, e.g., like a dictionary.

Nearly all academic literature is non-fiction. Besides plain text and images, schoolbooks and textbooks
can contain many variations of each, such as mathematical equations and formulas and programming
code snippets, or diagrams, figures, (photo)graphs, maps and plots, just to name a few. Since more and
more books are published (also) in electronic format, hyperlink referencing that enables convenient
and quick referencing and navigation started to accompany and to replace traditional indexes which
are becoming less preferred to standard text search. With the prevalence of computers (in their desktop
and portable form) and the Internet, some traditional book forms, e.g., like telephone directory, ceased
to exist in hard paper version, while other tend to coexist in electronic and traditional formats.

The peculiarities of engineering and scientific textbooks are two-fold. Firstly, besides paragraphs of
standard text they usually contain equations, physical formulas as well as an exemplary code snippets
that describe actual calculation, method execution or implementation in a command-line interface
(CLI) or a (domain-specific) programming language of the tool of choice that is presented. Secondly,
these kind of textbooks are often published in smaller volumes (relative to the general public fictional
books such as belles-lettres) and are hence frequently written and typeset by their authors themselves
who are by the rule skillful professionals knowledgable in the typesetting tools of choice, or at least are
in possession of above average word processing proficiency levels as compared to general population.

This paper describes a relatively recent documentation generator tool named Sphinx and how it can
be utilized by the authors to typeset and produce a modern engineering and scientific textbooks.

34



1.1 Engineering and Scientific Textbook Specifics
Dominance of handheld and pocket-size portable communication and computing devices (with perma-
nent Internet connection) inevitably led to preference of electronic book versions versus old-fashioned
physical book entities. There are a number of arguments that speak in favour of e-books. Namely,
they are present always, since a personal portable computer or a smartphone is always with the person
owning it. Just like other software they do not wear out nor there is any naturally associated copying
andmultiplication difficulty. If legally allowed, they can be shared among individuals by a single click
or a tap. Furthermore, electronic content can be listed and searched much faster. Finally, additional
material, appendices, revisions, errata and updates can be much more easily distributed and published
in an electronic format. Nevertheless, for many the joy of physical book reading will perhaps never
disappear even if conveniences such as battery and power outlet free “operation modes” are put aside.

A prerequisite for any engineering and scientific discipline to attain a high community acceptance is
that it must lay on solid theoretical foundations and to be well-understood. These ideas are naturally
conveyed using formulas which represent equations, theorems, etc., and common for it is that the
underlining fundaments do not change (at least not on a short-term basis). This is one of the reasons
why some classical master pieces in engineering and science, e.g., physics [2] or programming, do
not lose audience nor popularity with time. Another requirement, especially for applied methods and
practical disciplines to reach the full impact is to be supported by well-maintained andmature software
libraries and tools which are meant to accelerate, automate and simplify common tasks. Therefore, all
textbooks apart from purely theoretical ones by the rule also include exemplar code that should be easy
for practitioners to apply, extend, modify and tailor to suit their own needs. In addition to previous
specific elements, there will always be unavoidable general illustrations and plain text descriptions.

An all-inclusive engineering and scientific textbook tends to be comprehensive and to incorporate
both the theoretical and the practical materials that are often intertwined. While the former part by
the rule does not change over the average lifetime of a university textbook, keeping the latter one
up-to-date with the latest developments in the field requires major reworks that appear in new book
editions and revisions. Actually, documenting the practical tool details, especially when it comes to
programming code leans more towards writing a software documentation for which there already exist
well-established tools and workflows. Finally, as permissive licenses are gaining in popularity [3] it
is not uncommon any longer that someone else but the author himself updates the material. Naturally,
the more convenient way for something like that to be accomplished, the more likely it will happen.

The intention to teach the computational and critical thinking skills necessary to formulate problems,
the mathematics to solve them, and the tools to practically implement those solutions all in one place
presents a formidable challenge. The aim of an engineering and scientific textbook should be to present
a unified resource to bring students up to speed and prepare them for smooth industry acceptance or
a career in research. Nowadays, there are many excellent textbooks but only a very few of them [4]
that are up to date and engaging with the very latest hands-on tutorials. Commonly, such tutorials
and code examples can be found elsewhere on the Internet, but are scattered across various blog posts
or repositories thus tedious to look for and non-trivial to find. Moreover, such examples typically
focus on how to implement a given approach, but leave out the discussion of why certain algorithmic
decisions are made. Also, many resources are hidden behind the paywalls of commercial providers.

To summarize, the goal of a far-reaching engineering or scientific textbook resource should be to (i)
be freely available for everyone; (ii) offer engineering and/or sufficient technical depth to provide a
good and solid starting point; (iii) include runnable code examples thus showing readers how to solve
problems in practice using appropriate tools for the field; (iv) allow and be ready for rapid updates, both
by the authors themselves and also by the community at large; and (v) be optionally complemented
by some sort of a forum for interactive discussion of technical details and to answer questions. This
paper tries to describe technical means centered around Sphinx tool [5] to achieve the above set goals.

35



The paper is organized as follows: Section 2 presents motivation for use of different book formats and
presents limits of the currently available conversion tools, while sections 3 and 4 respectively give a
brief workflow description of the Sphinx documentation generator and example case of one textbook.

2 Multiple Textbook Formats and Conversion Tool Limitations
The goals set at the end of the previous section are often conflicting. Namely, from the distribution
perspective, textbooks are normally available in the so-called Portable Document Format (PDF), an
open file format originally developed by Adobe but now accepted as an international standard (ISO
32000). Vast majority of physical books are sent for printing in PDF and are also stored on computers
and computing devices independent of their hardware, operating system or application software that
is used to view or edit such documents. Almost all text and word processing software has the ability
either to export or directly save its outputs as a PDF file. However, equations, theorems, and citations
are best managed and laid out in LATEX [6] which is a typesetting software system for document prepa-
ration widely used in academia [7] for the communication and publication of scientific documents
(research preprints, textbook drafts, conference proceedings, journal articles, etc.) in many fields [8],
including but not limited to mathematics and statistics, computer science, engineering, physics, and
more recently also economics, linguistics, quantitative psychology, philosophy, and political science.

On the other hand the Internet web pages are native in the HyperText Markup Language (HTML) and
JavaScript code used for dynamic behavior. Besides the printed book material also downloadable as
a PDF, to reach a wider audience as well as to make the material more comfortable to digest from
computers and handheld devices, a website textbook version is highly beneficial. Namely, if a book
contains any kind of an executable source code it is much easier to copy it than to retype it. Addi-
tionally, if possible a direct on-click code execution might be supported especially if an in-browser
JavaScript compiler or interpreter exists and if the free and open-source software (FOSS) tools are
being exploited. Even though it is certainly not impossible to achieve on-site execution of the code
written for some proprietary software, it is much seldomly straightforward to do so due to technical
and legal difficulties since non-free closed-source tools are often subject to restrictive licensing terms.

Besides the HTML and the PDF versions, it would be desirable to also support some of e-book file
formats that are desirable for e-reader devices and gadgets. E-readers are preferable [9] since they can
hold many books limited only by their memory while most of them use e-ink display technology that
is not back-illuminated and therefore seem to cause no more eye strain [10] than a traditional book
and certainly less eye strain than LCD screens, simultaneously with a substantially longer battery life.

The first idea that naturally comes would be to target either a PDF, i.e., a LATEXmore precisely, or an
HTML textbook version and then to perform an automatic conversion to the other formats. No matter
how attractive this approach sounds, in reality it is difficult to obtain a high-quality result across all
targeted outputs. Specifically, whoever has at least once tried to print a web page can predict the PDF
quality and usefulness that is the outcome of the HTML-to-PDF conversion process. The other way
around, conversely PDF-to-HTML works even worse, especially for diagrams and math which gener-
ally speaking render to be useless. To be honest, using PDF as an intermediate format when converting
from LATEX to HTML is not helpful since in one such conversion much of the structural information is
irreversibly lost and cannot be successfully recovered. It is worthwhile considering a direct LATEX-to-
HTML conversion as both are structural markup languages used to describe the document structure,
e.g., sections, emphasize, formulas, etc. Perhaps the most comprehensive and universal tools for such
tasks are LaTeX2HTML [11], LaTeXML [12], TeX4ht [13] which are all amazing conversion tools but
each with its own set of limitations that are associated either with inherent use of device independent
(DVI) file format as another type of intermediary, or use of rasterized bitmaps to convert mathemat-
ical symbols, diagrams and other “difficult” elements. Generation of easily executable and runnable
source code samples are not among the features that can be expected out of any conversion tool.

36



reStructuredText Configuration

Sphinx
documentation
generator

Sphinx
extensions

LATEXsource

pdfLATEX
processor

PDFHTML EPUB

Figure 1: A typical Sphinx workflow as used in the example case for producing three output formats.

3 Sphinx — Python Documentation Generator (to rule them all)
Instead of relying on conversion tools, it would be much simpler, and for that sake much better, to
use a single documentation generator to produce every type of aimed output formats. There exist a
vast number of documentation generators but only a few that besides HTML can concurrently yield
additional outputs such as LATEXand indirectly PDF, and hardly any with the native e-book support.

One of the most popular documentation generators is Sphinx [5], a tool that makes it easy to create
documentation principally for Python and C/C++ projects, but also any other documents consisting of
multiple reStructuredText sources. Being part of the Docutils project [14] that was initially made to
extract comments and information from Python programs, as well as to format them into various forms
of program documentation, reStructuredText [15] is a lightweight markup language (very similar to
somewhat younger and more popular cousinMarkdown [16]) designed to be easily readable by human
programmers and at the same time processable by adequate automatic parsers and translators.

The philosophy of reStructuredText (reST) and its key design goal was the readability, that is, it should
be publishable as-is, as plain text, without looking like it has been marked up with tags or formatting
instructions, unlike HTML, LATEXor Rich Text Format (RTF), which for that matter all have obvious
tags. Its main inspiration comes from unofficial conventions for marking up plain text e-mails.

Somewell-known and already established software projects, like the Linux kernel, transitioned to reST,
that has been a core component of Sphinx toolchain, for documentation generation and publishing.

Although Sphinx has been originally developed in 2008 for the Python project documentation, since
then it has seen a wide adoption not confined to Python. In its essence, Sphinx converts input reST files
into HTML websites and other formats like PDF (via LATEX) and ePub, a popular vendor-independent
XML-based open electronic publication standard. The EPUB format is widely used on electrophoretic
display (electronic paper) readers. In addition to reST sources that encompass the actual documenta-
tion content, a typical Sphinx workflow accepts a configuration file as well, and just as shown in Fig-
ure 1 diagram produces the outputs. Along with the three mentioned outputs of interest, i.e., HTML,
LATEX (for printable PDF versions) and ePub, it can also yield Texinfo, manual pages and plain text.

37



The inclusion of programming code snippets, notes, figures, images, and other graphical or visual
effects and elements is achieved through the use of special directives embedded directly into the reST.

A feature that separates Sphinx is that it comes with a natural code support in a sense that any kind of
a programming source code can be included, highlighted and manipulated naturally. For the case of
interpreted languages like Python, a built-in prompt and output hiding and showing (in HTML) and
automatic output tests and validation through external modules such as doctest [17] is also supported.

With a help of external components, also known as (third-party) Sphinx extensions, such as activecode
from the runestone.academy [18], an interactively enhanced electronic textbooks can be created.

There exist more than a dozen built-in and more than a hundred unofficial third-party extensions to
Sphinx with which various kinds of special features can be accomplished. Without an ambition to
cover extensions in depth and thoroughly, but rather just to give a feeling what can be realized, for
example, with a built-in Graphviz [19] extension diagrams of graphs and networks can be directly
coded into reST source. Similarly, general figure drawing can be done with a third-party extension that
incorporates PGF/TikZ [20], a widely used pair of languages for producing vector graphic drawings.

Perhaps the nicest feature of all, at least from a perspective of an engineer or a scientist, is that all
Sphinx inputs are purely textual and all execution goes directly from a command line. This allows to
track changes and to collaborate with others with ease using a (remote) Git repository, as well as to
build upon it by assembling a full automation server for workflow execution in a continuous integration
(CI) and continuous deployment (CD) manner. The key takeaway is that even if at present day there
exists no workflow perfectly suited to address all of the demands placed upon modern engineering
and scientific textbooks, the software tools centered around Sphinx as a rendering engine are available,
moreover they are FOSS and effortlessly extensible with the built-in, third-party, or self-made add-ons.

4 An Example Case of a Modernized and Pythonic Version of
the Classical “Wizard Book” a.k.a. SICP in Serbian Language

One of the best and most influential computer science textbooks of all time is certainly the MIT Press’
classic Structure and Interpretation of Computer Programs (SICP) [21] written by Harold Abelson and
Gerald Jay Sussman with Julie Sussman, professors of the Massachusetts Institute of Technology. The
book teaches fundamental principles of computer programming which are exposed using Scheme [22],
a dialect of Lisp. However, due to various reasons there was a shift in the original MIT course 6.001
and it is replaced by a new class which uses Python instead. Despite being the book of programming
(as a paradigm) and not of a particular programming language, SICP is not as attractive to Generation
Z as it was for previous generations. Since to the best of the author’s knowledge, neither a direct SICP
translation, nor books that derive from it were available in Serbian language, the author has decided to
write a “pythonic” one (and also to fulfill one of the mandatory conditions for academic advancement).

A mitigating circumstance was that the original SICP was legally accessible under the Creative Com-
mons license and that a lot of quality reworked materials were attainable, some [23] even for Python.

Prior to that, the author was teaching fundamentals of programming to electrical engineering and com-
puter science freshmen and was aware of an average university student habits that are also associated
with handheld devices, such as constant lack of time, patience, and long-term focus. Therefore, to cre-
ate a book that would be interesting for a student to scroll through it quickly, grasp as much as possible
in the limited interval by either copying example code or executing it inside the browser, thus instantly
obtaining the result was a logical decision. Besides HTML that would be residing on the Web [24],
both an e-book version and a printed physical book was published [25] for everyone who wanted to
have it in a regular textbook format. Naturally, Sphinx was used to produce all the outputs out of a
single reST source [26], and the appropriate CI/CD pipeline is made to facilitate future updates.

38



More specifically, the continuous integration proved to be fairly useful particularly for the Python
doctest [17] examples that are automatically executed to verify that they work exactly as shown. Such
a system managed to catch some subtle modifications and lack of backward compatibility between
different Python versions. On the other hand, the continuous delivery and deployment on every com-
mit trigger a series of actions to execute Sphinx workflow of Figure 1 and produce the three outputs
available for download. Major releases, for example, the first edition, are handled with git [27] tags.

Not only the complete textbook source code is available on GitHub [26], but also the workflow for the
so-called GitHub Actions which allows building continuous integration and continuous deployment
pipelines for testing, releasing and deploying software without the use of third-party platforms and
that is, at the moment of writing this paper, free of charge for all public open source projects.

Thus, everyone can fork the repository, change something, for example fix a typo, or add another
example or even a complete chapter, and send the appropriate pull request for committing of the made
changes into the main branch. Not that the expectation exists or that it is likely, but the ability is there.

Finally, the main beneficiaries of such a textbook should be students themselves. Not only that they
should be learning the fundamental principles of computer programming, like recursion, abstraction,
modularity, and programming language design and implementation, and not only that they would have
the ability to quickly see and exercise practical code samples and snippets, but they could be intrigued
by the flow itself. They might get curious how everything is set, and then start learning about version
control systems like git, or how reST source code which is available to them gets translated to PDF,
HTML, and EPUB, maybe they delve more into LATEXand thereby raise their overall computer skills.

With the hope that something along the previous lines of thought will actually happen, this textbook is
devoted to all of the author’s students, past, current and future ones, and also dedicated to his teachers
and professors who have enabled him to reach and see this far by “standing on their shoulders” [28].

5 Conclusions
One of the characteristics of the ongoing Information age is the exponential publishing growth and new
media that has transformed the traditional book industry. New electronic formats have been introduced
and book content can be consumed on-line. Most books are published by a small number of very large
book publishers, but thousands of authors self-publish their own works. Academic textbooks are no
exception. To keep pace with the current developments and stay up-to-date a publication should be
available across different platforms (both, electronic and physical) to satisfy the demanding needs.

There are a number of advantages of different electronic book formats which can interleave plain text
with formulas, figures and (executable) code, especially in engineering and scientific disciplines. If a
single author aim is to support all of them using traditional workflows it would either take prohibitively
long time or would not yield acceptable results. Therefore, a sort of an agile software development [29]
flow that is centered around Sphinx documentation generator is introduced. With an adequate content
description in reStructuredText, one can simultaneously produce: HTML suitable for on-line version,
as well as PDF and EPUB which are de facto standards for physical book printing and open e-reader
format, respectively. Writing books in a software coding style yields a plethora of additional benefits.

The previously mentioned Sphinx-based workflow is exercised on an example case of writing an elec-
trical engineering and computer science textbook. Besides manual workflow execution the process
is automated in a CI/CD fashion hence enabling quick releases and snapshots prepared after every
change/fix. Additionally, other teachers and professors can more easily adapt (by forking followed by
adding new, or discarding and cutting existing material) the manuscript and tailor it to suit their own
needs which is enabled by the permissive license. To the best of the author’s knowledge, this is the
first textbook published in Serbian language that uses such a flow and is provided in the three formats.

39



Acknowledgement
The author would like to thank professors Nadica Miljković and Predrag Pejović from the University
of Belgrade for cordially inviting him to give a talk on this topic at the annual PSSOH 2021 conference.

References
[1] M. Castells, The Information Age: Economy, Society and Culture. Oxford: Blackwell, 1996.
[2] R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman lectures on physics. Addison-Wesley, 1989.

[Online]. Available: https://feynmanlectures.caltech.edu
[3] P. Stacey and S. Hinchliff, Made With Creative Commons. Ctrl+Alt+Delete Books, 2017. [Online]. Available:

https://creativecommons.org/made-with-cc
[4] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,” arXiv preprint arXiv:2106.11342, 2021.
[5] G. Brandl. (2008) Sphinx — python documentation generator. [Online]. Available: https://www.sphinx-doc.org
[6] L. Lamport, LATEX: A Document Preparation System. Addison-Wesley, 1986.
[7] D. E. Knuth. (1992) What are TEX and its friends? [Online]. Available: https://www.ctan.org/tex
[8] A. Gaudeul, “Do open source developers respond to competition? The LATEX case study,” Review of Network

Economics, vol. 6, no. 2, 2007. [Online]. Available: www.degruyter.com/document/doi/10.2202/1446-9022.1119
[9] A. Maxim and A. Maxim, “The role of e-books in reshaping the publishing industry,” Procedia - Social and

Behavioral Sciences, vol. 62, pp. 1046–1050, 2012. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877042812036191

[10] S. Benedetto, V. Drai-Zerbib, M. Pedrotti, G. Tissier, and T. Baccino, “E-readers and visual fatigue,” PLoS One,
vol. 8, no. 12, 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873942

[11] N. Drakos, M. Rouchal, J. Lippmann, and R. Moore. (2016) The LaTeX2HTML translator. [Online]. Available:
https://www.latex2html.org

[12] B. Miller. (2004) LaTeXML – a LATEX to XML/HTML/MathML converter. [Online]. Available: https:
//dlmf.nist.gov/LaTeXML

[13] E. Gurari. (2008) TeX4ht – a system for converting documents written in (La)TEX to HTML. [Online]. Available:
https://www.tug.org/tex4ht

[14] D. Goodger. (2002) Docutils: Documentation utilities. [Online]. Available: https://docutils.sourceforge.io
[15] ——. (2002) PEP 287 — restructuredtext docstring format. [Online]. Available: www.python.org/dev/peps/

pep-0287
[16] J. Gruber. (2004) Markdown — a text-to-html formatting syntax for web writers. [Online]. Available:

https://daringfireball.net/projects/markdown
[17] T. Peters. (2001) Python doctest module — test interactive Python examples. [Online]. Available: https:

//docs.python.org/3/library/doctest.html
[18] B. N. Miller and D. L. Ranum, “Beyond PDF and ePub: Toward an interactive textbook,” in Proceedings of the

17th ACM Annual Conference on Innovation and Technology in Computer Science Education, ser. ITiCSE ’12.
ACM, 2012, pp. 150–155. [Online]. Available: https://dl.acm.org/doi/10.1145/2325296.2325335

[19] J. Ellson, E. Gansner, Y. Hu, and S. North. (1991) Graphviz – graph visualization software. [Online]. Available:
https://www.graphviz.org

[20] T. Tantau and C. Feuersänger. (2005) The tikz and PGF packages. [Online]. Available: https://pgf-tikz.github.io/
pgf/pgfmanual.pdf

[21] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs, 2nd ed. MIT Press, 1996.
[Online]. Available: http://mitpress.mit.edu/sicp

[22] G. L. Steele and G. J. Sussman. (1975) The Scheme programming language. [Online]. Available: http:
//www.scheme-reports.org

[23] J. DeNero. (2014) Composing programs. [Online]. Available: https://www.composingprograms.com
[24] V. Milovanović. (2021) Komponovanje računarskih programa. [Online]. Available: https://milovanovic.github.io/

krp
[25] ——, Komponovanje Računarskih Programa. Fakultet Inženjerskih Nauka, 2021. [Online]. Available:

https://github.com/milovanovic/krp/releases
[26] ——. (2021) Komponovanje računarskih programa. [Online]. Available: https://github.com/milovanovic/krp
[27] S. Chacon and B. Straub, Pro Git, 2nd ed. Apress, 2014. [Online]. Available: https://git-scm.com/book/en/v2
[28] I. Newton and H. W. Turnbull, The Correspondence of Isaac Newton: 1661-1675. Cambridge University Press

for the Royal Society, 1959, vol. 1.
[29] K. Beck, J. Grenning, R. C. Martin, M. Beedle, J. Highsmith, S. Mellor, A. van Bennekum, A. Hunt, K. Schwaber,

A. Cockburn, R. Jeffries, J. Sutherland, W. Cunningham, J. Kern, D. Thomas, M. Fowler, and B. Marick. (2001)
Manifesto for agile software development. [Online]. Available: http://agilemanifesto.org

40

https://feynmanlectures.caltech.edu
https://creativecommons.org/made-with-cc
https://www.sphinx-doc.org
https://www.ctan.org/tex
www.degruyter.com/document/doi/10.2202/1446-9022.1119
https://www.sciencedirect.com/science/article/pii/S1877042812036191
https://www.sciencedirect.com/science/article/pii/S1877042812036191
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873942
https://www.latex2html.org
https://dlmf.nist.gov/LaTeXML
https://dlmf.nist.gov/LaTeXML
https://www.tug.org/tex4ht
https://docutils.sourceforge.io
www.python.org/dev/peps/pep-0287
www.python.org/dev/peps/pep-0287
https://daringfireball.net/projects/markdown
https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html
https://dl.acm.org/doi/10.1145/2325296.2325335
https://www.graphviz.org
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
http://mitpress.mit.edu/sicp
http://www.scheme-reports.org
http://www.scheme-reports.org
https://www.composingprograms.com
https://milovanovic.github.io/krp
https://milovanovic.github.io/krp
https://github.com/milovanovic/krp/releases
https://github.com/milovanovic/krp
https://git-scm.com/book/en/v2
http://agilemanifesto.org

	Introduction
	Engineering and Scientific Textbook Specifics

	Multiple Textbook Formats and Conversion Tool Limitations
	Sphinx — Python Documentation Generator (to rule them all)
	An Example Case of a Modernized and Pythonic Version of the Classical ``Wizard Book'' a.k.a. SICP in Serbian Language
	Conclusions

