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B-cell maturation antigen (BCMA) is a prominent tumor- 
associated target for chimeric antigen receptor (CAR)-T cell 
therapy in multiple myeloma (MM). Here we describe the case 
of a patient with MM who was enrolled in the CARTITUDE-1 
trial (NCT03548207) and who developed a progressive move-
ment disorder with features of parkinsonism approximately 
3 months after BCMA-targeted ciltacabtagene autoleucel 
CAR-T cell infusion, associated with CAR-T cell persistence 
in the blood and cerebrospinal fluid, and basal ganglia lym-
phocytic infiltration. We show BCMA expression on neurons 
and astrocytes in the patient’s basal ganglia. Public transcrip-
tomic datasets further confirm BCMA RNA expression in the 
caudate of normal human brains, suggesting that this might 
be an on-target effect of anti-BCMA therapy. Given reports 
of three patients with grade 3 or higher parkinsonism on the 
phase 2 ciltacabtagene autoleucel trial and of grade 3 par-
kinsonism in the idecabtagene vicleucel package insert, our 
findings support close neurological monitoring of patients on 
BCMA-targeted T cell therapies.

MM is a plasma cell


 disorder that accounts for ~10% of hemato-

logic malignancies1. MM is considered incurable and is character-
ized by multiple relapses of increasingly refractory disease. Immune 
therapies (including bispecific antibodies and CAR-T cells) have 
emerged in clinical trials with promising efficacy in MM2–4. BCMA 
(also referred to as TNFRSF17 or CD269) has attracted interest as 
a tumor-associated target in MM. BCMA is expressed on mature B 
lymphocytes (for example, plasma cells)5–7, and its overexpression 
and activation are associated with MM progression8. The ligands 
for BCMA, APRIL and BAFF are present in the bone marrow and 
induce differentiation, growth and long-term survival of plasma 

Q1

cells9,10. Two BCMA-targeted CAR-T cells have demonstrated effi-
cacy in phase 2 clinical trials in MM, with overall response rates 
ranging from 73% (idecabtagene vicleucel (ide-cel)) to 97% (cilt-
acabtagene autoleucel (cilta-cel))3,11–13.
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Cytokine release syndrome (CRS) is a form of systemic 
inflammatory response syndrome characterized by the eleva-
tion of pro-inflammatory cytokines and has been reported in 
BCMA-targeted CAR-T cell trials. Severity ranges from a mild reac-
tion with flu-like symptoms to a life-threatening cytokine storm and 
fulminant hemophagocytic lymphohistiocytosis. The exact timing 
and duration of CRS in BCMA-targeted CAR-T therapy are vari-
able, but most cases present early (within 2 weeks of CAR-T infu-
sion) and are of low-grade severity, manageable with supportive 
care, steroids, tocilizumab, anakinra and other cytokine inhibitors.

Neurotoxicity has been described in BCMA-targeted CAR-T 
therapy, typically as transient encephalopathy (immune effector 
cell-associated neurotoxicity syndrome (ICANS))14,15. Reported 
symptoms include headache, confusion, hallucinations, dysphasia, 
ataxia, apraxia, tremor and seizures. In a meta-analysis of clini-
cal trials of BCMA-targeted CAR-T, the incidence of neurotoxic-
ity (grade ≥3) was 18%16. ICANS usually presents concurrently or 
shortly after CRS, and management coincides with CRS interven-
tions, including cytokine inhibitors and corticosteroids. Of note, as 
reported here, the patient displayed delayed neurotoxicity outside 
the CRS window.

The patient, a 58-year-old male, was diagnosed with smolder-
ing MM in 2004, which progressed to active myeloma in 2015. He 
presented with relapsed/refractory disease after six previous lines 
of therapy. The patient was refractory to multiple drugs, including 
daratumumab, lenalidomide, pomalidomide and carfilzomib, and 
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was a candidate for BCMA-targeted CAR-T therapy. The patient 
underwent a bridging chemotherapy regimen (melphalan 56.25 mg 
once and two doses of bortezomib 1.3 mg m−2). Before CAR-T infu-
sion, he received 300 mg m−2 of fludarabine and 30 mg m−2 of cyclo-
phosphamide daily for 3 d to induce lymphodepletion. The baseline 
tumor burden was low (3% plasma cells on bone marrow biopsy), 
but he had multiple extramedullary plasmacytomas.

After cilta-cel infusion (day 1), the patient developed fever on 
day 9 and hypotension on day 11 (CRS up to maximum grade 3) 
with the peak of C-reactive protein, ferritin and inflammatory cyto-
kines (TNF-α, IFN-γ, IL-6 and IL-18) 2 weeks after CAR-T infusion. 
CRS symptoms resolved by day 14 after treatment with tocilizumab 
and anakinra17. Relevant clinical and biochemical parameters, tim-
ing of selected therapeutic agents and additional cytokine profiling 
are shown in Extended Data Figs. 1 and 2. The patient remained 
afebrile until hospitalization on day 51 with neutropenic fever and 
pneumonia, treated with empiric antibiotics. Cultures remained 
negative, but polymerase chain reaction (PCR) detected rhinovi-
rus in respiratory secretions. The patient was discharged at day 57. 
Disease evaluation (day 79) showed a very good partial response, 
according to International Myeloma Working Group criteria.

At day 101 after CAR-T cell infusion, the patient was evaluated 
with complaints of increasing fatigue interfering with daily activi-
ties. Initially, we observed slow gait and psychomotor retardation. 
Subsequent evaluation by two independent neurologists confirmed 
a clinical syndrome with features of parkinsonism, including brady-
kinesia, postural instability, hypophonia, hypomimia, micrographia 
and a mild right-sided (action and resting) tremor, as well as saccadic 
intrusions on smooth pursuit and impaired short-term memory. 
There was no cogwheeling, no focal paresis or atrophy, no patholog-
ical reflexes or alterations of deep tendon reflexes and no ataxia, and 
the Romberg test was negative. Sensation was intact. The features 
were progressive over time with development of increasing hypo-
mimia, rigidity and difficulty initiating movements. There were no 
recent drug changes or toxin exposure to account for the observed 
clinical phenotype. The patient was on a benzodiazepine for anxi-
ety disorder, which was discontinued without improvement of the 
clinical features. Laboratory tests showed fluctuating neutrophil 
counts due to regular granulocyte–macrophage colony-stimulating 
factor (GM-CSF) injections (Extended Data Fig.  1c). Magnetic 
resonace imaging (MRI) of the brain with and without contrast 
showed only small pre-existing foci of T2/FLAIR signal hyperinten-
sity scattered throughout the periventricular and subcortical white 
matter (Extended Data Fig.  3a), and lumbar puncture findings 
were non-explanatory (Supplementary Table  1; additional clinical 
background is provided in the Methods). A treatment attempt with 
levodopa because of progressive movement disorder and functional 
decline was unsuccessful. Fluorodeoxyglucose-positron emis-
sion tomography (FDG-PET) of the brain for response evaluation 
indicated a decreased uptake in the caudate nucleus bilaterally in 
comparison with imaging of 2 months prior, without any structural 

abnormalities (Extended Data Fig.  4). Ioflupane (123-I) scan was 
negative, suggesting a disease mechanism different than Parkinson’s 
disease (Extended Data Fig. 3b).

As shown in Fig. 1a, CAR-T cells were detectable in the blood 
in large numbers, starting at day 11 after infusion up to day 
156. Notably, 70–90% of all T cells in the peripheral blood were 
CAR-T cells (Fig.  1b). This observation suggested a role for per-
sistent CAR-T cells in the development of the patient’s neurologic 
complaints. Extensive phenotyping of T cells using a mass cytometry 
(CyTOF) approach (Fig. 1c) suggested that most CAR-T cells had 
an effector memory phenotype (that is, CD45RA−CCR7−) (Fig. 1d 
and Extended Data Fig. 5). Functional assays of peripheral blood 
CAR-T cells, isolated 128 d after treatment, confirmed their ability 
to produce inflammatory cytokines (IFN-γ, TNF-α and GM-CSF) 
upon PMA/ionomycin stimulation in vitro (Extended Data Fig. 6), 
highlighting their cytotoxic/pro-inflammatory potential. The full 
list of cytokines tested and comparison with a healthy donor are 
shown in Extended Data Fig.  6b. The patient’s CAR-T cells did 
not exhibit a Th17 phenotype—a T cell subtype previously associ-
ated with immunologic neurodegenerative disorders. Comparative 
single-cell analysis of CAR-T cells of this patient with three other 
patients from the same trial (without parkinsonism) by cellular 
indexing of transcriptomes and epitopes by sequencing (CITE-seq) 
(Fig. 1e and Extended Data Fig. 7) showed qualitative transcriptomic 
differences with significantly higher expression of genes associated 
with long-term survival (for example, IL7R) and genes encoding 
inflammatory cytokines (IFNG, TNF and CSF2) and lower expres-
sion of anti-inflammatory cytokine genes (for example, IL10).

Microarray data of healthy human brains of the Allen Brain 
Atlas18 confirmed localized RNA expression of BCMA in the basal 
ganglia and, more specifically, in the caudate nucleus in five of six 
available specimens (Fig. 2b and Extended Data Fig. 8). We hypoth-
esized that the symptoms could result from CAR-T cell infiltra-
tion in the brain targeting BCMA-expressing cells, thereby causing 
a movement disorder with features of parkinsonism. Analysis of 
the cerebrospinal fluid (CSF) by fluorescence-activated cell sort-
ing (FACS) confirmed the presence of CAR-T cells in the CSF 
(0.477 CAR-T cells per µl; Extended Data Fig. 9b). Cytokine profil-
ing of CSF and blood plasma of the patient and a healthy control 
showed overexpression of multiple cytokines in the patient’s CSF 
associated with T cell chemotaxis (for example, CXCL5, CXCL10 
and CXCL11), T cell activation (for example, granzymes, IFN-γ 
and CD40-L) and blood–brain barrier dysfunction (for example, 
PDGFb and angiopoetin-1) (Extended Data Fig. 9).

Due to the sustained proliferation of CAR-T cells with spread 
beyond the blood–brain barrier and progressive decline in the 
patient’s general condition, IV cyclophosphamide (300 mg m−2), IT 
cytarabine (100 mg) and hydrocortisone (50 mg) were given on day 
149, after careful consideration, aiming to rapidly reduce circulating 
CAR-T cells. We observed a decline of the absolute T cell count in 
the CSF with a stable fraction of CAR-T cells (0.128 CAR-T cells per 

Fig. 1 | Persistence of CAR-T cells with an activated effector memory phenotype in the peripheral blood. a, CyTOF plots gated on CD3+ T cells, showing 
fraction of FITC-BCMA-labeled (that is, CAR) T cells at different time points after CAR-T infusion. b, Quantitative representation of data in a, showing the 
relative contribution of CD4+ and CD8+ CAR-T cells at different time points. The time periods associated with CRS, neutropenic fever and neurotoxicity 
are annotated. Each bar corresponds to n = 1 sample collected from the patient. c, Schematic illustration of CyTOF strategy used to detect the CAR on 
the T cell surface (see Methods for details (figure panel created with BioRender)). d, CAR-T cell phenotype, as determined by expression of CCR7 and 
CD45RA, showing a high fraction of effector memory T cells. Each bar corresponds to n = 1 sample collected from the patient. e, t-SNE plot representation 
of CITE-seq analysis of PBMCs before and after PMA/ionomycin stimulation. Clustering was determined by SNF and Louvain clustering algorithm. 
Individual cells are colored by subject (healthy donor (HD), neurotoxicity patient (NEUROTOX) and three other patients on the same clinical trial without 
neurotoxicity (MM1, MM2 and MM3)). Highlighted on side plots is expression level of CD4, CD8 and CAR ADT (ADT, representation of protein level, high 
= red, low = blue) and box plots (median, Q1 and Q3 quartiles and whiskers up to 1.5× interquartile range), showing expression of a subset of differentially 
expressed genes (*P < 0.01; NS, P ≥ 0.05; two-sided Mann–Whitney U-test) in the patient with neurotoxicity (NEUROTOX, n = 1, data on 145 stimulated 
CD4+ CAR-T cells (top, red) and 119 stimulated CD8+ CAR-T cells (bottom, red) total) and the other MM patients (MM1–3, n = 3, data on 152 stimulated 
CD4+ CAR-T cells (top, gray) and 406 stimulated CD8+ CAR-T cells (bottom, gray) total).
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µl; Extended Data Fig. 9c). A second dose of IV cyclophosphamide 
(300 mg m−2) and IT cytarabine/hydrocortisone were administered 
on day 156. The patient subsequently developed neutropenic fever 
with acute respiratory distress syndrome and multi-organ failure 
and died on day 162.

Postmortem analysis of the caudate nucleus revealed the pres-
ence of focal gliosis as shown on hematoxylin and eosin (H&E) 
staining and immunohistochemistry of glial fibrillary acidic pro-
tein (GFAP) (Fig. 2c,d). Immunohistochemistry further showed a 
T cell infiltrate (CD3+, predominantly CD8+) in the periventricular 
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region of the basal ganglia (Fig. 2e). BCMA staining was performed 
(Methods), and we found BCMA expression on a subset of neurons 
and astrocytes in the caudate nucleus as well as on a layer of neurons 
in the adjacent frontal cortex (Fig. 2f and Extended Data Fig. 10).

The value of BCMA as a tumor-associated target in MM depends 
on the selective expression on (malignant) plasma cells. Even though 
BCMA expression has been extensively characterized on hematopoi-
etic lineages, studies on other tissues are limited6,7,19. We found that 
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Fig. 2 | BCMA is expressed in the caudate nucleus of healthy donors and postmortem in the patient after CAR-T cell therapy. a, FDG-PET/CT shows 
decreased uptake in the caudate nucleus after development of neurotoxicity (POST, right, day 134 after CAR-T infusion), compared to previous imaging 
before development of neurotoxicity symptoms (PRE, left, day 77 after CAR-T infusion). Prior FDG-PET/CT imaging (before CAR-T infusion) was similar to 
the pre-neurotoxicity scan. The scatter plot on the right illustrates the normalized z-score of different regions of the brain before and after CAR-T infusion. 
The caudate is highlighted. The normalized score is calculated using MIMneuro, comparing the image with a library of 43 FDG neurologic controls 
(41–80 years old). b, Visual representation of the expression of DRD1 and TNFRSF17 (BCMA) in a single patient from the Allen Brain Atlas. Expression of 
both genes (left, red = high) overlaps with the caudate nucleus region shown in three dimensions (right, purple). Image credit: Allen Institute for Brain 
Science (2010). c, H&E staining of the caudate nucleus subependymal region (×10 magnification; scale bar, 200 µm). d, GFAP immunohistochemistry of 
the caudate nucleus subependymal region (×10 magnification; scale bar, 200 µm). e, CD3 immunohistochemistry of the caudate nucleus subependymal 
region (×10 magnification; scale bar, 200 µm). f, BCMA immunohistochemistry of the caudate nucleus subependymal region (×10 magnification; scale 
bar, 200 µm; inset, ×40 magnification showing a neuron staining positively). c–f, Images shown are representative slides from the caudate nucleus from 
the patient described in this case report (n = 1). For each stain, at least three slides were available showing similar results.
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microarray data from the Allen Brain Atlas shows BCMA mRNA 
expression in the basal ganglia and confirmed this in the patient 
and in a healthy brain (Extended Data Fig. 10) by immunohisto-
chemistry. Assessment of BCMA protein expression on a human 
tissue array was positive on lymph node, spleen, lung and stomach 
due to plasma cells present in the bronchus- and mucosa-associated 
lymphoid tissue, respectively5. This tissue array, however, showed 
some positivity on climbing fibers in the cerebellum and explicitly 
does not rule out low-density expression in the central nervous sys-
tem. We acknowledge that these data are, to some extent, conflict-
ing due to lack of standardized protocols for staining tissues, other 
than bone marrow. A comprehensive evaluation of brain tissue for 
BCMA protein expression might be warranted to characterize the 
prevalence and extent of BCMA expression in the central nervous 
system and confirm the findings of this case report.

BCMA expression on neurologic tissues in a subset of patients 
could affect the applicability of BCMA-targeted adoptive cell 
transfer in MM. Implications for other BCMA-targeted immuno-
therapies—for example, antibody–drug conjugates and bispecific 
antibodies—are unknown. Even though therapeutic antibodies are 
thought not to cross the blood–brain barrier, their permeability 
into the CSF should be carefully evaluated. Other tumor-associated 
targets are being currently studied in MM, including bispecific 
antibodies and CAR constructs targeting GPRC5D, FcRH5, CD19, 
CD38, CD56, CD138 and SLAMF7, some of which have a broader 
expression outside of plasma cells and warrant careful monitoring20.

Using chemotherapy to destroy CAR-T cells after infusion is 
itself associated with toxicity, as this case shows, because the patient 
died of infectious complications. Other strategies include a modifi-
cation of CAR structure with engineered suicide genes, the incor-
poration of inhibitory CAR constructs or usage of a small molecule 
system as a safety switch to selectively deactivate the CAR-T cells. 
Recently, CAR natural killer cells have been proposed as an alterna-
tive with off-the-shelf use as a potential advantage20.

This case shows the potential of BCMA-targeted CAR-T cells 
to cross the blood–brain barrier in a subset of patients and cause 
a progressive neurocognitive and movement disorder, possibly 
through targeting of BCMA-expressing cells of the basal ganglia. 
Neurotoxicity in general has been observed in 23 of 128 patients on 
ide-cel11 and in 20 of 97 patients on cilta-cel13. Non-ICANS neuro-
toxicity was not addressed specifically in the ide-cel study but was 
reported in 12 of 97 patients from the phase 2 study of cilta-cel, 
of which five patients had a cluster of movement and neurocogni-
tive adverse events (three with grade 3 or higher parkinsonism)13. 
The development of this toxicity in the cilta-cel trial was associ-
ated with the presence of two or more risk factors (including high 
tumor burden, previous grade ≥2 CRS, previous ICANS and high 
CAR-T cell expansion and persistence). The ide-cel package insert 
also mentions that grade 3 parkinsonism has occurred after treat-
ment, suggesting that this complication is not necessarily specific 
to one BCMA-targeted CAR-T cell product. We acknowledge that 
important questions remain unanswered. Our patient developed 
neutropenic fever at day 51; it is not well studied whether infec-
tions after CAR-T infusion might activate CAR-T cells in vulnerable 
patients and whether more stringent prophylaxis of infection is war-
ranted. Additional studies to confirm the proposed mechanism of 
neurotoxicity could help delineate the fraction of patients at risk. In 
conclusion, our findings suggest that anti-BCMA CAR-T cell thera-
pies, although effective in MM, warrant close monitoring for neu-
rotoxicity, especially as such treatments acquire more widespread 
implementation in patients with MM.
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Methods
Trial design. The CARTITUDE-1 trial (https://clinicaltrials.gov/ct2/show/
NCT03548207) is an open-label, single-arm, phase 1b/2 trial that evaluates the 
safety and efficacy of JNJ-68284528 (cilta-cel), a CAR-T cell therapy directed 
against BCMA in patients with relapsed or refractory MM. Here we provide the 
case report of a patient with neurotoxicity enrolled on the CARTITUDE-1 trial. 
Analysis and reporting follow the CARE guidelines. The CITE-seq experiment 
includes data on three additional patients with MM who were enrolled on the 
CARTITUDE-1 trial (a 61-year-old female, a 67-year-old male and a 67-year-old 
female). Furthermore, all patients with MM included in this work consented 
to participation in the Multiple Myeloma Biorepository (HSM:18-00456). All 
patients provided written informed consent for the evaluations. All study protocols 
were approved by the Program for the Protection of Human Subjects and the 
Institutional Review Board at the Icahn School of Medicine at Mount Sinai and 
adhere to the 2008 Declaration of Helsinki.

Sample collection and tissue processing. Peripheral blood was collected in 
heparin anti-coagulated green tops (10 ml) via venipuncture throughout the 
course of his treatment in accordance with standard-of-care lab draws. Plasma was 
isolated from peripheral blood. Peripheral blood mononuclear cells (PBMCs) were 
Ficoll density separated and cryopreserved. Cryopreserved PBMC samples were 
used for flow cytometry, mass cytometry and other assays as detailed below. CSF 
was collected by lumbar puncture in accordance with standard of care. Each sample 
of 8 ml was centrifuged at 300g at 4 °C for 10 min. Then, 0.5 ml of supernatant 
was divided into aliquots and frozen at −80 °C. Approximately 200 μl of CSF and 
plasma from peripheral blood were used for Olink and Ella proteomics analysis as 
detailed below. Cells from CSF were used immediately for flow cytometry.

Statistics and reproducibility. Experiments were not randomized. The 
investigators were not blinded to allocation during experiments and outcome 
assessment. No statistical method was used to predetermine sample size for the 
analyses. For clinical and cytokine assays, no data points were removed from the 
analysis. Cytometry data were gated to relevant populations, as shown in Extended 
Data Fig. 5a. CITE-seq data were filtered to remove multiplets based on the 
crossSampleDoublets() and withinSampleDoublets() functions of the CiteFuse 
package (version 1.2.0) in R (version 3.6.1). No other cells were excluded from the 
analysis. The non-parametric Mann–Whitney U-test was used to compare gene 
expression values where appropriate. The Pearson correlation coefficient was used 
to characterize correlation of cytokine expression between blood and CSF. For all 
analyses, a two-sided P value of less than 0.05 was considered significant.

Additional clinical information on the patient. There was no documented 
family history of movement disorders for the patient of the case report. In terms 
of neuro-psychiatric history, the patient had a remote history of migraines, 
documented in 2009, for which he received sumatriptan 100 mg as needed. In 
2014, the patient was diagnosed with a mood disorder and started on sertraline 
150 mg. He had been taking lorazepam and alprazolam; these were discontinued at 
that time, and clonazepam 1 mg daily was started instead. No anti-dopaminergic 
medications were taken by the patient around this episode or later. Due to 
recurring anxiety with panic attacks, the sertraline dose was increased to 200 mg, 
and clonazepam was gradually increased to a maximum daily dose of 4 mg as 
needed. Sertraline was discontinued in 2016. The clonazepam dose was maintained 
for recurring anxiety with panic attacks. In addition, the patient was seen at an 
outside hospital in 2018 after a traffic accident. All documented neurological 
examinations at that time were normal. He received an MRI of the brain, which 
noted non-specific punctate foci T2/FLAIR hyperintensity in the periventricular 
and subcortical white matter, likely secondary to chronic microvascular ischemic 
disease, but no other intracranial abnormalities. Six months before the CAR-T 
trial, the patient was seen by a neurologist for the evaluation of weakness in the 
right hand. The neurological examination and tests of motor function in the limbs 
were normal, with the exception of portions of the right arm. Symptoms were 
thought to be suggestive of a radial nerve irritation at the spiral groove related 
to a work-related overuse problem. Electromyography confirmed mild acute 
denervation showing a radial nerve injury with mild acute axonal involvement, and 
the patient’s symptoms resolved with rest. During the screening visit for the CAR-T 
trial, the patient reported grade 1 fatigue, a remote syncope (around 2011) as well 
as grade 1 peripheral sensory neuropathy (which affects the soles of the feet, toes, 
calves and fingers), described as cramping without numbness. The neuropathy 
complaints did not interfere with walking, balance or fine motor movements 
and developed after bortezomib treatment. During the hospitalization at the 
time of CAR-T cell infusion, which includes the CRS period, the patient received 
a neurological evaluation every day. The patient was specifically monitored 
for neurotoxicity according to the specifications of the clinical trial protocol. 
Neurological examination was documented at every subsequent study visit (every 
28 d) after CAR-T infusion. Additionally, handwriting logs for dexterity were 
performed as specified. In conclusion, the patient was evaluated by a neurologist 
6 months before CAR-T therapy (by the same physician who evaluated the patient 
when he presented with the described neurotoxicity after CAR-T). He received 
other neurological examinations immediately before and after CAR-T cell infusion 

according to the clinical trial protocol. No pre-existing signs of parkinsonism were 
present during evaluation before CAR-T infusion.

Flow cytometry. Cryopreserved Ficoll density separated PBMCs were thawed 
by standard technique. Cells in the CSF were used within 3 h of collection after 
isolation. CD3+/CD4+/CD8+ T cell, CD19+ B cell and anti-BCMA-directed 
T cells were measured by multiple-color flow cytometry with human monoclonal 
ACROBiosystems anti-BCMA (FITC) (cat. no. BCA-HF254-25µg) and 
BioLegend human monoclonal anti-CD3 (cat. no. 300472 and cat. no. 344842), 
human monoclonal anti-CD4 (cat. no. 317434), human monoclonal anti-CD8 
(cat. no. 344742) and human monoclonal anti-CD19 (cat. no. 561121). All cell 
surface antibodies were used at a 1:20 dilution following the manufacturer’s 
recommendations. The FITC-labeled human BCMA was used at a 1:100 dilution. 
The samples were acquired on a FACS LSRFortessa flow cytometry system (BD 
Biosciences). Data were visualized and analyzed using Cytobank21.

Olink multiplex proteomics assay. Relative protein expression was measured 
in the CSF and peripheral blood plasma using Olink proximity extension 
technology, a high-throughput multiplex proteomic immunoassay, following 
the manufacturer’s protocols. The commercially available Immuno_Oncology 
(article no. 95310), which includes 92 immune- and oncology-related, proteins 
was used. A table with all cytokines measured is included below as Supplementary 
Table 2. Olink uses marker-specific binding and hybridization of a set of paired 
oligonucleotide antibody probes that is subsequently amplified using a quantitative 
PCR. Protein expression values are reported as normalized protein expression 
values on a log2 scale. Analysis was conducted in R (version 3.6.1), and figures were 
produced using the package pheatmap22.

Ella cytokine detection. The protein simple Ella cytokine detection system uses 
microfluidics ELISA assays in a multi-analyte chip that were run within cartridges 
in triplicate following the manufacturer’s instructions. Human analytes of IL-6, 
IL-8, TNF-α, IL18, IFN-γ and IL-10 were performed by the Mount Sinai Human 
Immune Monitoring Center using 25–30 µl of plasma or CSF from the patient. 
Analysis was conducted in R, and figures were generated using the package 
ggplot2 (ref. 23).

Mass cytometry. Cells were stained with either CyTOF antibody Panel 1 or 
CyTOF antibody Panel 2 listed in Supplementary Tables 3 and 4. Antibodies 
used were either purchased pre-conjugated with metals from Fluidigm or 
purchased unconjugated and metal conjugated in-house at the Human Immune 
Monitoring Center, Icahn School of Medicine. All in-house conjugated antibodies 
were titered and validated on healthy donor PBMCs. All antibodies for CyTOF 
listed in Supplementary Tables 3 and 4 were used at a dilution of 1:100. For 
longitudinal monitoring of phenotypic changes, cells from selected time points 
were thawed and labeled with Rh103 intercalator (Fluidigm) as a viability 
dye and cell proliferation marker IdU (Cell-ID 127 5-Iodo-2′-deoxyuridine, 
Fluidigm). Cells were initially stained with a cocktail of surface antibodies 
that included BCMA-FITC (ACROBiosystems) (Panel 1). Surface-stained cells 
were further stained with polyclonal anti-FITC-159Tb (source) and fixed with 
1.6% formaldehyde. Each time point was then barcoded with CyTOF Cell-ID 
20-Plex Palladium Barcoding Kit (Fluidigm). Barcoded cells were fixed and 
permeabilized with Fix-Perm buffer (BD Biosciences) and stained with the 
remaining intracellular antibodies from CyTOF Panel 1. Intracellular cytokine 
expression was monitored using CyTOF Panel 2. Cells from selected time points 
were activated with PMA/ionomycin (BioLegend) in the presence of brefeldin-A 
(BioLegend) for 6 h. After activation, cells were stained with Rh103 intercalator 
and stained with BCMA-FITC and fixed with 1.6% formaldehyde. Fixed cells 
were palladium barcoded with CyTOF Cell-ID 20-Plex Palladium Barcoding Kit 
and pooled and stained with surface markers from CyTOF Panel 2, including 
polyclonal anti-FITC-169Tm. Cells stained with surface antibodies were fixed 
and permeabilized with Fix-Perm buffer and stained with cytokine antibodies. 
Samples stained with either CyTOF antibody Panel 1 or CyTOF antibodyPanel 
2 were finally fixed in freshly diluted 2.4% formaldehyde containing 125 nM 
intercalator-Ir (Fluidgm) and 300 nM OsO4 (Acros Organics) and stored at 4 °C in 
cell staining buffer containing (Fluidigm) 125 nM intercalator-Ir until acquisition. 
Samples for CyTOF acquisition were washed with CAS buffer (Fluidigm) and 
re-suspended in CAS buffer containing EQ normalization beads (Fluidigm) and 
acquired on CyTOF2 (Fluidigm). After acquisition, the data were normalized 
using the bead-based normalization algorithm in the CyTOF software 
(Fluidigm). Normalized data were de-barcoded using methods and software 
developed by Gary Nolan’s group at Stanford University School of Medicine24. 
Normalized and de-barcoded data were uploaded to Cytobank21 for final analysis, 
as detailed below.

Mass cytometry data analysis. Data in FCS file format were downloaded from 
Cytobank21. For analysis of mass cytometry data, we used a workflow based on 
the example by Nowicka et al.25 using the diffcyt26 and CATALYST27 packages in 
R (version 3.6.1). In brief, data were imported and transformed for analysis using 
the read.flowSet() function from the flowCore package28 and the prepData(…, 
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cofactor = 5) function from the CATALYST package, respectively. Clustering was 
based on the FlowSOM algorithm29 using all protein markers from the panel on a 
10 × 10 grid size with a maximum of K = 20 clusters. These clusters were visualized 
using uniform manifold approximation and projection dimension reduction and 
subsequently annotated based on canonical protein markers and the FITC-BCMA 
tag to identify CAR-T cells.

CITE-seq. For each sample, cell suspensions were split and barcoded using 
‘hashing antibodies’ staining β-2-microglobulin and CD298 and conjugated to 
‘hash-tag’ oligonucleotides (HTOs). Before hashing, each of the five samples was 
split into two aliquots and either ‘stimulated’ or ‘unstimulated’. Stimulated aliquots 
were incubated for 3 h at 37 °C with PMA/ionomycin. Unstimulated aliquots were 
incubated for 3 h at 37 °C with cRPMI. After these incubations, the ten aliquots 
were hashed and pooled. Hashed samples were pooled and stained with CITE-seq 
antibodies purchased from the BioLegend TotalSeq catalog; the FITC antibody was 
a custom conjugate from BioLegend. All commercial antibodies were diluted at 
1:100 according to the manufacturer’s instructions. The custom conjugate is titered 
to find the optimal volume to stain PBMCs. The CITE-seq panel is detailed in 
Supplementary Table 5. Stained cells were then encapsulated for single-cell reverse 
transcription using the 10x Chromium platform (5′, version 1.0), and libraries were 
prepared according to the manufacturer’s instructions with minor modifications 
summarized hereafter. In brief, cDNA amplification was performed in the presence 
of 2pM of an antibody oligo-specific primer to increase yield of antibody-derived 
tags (ADTs) and 3pM of specific primer to increase the yield of HTOs. The 
amplified cDNA was then separated by SPRI size selection into cDNA fractions 
containing mRNA-derived cDNA (>300 bp) and ADT-derived cDNA (<180 bp), 
which were further purified by additional rounds of SPRI selection. Independent 
sequencing libraries were generated from the mRNA and ADT cDNA fractions, 
which were quantified, pooled and sequenced together on an Illumina NextSeq/
NovaSeq to a targeted depth of 25–750 million reads per gene expression library 
and 1,000–30,000 targeted reads per cell.

CITE-seq data analysis. Illumina sequencer base call files were de-multiplexed 
into FASTQ files using the cellranger (version 3.0.1) mkfastq and count pipeline. 
CITE-seq data were analyzed using R (version 3.6.1) and the CiteFuse package30, 
using the proposed analysis pipeline with minor modifications. In brief, matrices 
with counts representing RNA, ADT and HTO data, respectively, were read 
into R separately and combined into a SingleCellExperiment object31 using the 
preprocessing() function. Metadata (including patient ID and experimental 
condition (stimulated versus unstimulated)) were added based on known 
experimental design and corresponding HTOs. HTO expression was normalized 
using the log-transform method and the normaliseExprs() function. Cross-sample 
doublets and within-sample doublets were identified and removed using the 
crossSampleDoublets() and withinSampleDoublets(…, minPts = 10) functions, 
respectively. Similarity network fusion (SNF) was used to integrate RNA and ADT 
matrices after calculating log-transformed normalized expression values with the 
CiteFuse() function. Both spectral clustering with K = 25 and Louvain clustering 
were attempted, and t-distributed stochastic neighbor embedding (t-SNE) was 
used to visualize dimension reduction. Manual inspection and canonical gene and 
protein expression were used to identify clusters corresponding to CD4+ and CD8+ 
CAR-T cells. These cells were isolated into distinct SingleCellExperiment objects 
for downstream analysis. SNF, clustering and dimension reduction of CAR-T cells 
was done in a similar fashion as detailed above. The DEgenesCross() function with 
standard parameters was used to determine differentially expressed genes between 
the patient with neurotoxicity and all other patients. Differential expression was 
determined with a two-sided Mann–Whitney U-test, and P values were corrected 
using the Benjamini–Hochberg method.

Immunohistochemistry. Slides with 5-µm sections from paraffin-embedded 
tissues from autopsies were stained with CD3 (LN10) and GFAP (GA5) 
pre-diluted BOND reagents from Leica Biosystems, heat-induced epitope 
retrieval for 20 min with ER2 (Bond Epitope Retrieval Solution 2), MSMC DAB 
detection and counterstained per established staining protocol on the automated 
Leica Biosystems BOND-III platform. Immunohistochemistry for BCMA was 
performed using Ventana DISCOVERY ULTRA from Roche. This system allows 
for automated baking, de-paraffinization and cell conditioning. Semi-automatic 
staining was performed using BCMA antibody (cat. no. B0807 from USBiological) 
at 1:10 dilution during 60 min. As secondary antibody, Discovery OmniMap 
anti-rabbit-HRP from Roche (760-4310) was used, and the signal was obtained 
using DISCOVERY ChromoMap DAB RUO from Roche (760-2513) (brown 
signal). Tissues were counterstained with hematoxylin (in blue).

Analysis of public datasets. The mRNA expression data from the Allen Brain 
Atlas were last accessed on 25 April 2021. The heat map can be found at http://
human.brain-map.org/ (human brain data) when doing a Gene Search for 
TNFRSF17 and DRD1 and selecting ‘View Selection Thumbnails’. Raw expression 
data of the heat map used as part of the figures were downloaded by the authors 
from the Allen Brain Atlas data portal and are included as Source Data of Extended 
Data Fig. 8.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed data and materials will be promptly reviewed 
by the Icahn School of Medicine at Mount Sinai and Mount Sinai Hospital to 
determine if the request is subject to any confidentiality and data protection 
obligations. Requests for data should be addressed to the corresponding author 
via e-mail, and a reply will be sent within ten business days. Any data and 
materials that can be shared will be released via a material transfer agreement. 
Raw and analyzed CITE-seq data are available through the National Center 
for Biotechnology Information’s Gene Expression Omnibus (accession no. 
GSE182527). Mass cytometry and intracellular cytokine data are available 
through the FlowRepository website (ID FR-FCM-Z4KB). The images derived 
from the Allen Human Brain Atlas can be accessed at https://human.brain-map.
org/. Specific URLs to recreate the following figures are provided: Fig. 2b (https://
human.brain-map.org/static/brainexplorer), Extended Data Fig. 8a (https://human.
brain-map.org/microarray/search/show?search_type=user_selections&user_
selection_mode=1) and Extended Data Fig. 8b (https://human.brain-map.
org/microarray/gene/show/605), and source data are available. For all clinical 
measurements and cytokine levels (Extended Data Figs. 1, 2, 6 and 9d–f), source 
data are available. Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Clinical course and biochemical parameters after CAR-T cell treatment. The time periods associated with cytokine release 
syndrome (CRS), neutropenic fever and neurotoxicity are annotated in the individual subplots. All cytokine levels were determined in the peripheral 
blood. (a) Temperature curve. (b) Administration of relevant pharmacologic treatments during the period after CAR-T treatment. (c) Total leukocyte, 
lymphocyte, and neutrophil counts. (d) Time course of CRP level (mg/L). (e) Time course of ferritin level (ng/mL). (f) Time course of IL-18 level (pg/mL). 
(g) Time course of IL-2Ra (CD25) level (pg/mL).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cytokine levels and time course after CAR-T cell treatment. The time periods associated with cytokine release syndrome (CRS), 
neutropenic fever and neurotoxicity are annotated in the individual subplots. (a) Time course of IFN-gamma level (pg/mL). (b) Time course of TNF-alpha 
level (pg/mL). (c) Time course of IL-6 level (pg/mL). (d) Time course of IL-10 level (pg/mL). All measurements are from peripheral blood plasma. 
(e) Olink cytokine profiling of peripheral blood plasma at different time points after chimeric antigen receptor (CAR) T cell therapy. Values shown are 
normalized protein expression (NPX) values according the Olink protocol in log2 scale (high protein levels in red, low protein levels in blue).

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


A B

DispatchDate:  19.10.2021  · ProofNo: 1564, p.13

Brief CommunicationNature Medicine

Extended Data Fig. 3 | MRI and Ioflupane single photon emission computed tomography imaging after the onset of neurotoxicity. (a) MRI axial FLAIR 
(left) and T2 (right) images at the level of the deep brain nuclei (top) and the cerebral cortex (top), conducted at day 101 after CAR-T infusion. Images 
demonstrate small punctuate hyperintensities present on imaging prior to CAR-T therapy and putatively due to pre-existing microvascular damage. (b) 
Ioflupane (123-I) scan images, conducted at day 155 after CAR-T infusion, show normal uptake at the level of the basal ganglia.
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Extended Data Fig. 4 | Quantitative analysis of FDG-PET/CT images confirms decreased metabolism in caudate nucleus after CAR-T cell therapy. 
(a) FDG-PET axial splash images pre (top) and post (bottom) CAR-T infusion. Shown is a spectral scale with high metabolism/perfusion in red, to low 
metabolism/perfusion in dark blue. (b) Quantitative analysis showing normalized Z-score for all available regions of the brain before (blue) and after 
(red) CAR-T infusion. The caudate is highlighted. The normalized score was calculated using MIMneuro, comparing the image with a library of 43 FDG 
neurologic controls (41-80 years old).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Mass cytometry characterizes the effector-memory phenotype of CAR-T cells over time. (a) Representative mass cytometry 
(CyTOF) plots illustrating the gating strategy for identifying CAR-T cells and T cell subsets as shown in Figs. 1a, 1d and Extended Data Figure 5e. (b) UMAP 
representation of peripheral blood mononuclear cells (PBMC) collected at time points shown in (a) shows the clustering of major immune cell types. (c) 
Relative contribution of major immune cell types in samples at different time points. (d) Expression of canonical markers, showing accurate classification 
of major immune celI types. (e) CAR-T cell phenotype, as determined by expression of CCR7 and CD45RA, illustrating a high fraction of effector-memory 
T cells at all time points. Each bar corresponds to N = 1 sample collected from the patient. The UMAP plots visually illustrate the clustering of T cells and 
confirm low CCR7 and CD45RA expression on CAR-T cells.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Cytokine expression of peripheral blood CAR-T cells isolated at day 128 after treatment vs. healthy donor T cells. (a) CAR-T cells 
isolated at day 128 after CAR-T infusion were stimulated with PMA/ionomycin and cytokine production was assessed with mass cytometry. Shown here is 
high expression of TNF-alpha, interferon-gamma and GM-CSF and lack of expression of IL-17 in CD4 + (left) and CD8 + (right) CAR-T cells. (b) Percentage 
of CAR-T cells (orange) and healthy donor (HD) T cells (blue) expressing the full set of cytokines tested before (UNSTIM) or after (STIM) stimulation 
with PMA/ionomycin. Each bar represents N = 1 sample analyzed from the patient or healthy donor.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Expression of canonical markers on CITE-seq data identifies and clusters major immune cell types. (a) t-SNE plot representation 
of CITE-seq analysis of peripheral blood mononuclear cells before and after PMA/ionomycin stimulation. Clustering was determined by similarity network 
fusion (SNF) and Louvain clustering algorithm. Individual cells are colored by subject (healthy donor (HD), neurotoxicity patient (NEUROTOX) and 3 other 
patients on the same clinical trial without neurotoxicity (MM1, MM2, MM3). Highlighted are the major immune cell types (B cells, NK cells, CD8 + T 
cells, CD4 + T cells, CAR-T cells and monocytes). There is a small cluster of events that corresponds to multiplets or debris (centrally, not highlighted). 
(b) Expression level of canonical genes: CD8A, CD4, CD14, FCGR3A (CD16), CD19 and NCAM1 (CD56). In each case showing both mRNA (top) and ADT 
(antibody-derived tag, representation of protein level) (high = red, low = blue). Expression levels are normalized as described in the Methods.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Expression of BCMA in healthy donors of the Allen Brain Atlas and presence of CAR-T cells in CSF of patient. (a) Microarray 
data on top illustrates the expression of TNFRSF17 (BCMA) in the caudate nucleus of 5 healthy brain donors. The bottom shows that regions of TNFRSF17 
(BCMA) expression coincides with DRD1 (dopamine receptor D1) expression, a protein know to be highly specific for the caudate nucleus. Image credit: 
Allen Institute: © 2010 Allen Institute for Brain Science. Allen Human Brain Atlas; available from: human.brain-map.org. (b) Schematic representation 
showing the log2 intensity of TNFRSF17 (BCMA) RNA expression in a single patient from the Allen Brain Atlas. Image credit: Allen Institute: © 2010 Allen 
Institute for Brain Science. Allen Human Brain Atlas; available from: human.brain-map.org. (c) Quantitative representation of the Allen Brain Atlas data 
with boxplots (median, Q1 and Q3 quartiles, whiskers up to 1.5 x IQR) showing normalized expression (z-score) across all six donors for different brain 
structures (N = 6, total of 3,702 probes across 27 brain regions). The p-values shown correspond to a two-sided Mann-Whitney U test of striatum versus 
any other region (**: p < 0.001, ***: p < 0.0001, n.s.: p ≥ 0.05).

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


A B

DispatchDate:  19.10.2021  · ProofNo: 1564, p.23

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

Brief CommunicationNature Medicine

Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Presence and persistence of CAR-T cells in CSF of patient and cytokine profiling in peripheral blood plasma versus CSF 
after development of neurotoxicity. (a) Representative plots showing the gating strategy on CSF to get to the T cell gate. (b) Flow cytometric data of 
cerebrospinal fluid from day 148 after CAR-T cell infusion, showing presence of CD4 + and CD8 + CAR-T cells. (c) Flow cytometric data of cerebrospinal 
fluid from day 155 after CAR-T cell infusion (that is after administration of intravenous cyclophosphamide and intrathecal cytarabine), showing persistent 
presence of CD4 + and CD8 + CAR-T cells. (d) Normalized protein expression (NPX) log2 values of all cytokines in the Olink Immuno-Oncology panel, 
in serum (top) and CSF (bottom) (high protein levels in red, low protein levels in blue). (e) Scatter plot showing overall correlation of cytokine levels in 
plasma versus CSF (Pearson correlation coefficient r = 0.70, two-sided p < 0.001). (f) The log2 fold change (FC) of CSF versus blood plasma in a healthy 
control (along x-axis) and the patient who developed neurotoxicity (along y-axis). Highlighted are a selection of cytokines that are overrepresented in the 
patient’s CSF compared to the healthy control data. Among the cytokines that are overrepresented, we note a set of cytokines suggesting T cell activation 
(for example GZMB, GZMA, IFN-γ, CD40L, CD8A, CD27, FASLG), cytokines that are induced by IFN-γ (for example CXCL5, CXCL10, CXCL11) and that 
are known to act as chemo-attractants for T cells (among other immune cell types), and cytokines that point to possible involvement of cells in the blood-
brain barrier (BBB) (for example PDGFb, EGF and ANGPT1).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Immunohistochemistry showing BCMA protein expression in brain tissue of the patient and in a control brain. (a) BCMA 
immunohistochemistry of the caudate nucleus subependymal region (10x magnification, left, scale bar 200 µm). Inset (40x magnification, right, scale 
bar 50 µm) shows high magnification image of astrocytes (top) and a neuron (bottom) that stained positive for BCMA, whereas surrounding cells were 
negative. Images shown are representative slides from the caudate nucleus from the patient described in this case report (N = 1). For each region stained, 
at least 3 slides were available. (b) BCMA immunohistochemistry of selected brain regions as annotated in the patient of interest (left) versus a control 
brain (right) from a subject who died due to non-neurologic illness (10x magnification (top), scale bar 200 µm and 20x magnification (middle, bottom), 
scale bar 100 µm). Images shown are representative slides from the patient described in this case report (N = 1), as well as a single control brain (N = 1). 
For each region stained, at least 3 slides were available. The experiment was repeated in a second control brain with similar results.
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