
Supplementary Material 2: Simulate ascertained pedigrees

Nirodha Epasinghege Dona, Jinko Graham

2022-04-16

Contents
1 Ascertain a pedigree 2

2 Simulate pedigrees on the Compute Canada cluster 4

3 Examine the simulated pedigrees 7

References 9

1

The second major step in our work-flow simulates 150 pedigrees ascertained to have four or more relatives
affected with lymphoid cancer (the blue box labelled 2).

Simulate SNV data for
pedigree founders

Specify the demographic model

Create recombination map for SLiM

Simulate ascertained
pedigrees

Simulate SNV data for
affected individuals in

pedigrees

Select causal variants

Simulate genetic data for affected
pedigree members

Simulate population genetic data with
SLiM

SLiM_output.txt

1 2

3

Read and process SLiM data in R

study_peds.txt

Generate data files

Ascertain a pedigree

 Simulate pedigrees on the Compute
Canada cluster

Examine the simulated pedigrees

Figure 1: Work-flow for simulating the exome-sequencing data for ascertained pedigrees.

1 Ascertain a pedigree
We use the SimRVPedigree (Nieuwoudt et al. 2018) R package to ascertain a single pedigree simulated to
contain four or more relatives affected with lymphoid cancer. Affected pedigree members can have either
sporadically occurring disease or genetic disease caused by a single rare variant that is segregating in the
pedigree. We refer to the causal rare variants as cRVs. The package constructs a pedigree by growing it
from a single starting individual or “seed founder” and obtaining the seed founder’s descendants. A cRV
may be introduced into the seed founder with probability equal to either one or the carrier probability of a

2

cRV in the population. When a cRV is introduced into the seed founder with probability equal to the carrier
probability of a cRV in the population, the pedigree is ascertained from the general population. A genetic
pedigree is defined as a pedigree in which the seed founder carries a cRV, whereas a sporadic pedigree is
defined as a pedigree in which the seed founder does not carry a cRV. Ascertained pedigrees may be either
genetic or sporadic, and may contain both genetic and sporadic cases. Once a cRV is introduced into a seed
founder, it is transmitted from parent to offspring according to Mendel’s law. The age-specific life events of
the seed founder and his/her descendants such as birth, disease onset and death are modelled according to
the cRV carrier status of the individual. The modeling requires specification of the age-specific incidence
rates of disease, the age-specific hazard rates of death and the genetic relative-risk (GRR) of disease.

We ascertain a single pedigree from the general population using simRV_ped(), the core function of the
SimRVPedigree package. The sim_RVped() function simulates all life events of a seed founder and his/her
descendants, as described by Nieuwoudt et al. (2018). Starting at the birth of an individual, the waiting
times of the possible next life events of the individual – disease onset, reproduction and death – are generated.
The event with the minimum waiting time is selected as the individual’s next life event. The waiting time
is added to the current age of the individual and the corresponding life event is recorded. These steps are
repeated until the individual dies or the study reaches its stop year. Further details of this function can be
found in Nieuwoudt and Graham (2018).

The required arguments of simRV_ped() are: hazard_rates, GRR, num_affected, ascertain_span, FamID,
and founder_byears. Non-required arguments of specific interest to us are: stop_year, carrier_prob,
RV_founder, recall_probs and first_diagnosis. A short description of these arguments follows.

• hazard_rates- We use the AgeSpecific_Hazards dataset in the SimRVPedigree package. The first
column of the AgeSpecific_Hazards data-frame gives the age-specific hazard rates for the disease
in the general population. The second column gives the age-specific hazard rates for death in the
unaffected population. The third column gives the age-specific hazard rates for death in the affected
population.

• GRR- the genetic relative-risk; i.e, the risk of disease for individuals who carry a copy of a cRV relative
to those who carry no copies of a cRV. We use 50 as the GRR.

• num_affected- the minimum number of disease-affected members needed to ascertain the pedigree is
set to 4.

• ascertain_span- the period of ascertainment of the pedigree; i.e., (start-year, end-year) is set to (2000
, 2010).

• FamID- the family identity number of the simulated pedigree. We assign a vector that contains values 1
to 150 since we need to generate 150 pedigrees.

• founder_byears- the period for the possible birth year of a seed founder is set to be (1880, 1920).

• stop_year- 2020 is set to the year in which we stop collecting data.

• carrier_prob- the probability that an individual in the general population carries a cRV is set to
0.001.

• RV_founder- is set to FALSE, i.e., the seed founder carries a cRV with probability equal to the carrier
probability (0.001) of a cRV in the population.

• recall_probs- the proband’s recall probabilities of relatives in the pedigree is set to (1, 1, 1, 1, 0.75,
0.5, 0.25, 0.125, 0). These probabilities imply that first to fourth-degree relatives of the proband (e.g.
fourth degree = great aunt) are recalled with probability 1, all fifth-degree relatives (e.g. first cousin
once removed) of the proband are recalled with probability 0.75, and so forth.

• first_diagnosis- the earliest year after which reliable diagnoses can be made regarding the disease-
affection status is set as 1940.

We set the above values for the arguments in the sim_RVped() function and use the Compute Canada cluster
for the simulation. We use an array job on the cluster, with a processor (CPU) to simulate each pedigree. Due

3

to the requirement that at least four relatives be known to be affected, the ascertainment of each pedigree
is time-consuming and the simulation time is variable across pedigrees. However, as discussed below, we
allocate up to 24 hours to simulate a pedigree.

2 Simulate pedigrees on the Compute Canada cluster
We use the following slurm batch file to submit an array job with a processor for each of the 150 pedigrees.

#!/bin/bash
#SBATCH --account=def-jgraham
#SBATCH --array= 1-150
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=4000M
#SBATCH --time=23:59:00

module load nixpkgs/16.09 gcc/5.4.0 r/3.5.0

echo "This is job $SLURM_ARRAY_TASK_ID out of $SLURM_ARRAY_TASK_COUNT jobs."

R CMD BATCH --no-save SimRVpedigree.R

In the batch script above, the parameters are set as follows.

• #SBATCH–account=def-jgraham - specifies the project account on Compute Canada. In this example,
the project account is “def-jgraham.”

• # SBATCH –array= 1-150 - specifies an array of tasks with indices 1 through 150, one for each of the
150 pedigrees. More generally, users can specify indices x through y to obtain y − x + 1 pedigrees.

• #SBATCH–ntasks=1 - defines the number of array tasks per processor. We request 1 processor to run
each task (i.e. each one of our 150 pedigrees, will use 1 CPU).

• #SBATCH–mem=40000M - specifies memory that we require to run each task in the array. We request
4GB.

• #SBATCH–time=23:59:00 - specifies the time limit for each task. If we allocate 24 hours or more to run
a task, we must wait longer in the queue to start a task than if we allocate less than 24 hours.

• module load nixpkgs/16.09 gcc/5.4.0 r/3.5.0 - loads the R version that we installed.

• echo "This is job $ SLURM_ARRAY_TASK_ID out of $ SLURM_ARRAY_TASK_COUNT jobs." - prints
the job number out of 150 tasks.

We use the R CMD BATCH command to submit the SimRVpedigree.R script to the cluster. The contents of
the script is given below.
load the SimRVPedigree library
library(SimRVPedigree)

Create hazard object from AgeSpecific_Hazards data
data(AgeSpecific_Hazards)
my_HR = hazard(AgeSpecific_Hazards)

Get the Unix environmental variable for array job id.
This id is created by the cluster for each job.
dID = Sys.getenv("SLURM_ARRAY_TASK_ID")

Set a seed value to assure the reproducibility.

4

seed = as.numeric(dID)
set.seed(seed)

generatePeds = function(dataID){

Read the R function that do the analysis
out = sim_RVped(hazard_rates = my_HR,

GRR = 50, FamID = dataID,
RVfounder = FALSE,
founder_byears = c(1880, 1920),
ascertain_span = c(2000, 2010),
stop_year = 2020,
recall_probs = c(1, 1, 1, 1, 0.75, 0.5, 0.25, 0.125, 0),
carrier_prob = 0.001,
num_affected = 4,
first_diagnosis = 1940)[[2]]

Save the results separately for each dataset.
write.table(out, file = paste0("/project/6007536/epasiedn/Array_jobs/",

dataID,".txt"))
}

Run the function.
generatePeds(dID)

In the above script, we create a function generatePeds() which calls the sim_RVped() function. The
generatePeds() function has one argument,dataID, for the task identifier created by the cluster scheduler.
The environment variable, SLURM_ARRAY_TASK_ID, identifies each task in the array. In the last two lines
of the R script above, we use dID = Sys.getenv("SLURM_ARRAY_TASK_ID") to get the task identifier and
assign it as the argument to the generatePeds() function. dID is also assigned as the random seed for each
pedigree. Since each pedigree is a task that is run separately on a different CPU in the cluster, we want to
assign a different seed value each time.

Among the 150 tasks, 140 manage to run within the allocated time period. Some tasks take longer because
some pedigrees take a longer time to ascertain. The unfinished tasks are run again, with a different random
seed. We use the linux command ls to identify the finished jobs. This command returns all the files in our
directory, so that we can see which task IDs are missing. Among all 150 tasks, IDs 14, 30, 48, 50, 63, 73, 83,
94, 102 and 129 are unfinished. The following code chunk shows how we identify the unfinished tasks.

[epasiedn@cedar1 Array_jobs_check]$ ls
100.txt 140.txt 45.txt 88.txt slurm-19422255_124.out slurm-19422255_26.out slurm-19422255_64.out
101.txt 141.txt 46.txt 89.txt slurm-19422255_125.out slurm-19422255_27.out slurm-19422255_65.out
103.txt 142.txt 47.txt 8.txt slurm-19422255_126.out slurm-19422255_28.out slurm-19422255_66.out
104.txt 143.txt 49.txt 90.txt slurm-19422255_127.out slurm-19422255_29.out slurm-19422255_67.out
105.txt 144.txt 4.txt 91.txt slurm-19422255_128.out slurm-19422255_2.out slurm-19422255_68.out
106.txt 145.txt 51.txt 92.txt slurm-19422255_129.out slurm-19422255_30.out slurm-19422255_69.out
107.txt 146.txt 52.txt 93.txt slurm-19422255_12.out slurm-19422255_31.out slurm-19422255_6.out
108.txt 147.txt 53.txt 95.txt slurm-19422255_130.out slurm-19422255_32.out slurm-19422255_70.out
109.txt 148.txt 54.txt 96.txt slurm-19422255_131.out slurm-19422255_33.out slurm-19422255_71.out
10.txt 149.txt 55.txt 97.txt slurm-19422255_132.out slurm-19422255_34.out slurm-19422255_72.out
110.txt 150.txt 56.txt 98.txt slurm-19422255_133.out slurm-19422255_35.out slurm-19422255_73.out
111.txt 15.txt 57.txt 99.txt slurm-19422255_134.out slurm-19422255_36.out slurm-19422255_74.out
112.txt 16.txt 58.txt 9.txt slurm-19422255_135.out slurm-19422255_37.out slurm-19422255_75.out
113.txt 17.txt 59.txt job_array.sh slurm-19422255_136.out slurm-19422255_38.out slurm-19422255_76.out

5

114.txt 18.txt 5.txt SIMrvpedigree.R slurm-19422255_137.out slurm-19422255_39.out slurm-19422255_77.out
115.txt 19.txt 60.txt SIMrvpedigree.Rout slurm-19422255_138.out slurm-19422255_3.out slurm-19422255_78.out
116.txt 1.txt 61.txt slurm-19422255_100.out slurm-19422255_139.out slurm-19422255_40.out slurm-19422255_79.out
117.txt 20.txt 62.txt slurm-19422255_101.out slurm-19422255_13.out slurm-19422255_41.out slurm-19422255_7.out
118.txt 21.txt 64.txt slurm-19422255_102.out slurm-19422255_140.out slurm-19422255_42.out slurm-19422255_80.out
119.txt 22.txt 65.txt slurm-19422255_103.out slurm-19422255_141.out slurm-19422255_43.out slurm-19422255_81.out
11.txt 23.txt 66.txt slurm-19422255_104.out slurm-19422255_142.out slurm-19422255_44.out slurm-19422255_82.out
120.txt 24.txt 67.txt slurm-19422255_105.out slurm-19422255_143.out slurm-19422255_45.out slurm-19422255_83.out
121.txt 25.txt 68.txt slurm-19422255_106.out slurm-19422255_144.out slurm-19422255_46.out slurm-19422255_84.out
122.txt 26.txt 69.txt slurm-19422255_107.out slurm-19422255_145.out slurm-19422255_47.out slurm-19422255_85.out
123.txt 27.txt 6.txt slurm-19422255_108.out slurm-19422255_146.out slurm-19422255_48.out slurm-19422255_86.out
124.txt 28.txt 70.txt slurm-19422255_109.out slurm-19422255_147.out slurm-19422255_49.out slurm-19422255_87.out
125.txt 29.txt 71.txt slurm-19422255_10.out slurm-19422255_148.out slurm-19422255_4.out slurm-19422255_88.out
126.txt 2.txt 72.txt slurm-19422255_110.out slurm-19422255_149.out slurm-19422255_50.out slurm-19422255_89.out
127.txt 31.txt 74.txt slurm-19422255_111.out slurm-19422255_14.out slurm-19422255_51.out slurm-19422255_8.out
128.txt 32.txt 75.txt slurm-19422255_112.out slurm-19422255_150.out slurm-19422255_52.out slurm-19422255_90.out
12.txt 34.txt 76.txt slurm-19422255_113.out slurm-19422255_15.out slurm-19422255_53.out slurm-19422255_91.out
130.txt 35.txt 77.txt slurm-19422255_114.out slurm-19422255_16.out slurm-19422255_54.out slurm-19422255_92.out
131.txt 36.txt 78.txt slurm-19422255_115.out slurm-19422255_17.out slurm-19422255_55.out slurm-19422255_93.out
132.txt 37.txt 79.txt slurm-19422255_116.out slurm-19422255_18.out slurm-19422255_56.out slurm-19422255_94.out
133.txt 38.txt 7.txt slurm-19422255_117.out slurm-19422255_19.out slurm-19422255_57.out slurm-19422255_95.out
134.txt 39.txt 80.txt slurm-19422255_118.out slurm-19422255_1.out slurm-19422255_58.out slurm-19422255_96.out
135.txt 3.txt 81.txt slurm-19422255_119.out slurm-19422255_20.out slurm-19422255_59.out slurm-19422255_97.out
136.txt 40.txt 82.txt slurm-19422255_11.out slurm-19422255_21.out slurm-19422255_5.out slurm-19422255_98.out
137.txt 41.txt 84.txt slurm-19422255_120.out slurm-19422255_22.out slurm-19422255_60.out slurm-19422255_99.out
138.txt 42.txt 85.txt slurm-19422255_121.out slurm-19422255_23.out slurm-19422255_61.out slurm-19422255_9.out
139.txt 43.txt 86.txt slurm-19422255_122.out slurm-19422255_24.out slurm-19422255_62.out
13.txt 44.txt 87.txt slurm-19422255_123.out slurm-19422255_25.out slurm-19422255_63.out

For these unfinished tasks, we need to assign a new seed value which we set to be job number * 20; i.e. seed
= as.numeric(dID)*20. We select 20 as the multiplier to avoid repeating the seed values. For example,
a multiplier of 10 doesn’t work because if we multiply task ID 14 by 10, we get 140 as the seed, which
has already been used for pedigree ID 140 in the previous run. In this way, we obtain the 150 simulated
pedigrees in separate files (i.e. 1.txt, 2.txt,. . . ,150.txt), read them all into R and save them in a single file
called study_peds.txt. We use a for-loop to read in the pedigrees and save them in a list. Then we combine
all 150 list elements into a single data frame as shown in the next code chunk.
Load all 150 simulated pedigrees, save them in a single list, and write them to a text file.

study_peds <- list()

for(i in 1:150){

study_peds[[i]] <- read.table(paste0(i,".txt"))

}

study_peds <- do.call("rbind", study_peds)

write.table(study_peds, file = "study_peds.txt")

6

3 Examine the simulated pedigrees
In the next code chunk, we read study_peds.txt into R as a data frame and convert it to class ped using
the new.ped() function of the SimRVPedigree R package.
library(SimRVPedigree)

import study peds
study_peds <- read.table("study_peds.txt", header=TRUE, sep= " ")

create an object of class ped, from a data.frame,
study_peds <- new.ped(study_peds)

head(study_peds)

FamID ID sex dadID momID affected DA1 DA2 birthYr onsetYr deathYr available
1 1 1 1 NA NA TRUE 0 1 1881 1952 1955 TRUE
2 1 2 0 NA NA FALSE 0 0 NA NA NA FALSE
3 1 3 1 2 1 TRUE 0 1 1901 1970 1981 TRUE
5 1 4 0 2 1 TRUE 0 1 1910 2000 2002 TRUE
6 1 5 1 2 1 FALSE 0 0 1913 NA 1991 TRUE
8 1 7 1 6 3 FALSE 0 1 1924 NA 1956 TRUE
Gen proband
1 1 FALSE
2 1 FALSE
3 2 FALSE
5 2 TRUE
6 2 FALSE
8 3 FALSE

The rows of study_peds represent individuals and the columns are:

1. FamID- the identity number of the ascertained pedigree.

2. ID- the individual identity number.

3. sex- sex of the individual, with sex = 0 for males and sex = 1 for females.

4. dadID- individual identity number of the father.

5. momID- individual identity number of the mother.

6. affected- the disease status of the individual, with affected = TRUE if the individual has developed
disease and affected = FALSE otherwise.

7. DA1- the cRV status of the paternally inherited allele, with DA1 = 1 if the cRV is inherited and 0
otherwise.

8. DA2- the cRV status of the maternally inherited allele, with DA2 = 1 if the cRV is inherited and 0
otherwise.

9. birthYr- the birth year of the individual.

10. onsetYr- the disease-onset year of the individual, when applicable, and NA otherwise.

11. deathYr- the death year of the individual, when applicable, and NA otherwise.

12. RR- the genetic relative-risk of disease for carriers of the cRV.

13. available- the availability of life-events information on the individual. Specifically, if an individual
descends from the seed founder and is recalled by the proband then available = TRUE. If an individual
descends from the seed founder and is not recalled by the proband then available = FALSE. Finally,

7

if an individual is not descended from the seed founder (i.e. has married into the pedigree) available
= FALSE.

14. Gen- the generation of the individual within the pedigree.

15. proband- the proband status, with proband = TRUE if the individual is the proband and FALSE otherwise.

Let’s use SimRVPedigree’s built-in plot() function to draw a pedigree in study_peds, in the year 2020. We
will take the 39th pedigree out of the 150 generated:
plot(study_peds[study_peds$FamID == 39,], ref_year = 2020, cex = 0.5)

ID: 2 ID: 1
 (1918 − 2006)
 onset age: 86

ID: 3
 (1937 − 1960)

ID: 4
 (1938 − 1992)
 onset age: 45

ID: 6 ID: 5
 (1941 − 2010)

ID: 11 ID: 7
 age: 63

ID: 8
 (1957 − 1984)
 onset age: 21

ID: 9
 (1958 − 2000)

ID: 10
 age: 50

 onset age: 40

ID: 15

ID: 12
 (1985 − 2007)

ID: 13
 (1985 − 2003)

ID: 14
 age: 25

ID: 16
 age: 14

affected

proband

RVstatus

Reference Year: 2020

The legend identifies affected individuals, the proband, and the cRV status of the individuals. Disease-affected
individuals have solid shading in the upper-left third of their symbol (IDs 1, 4, 8 and 10). The proband (ID
10) has shading in the lower portion of their symbol. Carrier individuals (IDs 1, 4, 7, 9, 10, 12 and 13) have
shading in the upper-right portion of their symbol. The seed founder is the individual with ID 1 and he and
all his descendants have ages relative to the reference year of 2020. We create age labels at a selected reference
year by providing the argument ref_year to the plot() function. The birth year and the death year of dead
individuals are displayed in parentheses. Following standard practice in medical genetics, individuals who
have died as of the reference year have slashes through their symbols. The age of the individuals who are
alive at the end of the reference year displays under their symbol. Any individual with disease onset before
the end of the reference year has a disease-onset year given under their symbol.

For reference, session information giving the versions of R and packages used by the SimRVPedigree package
is as follows.
Get the session information
sessionInfo()

R version 4.1.1 (2021-08-10)

8

Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)
##
Matrix products: default
##
locale:
[1] LC_COLLATE=English_Canada.1252 LC_CTYPE=English_Canada.1252
[3] LC_MONETARY=English_Canada.1252 LC_NUMERIC=C
[5] LC_TIME=English_Canada.1252
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] SimRVPedigree_0.4.4
##
loaded via a namespace (and not attached):
[1] quadprog_1.5-8 lattice_0.20-44 digest_0.6.27 grid_4.1.1
[5] magrittr_2.0.1 evaluate_0.15 rlang_1.0.2 stringi_1.7.4
[9] cli_3.1.0 rstudioapi_0.13 kinship2_1.8.5 Matrix_1.2-12
[13] rmarkdown_2.13 tools_4.1.1 stringr_1.4.0 xfun_0.30
[17] yaml_2.2.1 fastmap_1.1.0 compiler_4.1.1 htmltools_0.5.2
[21] knitr_1.38

In the third and final step of our workflow, to be discussed next, the file study_peds.text will be used to
simulate the exome-sequencing data for the 150 ascertained pedigrees.

References
Nieuwoudt, Christina, and Jinko Graham. 2018. “SimRVPedigree: Simulate Pedigrees Ascertained for a

Rare Disease. R package version 0.1.0. https://CRAN.R-project.org/package=SimRVPedigree.” https:
//doi.org/10.1101/234153%3E.Depends.

Nieuwoudt, Christina, Samantha J. Jones, Angela Brooks-Wilson, and Jinko Graham. 2018. “Simulating
pedigrees ascertained for multiple disease-affected relatives.” Source Code for Biology and Medicine.
https://doi.org/10.1186/s13029-018-0069-6.

9

https://doi.org/10.1101/234153%3E.Depends
https://doi.org/10.1101/234153%3E.Depends
https://doi.org/10.1186/s13029-018-0069-6

	Ascertain a pedigree
	Simulate pedigrees on the Compute Canada cluster
	Examine the simulated pedigrees
	References

