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This is the first in a series of RMarkdown documents describing how we simulated exome-sequencing data in
pedigrees ascertained to have four or more relatives affected with lymphoid cancer. The overall workflow for
this project is shown below.
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Figure 1: Work-flow for simulating the exome-sequencing data for ascertained pedigrees.

This document focuses on the part of the flowchart labelled as 1 (the green box). To start, we require
single-nucleotide variant (SNV) sequences for pedigree founders. These founders are assumed to be sampled
from an American Admixed population, which we simulate with the evolutionary simulation package SLiM
(Haller et al. 2019). In particular, we simulate genome-wide sequences of exons only, to mimic exome

sequencing.

The outline of this document as follows. Section 1 explains how we create the SLiM recombination map using
the create_SlimMap() function in the SimRVSequence R package (Nieuwoudt, Brooks-Wilson, and Graham



2020). Section 2 explains the demographic model for the source population of the pedigree founders. Section
3 discusses how we set the parameters in our SLiM model to simulate the exon-only SNV sequences.

The final outcome of this RMarkdown document is the file SLiM_output containing SNV exon sequences
from a simulated American Admixed population. In the third RMarkdown document of this series, the
population sequences file is sampled to get the founder sequences to drop down the ascertained pedigrees.
The final gene-dropping step generates the exome-sequencing data in the family-based study of lymphoid
cancer families.

1 Create recombination map for SLiM

To simulate the genome-wide exon-only sequences with SLiM, we need to supply a recombination map which
reads the exon positions in chromosomes. We use the create_SlimMap() function in the SimRVSequence
(Nieuwoudt, Brooks-Wilson, and Graham 2020) R package, as shown in the next code chunk.

library(SimRVSequences)

# Load hg_exzons data set in SimRVSequence package
data("hg_exons")

# Create recombination map for exon—only data using the hg_exzons dataset
s_map <- create_slimMap( hg_exons)

head (s_map)

##  chrom seglength recRate mutRate exon simDist endPos

## 1 1 11873 0.00e+00  0e+00 FALSE 1 1
## 2 1 354 1.00e-08 1le-08 TRUE 354 355
## 3 1 385 3.85e-06  0e+00 FALSE 1 356
## 4 1 109 1.00e-08 1e-08 TRUE 109 465
## 5 1 499 4.99e-06  0e+00 FALSE 1 466
## 6 1 1609 1.00e-08 1le-08 TRUE 1609 2075

We use the hg_exons dataset in the SimRVSequence package to specify the exon positions of each of the
22 human autosomes, based on the hg38 reference genome from the UCSC Genome Browser (Nieuwoudt,
Brooks-Wilson, and Graham 2020). As shown above, the call to create_SlimMap() returns a data frame
with information about the genetic segments in each chromosome. As an example, the first row in the output
above represents information about the genetic segment before the first exon on chromosome 1. The second
row represents information about the first exon on chromosome 1. The exon contains 354 base pairs and the
recombination and mutation rates in this exon are 10~® per site per generation. The other columns of the
data frame are described in the SimRVSequences documentation. The recombination rate between adjacent
exons is set to the number of base pairs in the intervening intronic segment (segLength) multiplied by 10~8
per base pair per generation (recomb_rate). Further, the gap between two unlinked chromosomes is set to
be a single base pair and the recombination rate between them is set to be 0.5 per base pair per generation
(Harris and Nielsen 2016). Since we are interested in exon-only data, the mutation rate outside exons is set to
zero and mutation rates inside exons is set to 1078 per base pair per generation (Nieuwoudt, Brooks-Wilson,
and Graham 2020).

We need three variables from s_map to create the recombination map for simulating exon-only data by SLiM:
recRate, mutRate and endPos. We select these three variables and shift the endPos variable forward by one
unit because SLiM reads arrays starting at position as 0 rather than 1. We save the resulting output as a
text file (S1im_Map_chr.txt) to be used as a recombination map for SLiM.

# Restrict output to the wvariables required by SLiM
slimMap <- s_map[, c("recRate", "mutRate", "endPos")]

# Shift endPos up by one unit



slimMap$endPos <- slimMap$endPos - 1

# Print first four rows of slimMap
head(slimMap, n = 4)

## recRate mutRate endPos
## 1 0.00e+00 0e+00 0
## 2 1.00e-08 1e-08 354
## 3 3.8be-06 0e+00 355
## 4 1.00e-08 1e-08 464

# Write the results to a text file
write.table(slimMap, file ="Slim_Map_chr.txt")

The next section explains the demographic model we will use to simulate the population-level, exon-only SNV
sequences. These sequences will be randomly sampled from the population to be assigned to the founders of
our ascertained pedigrees in later steps of the workflow.

2 Specify the demographic model

Demographic models play a major role in understanding the genetic patterns in human populations. Through-
out human evolution, different demographic events such as expansion, migration, splitting etc. have occurred,
affecting genetic diversity (Ragsdale and Gravel 2019). The population-genetics literature has several es-
tablished demographic models inferred from genetic data (Gutenkunst et al. 2009). Some of these models
have been compiled in stdpopsim, a standard library of population-genetic simulation models (Adrion et al.
2020). At the time of writing, this library contains around nine demographic models. Among these, we select
the American Admixture demographic model of Browning et al. (2018) because the family-based study
motivating our work is in a North American population.

2.1 American admixture demographic model

In the American-Admixture model (Browning et al. 2018), the pre-admixture model parameters are selected
from the Out-of-Africa model of Gravel et al. (2011) illustrated below.
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Figure 2: The inferred Out-of-Africa demographic model.



In the figure, the parameter estimates have been rounded and times are expressed in kilo-years before present
(kya). The demographic model has three populations representing Africa, Europe and Asia. The initial
effective population size of Africa was 7310 individuals which then increased to 14,474 individuals 5920
generations ago (148 kya, assuming a generation time of 25 years). About 2040 generations ago (51 kya), the
out-of-Africa migration event occurred with a migrating effective population size of 1861 individuals. Then
migration occurred between Africa and out-of-Africa populations with a rate of 1.5 x 10~™* per generation.
About 920 generations ago (23 kya), the out-of-Africa population split into two populations, Europe and
Asia, with effective sizes of 1032 and 554 individuals, respectively. These two populations then grew at rates
of 3.8 x 1073 per generation for Europe and 4.8 x 10~3 per generation for Asia. Further, between these
three populations, (Africa , Europe and Asia) migrations occurred. The migration rates per generation were
2.5 x 107° between Africa and Europe, 7.8 x 1076 between Africa and Asia, and 3.11 x 10~° between Europe
and Asia (Browning et al. 2018). Admixing started about 12 generations ago (0.3 kya) with the initial
effective size of the admixed population being 30,000 individuals. The growth rate of the admixed population
was 5% per generation with % of the admixed population originating from African ancestry, % from European
ancestry and % from Asian ancestry (Browning et al. 2018).

As described in the next section, we use SLiM together with the inferred American-admixture demographic
model to simulate population-level exon-only SNV sequences.

3 Simulate population genetic data with SLiM

The following SLiM script generates genome-wide exon-only SNV sequences for a population under the
American-Admixture demographic model. The script is a .slim file, which we have embedded in an R code
chunk (that is not run). The original SLiM_American_Admixture.slim file can be found on our GitHub page
at https://github.com/SFUStatgen/SeqFamStudy/.

initialize() {

// Seed number which helps to reproduce the same result
setSeed(2181144364021) ;

// Read recombination map created by SimRVSequence R package

lines = readFile("~/Slim_Map_chr.txt");
Rrates = NULL;

Mrates = NULL;

ends = NULL;

for (line in lines)

{

components = strsplit(line);

ends = c(ends, asInteger(components[3]));
Rrates = c(Rrates, asFloat(components([1]));
Mrates = c(Mrates, asFloat(components[2]));
}

Exomelength = ends[size(ends)-1];
initializeRecombinationRate (Rrates, ends);
initializeMutationRate(Mrates, ends);

initializeSex("A"); // Specifies modeling of an autosome

initializeMutationType("m1", 0.5, "g", -0.043, 0.23); //non-synonymous
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initializeMutationType("m2", 0.5, "f", 0.0); // synonymous

ml.mutationStackPolicy = "1";
m2.mutationStackPolicy = "1";

initializeGenomicElementType("gl", ml, 1); // positions 1 and 2
initializeGenomicElementType("g2", m2, 1); // positions 3

starts = repEach(seqlen(asInteger(round(Exomelength/3))) * 3, 2) +
rep(c(0,2), asInteger(round(Exomelength/3)));

end_pos = starts + rep(c(1,0), asInteger(round(Exomelength/3)));

types = rep(c(gl,g2), asInteger(round(length(starts)/2)));

initializeGenomicElement (types, starts, end_pos);

}

// Initialize the ancestral African population
1 { sim.addSubpop("pl", asInteger(round(7310.370867595234))); }

// End the burn-in period; expand the African population
73105 { pl.setSubpopulationSize(asInteger (round(14474.54608753566))); 1}

// Split Eurasians (p2) from Africans (pl) and set up migration
76968 {

sim.addSubpopSplit("p2", asInteger (round(1861.288190027689)), pl);
pl.setMigrationRates(c(p2), c(15.24422112e-5));
p2.setMigrationRates(c(pl), c(15.24422112e-5));

}

// Split p2 into European (p2) and East Asian (p3); resize; migration
78084 {

sim.addSubpopSplit("p3", asInteger (round(553.8181989)), p2);
p2.setSubpopulationSize(asInteger (round(1032.1046957333444)));
pl.setMigrationRates(c(p2, p3), c(2.54332678e-5, 0.7770583877e-5));
p2.setMigrationRates(c(pl, p3), c(2.54332678e-5, 3.115817913e-5));
p3.setMigrationRates(c(pl, p2), c(0.7770583877e-5, 3.115817913e-5));
}

// Set up exponential growth in Europe (p2) and East Asia (p3)
78084:79012{

t = sim.generation - 78084;

p2_size = round(1032.1046957333444 * (1 + 0.003784324268)"t);
p3_size = round(553.8181989 * (1 + 0.004780219543)"t);
p2.setSubpopulationSize(asInteger(p2_size));
p3.setSubpopulationSize(asInteger(p3_size));

}

// Create the admixed population

79012 early(){

sim.addSubpop("p4", 30000); //This new subpopulation is created with 30000 new empty individuals
p4.setMigrationRates(c(pl, p2, p3), c(0.1666667, 0.3333333, 0.5));

}



//After this early() event, SLiM will generate offspring, and the empty individuals in p4 will be
// discarded and replaced by migrant offspring from pl, p2 and p3 as requested.

79012 late(){

p4.setMigrationRates(c(pl, p2, p3), c(0, 0, 0));

}

// Set up exponential growth in admixture (p4)
79012:79024 {

t = sim.generation - 79012;

p4_new_size = round(30000 * (1 + 0.05)7t);
p4.setSubpopulationSize(asInteger (p4_new_size));
}

// Output and terminate

79024 late() {

p4.individuals.genomes.output ( "~/SLiM_output.txt");
}

Before the simulation starts, we need to initialize the mutation rate, recombination rate, genomic structure
and so forth as the simulation parameters (Haller et al. 2019). We read the recombination map into SLiM
using the readFile() function. Inside this function, we supply the path to our recombination map text file.
Then we create three null vectors named Rrates, Mrates and ends to save the recombination rates, mutation
rates and end positions of each exon in our recombination map, respectively.

Next, we use a for-loop to move along the genome, reading each line of the recombination map and:

« save the recombination rate, mutation rate and end position of each genomic segment,

e initialize the recombination rate for each genomic segment with the initializeRecombinationRate ()
function, by specifying the rate and the end position of the genomic segment,

e initialize the mutation rate for each genomic segment with the initializeMutationRate() function,

e specify that the genomic segment belongs to an autosomal chromosome with the initializeSex ()
function,

o specify the mutation type for each genomic segment with the initializeMutationType() function
(see below),

« specify the mutation stacking policy for each genomic segment with the mutationStackPolicy command
(see below),

o specify the type for each genomic segment with the initializeGenomicElementType() function (see
below).

In exons, the last base-pair position in a three base-pair codon (coding for an amino acid in a protein)
is a synonymous site. Synonymous sites are viewed as selectively neutral in comparison to the first two
base-pair positions in a codon, which are non-synonymous. Therefore, we simulate two types of mutations:
synonymous and non-synonymous. The initializeMutationType(“ml,” 0.5, “g,” -0.043, 0.23) callback in
the for-loop explains all the parameters that are held by the “m1” mutation type. We use “m1” to represent
the non-synonymous mutations. These non-synonymous mutations have a dominance coefficient of 0.5 and
the selection coefficient is generated from a gamma distribution with mean -0.043 and shape parameter is
0.23 (Harris and Nielsen 2016). We initialize the synonymous mutations separately with another call to the
initializeMutationType() function. In initializeMutationType(“m2,” 0.5, “f,” 0.0) callback, the “m2”
mutation type represents the synonymous mutations and they have a fixed selection coefficient denoted by “f.”
The selection coefficient of this type of mutation is always 0, as seen in the fourth argument of the function.
The dominance coefficient in the second argument of the function is 0.5.

In SLiM (as in biology), the individuals rather than the mutations are under selection. Selection acts on the
individual, through their fitness value. The fitness value of an individual is calculated from the fitness effects
of all the mutations carried by that individual (based upon their selection coefficient, dominance coefficient,



and heterozygous/homozygous state). All the fitness effects are multiplied together to produce the individual
fitness. The individual fitness value then affects selection. Specifically, in the default Wright-Fisher (WF)
model of SLiM (which we use), lower fitness means a lower probability of mating. As a result, deleterious
mutations tend to decrease in frequency and beneficial mutations tend to increase in frequency.

SLiM allows for recurrent mutations at a given base position on a given sequence (Haller et al. 2019). By
default, SLiM “stacks” any mutations that occur in the same location as pre-existing mutations on a given
sequence. This default behaviour of “mutation stacking” (“s” for stacked), is changed to “1” (last) with
the command m1.mutationStackPolicy = "1", so that new mutations occurring in the same location as
pre-existing mutations on a given sequence replace the pre-existing mutations.

The next initialization task is to create the chromosome structure. In SLiM we can model different genomic
structures in the chromosomes. We consider exons only, which have two genomic element types: one
for non-synonymous sites (base positions 1 and 2 of a codon) and the other for synonymous sites (base
position 3 of a codon). These genomic element types are called “gl” and “g2” and alternate as gl, g2,
gl, g2, gl, etc. along the exome until the end position of a chromosome is reached. The first genomic-
element type corresponds to non-synonymous sites, is initialized as “m1” and could have mutations with
selection coefficients that come from the negative gamma distribution. The second genomic element type
corresponds to the synonymous sites, is initialized as “m2” and could have neutral mutations. We use the
initializeGenomicElementType () function to specify these two genomic elements and our exome structure.
For example, initializeGenomicElementType("gl", ml, 1) specifies that genomic element type “gl” is
defined as using mutation type “m1” for all of its mutations. The second genomic element type “g2” is defined
as using mutation type “m2” for all its mutations. Then we create the alternating start and end positions
of the “gl” and “g2” genomic elements along the exome. Finally, we initialize the two genomic elements
“gl” and “g2” with initializeGenomicElement (), supplying their starting and ending positions along the
exome.

After the initialize() callbacks end, we run our simulation under the Out-of-Africa model described in the
SLiM manual (Haller et al. 2019), with exact parameter estimates from Gravel et al. (2011). In the first
generation, the African ancestral population, labelled “p1,” is created with the function sim.addSubpop() and
initial effective population size of 7310 individuals. Haller et al. (2019) start the model at 79024 generations
back from the present (gbp) and set it to be generation 0 in the forwards simulation. The simulation then
takes 10*African ancestral population size generations as the neutral burn-in time (Haller et al. 2019).
At generation 73105 in the simulation (5919 gbp), the ancestral population, “pl,” increases in effective size
from ~ 7310 to ~ 14474 individuals. Subsequently, at generation 76968 of the simulation (2056 gbp), the
African ancestral population, “pl,” splits into the Eurasian ancestral sub-population, “p2,” and migration
starts between these two sub-populations. The command pl.setMigrationRates sets the migration rate
from the African to the Eurasian ancestral sub-population, while p2.setMigrationRates sets the migration
rate from the Eurasian ancestral to the African sub-population. Then at 78084 generations in the simulation
(940 gbp), the “p2” Eurasian sub-population splits into European and Asian sub-populations. We create a
new sub-population,“p3,” to represent the Asian sub-population and let the Eurasian ancestral sub-population
become the European sub-population. After the Eurasian ancestral population becomes the Asian and
European sub-populations, we allow for migration between the African, Asian and European sub-populations,
setting the migration rates according to the literature. Then, starting from 78084 generations in the simulation
(940 gbp), we specify exponential growth in European (p2) and Asian (p3) sub-populations, until 79012
generations in the simulation (12 gbp). At 79012 generations (12 gbp), we create the American admixed
sub-population with an initial effective population size of 30000 individuals and set the migration rates
between the admixed and the other three sub-populations according to Browning et al. (2018). Once the
admixed sub-population is created, migration into and out of it is stopped and it grows exponentially at rate
5% per generation until the present at 79024 generations into the simulation. Finally in generation 79024 of
the simulation (the present) we terminate our SLiM simulation and collect the output.

We only consider the SLiM output for the American admixed sub-population. We extract the genomic se-
quences of all individuals in the admixed sub-population with the function p4.individuals.genomes.output ()
obtaining output formatted as follows:



#0OUT: 79024 GS 107752 /project /6007536 /epasiedn/SLiM /American__Admixture/SLiM__output.txt
Mutations:

7229 50171 m2 51287555 0 0.5 pl 5 60626 . ..

13218 484904 m2 39812003 0 0.5 pl 45 9536 ...

5202 762125 m2 36490340 0 0.5 p1 70 64099 ...

Genomes:

p*0A01234567891011...

p*:1 A 10605 1 2 3 10606 4 5 6 8 10607 10608 9 ...

p*:2 A 10605 1 2 4 15639 15640 6 10608 15641 15642 15643 15644
p*3 A 01219096 19097 4 6 19098 19099 9 10 19100

In the above output, the first line starts with “# OUT:” followed by the generation of the simulation (79024)
from which the output is obtained. Then “GS” tells us the data is formatted as “genomes SLiM format” and
this is followed by the number of haploid genomes (2* number of individuals). Finally, the full path where we
save the output is printed.

The second line of the output starts the mutation section. In the mutation section, each line represents a
mutation which is currently segregating in the population and the nine fields on a line represent the mutation
properties. The first field is the SLiM-generated identifier number which helps to identify the mutation easily
within the program. The second field is the mutation’s identification number. The third field represents
the type of the mutation. The fourth field is the base-pair position of the mutation on the chromosome.
The fifth and sixth fields represent selection and dominance coefficients, respectively. The seventh field is
the sub-population in which the mutation originated. The eighth field is the generation of the simulation
when the mutation arose. Finally, the ninth field represents the number of copies of the mutation in the
sub-population.

The last section in the output represents the genomes section. In the genome section, a line corresponds
to a haploid genome in the sub-population. For example, in the first line, “p*: 0,” means the 0th genome
of the sub-population . Then “A” represents autosome, the type of the genome. This is followed by the
SLiM-generated identification numbers of all the mutations carried by this haploid genome. Recall that the
SLiM-generated identification numbers are in the first field of the mutation section.

3.1 Simulation on Compute Canada Cluster

This SLiM simulation is highly memory intensive and not suitable for most personal computers. We therefore
use the Compute Canada cluster (http://www.computecanada.ca) as described next. First, we need to install
the SLiM software. The way we install the software is exactly the same as how we install the software on our
own computer. Use the SLiM manual guidelines for this task. After we install SLiM, we use a job scheduler
on the compute cluster to run our jobs. On the Compute Canada Cluster, the job scheduler is the Slurm
Workload Manager . Slurm helps to allocate resources and time, and provides methods to execute our
work. To run the SLiM script we write the following Slurm script, job_serial.sh:

#!1/bin/bash

#SBATCH --account=def-jgraham
#SBATCH --ntasks=1

#SBATCH --time=7-05:05:00
#SBATCH —--mem=64000M

module load StdEnv/2020 gcc/9.3.0 slim/3.4.0
slim SLiM_American_Admixture.slim

The content of job_serial.sh is described as follows.

o #SBATCH-account=def-jgraham specifies the account name. In this example, the account name is
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“def-jgraham.”

e #SBATCH-ntasks=1 defines the number of processors. We request 1 processor to run the program.

e #SBATCH-time=7-05:05:00 specifies the time limit for the job. To avoid the simulation being stopped
prematurely for running over the allocated time, we try to err on the side of allocating too much.

e #SBATCH-mem=640000M specifies memory required for our simulation. We request 64GB. Next, the
executable commands are aligned in the script file:

e module load StdEnv/2020 gcc/9.3.0 slim/3.4.0 loads the SLiM version we installed on the Cluster.

e slim SLiM_American_Admixture.slim calls SLiM to run the SLiM script, SLiM_American_Admixture.slim.

To submit the slurm script to the cluster, we type the following in our log-in node:

[epasiedn@gra-login2 American_Admixture]$ sbatch job_serial.sh

This SLiM simulation took approximately 3 days to complete on the Compute Canada cluster. The SLuRM
script allocated 64GB to run the simulation. Out of this 64GB, the job utilized 43.61GB. The output of this
SLiM simulation is saved as SLiM_output.txt and we use this file as one of the inputs for the third step of
our workflow. We will return to the SLiM_output.txt output in our third RMarkdown document.

3.2 Summary Statistics

We use R and the output in SLiM_output.txt to obtain summary statistics for the American admixed
population. We start by reading SLiM_output.txt into R.

library(SimRVSequences)

library(tidyverse)

## -- Attaching packages ---———————------—————————————————————— tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4

## v tibble 3.1.4 v dplyr 1.0.7

## v tidyr 1.1.3 v stringr 1.4.0

## v readr 2.0.1 v forcats 0.5.1

## -- Conflicts ———————————————————————m—— tidyverse_conflicts() --

## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

library (Matrix)

##
## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':
#i#
#H# expand, pack, unpack

library(data.table)

##
## Attaching package: 'data.table'

## The following objects are masked from 'package:dplyr':
##
## between, first, last

## The following object is masked from 'package:purrr':
#i#
## transpose

10



# Read the SLiM output text file to R
# Note: Change the path for the file as necessary.
exDat <- readLines("D:/SFU_Vault/SLiM_QOutput/SLiM_output.txt")

The file size of SLiM_output.txt is approximately 6 GB and takes approximately 1 minute to load into R
on a Windows OS with an i7-8550U @ 1.8GHz,16GB of RAM.

# Read the mutations and genomic sections in the output
MutHead <- which(exDat == "Mutations:")
GenHead <- which(exDat == "Genomes:")

# Get the population count in sequences
popCount <- as.numeric(unlist(strsplit(exDat[1],
split = " ", fixed = TRUE)) [4])

# Population count in individuals
popCount/2

## [1] 53876

The number of individuals in the simulated American admixed population is 53,876.

# Extract mutation data from SLiM's Mutation output
# only retaining the tempID, type, position,
# selection coeffictent and count of each mutation
MutOut <- do.call(rbind, strsplit(exDat[(MutHead + 1):(GenHead - 1)], split = " ", fixed = TRUE))
MutData <- data.frame(templID = as.numeric(MutOut[, 1]1),
type = MutOut[, 3],
position = as.numeric(MutOut[, 4]),
selCoef = as.numeric(MutOut[, 5]),
count = as.numeric(MutOut[, 9]),
stringsAsFactors = TRUE)

nrow(MutData)

## [1] 862243

The number of mutations segregating in the American admixed population is 862,243. We next examine
what percentage of these have derived allele frequency less than 1% in the population.

# Add 1 to temp ID so that we can easily associate mutations to columns.

# By default SLiM's first tempID is 0, not 1.

MutData$tempID <- MutData$tempID + 1

# First position in SLiM is 0, not 1

MutData$position <- MutData$position + 1

# Calculate the population derived allele frequency.

# Divide the allele count by the population size.
MutData$afreq <- MutData$count/(popCount)

# Get the percentage of SNVs whose allele frequency < 0.01
af_less <- which(MutData$afreq < 0.01)

af_less_per <- length(af_less)/ nrow(MutData)

af_less_per

## [1] 0.9426565
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Among the 862,243 mutations segregating in the simulated American-admixed population, approximately
94% have derived allele frequencies less than 1%. This is slightly less than the approximately 97% of
single-nucleotide variants observed to have alternate allele frequencies less than 1% in the TopMed study of
the American population (Taliun et al. 2021).

Next, we check the percentage of mutations that are singletons in the simulated American admixed population.

# Use the prevalence (the number of times that the mutation occurs in any genome)
# column in MutData dataframe to calculate the singleton percentage
singleton <- MutData %>%

count (count) %>%

mutate ( n/nrow(MutData) )

colnames(singleton) <- c("number_of_allele", "count", "proportion")
head(singleton)

##  number_of_allele count proportion

## 1 1 164624 0.19092530
## 2 2 64401 0.07469008
## 3 3 45210 0.05243301
## 4 4 33804 0.03920473
## 5 5 27019 0.03133571
## 6 6 22881 0.02653660

Among the 862,243 mutations, only 19% are singletons. By contrast, in the TopMed study, about half the
variants are singletons (Taliun et al. 2021). The following figure illustrates the allele frequency spectrum in
the simulated population.

# Plot the first 50 sites in the allele frequency spectrum
ggplot (singleton) +
geom_bar ( aes( as.factor (number_of_allele),
proportion),

"identity",
"dodge") +
xlab("Allele Count") +
ylab("Proportion") +
ylim(0, 0.3) +
scale_x_discrete( as.character(1:50))
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We believe that our simulated American-admixed population has fewer rare variants and singletons than
the TopMed population because it lacks TopMed’s variety of source populations. Our SLiM simulation has
only three source populations and we collect mutation data from only the American-admixed population.
By contrast, the TopMed study considers the entire American population consisting of many more source
populations as well as an admixed population. To investigate this hypothesis, we combined data from
all four populations in our SLiM simulation to see if the singleton percentage increased. Due to the high
computational cost, we simulated mutations for chromosomes 8 and 9 only. Combining all four populations,
the percentage of singletons increased from 19 to 26% of mutations. An additional RMarkdown document, for
supplementary material 1-B, discusses the commands to generate and summarize all the source populations
and check the proportions of singletons, after combining the four populations.
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