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Abstract— This article establishes the Exploration-RRT algo-
rithm: A novel general-purpose combined exploration and path
planning algorithm, based on a multi-goal Rapidly-Exploring
Random Trees (RRT) framework. Exploration-RRT (ERRT)
has been specifically designed for utilization in 3D exploration
missions, with partially or completely unknown and unstruc-
tured environments. The novel proposed ERRT is based on a
multi-objective optimization framework and it is able to take
under consideration the potential information gain, the distance
travelled, and the actuation costs, along trajectories to pseudo-
random goals, generated from considering the on-board sensor
model and the non-linear model of the utilized platform. In this
article, the algorithmic pipeline of the ERRT will be established
and the overall applicability and efficiency of the proposed
scheme will be presented on an application with an Unmanned
Aerial Vehicle (UAV) model, equipped with a 3D lidar, in a
simulated operating environment, with the goal of exploring a
completely unknown area as efficiently and quickly as possible.

I. INTRODUCTION AND BACKGROUND

The exploration and mapping of unknown and complex
structures has been always one of the main application
areas of autonomous robots [1], including the inspection of
large-scale infrastructures[2], search-and-rescue missions[3],
and subterranean exploration [4]. Specifically, the area of
subterranean environments, and in general harsh and GPS-
denied ones, has been in focus for autonomous exploration
missions with the utilization of autonomous robots. This area
has gained a lot of attention in the latest years, especially
due to the DARPA subterranean challenge[5], where teams of
robots are tasked to explore and identify artifacts in complex
and unstructured environments. Together with Simultaneous
Localization and Mapping (SLAM), the problem of path
planning and exploration behavior[6], [7] is one of the most
fundamental problems in such applications, which was the
main inspiration for this work as part of the NEBULA
autonomy developments[8].

Both path planning and exploration have been cornerstone
research areas in the field of robotics and have been massively
studied as for example in [9], [10], [11], [12]. At the
same time, it should be mentioned that there is a very
large range of solutions to the problem of total exploration
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Fig. 1: The ERRT concept. Multiple trajectories are calculated to pseudo-
random goals, and the lowest cost trajectory is chosen.

of unknown areas, including pattern-based solutions[13],
frontier[14] or entropy[15] approaches that have been also
extensively demonstrated. Occupancy-based path planning
(e.g. path planning that relies on a map of occupied and
free space) are fundamentally based either on applications of
Djikstra’s Algorithm[16], with modern examples including
improved versions of A∗[17] or Jump-point-search[18], or
on the Rapidly-Exploring Random Tree (RRT) algorithm
[19], that also has numerous moderns improved versions
[20][21] and is the core component of the proposed path
planner as well. The advantage of RRT is its computational
efficiency and the ease of adding functionalities[22] on top of
the central planning problem, while its downside is that for
limited iterations there is no guarantee of finding the shortest
path to the goal.

In many applications, the two problems of exploration and
planning are solved separately. In [23] a Deep Reinforcement
model selects optimal frontiers and an A∗ algorithm is
applied to find the shortest path. In [24] stochastic differential
equations are used for identifying optimal frontiers, while a
RRT∗ path planner computes the path.

Incorporating an exploration behavior into the central
planning problem is a research area that gained significant at-
tention lately, with multiple proposed solutions[25][26], where
the Next-Best-View planners[27] established the fundamental
concept. The flagship modern Next-Best-View planners have
seen multiple application scenarios as local path planners
[28][29] to name a few. The core concepts of Exploration-
RRT (ERRT) are in the same direction as Next-Best-View
planners, while its novelty comes from the difference in
the algorithmic implementation where ERRT is explicitly
solving and evaluating paths to pseudo-random goals versus
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an iterative evaluation of RRT-branches until a sufficiently
good branch is found. ERRT novelty is also supported from
the ability to compute the optimal actuation required to track
the generated trajectory, which is done via solving a receding
horizon NMPC problem. In the proposed method the NMPC
problem is solved by the Optimization Engine[30] an open-
source and very fast Rust-based optimization software.

II. CONTRIBUTIONS

This article proposes a novel solution to the combined path
planning and exploration problem, based on a minimum-
cost formulation problem with pseudo-random generated
goals combined with multi-path planning and evaluation.
The proposed method evaluates the model-based actuation
based on a nonlinear system model along each generated
trajectory, which, to the authors best knowledge, has never
been included in such a scheme before, together with the
information gain and the total distance. Additionally, ERRT
considers the full coverage of the unknown map, as long as
feasible frontiers or points-of-interest exist. We evaluate the
scheme specifically for an UAV platform with an added 3D
lidar sensor model, analysing the consistency and efficiency
of exploring a completely unknown subterranean-like area.
The algorithm is designed around a very general input-output
model that allows for the user to on-the-fly change the desired
goal and behavior of the planner.

III. METHODOLOGY

A. The Problem

The overarching goal of coupling the path planning and
exploration problem is considered in the proposed ERRT
framework as the minimization of three quantities namely:
The total distance of the 3D trajectory x, the actuation
required to track the trajectory, where u denotes a series
of control actions, and increasing the known space, here
considered as a negative cost associated with the information
gain ν ∈ R along trajectory x. These quantities result in the
following minimization:

Minimize Ja(u) + Jd(x) + Je(ν) (1)
subj. to:x ∈ Vfree

Je(ν) 6= 0

with Ja(u) denoting the actuation cost, Jd(x) the distance
cost, Je(ν) the exploration, or information-gain cost, which
should be non-zero to expand the known space, and Vfree ∈
Vmap denoting the obstacle-free space, with Vmap ∈ R3

as the 3D position-space encompassed by the current map
configuration. If solved completely, this would result in the
optimal trajectory for the exploration task, in a compromise
between quickly discovering more space, limiting actuation
based on a dynamic system model, and being lazy e.g. moving
as little as possible.

B. Proposed Solution

Towards this goal, ERRT proposes a solution composed
of four components: pseudo-random goal generation based
on a sensor model, a multi-goal RRT∗ planner, a receding
horizon optimization problem (Nonlinear MPC) to solve
for the optimal actuation along the trajectory, and finally
computing the total costs associated with each trajectory
and choosing the minimal-cost solution. An overview of
this process is found in Figure 2. Each component will be
explained in more detail in III-C. The process of generating
many goals, solving the path to each of them, and then
computing the total costs associated with each trajectory,
turns (1) from a true optimization problem into:

argmin(Ja(ui) + Jd(xi) + Je(νi))i, i = 1, . . . , ngoals (2)
where xi ∈ Vfree

that considers the finding of xmin ∈ Vfree that is the xi
trajectory having the lowest cost associated to it , and ngoal ∈
N is the overall number of path planner goals. This process
will converge towards approximating the complete problem
in (1), as we increase ngoal and optimize the trajectory-
generating algorithm (or simply by increasing the number of
iterations of the RRT∗), as more and more possible solutions
are being investigated.

C. The Algorithm

For the sake of notation, let us directly define desired
points to explore, or unknown voxels, as {U}, and a binary
3D grid map G where occupied voxels, {O} and unknown
voxels {U} are set to 1, and the resulting Vfree is set to 0.
Let us also define the measured vehicle state as x̂.

1) Goal Generation: The fundamental part of ERRT that
allows for the exploration behavior, is the generation of
pseudo-random goals ρr within Vmap. At each call to the
algorithm, ngoal goals are generated, under the conditions
of being inside the sensor range of at least one unknown
voxel U ∈ {U}. Other conditions are ρr ∈ Vfree, and the
straight path from ρr to the center of U being obstacle-free
(including being blocked by other unknown voxels). While
many works focus on onboard cameras [28] ERRT considers
an onboard 3D lidar, with the advantage in terms of mapping
being a 360 ◦ vision in the x-y plane and a long sensor range,
and with the drawback of a narrow field-of-view in z close
to the platform, thus making narrow 3D spaces a challenge.
A simplified sensor model of a 3D lidar is shown in Figure 3
assuming the lidar is placed flat on the platform, considering
only three parameters: the sensor range rs ∈ R, the field-of-
view θs ∈ R and ls ∈ R, describing the size of the sensor
array.
Assuming a randomly generated point ρr = [ρrx, ρ

r
y, ρ

r
z] ∈ R3

and a center-position of an unknown voxel U as pu =
[pux, p

u
y , p

u
z ] ∈ R3, we can evaluate, by assuming small

roll/pitch angles in the UAV case, if ρr is inside the space
seen by the sensor model if rs ≥

√
(ρrx − pux)2 + (ρry − puy )2

and | ρrz − puz |≤
√
(ρrx − pux)2 + (ρry − puy )2 tan( θs2 ) + ls

2 .



Fig. 2: Exploration-RRT framework and pipeline (left) and simulation architecture (right).

Fig. 3: Simplified sensor model of a 3D lidar. rs denotes the sensor range
and θs the field-of-view. ls denotes the size of the inner scanner array.

Algorithm 1: Goal generation
Inputs: G, {U}, ngoal, rs, θs, ls
Result: Generate random goals within sensor range
while i ≤ ngoal do

ρr = random_point
if not is_occupied then

for j = 0, nu do
if in_sensor_view then

if not collision_check then
ρr ← [ρr, ρr]
i++

Output: ρr

This results in Algorithm 1 where nu ∈ N denotes the number
of unknown voxels, and ρr ∈ Rngoal×3 is the list of random
goals. The result of this selection process is a list of candidate
goals that the multi-goal RRT∗ can be tasked to plan potential
paths to. In the evaluation of the algorithm we will set rs to
6 m, a very conservative choice as high-end 3D lidar can have
ranges of up to 100 m, but it is generally good to under-value
sensor ranges in mapping missions to guarantee detection hits.
Moreover, θs and ls are set to 32 ◦ and 0.1 m approximating
a Velodyne VLP16 Puck LITE.

2) Multi-goal RRT∗: While there are numerous RRT
implementations, ERRT uses a 3D RRT∗ structure. Random
points pr are generated within Vmap and added as an end point
Nend to extend the closest graph vertex Nclosest in a graph

network N , if pr ∈ Vfree and there is no collision/obstacles
between the pr and Nclosest. In RRT, this process continues
until the goal ρ is reached, generally as || ρ −Nend ||≤ d,
with d denoting some specified distance. In RRT∗ the process
is instead run for a pre-defined number of iterations, and the
shortest generated graph that reached the goal (by the goal
condition being satisfied), Ngoal ∈N is selected. The ERRT
addition to this baseline framework of RRT algorithms, is the
consideration of multiple goals, ρr provided by Algorithm 1.
This is quite effective in the RRT∗ framework, as the graphs
can be built as before, while only adding the evaluation of the
goal conditions for each ρr ∈ ρr, and after a specified number
of iterations extracting the shortest graphs to each goal, which
we can denote asNgoal ∈N . Of course, for a limited number
of iterations, there is no guarantee that a path can be found
to each goal, but running the algorithm with a sufficiently
high number of goals, the effect of discarding some goals is
reduced. ERRT also adds logical operations to remove some
unnecessary vertices in each selected graph, such as for each
Ngoal connecting ρr to the first collision-free vertex in Ngoal
and discarding the rest, and removing redundant vertices in
the graph. The resulting trajectories are interpolated to have
a specified distance between points. The output of the multi-
goal RRT∗ with some trajectory improvements is thus the
shortest computed trajectory to each discovered goal, xi, with
the non-discovered goals resulting in empty entries. As the
3D lidar field-of-view is not orientation-specific, the RRT∗

implementation considers the vehicle as a point-like object,
and includes only position states. However, in the ERRT
demonstration in Section IV, where an UAV model is used in
III-C.3, we consider the UAV as x = [p, v, φ, θ] where φ and
θ are the roll/pitch angles of the UAV, let us directly assume
trajectory x consists of entries as x = [px, py, pz, 0, 0, 0, 0, 0]
e.g. only the position-states of the trajectory are set.

3) Trajectory Actuation via NMPC: Many exploration-
planning frameworks are lacking a consideration of the
predicted actuation a vehicle will use, while following a
generated path. Minimizing actuation is a key component



in limiting the energy utilization, while providing easier-
to-follow (or more feasible) trajectories. Especially when
the ERRT is considered for an UAV case a lower-actuation
trajectory implies more stable flying behavior, which stresses
localization, mapping, or detection software less as there are
less rapid movements. Also, rovers or legged robots often
traverse slowly or need extra maneuvering to make tight turns
that is not at all included in the path selection if the predicted
model-based actuation along the path is not considered. In
short: only evaluating information gain and the length of
the trajectory (ex. [28]) in trajectory selection misses key
aspects that are more properly considered by also evaluating
the predicted actuation along the trajectory.

In general, there will be differences between the predicted
actuation and the real live actuation of the vehicle, but for
comparison any computation of information gain is similarly
just a gauge for the approximate information gain as there
is no way to know, for example, if more unknown voxels
are right behind the frontier and would also be discovered.
Similarly, solving a receding horizon NMPC problem where
the reference set-points along the prediction horizon are
the points in the generated trajectory, will result in the
optimal actuation based on the provided nonlinear dynamic
model of the system with added constraints, and provides an
approximation of the required actuation of the real vehicle
(or rather the minimal required actuation). The flexibility in
defining the NMPC cost function and constraints also allow
platform-specific penalties when computing the actuation cost
Ja(u).

The NMPC approach used in ERRT follows previous works
in the literature closely, while the same nonlinear UAV model
is used[31], [32], [30], with inputs as u = [T, θref , φref ]
being references in thrust, roll, and pitch angles, but with
a different application in this case. Thus, instead of solving
the NMPC problem, with a very short sampling time to
compute real-time control signals to a platform, we use
a longer sampling time, combined with the interpolation
length of trajectory xi, to match a desired predicted behavior
and velocity of the vehicle. Let us denote np ∈ N+ as the
prediction horizon, and k+ j|k the predicted time step k+ j
produced at time step k ∈ N+. Similarly let j ∈ N+ also
index the first np entries in the path x. As an example and
based on the UAV case, the cost function, to make each
predicted state reach the desired reference set as the entries
in trajectory x, and at each predicted time step, is:

Jnmpc(xp,k,uk, uk−1|k) =

N−1∑
j=0

(
‖xj − xp,k+j|k‖2Qx

State penalty

+ ‖uref − uk+j|k‖2Qu

Input penalty

+ ‖uk+j|k − uk+j−1|k‖2Q∆u

Input change penalty

)
(3)

where Qx, Qt ∈ R8×8, Qu, Q∆u ∈ R3×3 are positive definite
weight matrices for the states, inputs and input change
respectively, xp,k+j|k are the predicted states and uref is
the reference input, commonly set as a steady-state input of

the platform. Let us also define input constraints as umin ≤
uk+j|k ≤ umax. This leads to the following optimization
problem:

Minimize
uk,xp,k

Jnmpc(xp,k,uk, uk−1|k) (4a)

subj. to:xp,k+j+1|k=ζ(xp,k+j|k, uk+j|k), j∈N[0,np−1],

umin ≤ uk+j|k ≤ umax, j ∈ N[0,np−1],

xp,k|k = x̂k,

with ζ(xp,k+j|k, uk+j|k) defining the discrete state model of
the platform. The optimization problem is solved, for each
generated trajectory from the multi-goal RRT∗, to compute
ui with the Optimization Engine [30], following a single-
shooting approach. In the following evaluation we solve the
problem with np = 50. Since the actuation is solved as a
receding horizon problem, only np predicted time steps can
be considered and as such, we are solving for the actuation
u only for the np first entries in x. In the case where the
trajectory length is lower, the last entry is simply repeated.
How far into the trajectory this limit of only considering
np entries is, depends on the interpolation of xi and the
sampling time Ts of the NMPC. For the following evaluation
case we use a sampling time of 0.5 s and an interpolation
length 0.75 m, meaning that the desired platform’s velocity
to predict and optimize actuation for is 1.5 m

s . We should
also note that based on the optimal actuation vector u and
the initial measured state vector x̂, we can compute the
full-state dynamic trajectory xp up until the N :th entry,
although despite the NMPC trajectory reference tracking,
there is no guarantee that xp is obstacle-free until the obstacle
avoidance, based on the known map, is integrated into the
NMPC framework. As such, in the following evaluation, we
shall stick with a position-trajectory x to guarantee completely
obstacle-free paths and only use the NMPC module solution
to calculate the predicted actuation cost Ja(u) along the
trajectories, defined by the last two terms in 3, the input cost
and the input rate cost.

4) Cost Calculation: The final step of the ERRT algorithm
is to evaluate each computed path in accordance with (2). By
denoting the number of entries in xi as ni, the distance cost
of each trajectory is easily computed as the sum:

Jd(xi)i = Kd

ni∑
j=1

|| pi,j − pi,j−1 || . (5)

Based on the predicted actuation ui along the trajectory,
the actuation cost can be computed by feeding the actuation
vector back into the relevant parts of the NMPC cost function.
For the presented case it is

Ja(ui)i =

np∑
j=1

‖uref −ui,j‖2Qu
+ ‖ui,j −ui,j−1‖2Q∆u

(6)

with uref = [9.81, 0, 0], the input that describes no movement
for the UAV, with the thrust value of 9.81 compensating
for gravity. The total information gain ν is calculated by
evaluating the information gain, at each point in the trajectory,



as each unknown voxel within sensor view, and without
obstructed line-of-sight and removing any duplicates (voxels
seen at multiple points in the trajectory). For clarity the
process is seen in Algorithm 2.

Algorithm 2: Information Gain
Inputs: G, {U},xi, ngoal, rs, θs, ls
Result: Information gain along the trajectory xi
for j = 0, ni do

for k = 0, nu do
if in_sensor_view then

if not collision_check then
seen_unknown ← [seen_unknown,
Uk]

ν = length(remove_duplicates(seen_unknown))
Output: ν

Once ν is computed, as the total number of unknowns that
will be in sensor range by following xi, the exploration cost
is then computed as:

Je(ν) = −Kνν (7)

with Kν denoting a gain representing the relative
emphasis on maximizing the information gain. With
Ja(ui)i, Je(νi)i, Jd(xi)i calculated for i = 0, . . . ngoal (2)
can be evaluated and the xi related to the minimum-cost
solution and denoted by xmin is selected as the final result
of the algorithm.

5) ERRT input structure: The overall ERRT framework
has been implemented in ROS [33], with a custom message
including all input parameters to the algorithm, which are
summarized in Table I.

Occupied voxels {O}
Unknown voxels {U}
Vehicle state x̂
Number of goals ngoal
Sensor model parameters rs, θs, ls
Cost parameters Kd,Kν , Qu, Q∆u

RRT∗ iterations iter
Grid resolution gres

TABLE I: ERRT Initialization Parameters.

At every call to the algorithm the grid map G is initialized
based on point clouds of occupied and unknown voxels, and
the user is free to change resolution, size of the map, or any
other parameter at every call to the algorithm to meet the
desired mission specifications. After calculation is complete
the node publishes the computed trajectory. The very general
input model was one of the motivations for developing ERRT,
allowing for example high-resolution exploration of the local
area, and low-resolution computation of what area to explore
next, by the same planner with different inputs. The process
described in Section III can be summarized in Algorithm 3.

IV. RESULTS

The proposed method is evaluated in a simulated environ-
ment separated from other mapping or frontier-generating

Algorithm 3: The ERRT algorithm.
Inputs: G, {U}, ngoal, rs, θs, ls, x̂
Result: Minimum-cost trajectory xmin
ρr = generate_goals(G, {U}, ngoal, rs, θs, ls)
Ngoal = multigoal_rrt(ρr,G)
xi = trajectory_improvement(ρr,Ngoal,G)
ui = NMPC_module(xi, x̂)
(Ja, Jd, Je)i =

cost_calc({U},G,xi,ui,Kd,Kν , Qu, Q∆u)
xmin = path_selection((Ja, Jd, Je)i,xi)
Output: xmin

software, that considers a nonlinear dynamic UAV model with
added small magnitude localization noise, and a sensor model
that mimics the model described in III-C.1 with a 1 m longer
sensor range for a voxel to be considered discovered than
what is considered in the ERRT. The map is initialized with
the full space as undiscovered, except a small area around
the starting location, and as the center of a voxel comes into
sensor range, it is set either as free space or as occupied.
As the planner is ROS-integrated, the exploration process
can be easily visualized in Rviz[34]. It should be noted that
for the sake of visualization, the occupied voxels are always
depicted. A full-state reference tracking controller, tuned to
approximately match the desired predicted behavior as stated
in III-C.3, follows the generated path, until the goal is reached
and the path is recalculated.

The considered evaluation environment has been generated
to mimic a subterranean cave area with multiple rooms, a
larger void area, and several small hard-to-reach nooks and
passages, that encompasses a total of 27x27x4 m3, with a grid
size of 1 m. The ERRT algorithm was executed for a total of
twenty times in the simulated area, ten times with a greedy
tuning prioritizing information gain over minimizing distance
and actuation and a more conservative tuning with higher
costs on distance and actuation as compared to information-
gain. Figures 7 and 8 present time sampled images through
the evolution of the mission from one of the greedy runs,
displaying all the generated paths at critical times during the
simulation. We evaluate the simulations in terms of the total
distance travelled, and the time required to complete the task,
considering both at 90% of voxels discovered as a gauge for
the effective volumetric gain, and at full completion.

The results for the greedy tuning can be found in Figure
4 and for the conservative in Figure 5. As it can be
observed, a majority of the exploration time is devoted to
cleaning up voxels that were ignored along the way due to
maximizing the information gain, and exploring the final
hard to reach areas to achieve complete coverage of the
area. In Figure 6 the volumetric gain (or information gain)
from one of the runs is depicted, which also represents
the behavior of maximizing the total explored volume as
quickly as possible. Both configurations show very consistent
results over multiple executions, despite the very different
behavior for each tuning, with the greedy tuning over-all



Fig. 4: Exploration time and total distance travelled for the greedy tuning
of Exploration-RRT.

Fig. 5: Exploration time and total distance travelled for the conservative
tuning of Exploration-RRT.

performing better. This is naturally the case in a completely
unknown area, as maximizing the information gain is of
paramount importance and the exploration missions are
often time-constrained by the platform that further promotes
the greedy behavior. The average translation speed of the
platform was 1.2 m/s, controlled by the interpolation of
the trajectories, and the tuning of the reference tracking
controller, while mimicking the slower pace of a fully
autonomous UAV in a subterranean field application. A
video compilation of different exploration executions in
the evaluation environment can be found here: https:
//drive.google.com/file/d/1v3vg3Z9iB2DR-Oec3MxWUg_
39d3lIj1F/view?usp=sharing.

The ERRT algorithm was running 1500 RRT∗ iterations
and the ngoal was set to 40, which resulted in solver times
of 0.3-0.9 s, averaging at 0.6 s, of which around 0.1 s was
consumed by the NMPC module (around 2.5 ms per goal).
Although the framework is set up as to optimize over the
full trajectory, it needs to be speed up to enable an online

Fig. 6: Volumetric Gain from one of the greedy runs.

implementation where trajectories are recalculated at each
execution step, mainly related to the multi-goal RRT∗.

V. FUTURE WORK

From the algorithmic perspective, there are two main
directions of future work: speeding up the core multi-
goal RRT∗ framework which would expand the planner’s
application areas, and adding integrated collision avoidance
that considers the size-radius of the platform both in terms
of obstacle enlargement in the main RRT∗ planner and in
the NMPC optimization problem to be able to guarantee
the actuator-based paths xp are completely obstacle free.
Another interesting direction is adding negative costs related
to moving through areas with well-defined features, which
are commonly tracked by SLAM software [35], as doing so
could improve localization accuracy. This would allow the
planner to also consider the localization cost, and can be
implemented into the framework in a very straight-forward
way assuming that the locations of such features is provided
by the SLAM software. From the implementation perspective
we aim to release the framework as an open-source ROS
package, and evaluate it with mapping, frontier-generation,
and reactive obstacle avoidance software in the loop.

VI. CONCLUSIONS

This paper has presented a novel algorithm for combined
exploration and path planning behavior towards the goal of
considering the path planning and information-gain (explo-
ration) as a coupled problem. In the selected initial evaluation
environment, the algorithm quickly and efficiently explored
all unknown areas of the map, showing a consistent behavior
over multiple exploration runs and without failure to complete
the task of complete coverage.
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