Knowledge Graph Embedding with PyKEEN in 2022

Dr. Charles Tapley Hoyt <u>Octhoyt</u> <u>Octhoyt</u> <u>https://cthoyt.com</u> Postdoctoral Research Fellow Laboratory of Systems Pharmacology Harvard Medical School

Presented May 6th, 2022 Knowledge Graph Conference (KGC) 2022 <u>https://bit.ly/pykeen-kgc2022</u> / <u>https://doi.org/10.5281/zenodo.6461152</u> These slides are licensed under CC BY 4.0

C https://github.com/pykeen

\$ pip install pykeen

Mehdi Ali Ph.D. Candidate at the University of Bonn and Fraunhofer IAIS

Charles Tapley Hoyt, Ph.D. Postdoctoral Research Fellow at Harvard Medical School

Max Berrendorf, Ph.D. Researcher at LMU Munich

Sahand Sharifzadeh Ph.D. candidate at LMU Munich

Michael Galkin, Ph.D. Postdoctoral Fellow at Mila and McGill University

Laurent Vermue, Ph.D. Researcher at the Technical University of Denmark

Advisors Contributors Image: Contributors <

Funding

Funding Body	Program	Grant
DARPA	Young Faculty Award (PI: Benjamin Gyori)	W911NF2010255
DARPA	Automating Scientific Knowledge Extraction (ASKE)	HR00111990009
German Federal Ministry of Education and Research (BMBF)	Maschinelles Lernen mit Wissensgraphen (MLWin)	01IS18050D
German Federal Ministry of Education and Research (BMBF)	Munich Center for Machine Learning (MCML)	01IS18036A
Innovation Fund Denmark (Innovationsfonden)	Danish Center for Big Data Analytics driven Innovation (DABAI)	Grand Solutions

Background

A *knowledge graph* is a set of entities, relations, and triples A **representation** is typically a vector representation for an entity or relation

Useful for *downstream tasks* like link prediction, clustering, entity alignment, question answering, dialogue

Where PyKEEN Started

Back in 2018, there was a huge variety of:

- Decoders/interaction functions (e.g., DistMult, TransE, ComplEx)
- Benchmarking datasets (e.g., FB15k-237, YAGO-310, etc.)
- Preprocessing workflows (e.g., adding inverse triples)
- Training procedures (e.g., OWA, sLCWA, LCWA, CWA)
- Evaluation procedures and metrics

What was missing:

- Ability to reproduce previous results
- Meaningful way to compare different formulations of KGE models
- A modular architecture
- Legible, reusable, extendable, sustainable code
- Documentation for newcomers
- A moment of introspection and philosophizing

PyKEEN has a modular architecture for KGEMs

7

PyKEEN is for Users

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
...)
>>> pipeline_result.save_to_directory('nations_transe')

Train your first model

```
from pykeen.nn.modules import Interaction
```

class TransEInteraction(Interaction): def forward(self, h, r, t): return -(h + r - t).norm(p=2, dim=-1)

Implement your own model

Optimize your first model

>>> from pykeen.pipeline import pipeline
>>> # Run the pipeline
>>> pipeline_result = pipeline(dataset='Nations', model='RotatE')
>>> model = pipeline_result.model
>>> # Predict tails
>>> predicted_tails_df = model.get_tail_prediction_df('brazil', 'intergovorgs')

Predict new links

Interaction Functions (42)

- NodePiece
- InductiveNodePiece
- TuckER
- HolE
- QuatE
- FixedModel
- RotatE
- DistMultLiteral
- BoxE
- TransR
- ERMLP
- CrossE
- TransF

- ConvE
- NTN
- ComplExLiteral
- ERMLPE
- InductiveNodePieceGNN
- PairRE
- CompGCN
- CP
- KG2E
- UM
- TorusE
- ProjE
- TransE

- DistMult
- DistMA
- RESCAL
- SE
- ConvKB
- TransH
- MuRE
- AutoSF
- TransD
- DistMultLiteralGated
- SimplE
- RGCN
- ComplEx

Datasets (33)

- CSKG
- Countries
- ConceptNet
- Kinships
- OpenBioLinkLQ
- CoDExMedium
- Nations
- WK3l15k
- WD50KT
- CoDExSmall
- PharmKG
- Hetionet

- DB100K
- FB15k
- WN18RR
- OpenEA
- DBpedia50
- WK3I120k
- OGBBioKG
- PharmKG8k
- AristoV4
- CoDExLarge
- NationsLiteral
- YAGO310

- WN18
- UMLS
- BioKG
- OGBWikiKG2
- CKG
- Wikidata5M
- FB15k237
- DRKG
- CN3I
- OpenBioLink

PyKEEN Benchmark (2020)

Results

- SOTA can usually be achieved with arbitrary additional HPO
- RotatE was consistently the best performing model
- sLCWA + inverse relations is the best training paradigm
- CEL and MRL underperforming, NSSAL is usually the best
- Less complicated models can still perform
 well
- Old models can outcompete previous SOTA

New Questions

- When should we stop optimizing?
- Can we trust metrics?
- Are we really making fair evaluations?
- Are bigger, slower models really better?
- How much ablation is necessary given insight as to some obvious best pairs?

FB15k-237 Results

- New models proposed frequently, squeezing minimal gains on standard metrics
- New tools like batch normalization and improved optimizers lead to SOTA results.
- E.g., WN18-RR, TransE, 56.98% Hits@10

Bigger, more complex models aren't even necessarily better.

Reported in: Ali, M., et al. (2020). Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. http://arxiv.org/abs/2006.13365

Adoption

Pharmaceutical Industry - AstraZeneca

- Core business of pharmaceutical is to identify safe, active modulators of disease
- Bonner *et al.* applied link prediction to biomedical knowledge graphs
 - Chemogenomics between chemical and protein
 - Target identification between protein and disease
 - Drug repositioning between chemical and disease
- Reference: <u>http://arxiv.org/abs/2112.06567</u>

Academia (Highlights)

- Ontologies
 - <u>https://repository.kaust.edu.sa/handle/10754/6634</u> <u>30</u>
- Biomedicine
 - <u>https://doi.org/10.1093/bioinformatics/btaa274</u>
 - <u>https://openreview.net/forum?id=qI-IS8DPq_N</u>
- Precision and Personalized Medicine
 - https://doi.org/10.1093/bioinformatics/btab340
- Bibliometrics and Meta-research
 - https://arxiv.org/abs/1904.12211
 - <u>https://recnlp2019.github.io/papers/RecNLP2019</u>
 <u>paper_20.pdf</u>

- Bias Detection
 - o <u>https://arxiv.org/abs/2109.10697</u>
- Entity Typing
 - <u>https://dl.acm.org/doi/abs/10.1145/346021</u>
 <u>0.3493563</u>
- Industry 4.0
 - <u>https://link.springer.com/chapter/10.1007/9</u> 78-3-030-59051-2_12

Current and Future Directions

Graph Neural Networks

- PyKEEN implements two GNN-based KGE models: R-GCN and CompGCN
- Goal: more easily integrate components like RGCNConv in PyKEEN models
- **Goal:** better promote reusability of PyKEEN components

602	+ class PygRGCNLayer(Layer):
603	+ """An alternate implementation of the R-GCN layer using PyG."""
604	+
605	+ definit(
606	+ self,
607	+ input_dim: int,
608	+ num_relations: int,
609	+ output_dim: Optional[int] = None,
610	+ use_bias: bool = True,
611	+):
612	+ """Initialize the PyG convolution."""
613	+ from torch_geometric.nn import RGCNConv
614	+
615	+ super()init()
616	+ self.conv = RGCNConv(
617	+ in_channels=input_dim,
618	+ out_channels=output_dim,
619	+ num_relations=num_relations,
620	+ bias=use_bias,
621	+)
622	+
623	+ def reset_parameters(self): # noqa: D102
624	+ self.conv.reset_parameters()
625	+
626	+ def forward(
627	+ self,
628	+ x: torch.FloatTensor,
629	<pre>+ edge_index: Tuple[torch.LongTensor, torch.LongTensor],</pre>
630	+ edge_type: torch.LongTensor,
631	+): # noqa: D102
632	+ return self.conv(x, edge_index, edge_type)
633	+
634	+

Better Evaluation Metrics

Problem: Ranked-based metrics for link prediction on knowledge graphs are dataset-dependent

Solution: introduce additional affine statistical adjustments (like Bonferroni in statistics) inspired by Berrendorf, *et al.* (2020)

Adjustment by expectation and optimum

$$M^*(r_1,...,r_n) = \frac{M(r_1,...,r_n) - E[M]}{\max(M) - E[M]}$$

- adjusted mean rank index (AMRI)
- adjusted mean reciprocal rank index (AMRRI)
- adjusted geometric mean rank index (AGMRI)
- adjusted hits @ k index (AH@K)

Adjust by expectation and variance (z-score)

$$M^*(r_1,\ldots,r_n) = \frac{M(r_1,\ldots,r_n) - E[M]}{\sqrt{\operatorname{Var}[M]}}$$

- z-mean rank (zMR)
- z-mean reciprocal rank (zMRR)
- *z*-geometric mean rank (zGMR)
- z-hits @ k (zH@K)

Entity Alignment with KGE Models

Problem: we often need to integrate different KGs but not all entities have mappings

Solution: formalize as a link prediction task by concatenating KGs with a special **same as** relation between mapped entities (see <u>arxiv:1906.02390</u>, <u>arxiv:1911.08936</u>)

* caveat: specialized models often perform superior

Future: PyKEEN already packages most common EA benchmarking datasets for evaluation

Image from Zhu et al., 2017 https://www.ijcai.org/proceedings/2017/0595.pdf

Inductive Link Prediction and NodePiece

Problem: Previous knowledge graph embedding models could only be trained and applied in the *transductive* setting

Motivation: Want to apply KGEMs to entities outside of training graph => we need to move from *transductive* to *inductive* models

Inductive Link Prediction and NodePiece

NodePiece: moves beyond "shallow embeddings" and uses a combination of compositional strategies:

- Anchor or relation tokenization
- Degree, page rank, personal page rank searcher
- MLP, DeepSet, or arbitrary aggregator
- Inductive out-of-the-box any new node can be tokenized with a fixed-size vocabulary

Implementation: NodePiece is now available in PyKEEN along with a generalized training and evaluation workflow for inductive datasets

Inductive Link Prediction Challenge

More Problems:

- New models can train under inductive link prediction scenario
- Meaningful benchmarks (especially for biomedicine) aren't available

Solution: We implemented an algorithm for generating inductive link prediction benchmarks and made two based on Wikidata

Future: apply to biomedical knowledge graphs (e.g., using chemical similarity for induction)

Model	MRR	H@100	H@10	H@5	H@3	H@1	AMRI
InductiveNodePieceGNN	0.0705	0.374	0.1458	0.0990	0.0730	0.0319	0.682
InductiveNodePiece	0.0651	0.287	0.1246	0.0809	0.0542	0.0373	0.646

Baseline Results for Comparison

Language Models and KGE Models

- PyKEEN wraps P transformers (e.g., BERT) as representations for two tasks:
 - Improve a language model with explicit structured knowledge from a KG
 - Improve a KGE model with implicit unstructured knowledge in a language model
- Simple method for enabling inductive link prediction using entity labels
- See more: <u>https://pykeen.readthedocs.io/en/stable/t</u> <u>utorial/representations.html#label-based</u>

```
from pykeen.datasets import get_dataset
from pykeen.models import ERModel
from pykeen.nn.representation import (
    LabelBasedTransformerRepresentation.
from pykeen.pipeline import pipeline
dataset = get_dataset(dataset="Nations")
entity representations = LabelBasedTransformerRepresentation.from triples factory(
    triples factory=dataset.training,
result = pipeline(
    dataset=dataset.
    model=ERModel.
    model kwarqs=dict(
        interaction="ermlpe",
        interaction_kwargs=dict(
            embedding_dim=entity_representations.embedding_dim,
        ),
        entity representations=entity representations.
        relation representations kwargs=dict(
            shape=entity representations.shape,
        ),
    ),
    training kwargs=dict(
        num epochs=1,
    ),
```

Alternate KGEM Software

Wrapping Up

- Chat with us on the issue tracker for new features or support
- Join us! We can provide mentorship.
- Implement your next KGE model with PyKEEN
- Use PyKEEN in your downstream tasks

C https://github.com/pykeen

\$ pip install pykeen