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Background
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A knowledge graph is 
a set of entities, 

relations, and triples

A representation is typically a 
vector representation for an 

entity or relation

Useful for downstream tasks like link 
prediction, clustering, entity alignment, 

question answering, dialogue

Image from https://en.wikipedia.org/wiki/Knowledge_graph



Where PyKEEN Started
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Back in 2018, there was a huge variety of:

● Decoders/interaction functions (e.g., 
DistMult, TransE, ComplEx)

● Benchmarking datasets
(e.g., FB15k-237, YAGO-310, etc.)

● Preprocessing workflows
(e.g., adding inverse triples)

● Training procedures
(e.g., OWA, sLCWA, LCWA, CWA)

● Evaluation procedures and metrics

What was missing:

● Ability to reproduce previous results

● Meaningful way to compare different 
formulations of KGE models

● A modular architecture

● Legible, reusable, extendable, sustainable 
code

● Documentation for newcomers

● A moment of introspection and 
philosophizing



PyKEEN has a modular architecture for KGEMs
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Interaction Model

Loss Function

Entity Representation(s)

Relation Representation(s)

KGE Model

Inverse Modeling

Regularization

Training Loop

Negative Sampling

Evaluation Loop

Evaluation Metrics



PyKEEN is for Users
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Train your first model Optimize your first model

Implement your own model Predict new links



Interaction Functions (42)
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● NodePiece
● InductiveNodePiece
● TuckER
● HolE
● QuatE
● FixedModel
● RotatE
● DistMultLiteral
● BoxE
● TransR
● ERMLP
● CrossE
● TransF

● ConvE
● NTN
● ComplExLiteral
● ERMLPE
● InductiveNodePieceGNN
● PairRE
● CompGCN
● CP
● KG2E
● UM
● TorusE
● ProjE
● TransE

● DistMult
● DistMA
● RESCAL
● SE
● ConvKB
● TransH
● MuRE
● AutoSF
● TransD
● DistMultLiteralGated
● SimplE
● RGCN
● ComplEx



Datasets (33)

● CSKG
● Countries
● ConceptNet
● Kinships
● OpenBioLinkLQ
● CoDExMedium
● Nations
● WK3l15k
● WD50KT
● CoDExSmall
● PharmKG
● Hetionet

● DB100K
● FB15k
● WN18RR
● OpenEA
● DBpedia50
● WK3l120k
● OGBBioKG
● PharmKG8k
● AristoV4
● CoDExLarge
● NationsLiteral
● YAGO310
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● WN18
● UMLS
● BioKG
● OGBWikiKG2
● CKG
● Wikidata5M
● FB15k237
● DRKG
● CN3l
● OpenBioLink



PyKEEN Benchmark (2020)
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Code: https://github.com/pykeen/benchmarking, Paper: https://arxiv.org/abs/2006.13365

Results

● SOTA can usually be achieved with arbitrary 
additional HPO

● RotatE was consistently the best performing 
model

● sLCWA + inverse relations is the best training 
paradigm

● CEL and MRL underperforming, NSSAL is 
usually the best

● Less complicated models can still perform 
well

● Old models can outcompete previous SOTA

New Questions

● When should we stop optimizing?

● Can we trust metrics?

● Are we really making fair evaluations?

● Are bigger, slower models really better?

● How much ablation is necessary given 

insight as to some obvious best pairs?

https://github.com/pykeen/benchmarking
https://arxiv.org/abs/2006.13365


FB15k-237 Results

● New models proposed frequently, squeezing minimal gains on standard metrics
● New tools like batch normalization and improved optimizers lead to SOTA results.
● E.g., WN18-RR, TransE, 56.98% Hits@10
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Reported in: Ali, M., et al. (2020). Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. http://arxiv.org/abs/2006.13365 

http://arxiv.org/abs/2006.13365


Bigger, more complex 
models aren't even 
necessarily better.
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Reported in: Ali, M., et al. (2020). Bringing Light Into the Dark: A 

Large-scale Evaluation of Knowledge Graph Embedding 
Models Under a Unified Framework. 
http://arxiv.org/abs/2006.13365 

http://arxiv.org/abs/2006.13365


Adoption
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Pharmaceutical Industry -
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● Core business of pharmaceutical is to identify 
safe, active modulators of disease

● Bonner et al. applied link prediction to 
biomedical knowledge graphs

○ Chemogenomics - between chemical and protein
○ Target identification - between protein and disease
○ Drug repositioning - between chemical and disease

● Reference: http://arxiv.org/abs/2112.06567

Melanoma

Parkinson's Disease

http://arxiv.org/abs/2112.06567


Academia (Highlights)
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● Ontologies 

○ https://repository.kaust.edu.sa/handle/10754/6634
30

● Biomedicine

○ https://doi.org/10.1093/bioinformatics/btaa274
○ https://openreview.net/forum?id=qI-IS8DPq_N

● Precision and Personalized Medicine

○ https://doi.org/10.1093/bioinformatics/btab340

● Bibliometrics and Meta-research

○ https://arxiv.org/abs/1904.12211
○ https://recnlp2019.github.io/papers/RecNLP2019_

paper_20.pdf  

● Bias Detection

○ https://arxiv.org/abs/2109.10697  

● Entity Typing

○ https://dl.acm.org/doi/abs/10.1145/346021
0.3493563

● Industry 4.0

○ https://link.springer.com/chapter/10.1007/9
78-3-030-59051-2_12  

https://repository.kaust.edu.sa/handle/10754/663430
https://repository.kaust.edu.sa/handle/10754/663430
https://doi.org/10.1093/bioinformatics/btaa274
https://openreview.net/forum?id=qI-IS8DPq_N
https://doi.org/10.1093/bioinformatics/btab340
https://arxiv.org/abs/1904.12211
https://recnlp2019.github.io/papers/RecNLP2019_paper_20.pdf
https://recnlp2019.github.io/papers/RecNLP2019_paper_20.pdf
https://arxiv.org/abs/2109.10697
https://dl.acm.org/doi/abs/10.1145/3460210.3493563
https://dl.acm.org/doi/abs/10.1145/3460210.3493563
https://link.springer.com/chapter/10.1007/978-3-030-59051-2_12
https://link.springer.com/chapter/10.1007/978-3-030-59051-2_12


Current and Future Directions
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Graph Neural Networks

● PyKEEN implements two 
GNN-based KGE models: R-GCN 
and CompGCN

● Goal: more easily integrate 
components like RGCNConv in 
PyKEEN models

● Goal: better promote reusability of 
PyKEEN components
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Better Evaluation Metrics

Problem: Ranked-based metrics for link 
prediction on knowledge graphs are 
dataset-dependent

Solution: introduce additional affine statistical 
adjustments (like Bonferroni in statistics) 
inspired by Berrendorf, et al. (2020)
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Code: https://github.com/pykeen/ranking-metrics-manuscript, Pre-print: https://arxiv.org/abs/2203.07544 

Adjustment by expectation and optimum

● adjusted mean rank index (AMRI)
● adjusted mean reciprocal rank index (AMRRI)
● adjusted geometric mean rank index (AGMRI)
● adjusted hits @ k index (AH@K)

Adjust by expectation and variance (z-score)

● z-mean rank (zMR)
● z-mean reciprocal rank (zMRR)
● z-geometric mean rank (zGMR)
● z-hits @ k (zH@K)

https://github.com/pykeen/ranking-metrics-manuscript
https://arxiv.org/abs/2203.07544


Entity Alignment with KGE Models

Problem: we often need to integrate different 
KGs but not all entities have mappings

Solution: formalize as a link prediction task 
by concatenating KGs with a special same 
as relation between mapped entities (see 
arxiv:1906.02390 , arxiv:1911.08936)

* caveat: specialized models often perform 
superior

Future: PyKEEN already packages most 
common EA benchmarking datasets for 
evaluation
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Image from Zhu et al., 2017 
https://www.ijcai.org/proceedings/2017/0595.pdf

https://arxiv.org/abs/1906.02390
https://arxiv.org/abs/1911.08936


Inductive Link Prediction and NodePiece

Problem: Previous knowledge graph 
embedding models could only be 
trained and applied in the transductive 
setting

Motivation: Want to apply KGEMs to 
entities outside of training graph => we 
need to move from transductive to 
inductive models

21



Inductive Link Prediction and NodePiece

NodePiece: moves beyond "shallow 
embeddings" and uses a combination of 
compositional strategies:

● Anchor or relation tokenization
● Degree, page rank, personal page rank searcher
● MLP, DeepSet, or arbitrary aggregator

● Inductive out-of-the-box - any new node can be 
tokenized with a fixed-size vocabulary

Implementation: NodePiece is now available in 
PyKEEN along with a generalized training and 
evaluation workflow for inductive datasets

22
Paper: https://arxiv.org/abs/2106.12144 
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https://arxiv.org/abs/2106.12144


Inductive Link Prediction Challenge

More Problems:
● New models can train under inductive link prediction scenario
● Meaningful benchmarks (especially for biomedicine) aren't available

Solution: We implemented an algorithm for generating inductive link prediction benchmarks 
and made two based on Wikidata

Future: apply to biomedical knowledge graphs (e.g., using chemical similarity for induction)
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Baseline Results for Comparison

Code: https://github.com/pykeen/ilpc2022, Dataset: https://zenodo.org/record/6321299, Paper: https://arxiv.org/abs/2203.01520  

https://github.com/pykeen/ilpc2022
https://zenodo.org/record/6321299
https://arxiv.org/abs/2203.01520


Language Models and KGE Models

● PyKEEN wraps 🤗 transformers (e.g., 
BERT) as representations for two tasks:

○ Improve a language model with explicit 
structured knowledge from a KG

○ Improve a KGE model with implicit 
unstructured knowledge in a language 
model

● Simple method for enabling inductive link 
prediction using entity labels

● See more: 
https://pykeen.readthedocs.io/en/stable/t
utorial/representations.html#label-based
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https://pykeen.readthedocs.io/en/stable/tutorial/representations.html#label-based
https://pykeen.readthedocs.io/en/stable/tutorial/representations.html#label-based


Alternate KGEM Software
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See our awesome list: https://github.com/pykeen/kgem-software-review

Pykg2vec

OpenKE

https://github.com/pykeen/kgem-software-review


Wrapping Up

● Chat with us on the issue tracker for new 
features or support

● Join us! We can provide mentorship.

● Implement your next KGE model with 
PyKEEN

● Use PyKEEN in your downstream tasks

26
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$ pip install pykeen


