SHORT NOTES

Compounds of Antimony Trichloride with other Metal Chlorides in Non-aqueous Medium

Sarju Prasad and Narayani Prasad Singh

Although several compounds of antimony trichloride with other metal chlorides have been prepared in aqueous medium, practically no work has been done in organic solvents. By the interaction of KCl and SbCl₃ Miyake¹ obtained 2KCl.SbCl₃ and 7KCl. 3SbCl₃, though according to Jordis², the only true compound is the former one. CsCl and SbCl₃ react to furnish 2SbCl₃. 3CsCl³, CsSbCl₄*, 3CsCl. 2SbCl₃*, and SbCl₃. 6CsCl⁶. By the interaction of SbCl₃ and the respective metal chlorides Sauciuc⁷ prepared Zn(SbCl₆)₂. 5H₂O, 17CdCl₂. SbCl₃. 18H₂O, 17CoCl₂. SbCl₃.3H₂O and Bendict⁸, SbCl₃. CaCl₃.8H₂O. With PCl₅ and excess of SbCl₃ in CHCl₃ Kolditz⁹ obtained P₂Cl₁₀. 4SbCl₃. Saunders¹⁰ prepared SbCl₃. RbCl and Wheeler¹¹, 2SbCl₃. RbCl.H₂O.

The compounds reported have been prepared by different methods:

- (1) Chlorides of Li, Na, K, Ba, and Sr were suspended in acctone and those of NH₄, Ca, and Mg in ethyl acetate and SbCl₃ added, when these dissolved slowly. On addition of anhydrous benzene, the compounds were precipitated.
- (2) On adding ethanolic solutions of CuCl₂, CdCl₂, and ZnCl₂ to SbCl₃ in ethyl acetate, the compounds were precipitated.
- (3) On mixing the solutions of HgCl₂ and SbCl₃ in ethyl acetate and concentrating, the compound was obtained.
- (4) On adding excess of SbCl₃ to Hg₂Cl₂ in ethyl acetate and shaking for 48 hr., the compound was isolated.

In all the cases compounds formed were dried over fused CaCl₂ in a vacuum desiccator and analysed by standard methods. Li, Na, and K were found by difference.

All the compounds formed are colorless, except that obtained with CuCl₂ (which is greenish), insoluble in common organic solvents, but dissolve in mineral acids. All the compounds are fairly stable in dry atmosphere, but are decomposed by water.

- 1. J. Chem. Ind., Japan, 1924, 27, 735.
- 2. Ber., 1903, 36, 2539.
- 3. Ducloux, Mikrochem., 1924, 2, 108.
- 4. Bender and Bunde, J. Amer. Chem. Soc., 1950, 72, 2273.
- 5. Thormas, Ann. Chim., 1951, 6, 367.
- 6. Godeffroy, Arch. Pharm., 1822, 3, 12, 47.
- 7. Bull. Soc. Chim., Romania, 1931, 13, 23, 6; cf. Chem. Abs., 1931 25, 1177.
- 8. Proc. Amer. Acad., 1895, 36, 9.
- 9. Z. anorg. Chem., 1957, 289, 118.
- 10. Amer. Chem. J., 1892, 14, 162.
- 11. Z. anorg. Chem., 1894, 5, 253,

S. PRASAD AND N. P. SINGH

TABLE I
Compounds of antimony trichloride with metal chlorides.

No.	Other chlorides.	%Antimony.		%Chlorine.		%Other metals.		Probable for-
		Found.	Reqd.	Found.	\mathbf{Reqd} .	Found.	\mathbf{Reqd} .	mula.
ŀ.	Lithium	37.89	38.90	57.15	56.69	4.96	4.47	Li ₂ [SbCl ₅]
2.	Sodium	34.54	35.27	51.77	51.40	13.69	13.32	$Na_2[SbCl_5]$
3.	Potassium	31.57	32.36	47.01	47.16	21.42	20.72	$K_2[SbCl_5]$
4.	Ammonium	35.73	36.43	53.73	53.09	10.54	10.76	(NH ₄) ₂ [SbCl ₅]
5.	Calcium	36.17	35.88	52.97	52.31	11.26	11.78	Ca [SbCl _a]
6.	Barium	27.54	27.91	41.03	40.68	31.02	31.40	Ba [SbCl ₅]
7,	Strontium	31.69	31.48	46.72	45.87	22.11	22.62	Sr [SbCl _a]
8-	Magnosium	37.14	37.66	55.75	54.84	6.90	7.51	Mg [SbCl ₅]
9.	Cadmium	30.16	29.82	42.87	43.17	27.04	27.30	Cd [SbCl _a]
10.	Cupric	3 5.18	33.6 5	48.82	48.92	18.03	17.50	Cu [SbCl ₅]
11.	Mercurous	17.58	17.41	25.10	25.38	57.79	57.19	$Hg_2[SbCl_5]$
12.	Morcuric	25,07	24.30	34,47	35.54	39.59	40.05	Hg [SbCl ₅]
13.	Zinc	32.51	33.3 9	47.88	48.67	18,01	17.92	Zn [SbCl ₅]

Chlorides of Li, Na, K, Sr, and Ba, which are insoluble in acctone, and those of NH_4 , Ca, and Mg, which are insoluble in ethyl acctate, dissolve in presence of $SbCl_3$, showing compound formation. The results show that two molecules of the chloride of a monovalent and one of a divalent metal combine with one molecule of $SbCl_3$. The compounds formed may be represented as M_2 * $[SbCl_5]^{2-}$ and M^{2+} $[SbCl_5]^{2-}$.

The authors' sincere thanks are due to the authorities of the Banaras Hindu University for providing necessary facilities.

CHEMICAL LABORATORIES, BANABAS HINDU UNIVERSITY, VARANASI-5.

Received October 1, 1964.