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 Abstract: This study is focused on the mean characteristics derived from Sentinel-1 time series, on 
mountainous forest in Bulgaria, for a four year period of continuous observation. General aim is to demonstrate the 
utilization of resulted SAR observables in C-band by means of dual polarimetry, in mountainous disturbed forest, 
along the diversity of forest layer and local incidence angle. To study also statistical relationship between the SAR 
observables and forest parameters. The SAR observables consists of statistical mean values of both VH and VV 
backscatter intensities, and the dual-pol Radar Vegetation Index (dRVI). Three layers describing forest parameters 
are used as dependent variables, where - GlobBIomass-2010© and CCI-Biomass-2018©, freely provided by 
University of Jena (Lehrstuhl für Fernerkundung), and also Tree-Cover-Density-2015 in the scope of COPERNICUS 
Services. Time series processing is performed within the OS framework “PyroSAR”, developed there. Disturbed 
forest is considered, resulted from past Icethrow disaster event. Various RGBs are calculated, in order to distinguish 
particular backscatter behavior related to different conditions. Particular SAR responses are summarized for mean 
- dRVI, VH and VV, and used for supervised classification using SVM. Forest type and Forest/Non-forest masks 
are resulted from SVM-classifications, where highest accuracy achieved is 78%, whereas about forest masks 
highest accuracy is 91%. Additional SAR indices - such as dual-pol SAR Vegetation Index (dSVI) and Polarization 
Ratio (PR) are also calculated, showing non-significant contribution. Performed regression analysis shown that 
none significant correlation is observed between the SAR observables and biomass layers in mountainous forest. 
Nonetheless, high correlation exists between dRVI and local incidence angle, with R2 = 0.78. Therefore, the mean 
characteristics calculated from the Sentinel-1 C-band using time series approach, show good feasibility to study 
forest areas. This study was kindly supported by Prof. C. Schmullius, PhD F. Cremer, Dr. N. Salepci from FSU-
Jena, Lehrstuhl für Fernerkundung, in the framework of ERASMUS+ Programme. 
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 Резюме: Това изследване е фокусирано върху приложение на средни стойности на 
характеристики, получени от времева серия от радари със синтезирана апертура (SAR), от –  
Sentinel-1. Основната цел на настоящия доклад е да се демонстрира потенциалът на продължителните 
измервания в микровълнов канал „C“, за изследване на горски територии от различен тип в планински 
район. От средните стойности на обратното разсейване (VH и VV) е изчислен Радарния индекс на 
растителността – RVI, където в три-канална комбинация е изследван обратния отговор от различни 
видове обекти. Изчислени са и други два индекса – SVI и Polarization ratio, с цел да се провери техния 
принос в изследването. Основен проблем се явяват геометричните дефекти в радарното изображение. 
Извършени са неконтролируеми (ISO Cluster) и контролируеми (SVM) класификации, показвайки различна 
точност, като е изчислена и маска на горската растителност. От направения Principal Component 
Analysis са разпознати различни обекти отнесени към вида на гората и други класове земно покритие. 
От друга страна, в доклада се изследва статистическата сходимост между изчислените 
характеристики от Sentinel-1 и слоеве за състоянието на гората. Това са - GlobBIomass-2010© и CCI-
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Biomass-2018© предоставени от Университета в Йена, както и Tree-Cover-Density-2015© в рамките на 
COPERNICUS Services. Времевата серия е изчислена със софтуерни продукти на Университета в Йена. 
Проведения корелационен анализ не показва статистическа сходимост, между характеристиките от 
Sentinel-1 и слоевете биомаса. Въпреки това, се наблюдава корелация между dRVI и локалния ъгъл на 
падане, където R2 = 0.78. Направеното изследване показва голям потенциал за изследване на горски 
територии, чрез времева серия от Sentinel-1. Това изследване е подпомогнато с данни и софтуер от 
Университета в Йена (FSU-Jena), Lehrstuhl für Fernerkundung, в рамките на обмен по програма ЕРАЗЪМ+. 
 
 
 Introduction 

 Forests have been widely studied with SAR via variety of methods and techniques, which 
overcome a lot of imitations that frustrates optical approaches [1]. By means of e.m. properties of the 
backscattered chirp (e.g. polarization, intensity and phase), the bio-physical properties of the forest 
volume could be estimated [2, 3]. Forest parameters estimation, like the Above Ground Biomass (AGB) 
and forest stand Height via SAR measurements, are wavelength dependent [2, 4]. Assessed techniques 
comprises of scalar interferometry (InSAR) and vector interferometry (POLinSAR) that allows modelling 
of the backscattered signal throughout the forest volume [2, 5, 6]. Besides, measuring polarization states 
that constitutes of dual- or quad-pol, is of great importance in order to retrieve the geometric properties 
of the scattering media [7]. Dual polarization instruments that operates in C-band, like Sentinel-1 
constellation, are capable to achieve accurately to delineation of the land cover classes [8]. Nonetheless, 
assessing growing stocks via SAR signal could be limited, due to saturation problems as a function of 
the wavelength, from which point SAR intensities could not be related with the biomass [9]. A lot of 
limitations imposed by environmental issues (e.g. precipitation) could be overcome, when assessing 
SAR intensities approach via time series analysis [10]. Considering forests, time series analysis based 
solely on SAR intensities is promising to assess forest structure and to delineate broadleaf from 
coniferous types [11]. In that relation, the ESA Copernicus - Sentinel-1 dual-pol C-band SAR mission 
offers great perspectives such a forest studies, by means of time series analysis. Dedicated world 
biomass estimation projects by ESA in the face of GlobBiomass and CCI-Biomass with referent years 
of the AGB layers - 2010 and 2018 [11, 12], introduces good basement for biomass change detection. 
In spite of that uncertainties should be analyzed, related to the local specifics of the landscape and 
environment, or even disaster events like Icethrow. The COPERNICUS Services – Tree Cover Density 
(TCD-2015) layer brings also fruitful information to the forest condition estimation. 
 Bulgarian temperate forests have commonly been affected by abiotic disturbance events, such 
as Icethrow. Due to harsh conditions in the mountains in winter, such massive disaster event happened 
in the late of 2014, demolishing more than 5 000 Hectares [13]. That brings needs of studying Bulgarian 
mountainous forests via SAR methods, where time series analysis is of great potential. Currently, there 
are no such studies in Bulgarian literature, which to assess utilization of Sentinel-1’s time series in 
disturbed forest, especially on the North-West slope of Stara Planina Mountain. It is not studied also 
correlation of the C-band time series observables, with GlobBiomass and CCI-Biomass layers. 
 This study namely considers time series analysis application in Bulgarian temperate forest, 
resulted from for years of continuous observation, using Sentinel-1 SAR data. Resulted mean values of 
the backscatter intensities - VH and VV are used to calculate the dual-pol Radar Vegetation Index 
(dRVI). The dRVI have proven its potential in vegetation structure mapping, related with the optical NDVI 
[14]. In addition, the SAR vegetation index (dSVI) and Polarization ratio (PR) are also calculated. Two 
general approaches are followed, where in the first one thematically delineation of the land cover objects 
is pursued, via RGB combinations of dRVI-VH-VV, and Principal Component Analysis (PCA). Optical 
data is used for reference, comprising the VHR GoogleSatellite base map, and ancillary Sentinel-2 
imagery. Resulted are unsupervised and supervised classifications with forest type, and forest/non-
forest masks, where accuracy assessment is performed on those products in QGIS. The second 
approach tests statistical relationship between biomass layers provided from the University of Jena, 
Lehrstühl für Fernerkundung – GlobBiomass-2010 and CCI-Biomass-2018, with the Sentinel-1 mean 
observables from time series. Also, correlation is pursued with the local incidence angle and TCD-2015 
from Copernicus Services. The time series calculations from Sentinel-1 data are performed at the FSU-
JENA, Lerhstuhl für Fernerkundung, within ERASMUS+ exchange, with the kind support of Prof. C. 
Schmullius, Dr. N. Salepci and PhD F. Cremer. This study correlates with the Author’s PhD study. 
 
 Data used and test site 

 The Sentine-1 (S1) SAR C-band data were used for time series analysis, in dual polarimetry 
that constitutes of – VH and VV. The S1 data specification used are summarized in the following table. 
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Table 1. Sentinel-1A/B SAR data specification, used at test sites – TS20 and TS21 

 Time series begins with the first available GRD-SAR image from Sentinel-1A, with benefit of the 
highest possible 10 m spatial resolution, and firstly having 12-days of temporal resolution. Since October 
2016 the Sentinel-1B observations contribute to the time series, which improved the temporal resolution 
up to 6 days. Total period of continuous observation is four years. The SAR data is extracted via API-
Hub of the Open Access Data Hub, by using the software tool developed at the University of Jena – 
“esa_sentinel_api“, by Jonnas Erlebe and John Truckenbrodt. Preliminary analysis pointed out that 
Sentinel-1’s Relevant Orbit Number – 80 suits to the desired test area, which covers test sites – TS20 
and TS21, from the Author’s PhD. Projections used are - World WGS84 (4326), or UTM 34N (32634) 

 

Fig. 1. Test sites maps, of - TS20 in SFE "Mijur" and SFE "Chuprene", with forest disturbances patches from 10% 
up to 100% forest loss, from the past Icethrow event in 2014, are overlaid on the DEM slope map 

 The test sites - TS20 and TS21 are located near North-West slope of the Stara Planina Mountain 
massif, in the vicinity of the State Forest Entities (SFE) of “Mijur” and “Chuprene” respectively. Severe 
natural disaster - Icethrow happened in late December 2014 erasing whole stands, with damages up to 
100% at SFE “Mijur. The total affected area was about 50 000 Decares of century-old forest [11]. Test 
site maps of TS20 and TS21 are prepared using reference database for forest disturbances, according 
to the author’s PhD study, showing stands with damages from 10 to 100% (Fig. 1). Species distribution 
charts are elaborated according to the forest plans, where TS20 showed – 88.8% broadleaf forest, 
contrary to - 11.2% for coniferous one. About TS21, the broadleaf forest is – 72.4%, contrary to - 27.6 
for coniferous, thus TS21 shows more coniferous forest unlike TS20. In spite of that, many forest stands 
were with undetermined tree species in the forest plans, hence was marked out with “no data” (Fig. 2). 

 

Fig. 2. Tree species distribution on TS20 and TS21, represented in %. Significant percentage of forest stands are 
with tree species undetermined - e.g. "no data". The TS21 is much coniferous type, rather than TS20. 

 Reference biomass data is represented by layers - GlobBiomass-2010 and CCI-Biomass-2018, 
exclusively provided by Friedrich-Schiller-Universität - JENA, Institut für Geographie, Lehrstühl für 
Fernerkundung. Resolution cell of both raster datasets is 90 m, where the CCI-Biomass layer originally 

Orbit Descending  Product type GRDH 

Relative Orbit Number 80 Mean incidence angle 38 deg 

Resolution cell 10 m Azimuth / range looks 5 / 1 

Begin / End of acquisiton 23th Oct. 2014 / 17th May 2018 Polarization VH / VV 
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may have had coarser spatial resolution, in regard to the GlobBiomass one (Fig. 3). Auxiliary layer – 
Tree-Cover-Density – 2015 freely accessed from COPERNICUS Services is also incorporated, coming 
with spatial resolution of 20 m, in order to test its correlation with Sentinel-1 SAR observables.  

 

 
Fig. 3. Raster datasets representing AGB, exclusively provided by FSU-Jena (Lehrstuhl für Fernerkundung) - 

GlobBiomass-2010 and CCI-Biomass-2018, as well as Tree-Cover-Density-2015 from COPERNICUS Services.  

  
 Reference optical imagery used are the VHR GoogleSatellite© base map, and Sentinel-2 from 
6th Oct., 2018, with id: S2B_MSIL2A_20181006T092029_N0208_R093_T34TFP_20181006T142726. Whole 
bands are resampled, spatial resolution is 10 m. The RGB used is: B8 (842nm) – B5 (705nm) – B3 (560nm). 

 
 Methodology 
 

 The methodology is based on time series approach that aims direct interpretation of the mean 
values of Sentinel-1 GRD data, with benefit of dual polarization states of VH and VV. Methodology also 
aims utilization of the dual-pol Radar Vegetation Index (dRVI) in respect to diversity of the temperate 
mountainous forest; calculation is performed using the following formula [14]: 
 

(1)     𝑑𝑅𝑉𝐼 =  
4𝜎𝑣ℎ

0

𝜎𝑣𝑣
0 + 𝜎𝑣ℎ

0  

 

 General steps are: download of the Sentinel-1 GRD data, geocode and time series generation; 
calculation in Python of mean values from time series for - VH, VV and dRVI (formulating S1-mean-
characteristics of the mean backscatter); calculation of the additional - dSVI and Pol. Ratio are followed 
up. First approach in methodology considers thematic analysis in GIS with two RGBs – RGB-1  
(dRVI-VH-VV), RGB-2 (SVI-PR-dRVI) and Principal Component Analysis (PCA), where to analyze 
particular contribution of the characteristics; summary and classification of distinct land-cover type is 
made, referenced by VHR base map of GoogleSatellite© and Sentinel-2 satellite imagery. Forest/non-
forest masks, as well as forest type are resulted from the supervised classification, followed by accuracy 
assessment. Second approach tests statistical correlation, which models the local incidence angle, 
GlobBio, CCI, and TCD, versus the mean SAR-observables in C-band as independent variables (Fig.4).  
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Fig. 4. Workflow chart, representing general steps of the analysis 

 Results and Discussion 

 S1 - Time series elaboration  
Download of the Sentinel-1 GRD products is made via – “esa_sentinel_api” tool developed at 

the University of Jena, by J. Erlebe and J. Truckenbrodt in the framework of ESA project. Desired test 
site boundaries are applied, where download is performed via the ESA Copernicus Open-Access / API 
Hub. A total amount of 138 successfully downloaded scenes is achieved in “Descending” orbit from 158 
available ones at the Hub. The “missing data” or broken archives are especially in the beginning of the 
Sentinel-1A lifecycle, as seen on Fig. 5. After downloading, for each pixel the Ellipsoidal (E) radar cross 

section by means of gamma-nought (γ0) is calculated, from sigma nought (σ0) and incidence angle - 𝜃𝜄: 
 

(2)      𝛾𝐸
0 =

𝜎𝐸
0

𝑐𝑜𝑠𝜃𝜄
⁄  

 

A topographic normalization is used to derive terrain flattened intensities, based on the method 
proposed by D. Small [16], which is needed due to rugged terrain in the test areas. Whole of that is done 
during the geocoding of GRD-data, which is made in the framework of “pyroSAR” using the - SENTINEL-
API, by function - geocode(). The SENTINEL-API uses ESA SNAP implemented geocoding methods. 
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Fig. 5. Sentinel-1A/B available and successfully downloaded GRD data scenes that covers both test sites. From 

total amount of - 158, a 138 have been successfully downloaded and processed. 

The pyroSAR is a Python based extensive framework, which includes wide toolset and APIs for 
SAR imagery manipulation and processing, developed at the University of Jena (FSU-JENA), Institut für 
Geographie, Lehrstuhl für Fernerkundung [17]. At the geocoding, the highly scaled reference DEM – 
“TanDEM-X DEM12“© provided by DLR, is used, in the frame of “DEM Proposal”. Afterwards, a stack 
of geocoded data via “pyroSAR”, using – stack() is elaborated, for each polarization, using ENVI file 
container, with BSQ order in a 32-bit pixel depth. Thereafter the mean values from times series 

(𝛾𝑣𝑣
0̅̅ ̅̅ , 𝛾𝑣ℎ

0̅̅ ̅̅ , 𝑑𝑅𝑉𝐼̅̅ ̅̅ ̅̅ ̅ – S1-mean-characteristics) are calculated in Python, for both test sites – TS20/TS21 (Fig. 6). 

 

 
Fig. 6. Mean values from S1-time series, where from left to right are - 𝛾𝑣𝑣

0̅̅ ̅̅ , 𝛾𝑣ℎ
0̅̅ ̅̅ , and 𝑑𝑅𝑉𝐼̅̅ ̅̅ ̅̅ ̅, for TS20 and TS21 

 Statistics are calculated for each dataset, representing statistical distribution of the mean 
backscatter on different S1-characteristics, over the test areas of TS20 (SFE “Mijur”) and TS21 (SFE 
“Chuprene”) - Fig. 7.  
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Fig. 7. Statistics and histograms of the calculated S1-characteristics for TS20 and TS21, using Decibel scale 

 Statistics on Fig. 7, confirms lower mean of the cross-pols (𝛾𝑣ℎ
0̅̅ ̅̅ ) rather than the co-pols (𝛾𝑣𝑣

0̅̅ ̅̅ ), 

with more than 6 dB, due to volumetric backscatter. Histogram profiles of S1-characteristics doesn’t look 
very similar for both test sites, except the dRVI distributions. The only difference here is in the range of 
the values, where at the TS20, the dRVI show higher response. Also, notable is the standard deviation 
of the dRVI versus polarizations, which is one third of the VH and VV. Besides, the cross-pol for TS20 
shows little extremum near -17 dB. Reason for that as founded, belongs to the agricultural areas in the 
NE part of the scene. Maximums of both polarizations encompass backscatter from forest areas, where 
different histogram profiles of TS20 and TS21 are dedicated to the complexity of the landscape. 
 On the other hand, from the calculated mean values of S1-time series (Fig. 6) following is 
observed: 1) the speckle noise is missing; 2) relief affects differently the three S1-characteristics, where 

on the 𝛾𝑣𝑣
0̅̅ ̅̅  foreshortenings are more obvious (bright stripes), rather than the 𝛾𝑣ℎ

0̅̅ ̅̅ . This is because  

the - 𝛾𝑣ℎ
0̅̅ ̅̅  is more sensitive to the forest volume, despite the response from - 𝛾𝑣𝑣

0̅̅ ̅̅  that comes mainly from 

phase centers located in the crowns. That results to dark areas on 𝑑𝑅𝑉𝐼̅̅ ̅̅ ̅̅ ̅ in forest, corresponding to 
geometric distortions – foreshortenings. Those areas are related with low local incidence angles 
between target vector and the radar beam, below 29 deg. Therefore, dRVI seems to be very sensitive 
to the relief; 3) The dRVI “sinks” over forest area, but shows higher values over grassland, crops, water, 
and random over bare/urban areas. Specific interestingly, the dRVI shows lower values on South at 
TS21, over the Biosphere Reserve (BR) “Chuprene”, characterized with dense and lower height 
coniferous species. 

 Thematic analysis, by means of S1-mean-characteristics  
 First approach pursue utilization of the RGB-1: dRVI-VH-VV, which underlines well backscatter 
contribution in respect to the type of land cover objects (see, fig. 8). Discussed dependencies above are 
clearly observed on RGB1, over TS20 and TS21, where more peculiarities are recognized. As seen 
from Fig. 8, the dark-red regions belong to grassland, some crops and standing water body; dark-blue 
belongs to other crops and bare fields; in light-blue mainly foreshortenings are recognized. Forest is 
colored from bright-beige colors, through orange patches and ends up with bluish that’s belongs to the 
dense coniferous forest of BR “Chuprene” on TS21. Analysis shows that general reason for color 
changing in forest is dedicated to the dRVI. To track out those changes as eigen-based approach, a 
Principal Component Analysis (PCA) is calculated from the RGB-1. Herewith the PCA, forest structure 
is distinctly recognized, where wine-reddish and greenish regions give imprint amongst the rest of the 
pixels. Green areas are related to foreshortenings, while magenta colors reveal non-forest areas.  
 Those relations are tracked out in GIS by using the VHR optical base map of GoogleSatellite. 
The wine-red areas at the PCA-1 that shows up as dark-orange at RGB-1, resulted as a coniferous 
forest patches. Those areas exhibits high values in dRVI, above -2.5 dB, but mixed up with values over 
water and crops. That means that the dual-pol RVI brings up precious contribution, to differentiate forest 
type in C-band SAR! Overlaying the TCD-2015 (COPERNICUS) and CCI-Biomass-2018 (Uni-JENA) in 
GIS, showed high values of biomass (above 100 t/ha) and density (above 79%) within those dark-red 
patches that constitutes of coniferous forest (see, fig. 9). Whilst, analyzing the dense forest at the BR 
“Chuprene” (TS21) via the PCA-1 and biomass layers, showed high biomass (above 250 t/ha) on CCI-
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Biomass, and density above 92 %. As stated, the dRVI there shows low values over forest. To obtain 
more information on this particular forest, the Sentinel-2 L2A reference imagery was used, with date of 
acquisition – 2018-10-06. Analysis confirmed that this is coniferous forest type, but with rather different 
spectral signature from the rest of the coniferous forest. Therefore, additional sensitivity of the dRVI to 
particular coniferous species in high mountain is observed (refer to Fig. 9, and Table-2). 
 In other hand, none distinct color, or values combination of S1-mean-characteristics could be 
related to the disturbed forest patches. Interestingly, considering forest loss above 80%, the dRVI 
showed higher values, pointing out to fresh vegetation regrowth. Must be stated also that the dRVI solely 
could not differentiate forest from non-forest area! 

A)  
Fig. 8. The RGB-1: dRVI-VH-VV, for both test sites - TS20 and TS21, with good representation of the different 

land cover objects, based on backscatter response, due to sensitivity of the dRVI to vegetation 

 
Fig. 9. The PCA-1 for TS21, derived from RGB-1 with disturbed patches and BR "Chuprene" overlaid. On the 
right: rectangle area, representing: Up - dark-red patches of different forest type/structure that exhibits high 
biomass (CCI-Biomass); Down – BR “Chuprene” with different coniferous forest, on reference S2 and dRVI. 

 Samples of land cover objects with different peculiarity are summarized in a table, where the 
land cover type is confirmed by referring the GoogleSatellite© VHR and S2. Also, optical imagery of 
Sentinel-2 as second reference is used, within RGB of B8(842nm) – B5(705nm) – B3(560nm), see Table-2. 

Table 2. Samples of distinct land cover (LC) objects recognized on RGB-1, showing values of - 𝛾𝑣𝑣
0̅̅ ̅̅ , 𝛾𝑣ℎ

0̅̅ ̅̅ , and 

𝑑𝑅𝑉𝐼̅̅ ̅̅ ̅̅ ̅, referenced by GoogleSatellite© VHR base map, and Sentinel-2 in RGB combination of – B8 - B5 - B3.  

RGB-1 Google S2 - L2A 
Samples object in recognized 

Land Cover (LC) type 
𝒅𝑹𝑽𝑰̅̅ ̅̅ ̅̅ ̅ 
[dB] 

𝜸𝐯𝐡
𝟎̅̅ ̅̅̅ 

[dB] 

𝜸𝐯𝐯
𝟎̅̅ ̅̅   

[dB] 

   

Sample 1 – geometric distortions 
(foreshortennings) over 
mountainous broadleaf 
forest (collected from 
TS20) 

-4.163 -10.143 -3.898 

   

Sample 2 – agricultural fields, or 
kind of cultivated 
areas (collected from 
TS20) 

-5.065 -18.086 -9.028 

TS20, RGB-1: dRVI-VH-VV TS21, RGB-1: dRVI-VH-VV 

TS21, PCA: dRVI-VH-VV 

 

 

CCI PCA 

S2 dRVI BR „Chuprene“ 
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Sample 3 – standing water body 
(collected from TS20) 

-2.587 -23.653 -17.950 

   

Sample 4 – grassland / 
abandoned land, at 
open forest or non-
forest (collected from 
TS20) 

-3.451 -19.372 -13.275 

   

Sample 5 – coniferous forest 
type (collected from 
TS20) *winter VHR 
image of Google 
Satellite is used here. 

-1.602 -12.833 -8.926 

   

Sample 6 – broadleaf forest type 
(collected from TS20) 

-2.799 -13.690 -8.342 

   

Sample 7 – broadleaf 
mountainous forest 
on a slope (collected 
from TS21) 

-0.538 -10.673 -5.199 

   

Sample 8 – second coniferous 
forest type, in 
Biosphere Reserve 
„Chuprene” (TS21) 

-1.894 -14.002 -6.853 

   

Sample 9 – bare areas, rocks, 
radar shadows 
(collected from TS21) 

-4.048 -17.569 -7.951 

 From analysis above is obvious that the foreshortenings totally obstruct interpretation, because 
of higher sensitivity of the dRVI to geometric distortions. In fact, within certain interval of variations of 
the local incidence angle (IncGeo), the interpretation on slopes is possible; such an example is found 
on sample-7, where forest is a bit biased, but still interpretable. Other biased interpretation due to IncGeo 
is the top hill bare area with rocks and grass, on sample-9; because of the geometric distortions, firstly 
grassland is correctly interpreted in reddish, but due to increasing of the local incidence angle, its values 
become more alike to the agricultural ones, from sample-2. 
 From the recognized LC - objects above, training samples are elaborated in order to train 
Supervised classification, using Support Vector Machine – non-parametric machine learning algorithm. 
Total of eight LC – classes are formulated to classify objects based on the S1-mean-characteristics in 
RGB-1, approached differently in both test sites, represented on table-3. Zonal statistics and histograms 
are elaborated, about statistical distributions within training zone data, for each class. Largest standard 
deviation (STD) have classes – 1 (available only in TS21) and 2, in the reason of that they mostly 
describe geometric distortions, and also because those classes comprises mixture of land cover. 

Table 3. Zonal statistics with Standard deviation (STD) of S1-mean-characteristics within training zone data, of 
classes particular for each test site. *Grey columns does not belong to the particular classification. 

 STD for TS20 STD for TS21 

Formulated classes, of the training samples Mean-VH Mean-dRVI Mean-VH Mean-dRVI 

Class 1 - Radar shadows / Bare area     2.486 1.437 
Class 2 - Foreshortenings 1.225 0.332 1.568 0.444 
Class 3 - Grassland 0.922 0.336 0.823 0.324 
Class 4 - Crops 0.536 0.500 0.640 0.366 

Class 5 - Deciduous forest 0.742 0.247 0.938 0.246 

Class 6 - Coniferous forest 0.797 0.286 1.008 0.287 
Class 7 - Coniferous forest, at BR „Chuprene“     0.817 0.308 
Class 8 - Water 0.555 0.238     
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 The STD for Mean-dRVI in both cases is rather smaller than the mean-backscatter in VH. The 
STD is quite the same for both training classes – 5 and 6 comprising the deciduous and coniferous 
forests for both test areas and mean-characteristics, but also and the particular class-7 representing 
specific coniferous forest type. It should be stated, that the samples were collected over as most as 
possible homogenous conditions for conifer and deciduous forest (e.g. constant relief, small slope, 
density, etc.). Here, it was expected that standard deviation of both would defer in the expense of 
deciduous one, because conifer species are much homogenous, as refer to fig.2, especially for TS21. 
Nonetheless, rather the opposite is observed comparing STD of the cross-pol (Mean-VH), with largest 
difference at TS21 in amount of 0.070, in respect to 0.055 for TS20. The reason may be in the mixture 
of conifer species within the sample and resulting complex volumetric backscatter. The STD for Mean-
dRVI is almost equal for both test areas, pointing out for similar coniferous species at TS20 and TS21, 
as a component of the training samples. Here, considering class-7 containing specific conifer type, the 
STD for both S1-characteristics is rather higher than regular coniferous in class-6.  

Calculated histograms for coniferous training classes are in whole cases non-symmetrical, 
where for Mean-dRVI in TS20 histogram have strong negative skewness. Whilst, the specific conifer 
forest in BR “Chuprene” show positive skewness within the histogram. In spite of that, the deciduous 
class for both test sites are showing almost perfect symmetry. In other hand, sampled Crops showed 
smaller STD in Mean-VH rather than Grassland, pointing out to more distinct volumetric backscatter. 
However, the STD of Mean-dRVI is the highest at TS20 (because of the plenty of agricultural fields), 
and higher than Grassland. The Grassland sampled class-3 showed most symmetrical histograms, 
along high STD in Mean-VH. Highest STD is observed at class-1, because it encompass samples from 
bare area, urban and shrubs.  

Unsupervised classifications are also elaborated, based on ISO-Cluster, resulted with three 
particular classes dedicated to forest. Aim is to test differences in accuracy of the resulted classifications 
and related products. The supervised classifications using SVM approach are shown below, on Fig. 10. 

  
Fig. 10. Supervised classifications, using SVM with same number of classes; training samples are overlaid 

The class-2 with foreshortenings comprises much large area on TS21, due to higher relief 
roughness and incision. Related to that, because of the similarity in values between coniferous forest in 
BR „Chuprene” and forest in foreshortenings, class-7 comprises large amount of pixels and complement 
to class-2. That problem does not exists in TS20. Nonetheless, ambiguities persists in particular to the 
test site and thematic class respectively. Accuracy assessment is therefore performed in order to obtain 
the Error matrices, including overall accuracy together with the Cohen’s Kappa coefficient, used as a 
measure of agreement between two individual pixels [18]. Software used is QGIS with the Semi-
Automatic-Classification (SCP) plugin [19]. For the accuracy assessment of the supervised 
classifications, 15-random points per class are generated and furtherly validated by the VHR Google 
Satellite© and Bing World Imagery© base maps, facilitated by S2-reference imagery. Results from the 
Error matrices for both supervised classifications are summarized below, in Table-4. 

 
 
 
 

TS20 – „Mijur“ TS21 – „Chuprene“ 



71 
 

Table 4. Error matrices output summary for both supervised classifications, along thematic classes’ accuracy 

  
Classes 1 2 3 4 5 6 7 8 

Overall 
accuracy 

[%] 

Kappa 
hat 

classif. 

T
S

2
0
 PA [%]   94.79 79.99 100.0 89.46 100.0   100.0 

78.723 0.6475 UA [%]   80.0 70.0 80.0 100.0 50.0   100.0 

Kappa hat   0.78 0.65 0.78 1.00 0.48   1.00 

                        

T
S

2
1
 PA  [%] 9.31 96.21 33.00 100. 0 79.31 85.82 100.0   

68.897 0.5885 UA  [%] 70.00 80.0 70.0 10.0 100.0 70.0 30.0   

Kappa hat 0.68 0.79 0.63 0.10 1.00 0.66 0.24   
 

 As seen from table-4, the overall accuracy is higher for test site-TS20. The class-2 have very 
high Kappa-hat for both classifications, of which resulted very good delineation of foreshortenings. In 
other hand, the highest Kappa-hat is for deciduous forests. Errors for this class are observed in two 
directions – enlargement of the forest edge due to sparse forest areas and higher shrubs, and 
misclassification of urban areas that is specific for rural areas in Bulgaria, where houses are surrounded 
by lot of trees, especially for abandoned houses, which are very often picture unfortunately in the North-
West Bulgaria. Coniferous forest have lower accuracy in respect to deciduous forest, which is more 
prominent on TS20, because there coniferous types are much less. Moreover, the coniferous types here 
are mixed up with other forest. Besides, in TS21 conifer patches are more homogenous and better 
distinguishable. There is no doubt that water is best classified, because of the highest values in dRVI 
and lowest in cross-pols. In crops class, for TS21 accuracy is very low, due to very small agriculture 
areas, in respect to the TS20. The grassland class is well classified by means of S1-characteristics.  
 Comparing supervised with the unsupervised classifications, general conclusion is that 
coniferous forest could not be delineated and is misclassified as deciduous one. Besides, whole three 
classes depicts forest areas. In spite of that, better performance of unsupervised classification is 
observed, in delineation of the forest edge in sparse forest areas (Fig. 11). Also, errors on the supervised 
on TS20, related to misclassification of agricultural lands as a forest, at unsupervised they are relatively 
small. Sparse forest is better classified here, but mixed up with shrubs and grassland. Agricultural lands 
are very well classified on both classifications types. 
 Resulted products from supervised/unsupervised classifications are - Forest type maps, related 
to deciduous / coniferous forest types, and Forest/Non-Forest masks, shown below (Fig. 11). 
 

  
 

Fig. 11. Forest/Non-Forest masks derived from supervised classifications, where - left: TS20, right: TS21,  
over Google Satellite© VHR base map 

 
 Differences between forests masks approached via supervised or unsupervised classification 
are very small. Nonetheless accuracy assessment is approached also here, by generation of 60 points 
– 30 by 30 about forest/non-forest classes. Validation is performed again within QGIS environment, via 
SCP-plugin, incorporating Google Satellite© base map and Sentinel-2 optical imagery; see Table-5. 

 

 

TS20 – „Mijur“ TS21 – „Chuprene“ 
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Table 5. Error matrices summary of Forest/Non-Forest Masks, derived from Supervised and Unsupervised 
classifications 

 TS20 TS21 

 Supervised Unsupervised Supervised Unsupervised 

 

Non-
Forest 

Forest 
Non-
Forest 

Forest 
Non-
Forest 

Forest 
Non-
Forest 

Forest 

PA  [%] 74.83 95.38 82.33 93.56 63.53 97.62 100.00 81.35 

UA  [%] 86.93 90.22 86.78 91.16 87.34 91.21 61.18 100.00 

Kappa hat 0.816 0.664 0.800 0.739 0.841 0.571 0.498 1.000 

Overall accuracy [%]  89.39 89.75 90.63 85.59 

Kappa hat classif. 0.732 0.769 0.680 0.665 

 In overall, whole forest masks have very high accuracy, with high Kappa-hat classification value, 
showing strong similarity. Differences in accuracy between supervised and unsupervised approaches 
could be neglected. Highest accuracy is for Forest/Non-Forest mask in TS21 derived from supervised 
classification, where non-forest class has highest similarity by means of the Kappa-hat. Considering 
mask elaboration, foreshortenings touching forest at supervised classifications are incorporated, in order 
to fulfil holes in sloped forest. This is not wrong within current test areas, because mostly geometric 
distortions are located in mountainous forest areas, rather over bare sloped area. Nonetheless, errors 
are observed at TS21 in NE direction, where in the sake of misclassification within supervised approach, 
hills covered with shrubs that exhibits small incidence angles toward SAR antenna, are recognized as 
forest class-7 that is merged into deciduous and coniferous classes, in order to derive the output mask. 
In spite, interruptions within forest at both test sites, are due to misclassified forest as grassland or crops. 
In the forest masks by means of unsupervised approach, foreshortenings are not included because of 
ambiguities, in spite of that the forest edge is much better delineated (Fig. 12). 

 

Fig. 12. Comparison in details, between forest masks derived from supervised (left), and unsupervised 
classification (right), for TS21 in high mountains, near BR “Chuprene” and hut - Gorski Rai 

Additional SAR indices 
 Complementary SAR indices to the dRVI have been also calculated, based on their functional 
contribution to describe phenology of crops, mentioned in the literature [14]. Therefore, the dual-pol SAR 
Vegetation Index (dSVI) and Polarization ratio (Pol.R) are utilized in that study, where to test their 
functionality into forest status, using equation – 3: 
 

(3)       𝑃𝑜𝑙. 𝑟𝑎𝑡𝑖𝑜𝑐𝑟𝑜𝑠𝑠−𝑝𝑜𝑙 =  
𝛾𝑉𝐻

0

𝛾𝑉𝑉
0  ;  𝑆𝑉𝐼𝑑𝑢𝑎𝑙−𝑝𝑜𝑙 =  

𝛾𝑉𝐻
0 + 𝛾𝑉𝑉

0

𝛾𝑉𝑉
0  

 

 Based on the first approach RGB-2-combination is hereof calculated, based on: dRVI, dSVI и 

Pol.R, calculated from the S1-mean-characteristics - 𝛾𝑣𝑣
0̅̅ ̅̅ , and 𝛾𝑣ℎ

0̅̅ ̅̅ . The GIS analysis showed high 

correlation in between in the forest territory, with no difference with the dRVI. Thus, in forest high values 
(white patches) on dSVI and PR are related with coniferous type, whilst forest in BR “Chuprene” is again 
well delineated (dark grey). Histograms show symmetrical distribution, with small differences in standard 
deviation, which should be due to diversity in agriculture and forest type (Fig. 13).  
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Fig. 13. Common histograms for distribution of the mean values of - dRVI, dSVI and Pol.R., for both test sites 

 
 Main differences are observed over agricultural areas, where values of the indices differ in 
general. On the second PCA calculated from RGB-2, eigen values have almost constant difference in 
forest area, where: λ1 ≈ 1.5, λ2 ≈ 0.5, λ3 ≈ 0.7. Exceptional cases are over some urban pixels (in green 
and yellow), and some pixels with strong backscatter toward sensor (in yellow) in the mountain; the 
radar shadows/bare areas from class-1 (RGB-1) are also delineated (in green), see Fig. 14. In the first 
case where yellow pixels are observed, in urban and forest regions, we have - λ1 > λ2 ≈ λ3, where eigen 
are about: λ1 ≈ 3.3, λ2 ≈ 0.8, λ3 ≈ 0.7. In the second case, where green pixels are observed, in urban 
region and radar shadows, we have - λ1 ≤ λ2 < λ3, where: λ1 ≈ 3.2, λ2 ≈ 1.3, λ3 ≈ 0.7. 
 
 

 

Fig. 14. The RGB-2 (dSVI, PR, dRVI) for both test sites, derived from the - 𝛾𝑣𝑣
0̅̅ ̅̅ , and 𝛾𝑣ℎ

0̅̅ ̅̅ , and showing high 

correlation in between (greyish), with exception over agricultural areas and reservoir. The PCA-2 on the right, 
showing differences in urban and within the mountain. 

 
 Regression analysis 

 In the purpose to study the possible statistical relation between S1-mean-characteristics and 
environmental characteristics (e.g. biomass, relief) regression analysis is considered. Related to that, 
the following regression tests are performed, aiming different combinations of dependent (DV) versus 
independent variables (IV) – such as: 1 – IncGeo as DV-1, 2 – TCD as DV-2, 3 – GlobBio/CCI as  
DV-3; and aiming particular regions of interest – (1) in transect on TS20; (2) for whole scene on TS20/21.  

TS20, RGB-2: dSVI-PR-dRVI 

 

TS21, RGB-2: dSVI-PR-dRVI 

TS21, PCA-2 
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 Regression test – 1: Firstly, the observed correlation between local incidence angle (IncGeo) 
and radar vegetation index (dRVI), is taken into account to be statistically tested. For that a small region 
that constitutes of 51 resolution cells of 30 x 100 m, is located in the NW part of TS20 - “Transect-small”, 
having high terrain slope, constant incidence angle and aspect, whole with small variations. Statistical 
distributions and histograms are calculated in transect, followed by single OLS regression in ArcGIS; 
please, refer to Fig.15. Regression results proves the preliminary observed correlation, between local 
incidence angle and radar vegetation index with very high coefficient of determination (R2); see, table-
6, DV-1. Thereafter, regression over wider transect is performed that constitutes of 196 resolution cells 
of 50 x 50 m whole over the TS20, aiming regression with DV–1 and 2, where IncGeo and TCD-2015 
are considered as dependent variables (see, table-6). Regression result for DV–1 is again high, using 
multi-parametric regression, but with lower coefficient of determination, because of the larger area used 
that brings more outliers in statistical point of view. This also points to strong “non-linearity” of the data. 
Considering the DV–2 combination, shows non statistical correlation between TCD-2015 and SAR 
observables, by means of S1-mean-characteristics!  

Table 6. Regression results of DV-combinations 1 and 2, with single- and multiple-parametric regression OLS - 
with the highest correlation result, within the two transects, at TS20 

TS20 Transect – small Transect - big 

DV Equation tested R2 Equation tested R2 

1 𝐼𝑛𝑐𝐺𝑒𝑜 ~ 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛 0.7808 𝐼𝑛𝑐𝐺𝑒𝑜 ~ 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛 + 𝑉𝐻𝑚𝑒𝑎𝑛 0.6743 

2 - - 𝑇𝐶𝐷2015 
~ 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛 + 𝑉𝐻𝑚𝑒𝑎𝑛 + 𝑉𝑉𝑚𝑒𝑎𝑛 0.0724 

 Regression test – 2: For tracking out statistical relationships within whole test area another test 
is performed, using forest AOI only, determined by the condition:TCD-2015 > 10%. Full regression 

Fig. 15. Thematical map (left) with the two transects over COPERNICUS TCD-2015 base map. Sample 
maps (two, on the right) of the selected small transect, within quasi-homogenous environment, in terms 

of slope, aspect, and canopy density, in purpose of the regression test.  
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analysis is performed in that case, using whole DV – combinations mentioned above. Regression 
equations with the best coefficient of determination are published and analyzed. 
 Considering local incidence angle, because of the larger region, correlation between IncGeo vs. 
dRVI (DV-1) is quite lower but still exists (please, refer to table-7, DV-1/TS20). 
 Considering regression of TCD-2015 as dependent variable (DV–2), several equation 
combinations are approached testing also additional SAR indices and biomass layers as IV. Highest 
possible correlation in that case is achieved by incorporating the S1-mean-characteristics together with 
the both biomass layers, pointing out that there is correlative relationship between the tree density and 
AGB (table-7, DV–2.1/TS21). In spite of that, regression with GlobBiomass-2010 using same DV gives 
no statistical correlation, whilst regression with CCI-biomass-2018 interestingly shows some statistical 
relationship, with very low coefficient of determination (table-7, DV–2.3/TS21). Regarding dSVI, there is 
no correlation relationship between SAR indices and the tree density (table-7, DV–2.1/TS20).  
 Considering regression of the biomass layers, using delivered by the Uni-Jena, Lehrstuhl für 
Fernerkundung – GlobBiomass-2010 and CCI-Biomass-2018, the performed regression shows small 
differences in depend of the test site environmental conditions. Hence, considering GlobBiomass, better 

result is for TS20, by using cross-pol - 𝛾𝑣ℎ
0̅̅ ̅̅  (table-7, DV-3.1/TS20) in the equation, rather than - 𝛾𝑣𝑣

0̅̅ ̅̅  (table-

7, DV-3.2/TS20) at the multi-parametric regression, possibly because of the better sensitivity of the 

cross-pols to the forest volume. It is interesting, that the - 𝑑𝑅𝑉𝐼̅̅ ̅̅ ̅̅ ̅ improves regression result, rather than 
using equation based solely on both polarizations. In spite, the correlative relationship in between is 
very poor, and does not exists for TS21. For CCI-Biomass, also, considering TS20 a kind of correlative 
relationship exists rather than for TS21, where different IV are found to be valuable for the regression 
(table-7, DV-3.3/TS20 and TS21). Poorer regression result on behalf of CCI-Biomass than GlobBiomass 
is interesting, because reference period for CCI-Biomass matches the four years period of the  
Sentinel-1 - time-series. Nonetheless, could be said that correlative relation between biomass and SAR 
indices (e.g. dRVI, dSVI) does not exists, which is proved finally by regressing the GlobBiomass versus 
Polarization Ratio (table-7, DV-3.4/TS21), or by CCI-Biomass versus dual-pol SAR vegetation index 
(table-7, DV-3.5/TS21), despite result of Pol.Ratio is better than dSVI. 

Table 7. Highest correlation results from the regression with whole DV-combinations, including single- and 
multiple-parametric regression OLS, performed on both test sites 

 TS20 TS21 

DV Equation tested R2 Equation tested R2 

1 𝐼𝑛𝑐𝐺𝑒𝑜 ~ 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛 0.4709 - - 

2.1 𝑇𝐶𝐷 2015 ~  𝑑𝑆𝑉𝐼𝑚𝑒𝑎𝑛 0.0045 

𝑇𝐶𝐷 2015 ~  𝑉𝑉𝑚𝑒𝑎𝑛 + 𝑉𝐻𝑚𝑒𝑎𝑛

+ 𝐶𝐶𝐼_𝐵𝑖𝑜𝑚𝑎𝑠𝑠2018

+ 𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠2010 

0.2111 

2.2 - - 𝑇𝐶𝐷 2015 ~  𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠2010 0.0774 

2.3 - - 𝑇𝐶𝐷 2015 ~  𝐶𝐶𝐼_𝐵𝑖𝑜𝑚𝑎𝑠𝑠2018 0.1781 

3.1 
𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2010 ~ 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛

+  𝑉𝐻𝑚𝑒𝑎𝑛 
0.1528 

𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2010 ~ 𝑉𝐻𝑚𝑒𝑎𝑛

+  𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛 
0.0972 

3.2 𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2010 ~ 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛 +  𝑉𝑉𝑚𝑒𝑎𝑛 0.1482 𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2010 ~ 𝑉𝑉𝑚𝑒𝑎𝑛 + 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛 0.0963 

3.3 𝐶𝐶𝐼_𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2018 ~  𝑉𝐻𝑚𝑒𝑎𝑛 +  𝑉𝑉𝑚𝑒𝑎𝑛 0.1092 
𝐶𝐶𝐼_𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2018 ~ 𝑑𝑅𝑉𝐼𝑚𝑒𝑎𝑛

+  𝑉𝑉𝑚𝑒𝑎𝑛 
0.0645 

3.4 - - 𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2010 ~  𝑃𝑜𝑙. 𝑅𝑎𝑡𝑖𝑜𝑚𝑒𝑎𝑛 0.0768 

3.5 - - 𝐶𝐶𝐼_𝐵𝑖𝑜𝑚𝑎𝑠𝑠 2018 ~  𝑑𝑆𝑉𝐼𝑚𝑒𝑎𝑛 0.0046 

3.6 𝐶𝐶𝐼_𝐵𝑖𝑜𝑚𝑎𝑠𝑠2018 ~ 𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠2010 0.2629 𝐶𝐶𝐼_𝐵𝑖𝑜𝑚𝑎𝑠𝑠2018 ~ 𝐺𝑙𝑜𝑏𝐵𝑖𝑜𝑚𝑎𝑠𝑠2010 0.3434 
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A)  

B)   

Fig. 16. Residual maps for TS20 (left) and TS21 (right) from multiple-parametric regression using OLS, between 
GlobBiomass-2010 and CCI-Biomass-2018 vs S1-mean-characteristics, where low statistical correlation is 

observed in-between 

 Taking into account geographical representation of the residuals from both OLS-regressions of 
GlobBiomass and CCI-Biomass versus S1-mean-characteristics, could be stated that S1-SAR 
observables loose sensitivity at regions with high biomass levels, which is expected result, due to fast 
saturation of the radar backscatter in C-band [9] (see Fig.15 – A). These are residuals with positive 
distances > 1.5 STD (reddish). Contrariwise, the residuals with negative distances < -1.5 STD (bluish) 
are dedicated to non-forest areas. Besides, due to differences in AGB estimation by GlobBiomass and 
CCI-Biomass, residual maps are different, with predominance at CCI-biomass, where distances > 2.5 
STD are much more that proofs regression results. In spite, a convergence is observed between low 
values in dRVI (dark) and high negative distances (> 2.5 STD) at Residual map of GlobBiomass 
(reddish). Residual map for TS21 confirms stated at the above, about lower sensitivity of the S1-SAR 
observables at higher levels of AGB, therefore high differences, above – 2.0 STD are observed over 
southern part of the test site, near BR “Chuprene”. 
 For finalization of the regression analysis, a correlation between both biomass layers is taken 
into account. Result showed low correlation inbetween, where higher coefficient of determination is at 
TS21, unlike the TS20 (see, table-7, DV-3.6). A possible answer to this differnce is given from GIS 
based analysis of calculated AGB- change-layer, where:  

(4)    𝛥𝐴𝐺𝐵 =  𝐴𝐺𝐵𝐺𝑙𝑜𝑏𝐵𝑖𝑜_
2010 − 𝐴𝐺𝐵𝐶𝐶𝐼

2018 

TS21: GlobBiomass vs S1 

TS20: GlobBiomass vs S1 TS20: CCI-Biomass vs S1 

TS21: CCI-Biomass vs S1 
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together with the vector information about forest disturbances, from the reference database. A positive 
convergence is observed for some disturbed forest stands with damages above 30%, together with the 
AGB-change-layer, and where fores loss is: 𝛥𝐴𝐺𝐵 < -80 t/ha. That is interesting result, but needs more 
in depth analysis of those changes, and evaluation of the reference databsse with forest disturbances. 
For such utilization, resulted S1-mean-characteristics from the time series are proper tool and could give 
reliable results. In other hand, this is not the complete answer for the observed changes in AGB, because 
time difference in between is 8-years and forest is changing, as well as a lot of forestry activites are 
ongoing in those rural areas.  

 
Conclusions 
 

 To conclude the analysis held in that study, it can be categorically confirm that delineation 
between deciduous and coniferous forest could be done by means of Sentinel-1 time series intensities 
products. Utilization of the dual-pol RVI (dRVI) in mountainous temperate forest is of great importance, 
because it provides that sensitivity to the forest structure. General conclusion is also that geometric 
distortions influences dRVI, which limitates the correct interpretation in those areas. Thematic analysis 
via proposed RGB-1: dRVI-VH-VV gives good representation of the backscattering that originates from 
different type of the scattering media – e.g. land cover. Resulted PCA from RGB-1 gives best delineation 
between deciduous and coniferous forest type. Additionally tested SAR indices – the dual-pol SVI and 
Polarization Rati, gives non additional information apart from the dRVI, pointing out to equilibrium of the 
sensitivity over forest by means of the three tested SAR indices. Contrariwise, this is not the case over 
other type of natural media, such as agricultural fields and water, where SAR indices differ in-between. 
The PCA based on RGB-2 provides interesting strong bias at some distinct pixels with strong 
backscatter toward sensor, colored in yellowish or greenis3h that should be studied.  
 The resulted supervised classifications that also incorporates Forest type map, resulted with 
78.8 and 68.9 overall accuracy for TS20 and TS21 respectively. General uncertainties are dedicated to 
coniferous forest at BR “Chuprene” (class-7) that constitutes of sloped forest at TS21, whereas crops 
biased the correct interpretation of grassland on TS21. Coniferous forest in some degree is also 
misclassified as deciduous forest, mainly in areas where coniferous species are sparse or well mixed 
up with the deciduous ones. In addition, unsupervised classifications showed better performance in 
forest edge delineation. Resulted Forest/non-forest masks resulted with high accuracy, where the only 
frustration is the uncertainty in the foreshortenings.  
 Subsequent Regression analysis that aimed to test in general statistical correlation between 
mean characteristics resulted from Sentinel-1 time series, and provided AGB layers from Uni-Jena – 
GlobBiomass-2010 and CCI-Biomass-2018, as well as the TCD-2015 in the frame of COPERNICUS 
Services, showed very low or no correlation in between. Most prompt answer about the observed poor 
correlation between AGB and the SAR observables from Sentinel-1, is the lower saturation level of  
C-band intensities from forest [9]. Nonetheless, high correlation is observed between dRVI and local 
incidence angle, with R2 = 0.78. Differences in both AGB layers are most likely to be related with the 
forest loss, due to forest disturbances caused from a past Icethrow disaster event. 
 Finally, could be stated that conducted utilization of Sentinel-1 time series in mountainous 
temperate forest, on behalf of dual-polarimetric capabilities, as well as SAR indices in the face of dRVI, 
gives good results where could be incorporated successfully in variety of thematic analyses for the forest 
structure, and mapping. 
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