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Abstract: This study is focused on the mean characteristics derived from Sentinel-1 time series, on
mountainous forest in Bulgaria, for a four year period of continuous observation. General aim is to demonstrate the
utilization of resulted SAR observables in C-band by means of dual polarimetry, in mountainous disturbed forest,
along the diversity of forest layer and local incidence angle. To study also statistical relationship between the SAR
observables and forest parameters. The SAR observables consists of statistical mean values of both VH and VV
backscatter intensities, and the dual-pol Radar Vegetation Index (dRVI). Three layers describing forest parameters
are used as dependent variables, where - GlobBlomass-2010© and CCI-Biomass-20180, freely provided by
University of Jena (Lehrstuhl fiir Fernerkundung), and also Tree-Cover-Density-2015 in the scope of COPERNICUS
Services. Time series processing is performed within the OS framework “PyroSAR”, developed there. Disturbed
forestis considered, resulted from past Icethrow disaster event. Various RGBs are calculated, in order to distinguish
particular backscatter behavior related to different conditions. Particular SAR responses are summarized for mean
- dRVI, VH and VV, and used for supervised classification using SVM. Forest type and Forest/Non-forest masks
are resulted from SVM-classifications, where highest accuracy achieved is 78%, whereas about forest masks
highest accuracy is 91%. Additional SAR indices - such as dual-pol SAR Vegetation Index (dSVI) and Polarization
Ratio (PR) are also calculated, showing non-significant contribution. Performed regression analysis shown that
none significant correlation is observed between the SAR observables and biomass layers in mountainous forest.
Nonetheless, high correlation exists between dRVI and local incidence angle, with R? = 0.78. Therefore, the mean
characteristics calculated from the Sentinel-1 C-band using time series approach, show good feasibility to study
forest areas. This study was kindly supported by Prof. C. Schmullius, PhD F. Cremer, Dr. N. Salepci from FSU-
Jena, Lehrstuhl fiir Fernerkundung, in the framework of ERASMUS+ Programme.
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Pe3rome: Tosa u3criedeaHe e (DOKycUpaHO 8bpPXy [PUIIOKEHUe Ha CpedHU CcmouHoCcmu Ha
Xapakmepucmuku, roslydeHu om epemeea cepusi om padapu CbC CuHmesupaHa anepmypa (SAR), om —
Sentinel-1. OcHoeHama yen Ha Hacmosiwusi doknad e 0a ce OeMoHCmpuUpa MOMeHUUabm Ha NPoOOb/LKUMeEHUmMe
u3mepsaHusi 8 MUKPO8B/IHO8 KaHan ,,C* 3a udcnedeaHe Ha 20pCKU mMepumopuu om pasnuyeH mur 8 MiaHUHCKU
patioH. Om cpedHume cmoliHocmu Ha obpamHomo pa3scetisaHe (VH u VV) e usyucneH PadapHusi uHOeKc Ha
pacmumesniHocmma — RVI, kbkemo e mpu-KaHasiHa KoMbuHayus e udcriedgaH obpamHusi 0mao8op om PasfuyHU
sudose obekmu. UN3yucneHu ca u Opyau dea uHOekca — SVI u Polarization ratio, ¢ yen da ce nposepu mexHusi
npuHoc 8 uscnedsaHemo. OcHogeH rnpobrem ce sgss8am eeomempuyHUMe 0eghekmu 8 padapHOmo usobpaxeHue.
UsebpweHu ca HekoHmponupyemu (ISO Cluster) u konmponupyemu (SVM) knacughukayuu, nokassalku pasnudyHa
mOoYHOCM, Kamo e u34yucsieHa U Macka Ha 2opckama pacmumesnHocm. Om HanpaseHusi Principal Component
Analysis ca pasnosHamu pa3nu4yHu obekmu omHeceHU KbM euda Ha eopama u Opyau Kiacoee 3eMHO MoKpumue.
Om Opyea cmpaHa, e Ooknalda ce u3cnedsa cmamucmudyeckama cxodumMocm MeX0y U34uc/ieHuUme
Xxapakmepucmuku om Sentinel-1 u crnoege 3a cbcmosiHuemo Ha eopama. Tosa ca - GlobBlomass-2010© u CClI-
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Biomass-2018© npedocmaseHu om YHusepcumema & MewHa, kakmo u Tree-Cover-Density-2015© & pamkume Ha
COPERNICUS Services. Bpemesama cepusi € usducrieHa cbc coghmyepHu npodykmu Ha YHugepcumema e Uena.
lposedeHusi KopenayuoHeH aHanu3 He rokasea cmamucmudecka cxodumMocm, Mexdy xapakmepucmukume om
Sentinel-1 u cnoeseme 6uomaca. Bbnpeku mosa, ce Habnwodasa kopenayus mexdy dRVI u nokanHusi b2b/ Ha
nadaHe, kbOemo R? = 0.78. HanpaseHomo u3scnedsaHe rokasea 20/1siM romeHuyuarsn 3a uscredsaHe Ha 20pCKU
mepumopuu, 4ype3 epemesa cepusi om Sentinel-1. Toea u3crnedsaHe e nodrnomoeHamo ¢ GaHHU U cogpmyep om
YHusepcumema e Mera (FSU-Jena), Lehrstuhl fiir Fernerkundung, 8 pamkume Ha o6meH rio npoapama EPA3bM+.

Introduction

Forests have been widely studied with SAR via variety of methods and techniques, which
overcome a lot of imitations that frustrates optical approaches [1]. By means of e.m. properties of the
backscattered chirp (e.g. polarization, intensity and phase), the bio-physical properties of the forest
volume could be estimated [2, 3]. Forest parameters estimation, like the Above Ground Biomass (AGB)
and forest stand Height via SAR measurements, are wavelength dependent [2, 4]. Assessed techniques
comprises of scalar interferometry (INSAR) and vector interferometry (POLINSAR) that allows modelling
of the backscattered signal throughout the forest volume [2, 5, 6]. Besides, measuring polarization states
that constitutes of dual- or quad-pol, is of great importance in order to retrieve the geometric properties
of the scattering media [7]. Dual polarization instruments that operates in C-band, like Sentinel-1
constellation, are capable to achieve accurately to delineation of the land cover classes [8]. Nonetheless,
assessing growing stocks via SAR signal could be limited, due to saturation problems as a function of
the wavelength, from which point SAR intensities could not be related with the biomass [9]. A lot of
limitations imposed by environmental issues (e.g. precipitation) could be overcome, when assessing
SAR intensities approach via time series analysis [10]. Considering forests, time series analysis based
solely on SAR intensities is promising to assess forest structure and to delineate broadleaf from
coniferous types [11]. In that relation, the ESA Copernicus - Sentinel-1 dual-pol C-band SAR mission
offers great perspectives such a forest studies, by means of time series analysis. Dedicated world
biomass estimation projects by ESA in the face of GlobBiomass and CCI-Biomass with referent years
of the AGB layers - 2010 and 2018 [11, 12], introduces good basement for biomass change detection.
In spite of that uncertainties should be analyzed, related to the local specifics of the landscape and
environment, or even disaster events like Icethrow. The COPERNICUS Services — Tree Cover Density
(TCD-2015) layer brings also fruitful information to the forest condition estimation.

Bulgarian temperate forests have commonly been affected by abiotic disturbance events, such
as Icethrow. Due to harsh conditions in the mountains in winter, such massive disaster event happened
in the late of 2014, demolishing more than 5 000 Hectares [13]. That brings needs of studying Bulgarian
mountainous forests via SAR methods, where time series analysis is of great potential. Currently, there
are no such studies in Bulgarian literature, which to assess utilization of Sentinel-1’s time series in
disturbed forest, especially on the North-West slope of Stara Planina Mountain. It is not studied also
correlation of the C-band time series observables, with GlobBiomass and CCI-Biomass layers.

This study namely considers time series analysis application in Bulgarian temperate forest,
resulted from for years of continuous observation, using Sentinel-1 SAR data. Resulted mean values of
the backscatter intensities - VH and VV are used to calculate the dual-pol Radar Vegetation Index
(dRVI). The dRVI have proven its potential in vegetation structure mapping, related with the optical NDVI
[14]. In addition, the SAR vegetation index (dSVI) and Polarization ratio (PR) are also calculated. Two
general approaches are followed, where in the first one thematically delineation of the land cover objects
is pursued, via RGB combinations of dRVI-VH-VV, and Principal Component Analysis (PCA). Optical
data is used for reference, comprising the VHR GoogleSatellite base map, and ancillary Sentinel-2
imagery. Resulted are unsupervised and supervised classifications with forest type, and forest/non-
forest masks, where accuracy assessment is performed on those products in QGIS. The second
approach tests statistical relationship between biomass layers provided from the University of Jena,
Lehrstihl fur Fernerkundung — GlobBiomass-2010 and CCI-Biomass-2018, with the Sentinel-1 mean
observables from time series. Also, correlation is pursued with the local incidence angle and TCD-2015
from Copernicus Services. The time series calculations from Sentinel-1 data are performed at the FSU-
JENA, Lerhstuhl fir Fernerkundung, within ERASMUS+ exchange, with the kind support of Prof. C.
Schmullius, Dr. N. Salepci and PhD F. Cremer. This study correlates with the Author’s PhD study.

Data used and test site

The Sentine-1 (S1) SAR C-band data were used for time series analysis, in dual polarimetry
that constitutes of — VH and VV. The S1 data specification used are summarized in the following table.
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Table 1. Sentinel-1A/B SAR data specification, used at test sites — TS20 and TS21

Orbit Descending Product type GRDH
Relative Orbit Number 80 Mean incidence angle 38 deg
Resolution cell 10m Azimuth / range looks 5/1

Begin / End of acquisiton | 23th Oct. 2014 / 17th May 2018 Polarization VH/VV

Time series begins with the first available GRD-SAR image from Sentinel-1A, with benefit of the
highest possible 10 m spatial resolution, and firstly having 12-days of temporal resolution. Since October
2016 the Sentinel-1B observations contribute to the time series, which improved the temporal resolution
up to 6 days. Total period of continuous observation is four years. The SAR data is extracted via API-
Hub of the Open Access Data Hub, by using the software tool developed at the University of Jena —
“esa_sentinel_api®, by Jonnas Erlebe and John Truckenbrodt. Preliminary analysis pointed out that
Sentinel-1’s Relevant Orbit Number — 80 suits to the desired test area, which covers test sites — TS20
and TS21, from the Author’s PhD. Projections used are - World WGS84 (4326), or UTM 34N (32634)

= Selected Test Stes: TS20 - kethrow In SFE "Mijur”, Regianal Forest Depariment “Berkovitsa™ ‘ Q Y Selectod Test Sites: TS21 - keethrow In SFE "Chuprene™, Regional Forest Department “Berkoviisa™ @
oot ¥ = et S P ¥ S D P ¥

sy L

S = 7 Vo

Fig. 1. Test sites maps, of - TS20 in SFE "Mijur" and SFE "Chuprene", with forest disturbances patches from 10%
up to 100% forest loss, from the past Icethrow event in 2014, are overlaid on the DEM slope map

The test sites - TS20 and TS21 are located near North-West slope of the Stara Planina Mountain
massif, in the vicinity of the State Forest Entities (SFE) of “Mijur” and “Chuprene” respectively. Severe
natural disaster - Icethrow happened in late December 2014 erasing whole stands, with damages up to
100% at SFE “Mijur. The total affected area was about 50 000 Decares of century-old forest [11]. Test
site maps of TS20 and TS21 are prepared using reference database for forest disturbances, according
to the author’s PhD study, showing stands with damages from 10 to 100% (Fig. 1). Species distribution
charts are elaborated according to the forest plans, where TS20 showed — 88.8% broadleaf forest,
contrary to - 11.2% for coniferous one. About TS21, the broadleaf forest is — 72.4%, contrary to - 27.6
for coniferous, thus TS21 shows more coniferous forest unlike TS20. In spite of that, many forest stands
were with undetermined tree species in the forest plans, hence was marked out with “no data” (Fig. 2).

Broadleaf and Coniferous Forest distribution In %, TS20 Broadleaf and Coniferous Forest distribution in %, 3a TS21
04

- . Pinus nigra
Pinus sylvestris - Spruce
Pinus nigra
0.2
30.0
0693
1] 380
no data 32
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Orientalis

Fig. 2. Tree species distribution on TS20 and TS21, represented in %. Significant percentage of forest stands are
with tree species undetermined - e.g. "no data". The TS21 is much coniferous type, rather than TS20.

Reference biomass data is represented by layers - GlobBiomass-2010 and CCI-Biomass-2018,
exclusively provided by Friedrich-Schiller-Universitat - JENA, Institut fir Geographie, Lehrstihl fur
Fernerkundung. Resolution cell of both raster datasets is 90 m, where the CCl-Biomass layer originally
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may have had coarser spatial resolution, in regard to the GlobBiomass one (Fig. 3). Auxiliary layer —
Tree-Cover-Density — 2015 freely accessed from COPERNICUS Services is also incorporated, coming
with spatial resolution of 20 m, in order to test its correlation with Sentinel-1 SAR observables.

: | TS21, CCl-Biomass |
: ~‘; i ".k; 0
r o
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-

Fig. 3. Raster datasets representing AGB, exclusively provided by FSU-Jena (Lehrstuhl far Fernerkundung)
GlobBiomass-2010 and CCI-Biomass-2018, as well as Tree-Cover-Density-2015 from COPERNICUS Services.

Reference optical imagery used are the VHR GoogleSatellite© base map, and Sentinel-2 from
Lol e o N K BRI W IIS2B MSIL2A 20181006T092029 N0208 R093 T34TFP_20181006T142726AWgle]l:!
bands are resampled, spatial resolution is 10 m. The RGB used is: B8 (842nm) — B5 (705nm) — B3 (560nm).

Methodology

The methodology is based on time series approach that aims direct interpretation of the mean
values of Sentinel-1 GRD data, with benefit of dual polarization states of VH and VV. Methodology also
aims utilization of the dual-pol Radar Vegetation Index (dRVI) in respect to diversity of the temperate
mountainous forest; calculation is performed using the following formula [14]:

0
4oy,

(1) dRVI =
ai?v + Ul?h

General steps are: download of the Sentinel-1 GRD data, geocode and time series generation;
calculation in Python of mean values from time series for - VH, VV and dRVI (formulating S1-mean-
characteristics of the mean backscatter); calculation of the additional - dSVI and Pol. Ratio are followed
up. First approach in methodology considers thematic analysis in GIS with two RGBs — RGB-1
(dRVI-VH-VWV), RGB-2 (SVI-PR-dRVI) and Principal Component Analysis (PCA), where to analyze
particular contribution of the characteristics; summary and classification of distinct land-cover type is
made, referenced by VHR base map of GoogleSatellite© and Sentinel-2 satellite imagery. Forest/non-
forest masks, as well as forest type are resulted from the supervised classification, followed by accuracy
assessment. Second approach tests statistical correlation, which models the local incidence angle,
GlobBio, CCI, and TCD, versus the mean SAR-observables in C-band as independent variables (Fig.4).
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Fig. 4. Workflow chart, representing general steps of the analysis

Results and Discussion

S1 - Time series elaboration

Download of the Sentinel-1 GRD products is made via — “esa_sentinel_api” tool developed at
the University of Jena, by J. Erlebe and J. Truckenbrodt in the framework of ESA project. Desired test
site boundaries are applied, where download is performed via the ESA Copernicus Open-Access / API
Hub. A total amount of 138 successfully downloaded scenes is achieved in “Descending” orbit from 158
available ones at the Hub. The “missing data” or broken archives are especially in the beginning of the
Sentinel-1A lifecycle, as seen on Fig. 5. After downloading, for each pixel the Ellipsoidal (E) radar cross
section by means of gamma-nought (y°) is calculated, from sigma nought (o°) and incidence angle - 6,:

0
0 _ g,
@ 18="0s0,

A topographic normalization is used to derive terrain flattened intensities, based on the method
proposed by D. Small [16], which is needed due to rugged terrain in the test areas. Whole of that is done
during the geocoding of GRD-data, which is made in the framework of “pyroSAR” using the - SENTINEL-
API, by function - geocode(). The SENTINEL-API uses ESA SNAP implemented geocoding methods.
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Fig. 5. Sentinel-1A/B available and successfully downloaded GRD data scenes that covers both test sites. From
total amount of - 158, a 138 have been successfully downloaded and processed.

The pyroSAR is a Python based extensive framework, which includes wide toolset and APIs for
SAR imagery manipulation and processing, developed at the University of Jena (FSU-JENA), Institut fir
Geographie, Lehrstuhl fir Fernerkundung [17]. At the geocoding, the highly scaled reference DEM —
“TanDEM-X DEM12“© provided by DLR, is used, in the frame of “DEM Proposal”. Afterwards, a stack
of geocoded data via “pyroSAR”, using — stack() is elaborated, for each polarization, using ENVI file
container, with BSQ order in a 32-bit pixel depth. Thereafter the mean values from times series
(2, v%,, dRVI — S1-mean-characteristics) are calculated in Python, for both test sites — TS20/TS21 (Fig. 6).

B 521, Mean Ly " o / Mean-RVI
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Fig. 6. Mean values from S1-time series, where from left to right are - E, H, and dRVI, for TS20 and TS21

Statistics are calculated for each dataset, representing statistical distribution of the mean
backscatter on different S1-characteristics, over the test areas of TS20 (SFE “Mijur”) and TS21 (SFE
“Chuprene”) - Fig. 7.
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Fig. 7. Statistics and histograms of the calculated S1-characteristics for TS20 and TS21, using Decibel scale

Statistics on Fig. 7, confirms lower mean of the cross-pols (yJ,) rather than the co-pols ),
with more than 6 dB, due to volumetric backscatter. Histogram profiles of S1-characteristics doesn’t look
very similar for both test sites, except the dRVI distributions. The only difference here is in the range of
the values, where at the TS20, the dRVI show higher response. Also, notable is the standard deviation
of the dRVI versus polarizations, which is one third of the VH and VV. Besides, the cross-pol for TS20
shows little extremum near -17 dB. Reason for that as founded, belongs to the agricultural areas in the
NE part of the scene. Maximums of both polarizations encompass backscatter from forest areas, where
different histogram profiles of TS20 and TS21 are dedicated to the complexity of the landscape.

On the other hand, from the calculated mean values of Sl-time series (Fig. 6) following is
observed: 1) the speckle noise is missing; 2) relief affects differently the three S1-characteristics, where
on the y2, foreshortenings are more obvious (bright stripes), rather than the Yo, This is because
the - v, is more sensitive to the forest volume, despite the response from - 2, that comes mainly from
phase centers located in the crowns. That results to dark areas on dRVI in forest, corresponding to
geometric distortions — foreshortenings. Those areas are related with low local incidence angles
between target vector and the radar beam, below 29 deg. Therefore, dRVI seems to be very sensitive
to the relief; 3) The dRVI “sinks” over forest area, but shows higher values over grassland, crops, water,
and random over bare/urban areas. Specific interestingly, the dRVI shows lower values on South at
TS21, over the Biosphere Reserve (BR) “Chuprene”, characterized with dense and lower height
coniferous species.

Thematic analysis, by means of S1-mean-characteristics

First approach pursue utilization of the RGB-1: dRVI-VH-VV, which underlines well backscatter
contribution in respect to the type of land cover objects (see, fig. 8). Discussed dependencies above are
clearly observed on RGB1, over TS20 and TS21, where more peculiarities are recognized. As seen
from Fig. 8, the dark-red regions belong to grassland, some crops and standing water body; dark-blue
belongs to other crops and bare fields; in light-blue mainly foreshortenings are recognized. Forest is
colored from bright-beige colors, through orange patches and ends up with bluish that’s belongs to the
dense coniferous forest of BR “Chuprene” on TS21. Analysis shows that general reason for color
changing in forest is dedicated to the dRVI. To track out those changes as eigen-based approach, a
Principal Component Analysis (PCA) is calculated from the RGB-1. Herewith the PCA, forest structure
is distinctly recognized, where wine-reddish and greenish regions give imprint amongst the rest of the
pixels. Green areas are related to foreshortenings, while magenta colors reveal non-forest areas.

Those relations are tracked out in GIS by using the VHR optical base map of GoogleSatellite.
The wine-red areas at the PCA-1 that shows up as dark-orange at RGB-1, resulted as a coniferous
forest patches. Those areas exhibits high values in dRVI, above -2.5 dB, but mixed up with values over
water and crops. That means that the dual-pol RVI brings up precious contribution, to differentiate forest
type in C-band SAR! Overlaying the TCD-2015 (COPERNICUS) and CCI-Biomass-2018 (Uni-JENA) in
GIS, showed high values of biomass (above 100 t/ha) and density (above 79%) within those dark-red
patches that constitutes of coniferous forest (see, fig. 9). Whilst, analyzing the dense forest at the BR
“Chuprene” (TS21) via the PCA-1 and biomass layers, showed high biomass (above 250 t/ha) on CClI-
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Biomass, and density above 92 %. As stated, the dRVI there shows low values over forest. To obtain
more information on this particular forest, the Sentinel-2 L2A reference imagery was used, with date of
acquisition — 2018-10-06. Analysis confirmed that this is coniferous forest type, but with rather different
spectral signature from the rest of the coniferous forest. Therefore, additional sensitivity of the dRVI to
particular coniferous species in high mountain is observed (refer to Fig. 9, and Table-2).

In other hand, none distinct color, or values combination of S1-mean-characteristics could be
related to the disturbed forest patches. Interestingly, considering forest loss above 80%, the dRVI
showed higher values, pointing out to fresh vegetation regrowth. Must be stated also that the dRVI solely
could not differentiate forest from non-forest areal

N

Fig. 8. The RGB-1: dRVI-VH-VV, for both test sites - TS20 and TS21, with good representation of the different
land cover objects, based on backscatter response, due to sensitivity of the dRVI to vegetation

km a
Fig. 9. The PCA-1 for TS21, derived from RGB-1 with disturbed patches and BR "Chuprene" overlaid. On the
right: rectangle area, representing: Up - dark-red patches of different forest type/structure that exhibits high
biomass (CCI-Biomass); Down — BR “Chuprene” with different coniferous forest, on reference S2 and dRVI.

Samples of land cover objects with different peculiarity are summarized in a table, where the
land cover type is confirmed by referring the GoogleSatellite© VHR and S2. Also, optical imagery of
Sentinel-2 as second reference is used, within RGB of B8(842nm) — B5(705nm) — B3(560nm), see Table-2.

Table 2. Samples of distinct land cover (LC) objects recognized on RGB-1, showing values of - E ﬁ and
dRVI, referenced by GoogleSatellite© VHR base map, and Sentinel-2 in RGB combination of — B8 - B5 - B3.

Samples object in recognized dRVI yT ],T
RGB-1 Google S2-L2A Land Cover (LC) type [dB] [dg‘] [dg]

Sample 1 — geometric distortions
(foreshortennings) over
mountainous broadleaf -4.163 -10.143 -3.898
forest (collected from
TS20)

Sample 2 — agricultural fields, or
kind of cultivated
areas (collected from
TS20)

-5.065 -18.086 -9.028




Sample 3 — standing water body

(collected from TS20) e e sl

Sample 4 — grassland /
abandoned land, at
open forest or non- -3.451 -19.372 -13.275
forest (collected from
TS20)
Sample 5 — coniferous forest
type (collected from
TS20) *winter VHR -1.602 -12.833 -8.926
image of Google
Satellite is used here.

Sample 6 — broadleaf forest type

(collected from TS20) "2.799 -13.690 | -8.342

. Sample 7 — broadleaf
mountainous forest
on a slope (collected
from TS21)

-0.538 -10.673 -5.199

Sample 8 — second coniferous
forest type, in
Biosphere Reserve
,Chuprene” (TS21)

-1.894 -14.002 -6.853

Sample 9 — bare areas, rocks,
radar shadows -4.048 -17.569 -7.951
(collected from TS21)

From analysis above is obvious that the foreshortenings totally obstruct interpretation, because
of higher sensitivity of the dRVI to geometric distortions. In fact, within certain interval of variations of
the local incidence angle (IncGeo), the interpretation on slopes is possible; such an example is found
on sample-7, where forest is a bit biased, but still interpretable. Other biased interpretation due to IncGeo
is the top hill bare area with rocks and grass, on sample-9; because of the geometric distortions, firstly
grassland is correctly interpreted in reddish, but due to increasing of the local incidence angle, its values
become more alike to the agricultural ones, from sample-2.

From the recognized LC - objects above, training samples are elaborated in order to train
Supervised classification, using Support Vector Machine — non-parametric machine learning algorithm.
Total of eight LC — classes are formulated to classify objects based on the S1-mean-characteristics in
RGB-1, approached differently in both test sites, represented on table-3. Zonal statistics and histograms
are elaborated, about statistical distributions within training zone data, for each class. Largest standard
deviation (STD) have classes — 1 (available only in TS21) and 2, in the reason of that they mostly
describe geometric distortions, and also because those classes comprises mixture of land cover.

Table 3. Zonal statistics with Standard deviation (STD) of S1-mean-characteristics within training zone data, of
classes particular for each test site. *Grey columns does not belong to the particular classification.

STD for TS20 STD for TS21

Formulated classes, of the training samples Mean-VH Mean-dRVI | Mean-VH Mean-dRVI
Class 1 - Radar shadows / Bare area 2.486 1.437
Class 2 - Foreshortenings 1.225 0.332 1.568 0.444
Class 3 - Grassland 0.922 0.336 0.823 0.324
Class 4 - Crops 0.536 0.500 0.640 0.366
Class 5 - Deciduous forest 0.742 0.247 0.938 0.246
Class 6 - Coniferous forest 0.797 0.286 1.008 0.287
Class 7 - Coniferous forest, at BR ,,Chuprene“ 0.817 0.308
Class 8 - Water 0.555 0.238
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The STD for Mean-dRVI in both cases is rather smaller than the mean-backscatter in VH. The
STD is quite the same for both training classes — 5 and 6 comprising the deciduous and coniferous
forests for both test areas and mean-characteristics, but also and the particular class-7 representing
specific coniferous forest type. It should be stated, that the samples were collected over as most as
possible homogenous conditions for conifer and deciduous forest (e.g. constant relief, small slope,
density, etc.). Here, it was expected that standard deviation of both would defer in the expense of
deciduous one, because conifer species are much homogenous, as refer to fig.2, especially for TS21.
Nonetheless, rather the opposite is observed comparing STD of the cross-pol (Mean-VH), with largest
difference at TS21 in amount of 0.070, in respect to 0.055 for TS20. The reason may be in the mixture
of conifer species within the sample and resulting complex volumetric backscatter. The STD for Mean-
dRVI is almost equal for both test areas, pointing out for similar coniferous species at TS20 and TS21,
as a component of the training samples. Here, considering class-7 containing specific conifer type, the
STD for both S1-characteristics is rather higher than regular coniferous in class-6.

Calculated histograms for coniferous training classes are in whole cases non-symmetrical,
where for Mean-dRVI in TS20 histogram have strong negative skewness. Whilst, the specific conifer
forest in BR “Chuprene” show positive skewness within the histogram. In spite of that, the deciduous
class for both test sites are showing almost perfect symmetry. In other hand, sampled Crops showed
smaller STD in Mean-VH rather than Grassland, pointing out to more distinct volumetric backscatter.
However, the STD of Mean-dRVI is the highest at TS20 (because of the plenty of agricultural fields),
and higher than Grassland. The Grassland sampled class-3 showed most symmetrical histograms,
along high STD in Mean-VH. Highest STD is observed at class-1, because it encompass samples from
bare area, urban and shrubs.

Unsupervised classifications are also elaborated, based on ISO-Cluster, resulted with three
particular classes dedicated to forest. Aim is to test differences in accuracy of the resulted classifications
and related products. The supervised classifications using SVM approach are shown below, on Fig. 10.
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Fig. 10. Supervised classifications, using SVM with same number of classes; training samples are overlaid

The class-2 with foreshortenings comprises much large area on TS21, due to higher relief
roughness and incision. Related to that, because of the similarity in values between coniferous forest in
BR ,,Chuprene” and forest in foreshortenings, class-7 comprises large amount of pixels and complement
to class-2. That problem does not exists in TS20. Nonetheless, ambiguities persists in particular to the
test site and thematic class respectively. Accuracy assessment is therefore performed in order to obtain
the Error matrices, including overall accuracy together with the Cohen’s Kappa coefficient, used as a
measure of agreement between two individual pixels [18]. Software used is QGIS with the Semi-
Automatic-Classification (SCP) plugin [19]. For the accuracy assessment of the supervised
classifications, 15-random points per class are generated and furtherly validated by the VHR Google
Satellite© and Bing World Imagery© base maps, facilitated by S2-reference imagery. Results from the
Error matrices for both supervised classifications are summarized below, in Table-4.
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Table 4. Error matrices output summary for both supervised classifications, along thematic classes’ accuracy

Overall Kappa
Classes 1 2 3 4 5 6 7 8 accuracy hat
[%] classif.
o | PA[%] 94.79 79.99 100.0 89.46 100.0 100.0
O | UA [%] 80.0 70.0 80.0 100.0 50.0 100.0 78.723 0.6475
F | Kappa hat 078 065 078 1.00 0.48 1.00
< PA [%] 9.31 96.21 33.00 100.0 79.31 85.82 100.0
0 | UA [%] 70.00 80.0 70.0 10.0 100.0 70.0 30.0 68.897 0.5885
Kappa hat 0.68 0.79 0.63 0.10 1.00 0.66 0.24

As seen from table-4, the overall accuracy is higher for test site-TS20. The class-2 have very
high Kappa-hat for both classifications, of which resulted very good delineation of foreshortenings. In
other hand, the highest Kappa-hat is for deciduous forests. Errors for this class are observed in two
directions — enlargement of the forest edge due to sparse forest areas and higher shrubs, and
misclassification of urban areas that is specific for rural areas in Bulgaria, where houses are surrounded
by lot of trees, especially for abandoned houses, which are very often picture unfortunately in the North-
West Bulgaria. Coniferous forest have lower accuracy in respect to deciduous forest, which is more
prominent on TS20, because there coniferous types are much less. Moreover, the coniferous types here
are mixed up with other forest. Besides, in TS21 conifer patches are more homogenous and better
distinguishable. There is no doubt that water is best classified, because of the highest values in dRVI
and lowest in cross-pols. In crops class, for TS21 accuracy is very low, due to very small agriculture
areas, in respect to the TS20. The grassland class is well classified by means of S1-characteristics.

Comparing supervised with the unsupervised classifications, general conclusion is that
coniferous forest could not be delineated and is misclassified as deciduous one. Besides, whole three
classes depicts forest areas. In spite of that, better performance of unsupervised classification is
observed, in delineation of the forest edge in sparse forest areas (Fig. 11). Also, errors on the supervised
on TS20, related to misclassification of agricultural lands as a forest, at unsupervised they are relatively
small. Sparse forest is better classified here, but mixed up with shrubs and grassland. Agricultural lands
are very well classified on both classifications types.

Resulted products from supervised/unsupervised classifications are - Forest type maps, related
to deciduous / coniferous forest types, and Forest/Non-Forest masks, shown below (Fig. 11).

TS20 - ,,Mijur“ TS21 - ,,Chuprene”
4 - , -

3

Fig. 11. Forest/Non-Forest masks derived from supervised classifications, where - left: TS20, right: TS21,
over Google Satellite© VHR base map

Differences between forests masks approached via supervised or unsupervised classification
are very small. Nonetheless accuracy assessment is approached also here, by generation of 60 points
— 30 by 30 about forest/non-forest classes. Validation is performed again within QGIS environment, via
SCP-plugin, incorporating Google Satellite© base map and Sentinel-2 optical imagery; see Table-5.
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Table 5. Error matrices summary of Forest/Non-Forest Masks, derived from Supervised and Unsupervised

classifications

TS20 TS21
Supervised Unsupervised Supervised Unsupervised

Non- Non- Non- Non-

Forest REEEts Forest HeleEe Forest HEIESS Forest Retests
PA [%] 74.83 95.38 82.33 93.56 63.53 97.62 | 100.00 81.35
UA [%] 86.93 90.22 86.78 91.16 87.34 91.21 61.18 100.00
Kappa hat 0.816 0.664 0.800 0.739 0.841 0.571 0.498 1.000
Overall accuracy [%)] 89.39 89.75 90.63 85.59
Kappa hat classif. 0.732 0.769 0.680 0.665

In overall, whole forest masks have very high accuracy, with high Kappa-hat classification value,
showing strong similarity. Differences in accuracy between supervised and unsupervised approaches
could be neglected. Highest accuracy is for Forest/Non-Forest mask in TS21 derived from supervised
classification, where non-forest class has highest similarity by means of the Kappa-hat. Considering
mask elaboration, foreshortenings touching forest at supervised classifications are incorporated, in order
to fulfil holes in sloped forest. This is not wrong within current test areas, because mostly geometric
distortions are located in mountainous forest areas, rather over bare sloped area. Nonetheless, errors
are observed at TS21 in NE direction, where in the sake of misclassification within supervised approach,
hills covered with shrubs that exhibits small incidence angles toward SAR antenna, are recognized as
forest class-7 that is merged into deciduous and coniferous classes, in order to derive the output mask.
In spite, interruptions within forest at both test sites, are due to misclassified forest as grassland or crops.
In the forest masks by means of unsupervised approach, foreshortenings are not included because of
ambiguities, in spite of that the forest edge is much better delineated (Fig. 12).

Fig. 12. Comparison in details, between forest masks derived from supervised (left), and unsupervised
classification (right), for TS21 in high mountains, near BR “Chuprene” and hut - Gorski Rai

Additional SAR indices

Complementary SAR indices to the dRVI have been also calculated, based on their functional
contribution to describe phenology of crops, mentioned in the literature [14]. Therefore, the dual-pol SAR
Vegetation Index (dSVI) and Polarization ratio (Pol.R) are utilized in that study, where to test their
functionality into forest status, using equation — 3:

0 0 0

, YvH Yva T Yvv

(3)  Pol.ratiogoss—por = —5— 3 SVIguai—pot = ——5——
Vv Yvv

Based on the first approach RGB-2-combination is hereof calculated, based on: dRVI, dSVI u
Pol.R, calculated from the S1-mean-characteristics - yJ9,, andy),. The GIS analysis showed high
correlation in between in the forest territory, with no difference with the dRVI. Thus, in forest high values
(white patches) on dSVI and PR are related with coniferous type, whilst forest in BR “Chuprene” is again
well delineated (dark grey). Histograms show symmetrical distribution, with small differences in standard
deviation, which should be due to diversity in agriculture and forest type (Fig. 13).
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Common Histogram of M::IVI, Mean-5Vi, Mean-PolR, Common Histogram of Mean-RVI, Mean-5VI, Mean-PolR,
TS20
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Fig. 13. Common histograms for distribution of the mean values of - dRVI, dSVI and Pol.R., for both test sites

Main differences are observed over agricultural areas, where values of the indices differ in
general. On the second PCA calculated from RGB-2, eigen values have almost constant difference in
forest area, where: A1 = 1.5, A2 = 0.5, A3 = 0.7. Exceptional cases are over some urban pixels (in green
and yellow), and some pixels with strong backscatter toward sensor (in yellow) in the mountain; the
radar shadows/bare areas from class-1 (RGB-1) are also delineated (in green), see Fig. 14. In the first
case where yellow pixels are observed, in urban and forest regions, we have - A1 > A2 = As, where eigen
are about: A1 = 3.3, A2 = 0.8, As = 0.7. In the second case, where green pixels are observed, in urban
region and radar shadows, we have - A1 < A2 < A3, where: A1 = 3.2, A2= 1.3, 3= 0.7.

TS21, PCA-2

=
T

p L TS20. RGR-2:'dSVI-PR-dRVI
9 - —— o sm— =

Fig. 14. The RGB-2 (dSVI, PR, dRVI) for both test sites, derived from the - y2,, and y2,, and showing high
correlation in between (greyish), with exception over agricultural areas and reservoir. The PCA-2 on the right,
showing differences in urban and within the mountain.

Regression analysis

In the purpose to study the possible statistical relation between S1-mean-characteristics and
environmental characteristics (e.g. biomass, relief) regression analysis is considered. Related to that,
the following regression tests are performed, aiming different combinations of dependent (DV) versus
independent variables (V) — such as: 1 — IncGeo as DV-1, 2 — TCD as DV-2, 3 — GlobBio/CCI as
DV-3; and aiming particular regions of interest — (1) in transect on TS20; (2) for whole scene on TS20/21.
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Area-Of-Interests in Forest only, part of TS20, with transects
and overlaid COPERNICUS Tree-Cover-Density-:

Aspect from TanDEM-X-DEM-12, for Small-Torest-AQ|

N i A

Transect and performed OLSwegression within, between
dRVI-vs-IncGeo, at Smal-Forest-AOL
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Fig. 15. Thematical map (left) with the two transects over COPERNICUS TCD-2015 base map. Sample
maps (two, on the right) of the selected small transect, within quasi-homogenous environment, in terms
of slope, aspect, and canopy density, in purpose of the regression test.

Regression test — 1: Firstly, the observed correlation between local incidence angle (IncGeo)
and radar vegetation index (dRVI), is taken into account to be statistically tested. For that a small region
that constitutes of 51 resolution cells of 30 x 100 m, is located in the NW part of TS20 - “Transect-small’,
having high terrain slope, constant incidence angle and aspect, whole with small variations. Statistical
distributions and histograms are calculated in transect, followed by single OLS regression in ArcGIS;
please, refer to Fig.15. Regression results proves the preliminary observed correlation, between local
incidence angle and radar vegetation index with very high coefficient of determination (R?); see, table-
6, DV-1. Thereafter, regression over wider transect is performed that constitutes of 196 resolution cells
of 50 x 50 m whole over the TS20, aiming regression with DV-1 and 2, where IncGeo and TCD-2015
are considered as dependent variables (see, table-6). Regression result for DV-1 is again high, using
multi-parametric regression, but with lower coefficient of determination, because of the larger area used
that brings more outliers in statistical point of view. This also points to strong “non-linearity” of the data.
Considering the DV—-2 combination, shows non statistical correlation between TCD-2015 and SAR
observables, by means of S1-mean-characteristics!

Table 6. Regression results of DV-combinations 1 and 2, with single- and multiple-parametric regression OLS -
with the highest correlation result, within the two transects, at TS20

TS20 Transect — small Transect - big
DV Equation tested R? Equation tested R?
1 IncGeo ~ dRVIpeqn 0.7808 IncGeo ~ dRV Iy eqn + VHpean 0.6743

Regression test — 2: For tracking out statistical relationships within whole test area another test
is performed, using forest AOI only, determined by the condition:TCD-2015 > 10%. Full regression
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analysis is performed in that case, using whole DV — combinations mentioned above. Regression
equations with the best coefficient of determination are published and analyzed.

Considering local incidence angle, because of the larger region, correlation between IncGeo vs.
dRVI (DV-1) is quite lower but still exists (please, refer to table-7, DV-1/TS20).

Considering regression of TCD-2015 as dependent variable (DV-2), several equation
combinations are approached testing also additional SAR indices and biomass layers as IV. Highest
possible correlation in that case is achieved by incorporating the S1-mean-characteristics together with
the both biomass layers, pointing out that there is correlative relationship between the tree density and
AGB (table-7, DV-2.1/TS21). In spite of that, regression with GlobBiomass-2010 using same DV gives
no statistical correlation, whilst regression with CCl-biomass-2018 interestingly shows some statistical
relationship, with very low coefficient of determination (table-7, DV-2.3/TS21). Regarding dSVI, there is
no correlation relationship between SAR indices and the tree density (table-7, DV-2.1/TS20).

Considering regression of the biomass layers, using delivered by the Uni-Jena, Lehrstuhl fir
Fernerkundung — GlobBiomass-2010 and CCI-Biomass-2018, the performed regression shows small
differences in depend of the test site environmental conditions. Hence, considering GlobBiomass, better

result is for TS20, by using cross-pol - v, (table-7, DV-3.1/TS20) in the equation, rather than - y2, (table-
7, DV-3.2/TS20) at the multi-parametric regression, possibly because of the better sensitivity of the
cross-pols to the forest volume. It is interesting, that the - dRVI improves regression result, rather than
using equation based solely on both polarizations. In spite, the correlative relationship in between is
very poor, and does not exists for TS21. For CCIl-Biomass, also, considering TS20 a kind of correlative
relationship exists rather than for TS21, where different IV are found to be valuable for the regression
(table-7, DV-3.3/TS20 and TS21). Poorer regression result on behalf of CCI-Biomass than GlobBiomass
is interesting, because reference period for CCl-Biomass matches the four years period of the
Sentinel-1 - time-series. Nonetheless, could be said that correlative relation between biomass and SAR
indices (e.g. dRVI, dSVI) does not exists, which is proved finally by regressing the GlobBiomass versus
Polarization Ratio (table-7, DV-3.4/TS21), or by CCI-Biomass versus dual-pol SAR vegetation index
(table-7, DV-3.5/TS21), despite result of Pol.Ratio is better than dSVI.

Table 7. Highest correlation results from the regression with whole DV-combinations, including single- and
multiple-parametric regression OLS, performed on both test sites

TS20 TS21
DV Equation tested R? Equation tested R?
1 IncGeo ~ dRV I yean - -
TCD 2015 ~ VVinean + VHmean
2.1 TCD 2015 ~ dSVImean + CCI_Bioma552018 0.2111
+ GlobBiomass,yig
2.2 - - TCD 5015 ~ GlobBiomass;,gg
2.3 e = TCD 2015 ~ CCI_Bioma552018 0.1781

GlobBiomass »p19 ~ ARV Iyean 01528 GlobBiomass 5010 ~ VHmean
+ VHpean ) + dRVIpean

3.2 | GlobBiomass p19 ~ ARVIpean + VVpean | 0.1482 | GlobBiomass ;910 ~ VVinean + ARV Ipean
CCI_Biomass 59158 ~ ARV pean

3.1

3.3 CCI_Biomass 3918 ~ VHmean + VVinean 0.1092

+ VVmean
3.4 = = GlobBiomass 5910 ~ Pol.Ratiomeqn
3.5 - - CCI_Biomass 5913 ~ dSVIpean

3.6 CCI_Biomass,y1g ~ GlobBiomass,1¢ 0.2629 CCI_Biomass,y1g ~ GlobBiomass,1g 0.3434
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TS20: GlobBiomass vs S1 TS20: CCI-Biomass vs S1
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Fig. 16. Residual maps for TS20 (left) and TS21 (right) from multiple-parametric regression using OLS, between
GlobBiomass-2010 and CCI-Biomass-2018 vs S1-mean-characteristics, where low statistical correlation is
observed in-between

Taking into account geographical representation of the residuals from both OLS-regressions of
GlobBiomass and CCI-Biomass versus Sl-mean-characteristics, could be stated that S1-SAR
observables loose sensitivity at regions with high biomass levels, which is expected result, due to fast
saturation of the radar backscatter in C-band [9] (see Fig.15 — A). These are residuals with positive
distances > 1.5 STD (reddish). Contrariwise, the residuals with negative distances < -1.5 STD (bluish)
are dedicated to non-forest areas. Besides, due to differences in AGB estimation by GlobBiomass and
CCl-Biomass, residual maps are different, with predominance at CCl-biomass, where distances > 2.5
STD are much more that proofs regression results. In spite, a convergence is observed between low
values in dRVI (dark) and high negative distances (> 2.5 STD) at Residual map of GlobBiomass
(reddish). Residual map for TS21 confirms stated at the above, about lower sensitivity of the S1-SAR
observables at higher levels of AGB, therefore high differences, above — 2.0 STD are observed over
southern part of the test site, near BR “Chuprene”.

For finalization of the regression analysis, a correlation between both biomass layers is taken
into account. Result showed low correlation inbetween, where higher coefficient of determination is at
TS21, unlike the TS20 (see, table-7, DV-3.6). A possible answer to this differnce is given from GIS
based analysis of calculated AGB- change-layer, where:

(4) AAGB = AGB)) 5, — AGBZY®
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together with the vector information about forest disturbances, from the reference database. A positive
convergence is observed for some disturbed forest stands with damages above 30%, together with the
AGB-change-layer, and where fores loss is: AAGB < -80 t/ha. That is interesting result, but needs more
in depth analysis of those changes, and evaluation of the reference databsse with forest disturbances.
For such utilization, resulted S1-mean-characteristics from the time series are proper tool and could give
reliable results. In other hand, this is not the complete answer for the observed changes in AGB, because
time difference in between is 8-years and forest is changing, as well as a lot of forestry activites are
ongoing in those rural areas.

Conclusions

To conclude the analysis held in that study, it can be categorically confirm that delineation
between deciduous and coniferous forest could be done by means of Sentinel-1 time series intensities
products. Utilization of the dual-pol RVI (dRVI) in mountainous temperate forest is of great importance,
because it provides that sensitivity to the forest structure. General conclusion is also that geometric
distortions influences dRVI, which limitates the correct interpretation in those areas. Thematic analysis
via proposed RGB-1: dRVI-VH-VV gives good representation of the backscattering that originates from
different type of the scattering media — e.g. land cover. Resulted PCA from RGB-1 gives best delineation
between deciduous and coniferous forest type. Additionally tested SAR indices — the dual-pol SVI and
Polarization Rati, gives non additional information apart from the dRVI, pointing out to equilibrium of the
sensitivity over forest by means of the three tested SAR indices. Contrariwise, this is not the case over
other type of natural media, such as agricultural fields and water, where SAR indices differ in-between.
The PCA based on RGB-2 provides interesting strong bias at some distinct pixels with strong
backscatter toward sensor, colored in yellowish or greenis3h that should be studied.

The resulted supervised classifications that also incorporates Forest type map, resulted with
78.8 and 68.9 overall accuracy for TS20 and TS21 respectively. General uncertainties are dedicated to
coniferous forest at BR “Chuprene” (class-7) that constitutes of sloped forest at TS21, whereas crops
biased the correct interpretation of grassland on TS21. Coniferous forest in some degree is also
misclassified as deciduous forest, mainly in areas where coniferous species are sparse or well mixed
up with the deciduous ones. In addition, unsupervised classifications showed better performance in
forest edge delineation. Resulted Forest/non-forest masks resulted with high accuracy, where the only
frustration is the uncertainty in the foreshortenings.

Subsequent Regression analysis that aimed to test in general statistical correlation between
mean characteristics resulted from Sentinel-1 time series, and provided AGB layers from Uni-Jena —
GlobBiomass-2010 and CCI-Biomass-2018, as well as the TCD-2015 in the frame of COPERNICUS
Services, showed very low or no correlation in between. Most prompt answer about the observed poor
correlation between AGB and the SAR observables from Sentinel-1, is the lower saturation level of
C-band intensities from forest [9]. Nonetheless, high correlation is observed between dRVI and local
incidence angle, with R2 = 0.78. Differences in both AGB layers are most likely to be related with the
forest loss, due to forest disturbances caused from a past Icethrow disaster event.

Finally, could be stated that conducted utilization of Sentinel-1 time series in mountainous
temperate forest, on behalf of dual-polarimetric capabilities, as well as SAR indices in the face of dRVI,
gives good results where could be incorporated successfully in variety of thematic analyses for the forest
structure, and mapping.
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