
A Graph Diffusion Scheme for Decentralized
Content Search based on Personalized PageRank

Nikolaos Giatsoglou
ITI - CERTH

Thessaloniki, Greece
ngiatsog@iti.gr

Emmanouil Krasanakis
ITI - CERTH

Thessaloniki, Greece
maniospas@iti.gr

Symeon Papadopoulos
ITI - CERTH

Thessaloniki, Greece
papadop@iti.gr

Ioannis Kompatsiaris
ITI - CERTH

Thessaloniki, Greece
ikom@iti.gr

Abstract—Decentralization is emerging as a key feature of
the future Internet. However, effective algorithms for search are
missing from state-of-the-art decentralized technologies, such as
distributed hash tables and blockchain. This is surprising, since
decentralized search has been studied extensively in earlier peer-
to-peer (P2P) literature. In this work, we adopt a fresh outlook
for decentralized search in P2P networks that is inspired by
advancements in dense information retrieval and graph signal
processing. In particular, we generate latent representations of
P2P nodes based on their stored documents and diffuse them
to the rest of the network with graph filters, such as person-
alized PageRank. We then use the diffused representations to
guide search queries towards relevant content. Our preliminary
approach is successful in locating relevant documents in nearby
nodes but the accuracy declines sharply with the number of
stored documents, highlighting the need for more sophisticated
techniques.

Index Terms—decentralized search, nearest neighbors, graph
diffusion, Personalized PageRank

I. INTRODUCTION

Decentralization is back in the spotlight. While peer-to-peer
(P2P) systems were popular in the 2000s, they subsequently
lost their appeal to centralized social networks and streaming
services. The tide has recently turned for two reasons. The first
is the fear over excessive centralization of user data, sparked
by pivotal incidents, such as the 2013 leaking of the PRISM
surveillance program by Edward Snowden [1] and the 2016
Cambridge Analytica scandal [2]. The second is the increasing
mainstream appeal of cryptocurrencies and blockchain-based
applications [3].

As a result, influential web technologists have called for
a decentralized web with actions like the Decentralized Web
Summits by the Internet Archives1 and the Solid project by
Tim Berners-Lee [4]. From their part, policy-makers have
answered this call, with the European Commission supporting
decentralized technologies in its flagship Next Generation
Internet initiative2.

Currently, the most popular decentralized technologies are
distributed hash tables (DHTs) and blockchain. Of these,
DHTs come from the previous wave of P2P research and
enable document retrieval via unique textual identifiers, with

1https://www.decentralizedweb.net/
2https://digital-strategy.ec.europa.eu/en/policies/

next-generation-internet-initiative

strong guarantees on retrieval delay. For example, the Kadem-
lia DHT powers the Interplanetary File System (IPFS), a
decentralized file storage solution that aspires to become a
pillar of the decentralized Web3. On the other hand, blockchain
allows decentralized nodes to maintain common states via
consensus mechanisms like proof-of-work and broadcasting.
Instead of data, blockchain is typically used to broadcast
monetary transactions and reward nodes for executing decen-
tralized operations. For example, Filecoin builds on IPFS and
uses blockchain to reward nodes for offering file storage.

But how can one find documents in decentralized systems?
DHTs require previous knowledge of document identifiers,
which must be acquired externally. Alternatively, they can
implement distributed inverted indexes by storing relevant
document identifiers for search keywords [5], as the YaCy
search engine does4.

However, this practice carries fundamental bandwidth and
storage constraints [6] and exact keyword matching is dated
compared to the semantic awareness of modern search engines.
On the other hand, unstructured search techniques, such as
flooding, random walks, index sharing, and query caching [7]
often suffer from high communication overhead and unpre-
dictable delays. Finally, blockchain has been used to reward
nodes for executing indexing and retrieval operations in decen-
tralized search engines, such as Presearch5, but broadcasting
indexes to all nodes is prohibitive in terms of bandwidth and
storage.

While research on decentralized search has stagnated on the
above bottlenecks, centralized search engines have evolved to
better understand query semantics. This evolution has been
driven by advancements in embeddings, latent representations
of text and other types of content [8]. Retrieval with embed-
dings often follows a vector space model, which extracts vector
representations for documents and queries and compares their
relevance with a simple similarity metric, such as the dot
product or cosine similarity. This way, the retrieval can be cast
as a nearest-neighbor problem, which tries to find the nearest
documents to a query according to the selected similarity
metric. In contrast to term-frequency vectors, embeddings are

3https://ipfs.io/
4https://yacy.net/
5https://presearch.org/

https://www.decentralizedweb.net/
https://digital-strategy.ec.europa.eu/en/policies/next-generation-internet-initiative
https://digital-strategy.ec.europa.eu/en/policies/next-generation-internet-initiative
https://ipfs.io/
https://yacy.net/
https://presearch.org/


lower-dimensional and enable semantic rather than exact term
matching, giving rise to dense retrieval.

Here, we argue that decentralized search can benefit from
modern techniques employed by centralized search engines.
To this end, we revisit the decentralized search problem from
an embedding-based standpoint. We further employ a graph
signal processing technique to implement similarity-based
P2P query routing. We propose composing node embeddings
from local node documents and diffusing them through P2P
networks with decentralized implementations of graph filters,
such as Personalized PageRank (PPR). We then use the dif-
fused embeddings to guide decentralized search towards nodes
with relevant documents. We experiment with a simulation of
a real-world P2P network and investigate how our solution
scales with the number of documents in the network. Our
approach successfully locates relevant documents in nearby
nodes but accuracy sharply declines as the number of docu-
ments increases, highlighting the need for further research.

II. BACKGROUND AND RELATED WORK

This section explores related work on decentralized search
(Subsection II-A) and then presents dense information re-
trieval (Subsection II-B) and graph signal processing (Sub-
section II-C) background to contextualize later analysis.

A. Decentralized search

Decentralized search received attention in the early 2000s
for P2P file sharing systems, such as Gnutella and Freenet
[9]. Gnutella introduced flooding, the simplest technique for
search, which forwards search queries to all nodes within a
specified number of hops. As P2P platforms grew in size,
flooding was soon found to not scale in terms of bandwidth
consumption [10], giving rise to alternatives, such as random
walks, index sharing, and super-peer architectures [11]. Of
these, informed methods exploit hints about possible document
locations and outperform blind methods, like flooding and
random walks in terms of delay and communication cost. This
comes at the expense of costly state maintenance at nodes [12].

Informed search methods rely on query routing and can be
further categorized into document- and query-oriented ones
[13]. In document-oriented methods, P2P nodes exchange
information about their stored documents [14], [15]. As the
storage cost increases with the number of documents in the
network, the advertisement radius is limited and summariza-
tion is employed to compress the advertisements, for instance
with Bloom filters [15]. Both techniques introduce routing
errors. In query-oriented methods, nodes store information of
passing queries and their results [16], [17] and, when a new
query arrives, it is forwarded to the most successful route
travelled by similar past queries. These methods are attractive
because they avoid storing information about unpopular doc-
uments. On the other hand, they are blind to unseen queries,
especially at the beginning of the network’s operation when
no information is available (cold-start problem).

While informed search identifies the locations of relevant
documents through routing, DHTs decouple these two opera-

tions with a clever application of hashing [11]. In particular,
DHT nodes agree to store documents whose hash values are
the closest to their own address, according to a distance
function. As a result, when nodes search for a document,
they can resolve its location and reach it through routing.
For efficiency, most DHT systems, such as Chord, Pastry,
and Kademlia, structure P2P networks so that all locations are
reachable within a maximum number of hops [11], although
this structuring is not strictly required6.

The theoretical properties and practicality of DHTs have
made them attractive for modern decentralized systems, such
as IPFS, but they are best suited for key-based retrieval. For
other types of search, such as range and nearest neighbor
queries, adaptations or other distributed data structures are
needed, such as skip-lists and skip-graphs [5], [19], [20].
These solutions carry their own limitations, including security
concerns and poor load balancing of traffic.

B. Dense retrieval

Information retrieval is often based on vector space models
that represent documents and queries as vectors and estimate
document relevance to queries via a similarity metric. Text
vector representations are traditionally derived from bag-of-
words models based on word frequencies, predominantly the
TF-IDF and BM25 models [21]. Those yield high-dimensional
sparse vectors that can be efficiently stored in inverted index
tables but do not capture the underlying semantics, such
as implied contexts, synonyms, or word co-usage patterns.
To address this issue, research has moved towards lower-
dimensional dense representations, which encode latent se-
mantics and enable soft matches. Dense retrieval has recently
demonstrated definite improvement over sparse retrieval (rep-
resented by the BM25 model) [22], owing to the successful
transfer of deep learning advances [23].

Key steps in this process have been the development of
efficient vector representations for words with the Word2Vec
and Glove frameworks [24], which were later extended to
sentences. While sentence embeddings are less understood,
they were shown to capture linguistic information [25] and
are useful to retrieval [26].

Currently, the state of the art for dense retrieval focuses on
pre-trained transformer models, commonly based on BERT
[27], which are subsequently fine-tuned on downstream re-
trieval tasks [8]. There are two extreme approaches in using
BERT for retrieval, cross-encoders and bi-encoders. Cross-
encoders consider all interactions among query and document
words, which yields the best accuracy but with high processing
and energy costs. For instance, cross-encoders need to process
all documents and queries at query-time, which incurs unrea-
sonable delays. In contrast, bi-encoders conform to the vector
space model in that documents and queries are transformed
separately to vectors and interact via simple operations, such
as the dot product or cosine similarity. While bi-encoders

6Efficient addressing can be enforced on networks with arbitrary structure,
for example with greedy embeddings [18].



are less accurate than cross-encoders, they outperform BM25,
enable proactive document indexing, and their inference is
quick and cheap with approximate nearest-neighbor algorithms
[28]. Therefore, the vector space model and nearest-neighbor
algorithms remain relevant for modern search applications.

C. Graph signal processing

Graph signal processing is a recently popularized field that
generalizes traditional signal processing principles to graphs
[29], [30]. With this approach, graph signals are defined as
collections of node values, e.g., scalars, vectors, and graph
filters study their propagation through graphs. In particular, a
graph convolution operation is defined, which performs one-
hop propagation of node values through matrix multiplication,
and graph filters are defined by weighted aggregation of
multihop propagations. Popular graph filters, such as PPR and
heat kernels perform the equivalent of low-pass filtering by
placing higher importance to node values that are propagated
fewer hops away.

When node values are vectors, graph filters operate inde-
pendently on each vector dimension. This type of propagation
is useful by itself for downstream predictive tasks, such as
prediction propagation in graph neural networks [31], [32].
In this work, we consider low-pass graph filters as a type of
smoothing that concentrates around a small area around nodes.
This area can be tuned by a single parameter of the PPR filter.

III. PROBLEM SETTING

This section first presents dense retrieval operations, as they
would be applied by modern centralized search engines (Sub-
section III-A), and then re-formulates them in a decentralized
setup (Subsection III-B).

A. Centralized Setting

In the centralized setting, we consider search engines that
are responsible for answering queries over collections of stored
documents D. When engines receive queries q, they compute
relevance scores s(d, q) for all documents d ∈ D. They then
estimate the top-k most relevant documents per

arg top-k
d∈D

s(d, q). (1)

In this paper, we consider the bi-encoder model of dense
retrieval, which splits the score computation in two parts: i)
an encoding part that transforms queries q and documents d to
ν-dimensional embedding vectors eq, ed respectively (eq, ed ∈
Rν), and ii) a comparison part that derives the score s from
the embeddings. This is formalized as

s = ϕ(eq, ed) = ϕ (ηq(q), ηd(d)) (2)

where ηq, ηd are encoding functions for queries and documents
respectively, and ϕ is a comparison mechanism [33]. The
above formulation is attractive because it contains the com-
putational complexity to the encoding function η, which can
be pre-computed during indexing. In contrast, the comparison
function ϕ is executed at query time and is therefore chosen
to be computationally lightweight; usually, the dot product or

cosine similarity is chosen7. These choices cast the retrieval
as a k nearest-neighbor problem, which can be computed
efficiently with popular approximation algorithms, e.g., based
on locality sensitive hashing or hierarchical navigable small
world graphs [28].

B. Decentralized Setting

To move to the decentralized setting, we consider a P2P
network whose nodes maintain their own private document
collections. The network is modeled as an undirected graph
G = (V, E), where V is the set of nodes and E ⊆ V × V
their communication edges, while Du ⊆ D represents the local
documents of node u.

When nodes initiate queries, they first execute the retrieval
operations of subsection III-A over their local document col-
lections, and then forward queries to their one-hop neighbors
to retrieve more results. Farther nodes can be contacted by
relaying the queries along nodes. Since contacting all nodes
would induce non-scalable communication costs and delays,
we allow the search to fail to find relevant documents, even if
these could have been retrieved by centralized search engines.
The goal of our analysis is to make clever forwarding decisions
to achieve high search hit accuracy of relevant documents.

IV. DIFFUSION-BASED DECENTRALIZED SEARCH

Our decentralized scheme for search is a document-oriented
solution where nodes maintain a summary of documents avail-
able from their neighbors. These summaries take the form of
node embedding vectors, denoted by eu, which are composed
from the embeddings of both local and nearby documents. To
generate the node embeddings, when new nodes enter the net-
work or update their document collections, they compute per-
sonalization vectors, denoted by e

(0)
u , which characterize their

local document collections (Subsection IV-A). Subsequently,
the nodes diffuse their personalization vectors to the network
with an iterative and asynchronous diffusion algorithm based
on PPR (Subsection IV-B). This algorithm converges to the
node embedding vectors and also keeps track the embeddings
of the one-hop neighbors for each node. At query-time, the
nodes can use their stored neighbor embeddings to forward
queries towards promising next hops (Subsection IV-C).

A. Node personalization

Ideally, for each node u, we would like to estimate the
maximum score of all neighbors v, as in (2), without knowing
their documents Dv . A simple way is to represent each node
with the personalization vector e

(0)
u that is the sum of the

node’s document embeddings. This has the attractive property
that, due to the linearity of the interaction function, the dot
product of the query with the neighbor embedding yields the
total relevance of the neighbor’s documents:

eq · e(0)v = eq ·
∑
d∈Dv

ed =
∑
d∈Dv

eq · ed. (3)

7These are equivalent when the embeddings are L2-normalized.



This approach tends to score higher nodes with a larger
number of documents. This is desirable in general although
it runs the risk of prioritizing nodes with many irrelevant
documents over nodes with a few but relevant documents.

B. Diffusion of embeddings

After computing their personalization vectors, the nodes
transmit them to their neighbors. Instead of traditional n-hop
advertising, we consider a diffusion scheme based on graph
signal processing. A typical diffusion has the form:

E = HE(0) ⇒ eu =
∑
v∈V

huve
(0)
v (4)

where E(0), E are the initial and diffused embeddings in
matrix form, H is the weight matrix or impulse response
of diffusion, whose elements huv represent the impact of
node v to u. While the diffusion weights H could be learned
with a machine learning algorithm, the complexity of learning
would scale with O(N2), which would be intractable for large
graphs. Therefore, we have chosen the PPR algorithm for
calculating the weights, which is a popular approach in the
literature [31], and can be implemented in a decentralized and
asynchronous way [34], which is a highly desirable feature.

In PPR, we associate huv with the probability to reach v
via a random walk that starts from u. If the random walk were
allowed to progress, as in the traditional PageRank, it would
forget its origin u and converge to a probability characterizing
only v. To avoid this, in PPR, we force the walker to teleport
back to node u with probability a. Thus, huv is associated
with the probability to reach node v from u with a short walk
of average length 1/a.

Formally, denoting by π[v] the probability of arriving at
node v, and by δu[v] the one-hot vector at node u, i.e., δu[u] =
1 and δu[v] = 0 for v ̸= u, we have

π[v] = (1−a)Aπ[v]+aδu[v] ⇒ π[v] = a(I−(1−a)A)−1δu[v]
(5)

where I is the identity matrix and A the transition matrix of
the Markov chain, based on a suitable normalization of the
adjacency matrix of G or external weights. Considering the
definition of δu[v], it is clear that the columns of a(I− (1−
a)A)−1 correspond to the desired probabilities for different
origins u. The diffused embeddings of (4) are thus given by:

E = a(I− (1− a)A)−1E(0) (6)

While the embeddings are propagated to the whole graph, the
effective range of the diffusion is tuned by the parameter a.

For the decentralized and asynchronous implementation, we
first express (6) iteratively as:

E(t) = (1− a)AE(t−1) + aE(0), (7)

which converges to (6) but is synchronous. Subsequently,
we make the iteration asynchronous by letting node pairs
exchange and update embeddings. As proven in [34], if
the update intervals are not arbitrarily long, the embeddings
converge to (5) in distribution, which is a good approximation
of the centralized scheme.

1. receive query

2. check local documents

3. decrement TTL

4a. find next hop

4b. discard

5a. forward

?

?

TTL = 0

NO

YES

5b. notify source

Fig. 1. Node operations when a query is received.

C. Forwarding operations

Node embeddings are used at query-time to guide search
towards promising nodes, essentially performing a biased
random walk. Queries keep track of the k most relevant
documents they have encountered along with their relevance
score8. Since visiting all nodes in the network is impractical,
we impose a maximum number of hops with a time-to-live
(TTL) field in the query message, which helps prevent queries
from circulating in the network indefinitely. Due to the TTL
limitation, we prioritize unvisited nodes for forwarding. To
this end, the nodes keep track of the neighbors from which
they have received and to which they have sent messages. We
purposefully reject the alternative (and slightly more efficient)
solution of recording the visited nodes in the query message
in order to protect the privacy of node connections. In our
solution, nodes relay the queries recursively, i.e., from node
to node, and when their TTL expires, a response message is
returned to the querying nodes via backtracking.

Fig. 1 illustrates the node operations when a new query
arrives. As described in subsection III-B, nodes first evaluate
the query on their local documents according to the retrieval
operations of subsection III-A. Afterwards, they decrement the
TTL field of the query message by 1 and check if the message
is still alive. If the TTL has expired, the nodes discard the
query and send a query response message to the reverse path,
otherwise, they commence the forwarding procedure: nodes
first determine a set of candidate next hops from their neigh-
bors, which excludes previously visited nodes remembered by
the nodes9. Nodes then match via dot product the embeddings
of the candidate next hops with the query embedding, and
select a few neighbors with the highest score. When a single
neighbor is selected, the outcome is a simple random walk,
otherwise, multiple walks are executed in parallel.

8If documents are too large, the message can track the IP addresses of the
source nodes or content identifiers if available, e.g., IPFS content IDs.

9If no neighbors remain after this step, nodes consider all their neighbors
as candidates as we do not want to waste opportunities for forwarding
considering the TTL limitation.



1: Generate documents and queries from Glove

2: Distribute N documents uniformly over G
3: Compute node embeddings
4: repeat
5: Diffuse node embeddings asynchronously
6: until embeddings converge
7: Distribute queries
8: repeat
9: Forward queries

10: until all queries expire

Fig. 2. Pseudo-code for the simulation of the decentralized search setting.

V. EXPERIMENTAL EVALUATION

We evaluate a retrieval operation in a social P2P network
based on two datasets: a social network graph and a corpus of
pre-trained embeddings (Subsection V-A). Through simulation
(Subsection V-B), we investigate the scalability of our scheme
with the number of stored documents in the network, M , in
terms of the hit accuracy (Subsection V-C) and the average
number of hops of successful queries (Subsection V-D).

A. Datasets

Experiments are conducted on the Facebook social circles
graph [35] hosted by the SNAP project10. This is an undirected
graph of 4,039 Facebook users (nodes) and their 88,234 friend
relations (edges). We consider this graph representative of P2P
networks built on top of social relations, which are expected
to resemble friend relations of centralized social networks.

Documents and queries are represented using 300-d word
embeddings, trained by the Glove model on Wikipedia articles
[24] and distributed by the GenSim library11. While Glove
embeddings are not ideal for retrieval, they are good predictors
of similarity with the cosine similarity metric. As mentioned
in Section V, the nearest-neighbor search mechanism is inde-
pendent from the embedding method, which allows us to study
search in isolation. In fact, queries and documents can refer
to any type of content, even multimedia, provided relevance
is a linear function of their embeddings.

B. Simulation setup

Fig. 2 presents our simulation in pseudo-code. We first
generate queries and documents from the Glove dataset using
1000 random words as queries and their nearest neighbors as
gold documents, provided that their cosine similarity is over
0.6 and the two sets do not overlap. The remaining words are
treated as a pool of irrelevant documents. We further distribute
the documents over the graph’s nodes uniformly and compute
the node embeddings. This is followed by a warm up period, in
which we diffuse the node embeddings over the network with
the asynchronous PPR algorithm. The algorithm runs until the
embeddings converge.

10http://snap.stanford.edu
11https://radimrehurek.com/gensim/

We then proceed with evaluating the top-1 document re-
trieval performance over sampled queries, whose number de-
pends on the simulation scenario. In each iteration, queries are
distributed over the network and are forwarded independently.
For simplicity, each query performs a simple random walk,
which is the most challenging case and can be easily extended
to parallel walks. In the future, we plan to investigate parallel
walks more thoroughly along with time-evolving conditions
and the top-k performance. More realistic document distribu-
tions are also worthwhile; in fact, they are expected to aid
diffusion, since they naturally exhibit spatial correlation.

C. Hit Accuracy

In this series of experiments, we evaluate the accuracy of
our algorithm over the number of stored documents in the
network, M , and the teleport probability of PPR, α, which
determines the average diffusion radius. For M , we select
10, 100, 1000, and 10000 documents to investigate 4 orders
of magnitude. In each iteration, we store one gold and M -
1 irrelevant documents in the network, and sample multiple
querying nodes, one from each radius away from the location
of the gold document. At the end of simulation, the accuracy
is computed as the percentage of queries that retrieved the
gold document within a TTL of 50 hops. The simulation is
repeated for three different values of α, 0.1, 0.5, and 0.9, as
examples of heavy, moderate, and light diffusion respectively.
The results are depicted in Fig. 3.

Figs. 3a and 3b show that our algorithm excels at finding
documents within 2 hops away, provided that there are few
documents in the network. In contrast, the accuracy starts to
decline at 3 hops and deteriorates significantly farther away.
Surprisingly, heavy diffusion does not aid accuracy, as more
documents are discovered when the teleport probability is 0.9.
The results change radically with more stored documents. In
Figs. 3c and 3d, we see that the accuracy remains high mainly
for documents in neighboring nodes and the impact of α is
more varied. In this case, heavier diffusion is better at small
distances although a = 0.9 appears beneficial at 3 and 4 hops
when the stored documents are 1000. With 10000 documents,
the performance deteriorates considerably.

The above show that the PPR diffusion is useful for lo-
cal neighborhood search but its accuracy declines with the
number of stored documents. This is attributed to the loss of
information for individual documents when many embeddings
are summed, either during summarization or diffusion. The
behavior with α can also be explained by the following trade-
off: heavy diffusion (low α) announces documents within a
wider range but adds more noise due to the summation of
the embeddings. In contrast, light diffusion (high α) adds less
noise but may fail to notify nearby nodes. Considering this
trade-off, when few documents are stored in the network (Figs.
3a and 3b), it is preferable to leave fewer and cleaner hints
as the random walk will eventually find the correct document.
In contrast, with more documents (Figs. 3a and 3b), there is
already noise in the network and light diffusion may hinder
the random walk from finding documents even 1 hop away.

http://snap.stanford.edu
https://radimrehurek.com/gensim/


TABLE I
AVERAGE HOP COUNT

M documents success rate median hops mean hops std hops

10 1905 / 5000 3 7.62 10.83
100 1265 / 5000 4 11.21 13.37
1000 1054 / 5000 9 15.26 14.55

10000 877 / 5000 9 14.31 13.36

D. Hop Count Analysis

In this experiment, we compute the average hop count
for successful queries until the gold document is found. As
in Section V-C, the queries are considered successful when
they retrieve the correct document within 50 hops. We note
that, since the queries do not know when they find the gold
document and must complete their TTL, the average hop count
does not indicate bandwidth consumption but can guide the
choice of TTL. For the setup, we execute 500 iterations in each
of which we distribute 10 queries uniformly in the network,
for a total of 5000 samples. We also choose the value 0.5
for the teleport probability α, scale the number of documents
for 10 to 10000, and randomize the document distribution at
each iteration, as in the accuracy experiment. Our results are
summarized in Table I.

Table I shows that less queries are successful when the
stored documents increase, consistently with the accuracy
results of Section V-C. Furthermore, with more documents,
longer walks are required as both the median and the mean
hops to reach the gold documents increase. The discrepancy
between the median and the mean hops implies a skewed
distribution, i.e., a few walks succeed after a large number
of hops and drive the mean higher, which is corroborated
by the high standard deviation. Combined with the results of
the accuracy experiment, the above show that, even though
documents are found predominantly by nearby nodes, some
queries need to circulate for additional hops until they succeed.
It is encouraging though that success is still possible with a
high number of documents, such as 10000.

VI. CONCLUSIONS

As decentralization is becoming an increasingly important
feature of the future Internet, new algorithms are needed for
effective decentralized search. In this paper, we revisit this
long-standing problem from a combined embedding and graph
diffusion perspective. Specifically, considering a P2P network
with nodes of only local knowledge over their document
collections, we apply the PPR algorithm to diffuse summarized
information about the documents in the network. Our results
show that this diffusion can be beneficial for local neighbor-
hood search but further enhancements are needed to improve
the performance for global search. Our current line of research
is to exploit correlations in the document distribution and
derive more sophisticated aggregation methods that encode
more information about the grouped documents.

ACKNOWLEDGMENT

This research was supported by the EU H2020 projects
AI4Media (Grant Agreement 951911), MediaVerse (GA
957252) and HELIOS (GA 825585). The authors want to
thank Dr. Ioannis Sarafis for his productive feedback on the
decentralized search scheme.

REFERENCES

[1] G. Greenwald and E. MacAskill, “Nsa prism program taps into user data
of apple, google and others,” The Guardian, vol. 7, no. 6, pp. 1–43, 2013.

[2] C. Cadwalladr, “The great british brexit robbery: how our democracy
was hijacked,” The Guardian, vol. 7, 2017.

[3] W. Chen, Z. Xu, S. Shi, Y. Zhao, and J. Zhao, “A survey of blockchain
applications in different domains,” in Proceedings of the 2018 Interna-
tional Conference on Blockchain Technology and Application, 2018, pp.
17–21.

[4] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli,
A. Ghanem, A. Aboulnaga, and T. Berners-Lee, “A demonstration of
the solid platform for social web applications,” in Proceedings of the
25th international conference companion on world wide web, 2016, pp.
223–226.

[5] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,”
in ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer, 2003, pp. 21–40.

[6] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. R. Karger, and
R. Morris, “On the feasibility of peer-to-peer web indexing and search,”
in International Workshop on Peer-to-Peer Systems. Springer, 2003,
pp. 207–215.

[7] E. Khatibi and M. Sharifi, “Resource discovery mechanisms in pure
unstructured peer-to-peer systems: a comprehensive survey,” Peer-to-
Peer Networking and Applications, vol. 14, no. 2, pp. 729–746, 2021.

[8] J. Lin, R. Nogueira, and A. Yates, “Pretrained transformers for text
ranking: Bert and beyond,” Synthesis Lectures on Human Language
Technologies, vol. 14, no. 4, pp. 1–325, 2021.

[9] K. Aberer and M. Hauswirth, “An overview of peer-to-peer information
systems.” in WDAS, vol. 14, 2002, pp. 171–188.

[10] J. Ritter, “Why gnutella can’t scale. no, really,” 2001.
[11] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey

and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys & Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[12] D. Tsoumakos and N. Roussopoulos, “Analysis and comparison of p2p
search methods,” in Proceedings of the 1st international conference on
Scalable information systems, 2006, pp. 25–es.

[13] K. Arour and T. Yeferny, “Learning model for efficient query routing
in p2p information retrieval systems,” Peer-to-Peer Networking and
Applications, vol. 8, no. 5, pp. 741–757, 2015.

[14] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer
systems,” in Proceedings 22nd international conference on distributed
computing systems. IEEE, 2002, pp. 23–32.

[15] A. Kumar, J. Xu, and E. W. Zegura, “Efficient and scalable query routing
for unstructured peer-to-peer networks,” in Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies., vol. 2. IEEE, 2005, pp. 1162–1173.

[16] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A local search
mechanism for peer-to-peer networks,” in Proceedings of the eleventh
international conference on Information and knowledge management,
2002, pp. 300–307.

[17] X. Li and J. Wu, “Improve searching by reinforcement learning in un-
structured p2ps,” in 26th IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW’06). IEEE, 2006, pp. 75–75.

[18] A. Höfer, S. Roos, and T. Strufe, “Greedy embedding, routing and
content addressing for darknets,” in 2013 Conference on Networked
Systems. IEEE, 2013, pp. 43–50.

[19] E. Bongers and J. Pouwelse, “A survey of p2p multidimensional indexing
structures,” arXiv preprint arXiv:1507.05501, 2015.

[20] J. Gao and P. Steenkiste, “Efficient support for similarity searches in dht-
based peer-to-peer systems,” in 2007 IEEE International Conference on
Communications. IEEE, 2007, pp. 1867–1874.

[21] C. Manning, P. Raghavan, and H. Schütze, “Introduction to information
retrieval,” Natural Language Engineering, vol. 16, no. 1, pp. 100–103,
2010.



0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
=0.1

=0.5

=0.9

Distance (hops)

(a)

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

=0.1

=0.5

=0.9

Distance (hops)

(b)

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

=0.1

=0.5

=0.9

Distance (hops)

(c)

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

=0.1

=0.5

=0.9

Distance (hops)

(d)

Fig. 3. Accuracy analysis for a) 10, b) 100, c) 1000, and d) 10000 documents in the network.

[22] J. Lin, “The neural hype and comparisons against weak baselines,” in
ACM SIGIR Forum, vol. 52, no. 2. ACM New York, NY, USA, 2019,
pp. 40–51.

[23] ——, “The neural hype, justified! a recantation,” in ACM SIGIR Forum,
vol. 53, no. 2. ACM New York, NY, USA, 2021, pp. 88–93.

[24] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[25] A. Conneau, G. Kruszewski, G. Lample, L. Barrault, and M. Baroni,
“What you can cram into a single \&!#∗ vector: Probing sentence
embeddings for linguistic properties,” in ACL 2018-56th Annual Meeting
of the Association for Computational Linguistics, vol. 1. Association
for Computational Linguistics, 2018, pp. 2126–2136.

[26] W. Yang, H. Zhang, and J. Lin, “Simple applications of bert for ad hoc
document retrieval,” arXiv preprint arXiv:1903.10972, 2019.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[28] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms,”

Information Systems, vol. 87, p. 101374, 2020.
[29] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,

“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[30] W. Huang, T. A. Bolton, J. D. Medaglia, D. S. Bassett, A. Ribeiro, and
D. Van De Ville, “A graph signal processing perspective on functional
brain imaging,” Proceedings of the IEEE, vol. 106, no. 5, pp. 868–885,
2018.

[31] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” in International
Conference on Learning Representations, 2018.

[32] H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui, “On
the equivalence of decoupled graph convolution network and label
propagation,” in Proceedings of the Web Conference 2021, 2021, pp.
3651–3662.

[33] J. Lin, “A proposed conceptual framework for a representational
approach to information retrieval,” SIGIR Forum, vol. 55, no. 2, mar
2022. [Online]. Available: https://doi.org/10.1145/3527546.3527552

[34] E. Krasanakis, S. Papadopoulos, and I. Kompatsiaris, “p2pgnn: A
decentralized graph neural network for node classification in peer-to-
peer networks,” IEEE Access, vol. 10, pp. 34 755–34 765, 2022.

[35] J. Leskovec and J. Mcauley, “Learning to discover social circles in ego
networks,” Advances in neural information processing systems, vol. 25,
2012.

https://aclanthology.org/N19-1423
https://doi.org/10.1145/3527546.3527552

	Introduction
	Background and Related Work
	Decentralized search
	Dense retrieval
	Graph signal processing

	Problem Setting
	Centralized Setting
	Decentralized Setting

	Diffusion-based decentralized search
	Node personalization
	Diffusion of embeddings
	Forwarding operations

	Experimental Evaluation
	Datasets
	Simulation setup
	Hit Accuracy
	Hop Count Analysis

	Conclusions
	References

