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Abstract

Many of the leading post-quantum key exchange and signature schemes rely on the
conjectured hardness of the Learning With Errors (LWE) and Learning With Rounding
(LWR) problems and their algebraic variants, including 3 of the 6 finalists in NIST’s
PQC process. The best known cryptanalysis techniques against these problems are
primal and dual lattice attacks, where dual attacks are generally considered less prac-
tical.

In this report, we present several algorithmic improvements to the dual lattice
attack, which allow it to exceed the efficiency of primal attacks. In the improved attack,
we enumerate over more coordinates of the secret and use an improved distinguisher
based on FFT. In addition, we incorporate improvements to the estimates of the cost
of performing a lattice sieve in the RAM model, reducing the gate-count of random
product code decoding and performing less inner product calculations.

Combining these improvements considerably reduces the security levels of Kyber,
Saber and Dilithium, the LWE/LWR based finalists, bringing them below the thresh-
olds defined by NIST.

1 Introduction

In this report, the Center of Encryption and Information Security (MATZOV) presents
an overview of results of an inner audit project regarding leading post-quantum cryp-
tographic schemes. This work does not aim to provide a complete analysis of all
candidate post-quantum encryption schemes, nor to recommend cryptographic algo-
rithms to use. Rather, this publication is meant to share advances in the cryptanalysis
of lattices which we believe to be relevant to academic research in the field. Some of
the additional results of the audit, regarding quantum security ramifications, possible
extension of the claims to NTRU-based lattice schemes and additional improvements
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to the presented attack are mentioned in Section 8, and might be published at a later
date.

1.1 Motivation

Since the 1990s, the threat of quantum computers to modern security protocols has
been well known, with ongoing research regarding applications of the Shor [Sho94,
HRS17, RNSL17, HJN+20, BBvHL21, GE21] and Grover [Gro96, Ber10, GLRS16,
BNS19, JNRV20] algorithms to cryptanalysis of cryptographic schemes. It is heavily
debated by experts whether and when a quantum computer capable of executing those
algorithms for relevant cryptanalytic problems will be feasible. However, the grow-
ing interest in academic cycles, followed by governments [BPS21, EHH+21, BDH+21,
ANS22, Dir22] and industry powers [CCD+15, Ant20, Gri21] - led to accelerated de-
velopment of quantum-resistant countermeasures, such as Quantum Key Distribution
(QKD) and Post-Quantum Cryptography (PQC).

The main initiative for determining new cryptographic schemes is led by NIST –
NIST PQC Standardization Process [CJL+16, Nat16]. Starting with 69 candidates in
2017, the process now consists of 7 finalists which are being considered for standardiza-
tion [AASA+19, MAA+20]. The majority of the finalists are based on structured lat-
tices, and rely on the hardness of various lattice problems [Ajt98, Mic98, Kho04, HR07].

Lattice-based cryptography was first proposed by Ajtai and Dwork [AD97], and
later expanded by the introduction of the NTRU cryptosystem [HPS98]. Over the
years, lattice-based cryptography has become one of the most promising solutions for
the quantum computing threat. A large fraction of lattice-based cryptographic mech-
anisms is built upon the Learning With Errors (LWE) problem [Reg09] and variations
of it, such as Ring-LWE (RLWE) [LPR13], Module-LWE (MLWE) [LS15] and Learn-
ing With Rounding (LWR) [BPR12]. LWE and its variations benefit from a series
of worst-case to average-case reductions – breaking certain random instantiations of
these problems is at least as hard as solving worst case lattice problems [Reg09, Pei08,
BLP+13, LPR13, LS15]. This work is focused on lattice schemes whose hardness relies
on the LWE/R problems – CRYSTALS-KYBER [BDK+18, ABD+17], CRYSTALS-
DILITHIUM [DKL+18, DKL+21] and SABER [DKRV18, BMD+20].

Understanding the exact hardness level of the underlying lattice problems is an ac-
tive and rapidly changing research area. As such, we took an interest in understanding
and verifying the current assumptions regarding the strength of lattice cryptosystems,
starting with LWE/R problems. Various publications have shown substantial improve-
ments in recent years [Laa15, Laa16, AGVW17, Duc18, LM18, PHS19, ABF+20, BR20,
DLdW20, BLL+21, CL21, Hei21] in the classical and quantum analysis of lattice prob-
lems. We therefore assumed further improvements are imminent – and our security
evaluation of the different cryptosystems takes this into consideration.

1.2 Contributions

In this work we present several improvements to the dual lattice attack which reduce the
security level of Kyber [BDK+18], Saber [DKRV18], and Dilithium [DKL+18] below the
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required security level specified by NIST [Nat16]. In particular, the security of Kyber is
reduced to between 4 and 14 bits below the security cutoff requirement. This reduction
in security is independent of the refined BKZ strategies suggested in [ADH+19] and the
further reduction in security foreseen in the Kyber submission document [BDK+18].

Our improvements consist of three main results.

1. We present an improved enumeration strategy over the secret, combined with a
more efficient distinguishing algorithm. The standard dual lattice attack per-
forms an exhaustive search on the first coordinate of the secret, and for each
guess invokes a distinguishing algorithm. Our attack enumerates over several
coordinates of the secret simultaneously, and uses a more efficient distinguishing
algorithm. Its efficiency stems from a tailored usage of the Fast-Fourier-Transform
(FFT) combined with modulus switching. Our attack requires reducing lattices of
much smaller dimension than was believed to be necessary [ACD+18, BMD+20,
ABD+21, DKL+21] which translates to a more efficient attack in total.

2. We improve the estimated costs of sieving in the RAM model compared to pre-
vious estimates [AGPS20]. The main improvement is the random product code
decoding algorithm which requires a smaller number of gates. Our algorithm
requires one addition, one xor, and three comparisons per legal codeword, which
translate to ≈ 430 gates for a lattice of rank 400, as opposed to [AGPS20] which
requires a super-constant number of inner products per legal codeword, which
translate to ≈ 3,500,000 gates for a lattice of rank 400.

We also optimize over a larger set of parameters than considered in [AGPS20],
which leads to further improvements. Overall, the cost of sieving is reduced by
≈ 6 bits in rank 400.

3. We propose a faster short vectors sampling procedure. We first run the BKZ
algorithm using a sieve as the relevant SVP oracle. As observed previously, in
such cases one enjoys the so-called “dimensions-for-free” trick [Duc18]. Then, we
run a final sieve on the first block of the reduced basis to find many short vectors
(this time without using dimensions-for-free, as we use many resulting vectors
from the output of the sieve). However, we use a different block size for this task,
which allows us to optimize the overall cost by balancing the costs of the two
parts.

We optimize our proposed attack and review the security level of various NIST
candidates. We analyze Kyber [BDK+18], Dilithium [DKL+18], and Saber [DKRV18]
and present the results in Table 1. We compare the security level, as specified by the
Call for Proposals [Nat16], the security estimates by the candidate’s authors, and our
proposed attack.

We remark that our research primarily focused on Kyber. As such, this candidate
is the one that is most affected by our proposed attack. Our attack can also be applied
to Dilithium and Saber, and so we analyze the cost of our attack on these candidates.
We believe that certain adaptations can be made to improve our attack for the other
specific candidates, but have not yet completed such research. We mention some of
these ideas in Section 8.
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Table 1: Security estimations for Dilithium, Kyber and Saber. Comparison between the
security level required by NIST, the authors’ claimed security, and the security level as
shown in this work. All of the costs are log2 in the gate-count metric.

Candidate
Required Security
Level By NIST

[Nat16]

Estimated Security
Level

[DKL+21]
[ABD+21]
[BMD+20]

This Work

Kyber512 143 151.5 137.5
Kyber768 207 215.1 193.5
Kyber1024 272 287.3 257.8
Dilithium2 146 159 146.3
Dilithium3 207 217 202.0
Dilithium5 272 285 263.6
LightSaber 143 Unspecified 138.4
Saber 207 Unspecified 202.7
FireSaber 272 Unspecified 264.9

We see that for almost all candidates and security levels, with the sole exception of
Dilithium with Security Level 2, our proposed attack’s cost is below the required cost.

A recent paper by Guo and Johansson [GJ21] presented a similar attack for Kyber
and Dilithium, and achieved the best known results to date. Their attack also uses an
FFT-based distinguishing algorithm in a small modulus, which allows them to reduce
the error of some of the equations while keeping the running time of the FFT low.
Our attack calls for a larger modulus compared to theirs, and allows us to use a lattice
reduction algorithm on a lattice of a much smaller rank. Guo and Johansson also
presented a “two-step lattice reduction strategy” which is the same as our improved
short vectors sampling procedure. In Section 1.4 we compare our attack with the
results of [GJ21] and show that it presents a significant improvement over them. In
particular, a comparison between the results of the two techniques is given in Table 2.

1.3 Technical Overview

We present the main techniques used in the different components of our proposed
attack. We first describe the attack from a high-level point of view, listing the core
improvements over the standard dual lattice attack. We then describe our short vectors
sampling algorithm, and conclude by discussing the reduced cost of the underlying
sieving algorithms.
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1.3.1 Overview of the Dual Attack

We first recall the dual lattice attack, which is a distinguishing attack. Given an input
sample (A, b) ∈ (Z/qZ)m×n × (Z/qZ)m, the attacker needs to decide whether the pair
(A, b) was sampled uniformly at random, or is of the form b = As+ e mod q, for some
short (s, e) ∈ (Z/qZ)n × (Z/qZ)m. The attack consists of two parts. First, one uses A
to find many vectors such that when (A, b) is sampled from the LWE distribution, their
inner products with b tend to be small. On the other hand, when (A, b) is sampled
from a uniform distribution, the inner products are distributed uniformly. The second
part of the attack boils down to distinguishing between a modular (discrete) Gaussian
and the uniform distribution. We remark that the first part is done by finding short
vectors in the lattice Λ = {(x, y) ∈ Zm × Zn | xTA = yT }. The second part employs
statistical tools to distinguish between two similar distributions.

The distinguishing attack can then be used to recover the secret as follows. The
attacker generates short vectors (x, y) ∈ Λ as before. They then iterate over the
coordinates of the secret. For each one, the attacker guesses the value of the secret in
that coordinate and test the guess using the distinguishing algorithm, until they find
the correct guess. In each step, one utilizes the parts of the secret already recovered. As
such, the complexity of the entire attack is dominated by the complexity of recovering
the first coordinate of the secret.

1.3.2 FFT-Based Distinguisher

Our first observation is that we can easily improve the attack by enumerating over
several coordinates of the secret simultaneously. Note that this not only lets us recover
more coordinates of the secret, but also reduces the dimension of the lattice. Indeed, as
we enumerate over some coordinates of the secret, we can drop the constraint that the
corresponding coordinates of yT = xTA should be small. This decreases the running
time by a corresponding exponential factor.

Our second and main observation is that the Fast Fourier Transform can be used as
an efficient distinguishing algorithm. Instead of enumerating over several coordinates
of the secret, and invoking the distinguishing algorithm for each candidate, the FFT
algorithm allows us to check all of the guesses simultaneously at the cost of a single
FFT and a single iteration over the vectors (xj , yj). A-priori, the use of FFT is limited
because the cost of the FFT algorithm on multiple dimensions with modulus q is very
expensive. Instead, we pass to a smaller modulus p where the cost of the FFT is
smaller. Since the secret is short, using modulus switching introduces only a small
error.

Finally, we note that we can further reduce the total running time by first enumer-
ating over some coordinates of the secret, and only then applying the FFT distinguisher
on some other coordinates of the secret.

To summarize, our attack consists of three stages. We first generate many pairs
of vectors (x, y), where x and only a part of y are required to be short. Then, we
enumerate over some coordinates of the secret. Finally, for each guess we apply an
improved distinguishing algorithm that involves modulus switching and FFT over the
new modulus.

5



1.3.3 Improved Short Vectors Sampling Procedure

The first part of our attack, as described above, consists of finding a list of short vectors
in a lattice. This is usually done by running a BKZ reduction on the lattice, using
sieving as an SVP oracle. To generate many short vectors, one simply outputs all the
vectors found by the sieve on the final invocation on the first block.

We propose a more efficient algorithm for this task. Note that the last sieve, as
described above, is inherently different from the rest of the sieves in the BKZ algorithm.
When performing BKZ, lattice sieving is used as an SVP oracle, and only the shortest
vector found by the sieving is used. In the last sieve, however, we use all of the resulting
vectors. Therefore, we can use the “dimensions-for-free” optimization [Duc18] for all
the sieves but the last. Our improved algorithm uses different block sizes for these two
kinds of sieves – the first block size is used for obtaining a BKZ reduced basis; and in
this case the “dimensions-for-free” optimization can be used. The second block size is
used only for the last sieve, in which we use all of the output vectors.

1.3.4 Sieve Costs

Lattice sieving is a major component of our attack. The asymptotically best lattice
sieving algorithm uses Locality Sensitive Filtering (LSF) [BDGL16]. In [AGPS20],
Albrecht et al. calculate the cost of lattice sieving in the RAM model, a calculation
used by following works for estimating the security of lattice based schemes [ABD+21,
DKL+21].

We have performed a careful analysis of the sieve’s running time, which reduced its
cost in the RAMmodel by about 6 bits for cryptographically relevant block sizes. These
improvements mainly stem from an improved random product code decoding algorithm
and better parameter optimization. We also take into account the probability that close
vector pairs are not detected by the LSF. This requires increasing the list sizes used,
and means that the running time estimate taking this into account is slightly larger
and more accurate.

Our improved random product code decoding algorithm is described in Section 6.
The exact sieve cost analysis is beyond the scope of this paper, and will be published
in future works.

1.4 Comparison to GJ21

In a recent paper, Guo and Johansson [GJ21] proposed an improvement of the dual
lattice attack which is similar in spirit to our improvements. Despite the similarities,
our attack still gives further improvements, as illustrated in Table 2. We explain some
of the differences between our attacks. We use some of the notations from Section 1.3
above.
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Table 2: Comparison between [GJ21] and our proposed attack in different models, see Sec-
tion 7.1 for the definitions of the different models. All the costs are given in log2 of the
gate-count metric.

[GJ21] This Work

Asymptotic Dimensions-for-Free Model [Duc18]
Sieve Cost Model [AGPS20] [AGPS20] Section 6

Kyber512 148.3 143.8 138.2
Kyber768 207.3 200.5 194.5
Kyber1024 275.4 266.0 259.3
Dilithium-2 155.4 153.4 147.3
Dilithium-3 212.9 210.5 203.7
Dilithium-5 278.1 273.3 266.2

G6K Dimensions-for-Free Model [ADH+19]
Sieve Cost Model [AGPS20] [AGPS20] Section 6

Kyber512 147.1 143.1 137.5
Kyber768 205.2 199.5 193.5
Kyber1024 272.3 264.4 257.8
Dilithium-2 153.8 152.2 146.3
Dilithium-3 210.4 208.9 202.0
Dilithium-5 274.4 270.9 263.6

In [GJ21], the authors partition the secret into three parts – a part of the secret
over which they enumerate; a part of the secret on which an FFT-based distinguishing
algorithm is used; and a part of the secret which is attacked similarly to the dual attack.
Our attack uses the same partitioning. Moreover, their “two-step lattice reduction
strategy” is the same as our improved short vectors sampling procedure. However,
there are two key differences between the two attacks, which have significant effects on
the running time.

First, although both attacks use FFT-based distinguishers, their inputs and algo-
rithmic consequences are different. [GJ21] use FFT to efficiently enumerate over the
second part of the secret (defined above) mod p, and modify the equations so that
given that information, the equation error is reduced by a factor of 1

p . We, however,
use modulus switching to reduce the modulus of the equations to p. After the modulus
switching, enumeration over the mod p part of the secret is equivalent to enumeration
on the whole secret coordinate. The effect is dramatic, as it decreases the dimension
of the lattice we reduce significantly (the change in the dimension can be as large as
80 in Kyber1024, for instance).

Second, [GJ21] do not aim to improve the cost of sieving, which as shown in the
tables is an additional significant improvement in our attack.
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1.5 Organization

The paper is organized as follows. In Section 2, we present some notations and prelim-
inaries. In Section 3, we present the improved dual attack. In Section 4, we present
the improved short vectors sampling procedure. In Section 5, we present the exact
calculation of the attack parameters, and analyze the running time as a function of
the parameters. In Section 6, we present the improved analysis of sieving in the RAM
model. In Section 7, we present the exact parameters and running times of the algo-
rithm in the RAM model when applied to Kyber, Dilithium, and Saber. In Section 8,
we present future directions that might further reduce the running time of the attack.

2 Preliminaries

2.1 Notations

We denote matrices by uppercase letters, e.g. A, and vectors by lowercase letters,
e.g. v. We treat vectors as column matrices. For vectors and matrices, xT denotes
the transpose of the vector or matrix. For a random variable χ, the notation χ(x)
stands for the value of the probability distribution at x, E(χ) denotes its expectation,
Var(χ) denotes its variance, and H(χ) denotes its Shannon entropy. We let Φ(x) =
1√
2π

∫ x
−∞ e−t

2/2dt be the cumulative distribution function (cdf) of the standard normal

distribution, and Φ−1 : [0, 1) → R its inverse. For a value x ∈ R, we denote [x] =
argminz∈Z (|x− z|) and {x} = x − [x]. We define

[
n+ 1

2

]
= n + 1 for n ∈ Z, since 1

2
could be rounded both ways. As part of lattice algorithms, one often enumerates over
the values of a variable x. We denote the guesses of the value of x by x̃.

2.2 Lattices and Lattice Algorithms

We use standard definitions for lattices, lattice problems, and lattice algorithms. See
e.g. [ACD+18, BSW18] for reference. We list here notations used in the paper which
may not be standard as well as several standard assumptions.

Recall that lattice sieving is a method for obtaining a list of short vectors in a given
lattice. For an integer β, we denote by Nsieve(β) the number of vectors output by a
sieve on a lattice of dimension β. We provide explicit estimates for this quantity when
analyzing our attack in Section 7. We make the heuristic assumption that the sieve
returns the Nsieve(β) shortest vectors in the lattice.

For integers d and β, we denote by BKZd,β the BKZ algorithm for lattices of
dimension d and block-size β. We recall the Geometric Series Assumption.

Assumption 2.1 (Geometric Series Assumption (GSA) [Sch03]). Let Λ be some lattice
of dimension d, and let 2 ≤ β ≤ d be some integer. Denote by {b∗i }di=1 the Gram-
Schmidt’s orthogonalization of the basis of Λ after running BKZd,β. Assuming that
β ≫ 200 and k < d − 2β, then the first k vectors (b∗1, . . . , b

∗
k) follow the Geometric-
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Series-Assumption (GSA). That is,

δ(β) := ∥b∗i ∥ /
∥∥b∗i+1

∥∥ ≈
(

β

2πe
· (πβ)1/β

) 1
β−1

The GSA is considered to be inaccurate for some range of parameters due to the
“head” and “tail” phenomena [CN11]. However, for our range of parameters, where
β ≫ 200, the head phenomenon is considered insignificant [BSW18]. The size of the
tail is usually estimated to be around the block size. In our attack we rely on the
GSA for the O(β) < d − 2β first vectors, so we assume that we can ignore the tail
phenomenon.

We recall the Gaussian Heuristic.

Assumption 2.2 (Gaussian Heuristic). Let Λ be a “random” lattice of dimension
d and determinant 1. Let S be a centrally symmetric convex set. Then with high
probability,

#(Λ ∩ S) ≈ Vol (S)

In particular, the length of its shortest vector is

λ1(Λ) ≈
√

d

2πe
· (πd)1/d ,

and for every c > 1,
# {v ∈ Λ | ∥v∥ ≤ c · λ1(Λ)} ≈ cd .

The two conclusions follow by choosing S to be a ball of certain radius. The latter
conclusion implies that the vectors returned by a sieve in a lattice of dimension β,
which are the Nsieve(β) shortest lattice vectors, have length at most Nsieve(β)

1/β times
the length of the shortest lattice vector.

We do not define formally what is a “random lattice”, rather assume that un-
structured lattices encountered during the algorithm follow the Gaussian Heuristic.
Specifically, we assume that the projected lattices corresponding to block in the BKZ
algorithm follow the Gaussian Heuristic. As in Assumption 2.1, and the discussion
following it, we assume the Gaussian Heuristic for blocks in the head and body parts,
but not the tail.

2.3 LWE

The Learning with Errors (LWE) problem, introduced by Regev [Reg09], is a computa-
tional problem whose presumed hardness gives rise to several cryptographic construc-
tions.

Definition 2.3 (LWE). Let n,m, q ∈ N, and let χs, χe be distributions over Z/qZ.
Denote by LWEn,m,q,χs,χe the probability distribution on (Z/qZ)m×n × (Z/qZ)m ob-
tained by sampling the coordinates of the matrix A ∈ (Z/qZ)m×n independently and
uniformly over Z/qZ, sampling the coordinates of s ∈ (Z/qZ)n , e ∈ (Z/qZ)m indepen-
dently from χs and χe respectively, and outputting (A,As+ e).
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We define two problems:

• Decision-LWE. Distinguish the uniform distribution over (Z/qZ)m×n × (Z/qZ)m

from LWEn,m,q,χs,χe .

• Search-LWE. Given a sample from LWEn,q,χs,χe , recover s.

2.4 Discrete Fourier Transform

The Fourier Transform is an operation that, given a function f : G→ C on an abelian
group G, evaluates f̂ (χ) :=

∑
g∈G f(g)χ(g) for all characters χ ∈ Ĝ in the dual group

Ĝ of G. For a function f : (Z/qZ)n → C, its Fourier transform f̂ is given by

f̂(v) =
∑
u

e
2πi
q
vTu

f(u).

The Fourier transform of a function f : (Z/qZ)n → C can be calculated in time O (nqn)
using the Fast Fourier Transform (FFT) algorithm.

2.5 Modular Gaussian Distribution

Let σ > 0. For all x ∈ R, the density of the centered Gaussian distribution with stan-

dard deviation σ is defined as ρσ(x) =
1√
2πσ2

e−
x2

2σ2 . The Modular Gaussian distribution

mod q is a probability distribution over Z/qZ, defined as:

ρq,σ(t) =
1

Cq,σ

∑
x∈t+qZ

e−
x2

2σ2 ,

where Cq,σ =
∑

t∈Z e
− x2

2σ2 is a normalizing factor.

Theorem 2.4 ([SW71]). The discrete Fourier transform of ρq,σ is ρ̂q,σ = 1
ρq,σ′ (0)

ρq,σ′

where σ′ = q
2πσ .

We state here bounds on the first and second Fourier coefficient which will later be
useful.

Lemma 2.5. Let q ∈ N be some modulus, and σ > 0 some real number. Then the
following inequality holds

ρ̂q,σ (1) ≥ e
−2

(
πσ
q

)2

.

If further σ ≥
√

q log 2
8π2 , then

ρ̂q,σ (2) ≤ 2e
−8

(
πσ
q

)2

.

Proof. Fix q and σ. By Theorem 2.4, we have that

ρ̂q,σ (1) =
ρq,σ′ (1)

ρq,σ′ (0)
, σ′ =

q

2πσ
.
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Hence,

ρ̂q,σ (1) =
ρq,σ′ (1)

ρq,σ′ (0)
=

∑
x∈1+qZ e

− x2

2σ′2∑
x∈qZ e

− x2

2σ′2
=

∑
r∈Z e

− (1+rq)2

2σ′2∑
r∈Z e

− (rq)2

2σ′2

.

Note that

e−
(rq)2

2σ′2 = e
1

2σ′2 e−
(rq)2+1

2σ′2 = e
1

2σ′2

√
e−

(rq)2+2rq+1

2σ′2 · e−
(rq)2−2rq+1

2σ′2 =

= e
1

2σ′2

√
e−

(1+rq)2

2σ′2 · e−
(1−rq)2

2σ′2 ≤ e
1

2σ′2

2

(
e−

(1+rq)2

2σ′2 + e−
(1−rq)2

2σ′2

)
.

Therefore,

∑
r∈Z e

− (1+rq)2

2σ′2∑
x∈qZ e

− (rq)2

2σ′2

≥ 2e−
1

2σ′2

∑
r∈Z e

− (1+rq)2

2σ′2∑
r∈Z

(
e−

(1+rq)2

2σ′2 + e−
(1−rq)2

2σ′2

) =

= 2e−
1

2σ′2

∑
r∈Z e

− (1+rq)2

2σ′2∑
r∈Z 2e

− (1+rq)2

2σ′2

= e−
1

2σ′2 = e
−2

(
πσ
q

)2

.

For the second coefficient we similarly have

ρq,σ′ (2)

ρq,σ′ (0)
=

∑
x∈2+qZ e

− x2

2σ′2∑
x∈qZ e

− x2

2σ′2
≤
∑

r∈Z e
− (2+rq)2

2σ′2

1
≤

≤ e−
4

2σ′2

∞∑
r=0

e−
4rq

2σ′2 = e−
4

2σ′2
1

1− e−
2q

σ′2
≤

≤ 2e
−8

(
πσ
q

)2

where the last inequality follows since

σ′ ≤
√

2q

log 2
⇔ σ ≥

√
q log 2

8π2
.

3 FFT-Based Dual Lattice Attack

In this section we describe the main idea of the FFT based dual lattice attack. We
begin with an informal sketch of its main components in Section 3.1, and in Section 3.2
we present a more thorough description of the attack. The analysis of the attack is
presented in Section 5.
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3.1 Motivation

We now present the main idea of the FFT-based dual attack presented in Section 3.2.
Our starting point is a generalization of the dual attack, along the lines of [EJK20].

The central part of the dual attack is a method for distinguishing between a pair
(A, b) ∈ (Z/qZ)m×n × (Z/qZ)m sampled from the uniform distribution over
(Z/qZ)m×n×(Z/qZ)m, and a pair sampled from an LWE distribution, that is b ≡ As+e
mod q for some s ∈ (Z/qZ)n sampled from χns and e ∈ (Z/qZ)m sampled from χme . We
suppose that χs and χe are supported on small values with high probability. We find
many short vectors xj ∈ (Z/qZ)m such that yTj = xTj A ∈ (Z/qZ)n are also short, and

calculate the list of values
(
xTj b

)
. For a random pair (A, b), these values are distributed

uniformly. For an LWE pair, we have xTj b = yTj s + xTj e which are approximately
distributed according to a modular Gaussian distribution. Given sufficiently many
samples, we can distinguish between the two distributions.

In order to perform a key recovery attack, we partition s into two components:
sT =

(
sT1 ∥sT2

)
. We partition the matrix A analogously: A = (A1∥A2), so that

b = As+ e = A1s1 +A2s2 + e.

If s1 were known, we could create a new LWE problem

b′ = A2s2 + e ,

where b′ = b − A1s1. However, s1 is unknown. Nonetheless, we may enumerate over
s1 and use the distinguishing attack on the pairs (A2, b − A1s̃1) for every guess s̃1 of
s1 to determine the correct one, for which the pairs come from an LWE distribution.
In the standard dual attack, s1 consists of a single coordinate of s. [EJK20] suggested
letting s1 consist of an arbitrary number of coordinates. This generalized algorithm is
described in Algorithm 1.

Algorithm 1 Generalized Dual Attack

Input: LWE parameters (n,m, q, χs, χe), integers k1, k2 such that k1+ k2 = n, and an LWE
pair (A, b) ∈ (Z/qZ)m×n × (Z/qZ)m.

Output: The first k1 coordinates of s.
1: Find sufficiently many vectors (xj, yj) such that xTj A =

(
yTj,1∥yTj,2

)
and the pair (xj, yj,2)

is short.
2: for every value s̃1 of s1 do
3: Calculate the list of values

(
xTj (b− A1s̃1)

)
.

4: if the distribution of these values is Gaussian rather than uniform then
5: return s̃1.
6: end if
7: end for

Our main improvement to this generalized algorithm is a method of using the FFT

algorithm to test whether the values of
(
xTj (b−A1s̃1)

)
are sampled from a modular

12



Gaussian distribution for all possible values of s1 at the same time. As stated in
[EJK20], an efficient way to determine if a list of values w1, w2, . . . , wD ∈ Z/qZ has
been sampled from a modular Gaussian distribution or a uniform distribution is by
calculating the quantity

∑
j e

2πiwj/q whose real value is expected to be large when wj
are distributed according to a centered Gaussian distribution, and close to zero when
wj are distributed uniformly, provided sufficiently many samples.

In our case, the values are wj = xTj (b−A1s̃1), which we write as wj = uTj s̃1 + cj
where uj = −yj,1 and cj = xTj b are known. The aforementioned quantity equals∑

j

e
wj

2πi
q =

∑
j

e(
uTj s̃1+cj)

2πi
q (1)

We recall that the FFT algorithm, given function f : (Z/qZ)n → C, computes∑
j e

(uTj v)
2πi
q f (uj) for all vectors v ∈ (Z/qZ)d. This allows us to evaluate Eq. (1) for

all values of s̃1 simultaneously, by setting f (u) =
∑

j:uj=u
e

2πi
q
cj .

However, this would take O
(
k1q

k1
)
operations, and quickly become infeasible. Ad-

ditionally, it would calculate Eq. (1) for all values s̃1 ∈ (Z/qZ)k1 , while the secret
distribution likely permits significantly fewer possible values.

To accelerate the FFT we transform the problem from distinguishing between uni-
form and Gaussian distributions in Z/qZ to distinguishing between those distributions
in Z/pZ, for some p < q. We transfer the problem to Z/pZ by rounding the equations:
We multiply each equation by p

q , and round p
quj to the closest integer. Recall the

rounding notations [a] , {a} as defined in Section 2.1. The original samples are defined
in (Z/qZ):

wj ≡q u
T
j s̃1 + cj .

We explicitly write the modular equation, so it is defined in Z:

wj = uTj s̃1 + cj + aq .

When multiplying by p
q , the equations are defined in p

qZ:

p

q
wj =

p

q
uTj s̃1 +

p

q
cj + ap .

The FFT algorithm works on functions (Z/pZ)n → C. Since the coordinates of p
qu

T
j

are not integral, they cannot be used directly by the algorithm. We separate it to the
integer and the fractional components, and write:

p

q
wj =

[
p

q
uj

]T
s̃1 +

{
p

q
uj

}T
s̃1 +

p

q
cj + ap (2)

The vectors
[
p
quj

]
are defined in (Z/pZ)k1 . Thus, we can perform FFT to calculate

the values

∑
j

e

([
p
q
uj

]T
s̃1+

p
q
cj

)
2πi
p

=
∑
j

e
(uTj s̃1+cj)

2πi
q

−
({

p
q
uj

}T
s̃1

)
2πi
p

(3)

13



which is the same as Eq. (1) up to a small factor involving the fractional part
{
p
quj

}T
s̃1,

which essentially becomes part of the Gaussian error term. This is the essence of our
improved algorithm.

Additional algorithmic improvements include externally enumerating over a third
part of the secret, as well as an improved sampling method for short vectors (xj , yj,2)
described in section 4. The full algorithm is described below in detail.

3.2 Formal Description

In this section, we give a formal description of the algorithm, while deferring the
analysis to Section 5. We first describe the algorithm formally, then explain what each
part does. We remark that, by ignoring some of the LWE equations, we may replace
the number of equations m with m′ ≤ m of our choice. Without loss of generality, we
present the algorithm for m′ = m, but optimize the parameters in the general setting.

The parameters our algorithm uses are

• D: The number of vectors used in the dual attack.

• C: The cutoff used to differentiate between incorrect and correct guesses to senum
and sfft.

• β1, β2: Parameters used by the short vectors sampling algorithm.

• kenum: The number of secret coordinates over which we enumerate directly.

• kfft: The number of secret coordinates over which we enumerate using FFT.

• klat: The number of remaining secret coordinates.

• p: The modulus in which we perform FFT.

We are given a matrix A ∈ (Z/qZ)m×n, and a vector b ∈ (Z/qZ)m that satisfies
b = As + e, where the coordinates of s and e are sampled according to some known
distributions χs and χe respectively, which have small variances σ2s and σ

2
e respectively.

We partition s into three components:

s =

 senum
sfft
slat

 ,

where senum has kenum coordinates, sfft has kfft coordinates, and slat has klat = n −
kenum − kfft coordinates. We similarly partition A into three components:

A =
(
Aenum Afft Alat

)
,

so that As = Aenumsenum +Afftsfft +Alatslat.
We define the matrix:

B =

(
αIm 0
ATlat qIklat

)
,

where α is a constant equal to σe
σs

and is used for normalization in the case that s, e
have different distributions. We find D short vectors in the column space of B using

14



Algorithm 2 Improved Dual Attack

Input: LWE parameters (n,m, q, χs, χe), integers β1, β2 ≤ d, integers kenum, kfft, klat such
that kenum + kfft + klat = n, an integer p ≤ q, an integer D, a real number C, and an
LWE pair (A, b) ∈ (Z/qZ)m×n × (Z/qZ)m.

Output: The first kenum coordinates of s.
1: Compute Alat composed of the last klat columns of A.

2: Compute the matrix B =

(
αIm 0
AT

lat qIklat

)
, where α = σe

σs
.

3: Run the short vectors sampling algorithm (Algorithm 3) on the basis B with parameters
β1, β2, D, to get a list L of D short vectors.

4: for every value of s̃enum, in descending order of probability according to secret distribution
do

5: Initialize a table T of dimensions p× p× · · · × p︸ ︷︷ ︸
kffttimes

6: for every short vector (αxj, ylat) in L do
7: Compute yj,fft = xTj Afft.
8: Compute yj,enum = xTj Aenum.

9: Add e(x
T
j b−yTj,enums̃enum) 2πi

q to cell
[
p
q
yj,fft

]
of T.

10: end for
11: Perform FFT on T .
12: if for any s̃fft, the real part of 1

ψ(s̃fft)
T [sfft] is larger than C then

13: return s̃enum.
14: end if
15: end for
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our improved short vectors sampling procedure (Algorithm 3). Each such vector can
be partitioned to two parts:

v ≡q

(
αx
ATlatx

)
.

For each such vector, we have xT b = xTAs+ xT e.
Writing xTA = yT =

(
yTenum∥yTfft∥yTlat

)
, we get

yTenumsenum + yTfftsfft − xT b = −yTlatslat − xT e .

To perform the modulus switching, we multiply the equation by p
q and round the

yfft. We get[
p

q
yfft

]T
sfft +

p

q
yTenumsenum − p

q
xT b = −p

q
yTlatslat −

p

q
xT e−

{
p

q
yfft

}T
sfft .

The right hand term is approximately distributed according to a modular Gaus-
sian distribution. Thus, for the correct guess (s̃enum, s̃fft) = (senum, sfft), the term[
p
qyfft

]T
s̃fft +

p
qy

T
enums̃enum − p

qx
T b is distributed according to a modular Gaussian

distribution, while for an incorrect guess (s̃enum, s̃fft) ̸= (senum, sfft) it is distributed
uniformly.

The modular Gaussian distribution induced by the correct guess is not always
centered. To center it, we use a normalization constant ψ (s̃fft) with |ψ (s̃fft)| = 1,
which will be calculated in Lemma 5.4.

Therefore, the expectation of the quantity

1

ψ (s̃fft)

∑
j

exp

(([
p

q
yj,fft

]T
s̃fft +

p

q
yTj,enums̃enum − p

q
xTj b

)
· 2πi
p

)
(4)

has a large real value when (s̃enum, s̃fft) = (senum, sfft), and is close to zero otherwise.
We thus define the score of a pair (s̃enum, s̃fft) as

F (s̃enum, s̃fft) = ℜ

 1

ψ (s̃fft)

∑
j

exp

(([
p

q
yj,fft

]T
s̃fft +

p

q
yTj,enums̃enum − p

q
xTj b

)
· 2πi
p

)
(5)

We use this to determine the correct value of senum: For each s̃enum we calculate
F (s̃enum, s̃fft) for all values of sfft via FFT. If for a given s̃enum, the score of any
(s̃enum, s̃fft) is larger than the cutoff C, we determine that s̃enum = senum, and otherwise
s̃enum ̸= senum.

Having determined the first kenum coordinates of the key, we continue to recover the
complete key by recursively solving the resulting LWE problem, which is significantly
smaller.

To simplify the analysis, we do not assume the recovery of sfft. Although the above
sum is expected to have large real value when sfft is guessed correctly, it may also be
large for certain wrong guesses of sfft, provided senum is guessed correctly. This does
not concern us since we only wish to recover senum.
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4 Short Vectors Sampling Procedure

In this section we present and analyze our improved procedure for sampling multiple
short lattice vectors, a key part of the dual attack. In an independent and concur-
rent work, Guo and Johansson [GJ21] proposed the same sampling procedure. Our
presentation and analysis is slightly different, and is presented here for completeness.

Informally, to find many short vectors in the lattice Λ, we first run the BKZ al-
gorithm using a sieve with block size β1 as the SVP oracle to find a reduced basis of
Λ. Since the output of this stage of the algorithm is a reduced basis, we can employ
all known BKZ optimizations, such as the “dimensions-for-free” trick [Duc18]. To find
many short vectors, we perform lattice sieving on the sublattice spanned by the first
β2 vectors of the reduced basis, this time without using dimensions-for-free, as we use
all the vectors found by the sieve. Performing lattice sieving on a lattice of rank β2
returns Nsieve(β2) vectors. To sample D > Nsieve(β2) vectors, we repeat the algorithm⌈

D
Nsieve(β2)

⌉
times, using random initial bases. Heuristically, running BKZ on random

initial bases returns random reduced bases, and new vectors are found in each iteration.
The advantage of the improved short vectors sampling procedure over standard BKZ
is that we use different block sizes for lattice sieving where dimensions-for-free can be
employed and where it cannot be, and can optimize both to reduce the overall cost of
the algorithm.

The algorithm is described formally in Algorithm 3. We analyze its quality by
computing the number of vectors found by the algorithm and their length.

Recall the notations from Section 2.2 for Nsieve(β), the number of sieve results, and
δ(β), the ratio in the Geometric Series Assumption.

Algorithm 3 Short Vectors Sampling Procedure

Input: A basis B = (b1, . . . , bd) for a lattice and integers β1, β2 ≤ d and D.
Output: A list of length at least D of vectors from the lattice.

1: for i = 1, . . . ,
⌈

D
Nsieve(β2)

⌉
do

2: Randomize the basis B.
3: Run BKZd,β1 on B to obtain a reduced basis (b′1, . . . , b

′
d).

4: Run a sieve of dimension β2 on the sublattice (b′1, . . . , b
′
β2
) to obtain a list of vectors,

and add them to L.
5: end for
6: return L.

Lemma 4.1 (Short Vectors Sampling Complexity). Let B be a basis for a d-dimensional
lattice, and (β1, β2, D) be integer parameters for Algorithm 3. Then the running time
of the algorithm is ⌈

D

Nsieve(β2)

⌉
· (TBKZ(d, β1) + Tsieve(β2)) .

The proof of the lemma is clear from the description of the algorithm. We give a
fine-grained analysis of the running time in the RAM model in Section 7.
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Lemma 4.2 (Short Vectors Sampling Procedure’s Quality and Correctness). Let Λ
be a d-dimensional lattice. Let β1, β2 be the basis reduction block size, and the vectors
sampling block size, respectively. Then Algorithm 3 outputs at least D vectors of length

det(Λ)1/d ·Nsieve(β2)
1/β2 ·

√
β2
2πe

· (πβ2)1/β2 · δ(β1)
d−β2

2 .

Proof. Consider the lattice Λ′ given by the basis (b′1, . . . , b
′
β2
). Its volume is given by

det
(
Λ′) = β2∏

i=1

∥b∗i ∥ = det(Λ)β2/d · δ(β1)β2
d−β2

2 ,

where the last equality follows from the GSA (Assumption 2.1). Therefore, by the
Gaussian Heuristic (Assumption 2.2),

λ1(Λ
′) = det(Λ)1/d ·

√
β2
2πe

· (πβ2)1/β2 · δ(β1)
d−β2

2 .

Step 4 in the algorithm is a sieve on Λ′. The sieve outputs the Nsieve(β2) shortest
lattice vectors, so their length is at most Nsieve(β2)

1/β2 · λ1(Λ′) (see Assumption 2.2
and the discussion following it). In each iteration we add Nsieve(β2) new vectors,

therefore, after
⌈

D
Nsieve(β2)

⌉
iterations, the list L contains at least D vectors of the

required length.

Remark 4.3 (Comments on randomization). We note that for the range of param-
eters relevant for the NIST candidates considered, which are given in Section 7.3,
Nsieve(β2) ≈ D. That means that a single iteration yields enough short vectors, and
we do not need to randomize the basis. See also Section 8.3 for further relevant future
directions.

We make the following assumption regarding the output of the algorithm.

Assumption 4.4 ([CN11, EJK20]). Let ℓ be the expected length of the vectors returned
by Algorithm 3, as described in Lemma 4.2. Then the coordinates of the returned vec-
tors have approximately independent Gaussian distributions with mean 0 and standard
deviation ℓ/

√
d.

5 Analysis

In this section we analyze the time complexity of our algorithm. The algorithm, as
presented in Section 3, has several parameters. We first describe the complexity of
the attack in terms of these parameters. Then, we show how to set the parameters
(specifically the number of samples required for distinguishing) to guarantee its success
with high probability. We note that our analysis is exact, and not asymptotic, as we
use it for the fine-grained RAM model. Finally, we state the asymptotic cost of the
attack as a function of the desired success probability.

We follow the notations from Section 3.
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5.1 Running Time

We now describe the number of operations performed by the algorithm, as a function
of its parameters.

Recall that the algorithm iterates over parts of the secret in descending order of
probabilities. We therefore analyze the expected time complexity (expectation over the
choice of the secret). The algorithm can be converted into a Monte Carlo Algorithm
using the standard transformation.

Theorem 5.1. Let (n,m, q, χs, χe) be LWE parameters and (β1, β2, kenum, kfft, klat, p,
D,C) be parameters for Algorithm 2. The expected running time is

Tsampleβ1,β2,D
(m+ klat) + 2kenumH(χs) · (Tfft(kfft, p) + Ttable) ,

where

• Tsampleβ1,β2,D
(d) is the time complexity of Algorithm 3 with parameters (β1, β2, D)

on an input basis of dimension d.

• Tfft(k, p) is the time complexity of FFT of dimension k with modulus p.

• Ttable is the time complexity of updating the table in each iteration.

Proof. The attack has three stages:

1. Finding short vectors using the short vectors sampling procedure.

2. Enumerating over possible values of senum.

3. Calculating the score for all values of s̃fft given the enumerated s̃enum.

We find D short vectors using our short vectors sampling algorithm (Algorithm 3)
on a lattice of dimension m+ klat, taking Tsampleβ1,β2,D

(m+ klat) operations.
After finding short vectors, we enumerate over guesses for senum. It has kenum

coordinates, each with entropy H (χs). Therefore, the expected number of steps before
reaching senum is at most 2kenumH(χs).

For each possible value of senum, we perform an FFT on a table of size pkfft , taking
Tfft(kfft, p) = O(kfftp

kfft) operations. Searching the table for an s̃fft with value above
the threshold takes only O(pkfft) operations, and is insignificant compared to the FFT
calculation. We then update the table for the next iteration. This update is performed
according to Section 5.4 and takes Ttable operations.

Combining all the terms, the total number of operations performed by the algorithm
is

Tsampleβ1,β2,D
(m+ klat) + 2kenumH(χs) · (Tfft(kfft, p) + Ttable) .

5.2 Required Number of Samples

In this section we calculate the parametersD, the number of samples required to launch
the dual attack, and C, the cutoff used to distinguish between correct and incorrect
guesses, as a function of the desired success probability.
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Our calculation is exact and not asymptotic, which allows accurate estimations. We
first determine the value of the parameters as a function of the secret and the error.
We then analyze how to set the parameters as a function of the distributions and not
specific values.

Notations. For the sake of clarity, we introduce several notations that will make
the contribution of different factors to the final expression clearer. In what follows,
let (n,m, q, χs, χe) be LWE parameters, and let (β1, β2, kenum, kfft, klat, p) be a partial
tuple of parameters for Algorithm 2. We fix a secret vector and an error term (s, e) ∈
(Z/qZ)n × (Z/qZ)m. We denote by ℓ the expected length of the vectors returned by
Algorithm 3. We first define

Deq = e
4
(

πτ
q

)2

,

where

τ2 =
α−2 ∥e∥2 + ∥slat∥2

m+ klat
ℓ2 ,

α =
σe
σs

.

Informally, Deq is an exponential factor which comes from the clean Fourier coefficient
of the error in the dual attack equations. Moreover, we define

Dround =

 kfft∏
t=1
st ̸=0

sin
(
πst
p

)
πst
p




−2

,

where we write sfft = (s1, . . . , skfft). Informally, Dround is an exponential factor which
accounts for the effect of rounding on the Fourier coefficient after performing a modulus
switch. Furthermore, we define

Darg =
1

2
+ e

−8
(

πτ
q

)2

,

where τ2 = α−2∥e∥2+∥slat∥2
m+klat

ℓ2 as above. Informally, Darg ≈ 1
2 is a constant improvement

factor obtained by considering the complex argument of the Fourier coefficient rather
than just its magnitude.

We denote by Nenum(senum) the number of guesses s̃enum with probabilities larger
than the probability of senum, according to the distribution χs. This is the number of
candidates s̃enum that will be enumerated upon before the correct guess is reached.

Lastly, suppose that 0 < µ < 1 is a target failure probability for the algorithm. We
define

Dfpfn (µ) = (ϕfp (µ) + ϕfn (µ))
2 ,

ϕfp (µ) = Φ−1

(
1− µ

2 ·Nenum(senum) · pkfft

)
,

ϕfn (µ) = Φ−1
(
1− µ

2

)
,
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where Φ−1 is the inverse of the cumulative distribution function of the standard normal
distribution. Informally, Dfpfn is a polynomial factor that ensures small false positive
and false negative rates. That is, ensures detecting the correct value of senum, and only
the correct one, with probability 1− µ.

5.2.1 Parameters as a Function of the Secret

Having defined several relevant notations, we state an upper bound on the required
number of samples D for the algorithm to succeed with high probability.

Theorem 5.2. Let (n,m, q, χs, χe) be LWE parameters, (β1, β2, kenum, kfft, klat, p) be a
partial tuple of parameters for Algorithm 2, and let 0 < µ < 1 be the desired failure
probability.

Fix (s, e) ∈ (Z/qZ)n × (Z/qZ)m. Then Algorithm 2 with parameters

D ≥ Deq ·Dround ·Darg ·Dfpfn (µ) ,

C = ϕfp (µ)
√
Darg ·D ,

outputs the correct senum with probability at least 1− µ.

We note that Theorem 5.2 gives bounds for a given value of (s, e). In order to
achieve an advantage of 1

2 for the attacker, we use parameters for which the attack
succeeds for at least half of the values of s. Since log (D) is approximately normally
distributed, the logarithmic mean value of D satisfies this condition. These results are
formalized in Theorem 5.9.

We now prove the Theorem.

Proof of Theorem 5.2. Recall that for every guess (s̃enum, s̃fft) we calculate the sum

F (s̃enum, s̃fft) = ℜ

 1

ψ (sfft)

∑
j

e

(
p
q
xTj b−

p
q
yTj,enums̃enum−

[
p
q
yj,fft

]T
s̃fft

)
2πi
p

 ,

via FFT. When (s̃enum, s̃fft) = (senum, sfft) we have

F (senum, sfft) = ℜ

 1

ψ (sfft)

∑
j

e

(
p
q
yTj,latslat+

p
q
xTj e+

{
p
q
yj,fft

}T
sfft

)
2πi
p

 .

By Assumption 5.8 (see below), the value F (senum, sfft) is the sum of independent
identically distributed variables

F (senum, sfft) =
∑
j

ℜ

(
1

ψ (sfft)
e

(
p
q
yTj,latslat+

p
q
xTj e+

{
p
q
yj,fft

}T
sfft

)
2πi
p

)
=
∑
j

ℜ (εj,eq · εj,round) ,
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where εj,eq = e(
yTj,latslat+x

T
j e)

2πi
q and εj,round = 1

ψ(sfft)
e

({
p
q
yj,fft

}T
sfft

)
2πi
p
. When D is

large, the distribution of F (senum, sfft) is approximately normal with mean and vari-
ance determined by the distributions of εj,eq and εj,round. We briefly describe results
regarding the mean and variance that will be proven later.

Lemma 5.3. We have

E (εj,eq) ≥ e
−2

(
πτ
q

)2

= D
− 1

2
eq ,

E
(
ε2j,eq

)
≤ 2e

−8
(

πτ
q

)2

,

where τ2 = α−2∥e∥2+∥slat∥2
m+klat

ℓ2 and ℓ is the average length of the vectors given by the short
vectors sampling algorithm.

Lemma 5.4. Writing sfft = (s1, . . . , skfft), we have

E (εj,round) ≥ D
− 1

2
round .

Lemma 5.5. We have E (F (senum, sfft)) = DE (εj,eq)E (εj,round).

Lemma 5.6. When s̃enum ̸= senum, we have E (F (s̃enum, s̃fft)) = 0.

Lemma 5.7. For all (s̃enum, s̃fft), we have

Var (F (s̃enum, s̃fft)) ≤ D

(
1

2
+ e

−8
(

πτ
q

)2)
= D ·Darg .

The score F (s̃enum, s̃fft) is the sum of many independent and identically distributed
variables, and is thus approximately distributed according to a normal distribution.
According to Lemmas 5.3-5.7, the score of the correct guess, F (senum, sfft), is normally

distributed with mean ≥ D
− 1

2
eq ·D− 1

2
round ·D and variance at most Darg ·D. Therefore

Pr [F (senum, sfft) ≤ C] ≤

≤ Pr

[
N
(
D

− 1
2

eq ·D− 1
2

round ·D,Darg ·D
)

≤ C

]
=

= 1− Φ

D− 1
2

eq ·D− 1
2

round ·D − C√
Darg ·D

 ≤

≤ 1− Φ

(√
Dfpfn −

C√
Darg ·D

)
=

= 1− Φ (ϕfp + ϕfn − ϕfp) = 1− Φ (ϕfn) =
µ

2
,

where the third transition follows from our choice of D ≥ Deq ·Dround ·Darg ·Dfpfn, the
fourth transition follows from the definition of Dfpfn = (ϕfp + ϕfn)

2 and choice of C =
ϕfp
√
Darg ·D, and the last transition follows from the definition of ϕfn = Φ−1

(
1− µ

2

)
.
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Moreover, for any fixed (s̃enum, s̃fft) where s̃enum ̸= senum, the score F (s̃enum, s̃fft)
is normally distributed with mean 0 and variance at most Darg ·D according to Lem-
mas 5.6 and 5.7. Therefore

Pr [F (s̃enum, s̃fft) > C] ≤ Pr [N (0, Darg ·D) > C] =

= 1− Φ

(
C√

Darg ·D

)
=

= 1− Φ (ϕfp) =

=
µ

2Nenum (senum) pkfft
,

where the third transition follows from the choice of C, and the fourth transition follows

from the definition of ϕfp = Φ−1
(
1− µ

2·Nenum(senum)·pkfft

)
.

The number of guesses s̃enum before reaching senum is Nenum (senum), so the number
of pairs we check before reaching senum is Nenum (senum) p

kfft . By the union bound, we
get

Pr [Algorithm 2 does not return senum] ≤
µ

2
+
µNenum (senum) p

kfft

2Nenum (senum) pkfft
= µ .

We now prove Lemmas 5.3-5.7. In the proofs we use the following extension of
Assumption 4.4 regarding the distribution of the output of the short vectors sampling
algorithm.

Assumption 5.8. The vectors xj , yj,lat, yj,enum, yj,fft are approximately independent.
The distributions of yj,enum, yj,fft are approximately uniform mod q, while the distribu-
tions of αxj , yj,lat are as described in Assumption 4.4.

Recall that yj,enum and yj,fft are determined as a linear function of xj , namely
ATenumxj and A

T
fftxj respectively. However, since the entries of Aenum, Afft are uniformly

random mod q, the dependency is negligible for our purposes.

Proof of Lemma 5.3. We recall that εj,eq = E
(
e(
yTj,latslat+x

T
j e)

2πi
q

)
. The exponent is

the sum of two inner products. By Assumption 5.8, each inner product is the sum of
multiple independent modular Gaussian random variables. Hence it is also a modular
Gaussian, namely, yTj,latslat + xTj e ∼ ρq,τ for some τ > 0 we will later compute. When
X is distributed according to ρq,τ , Theorem 2.4 along with Lemma 2.5 gives

E
(
e

2πi
q
X
)
=

q−1∑
j=0

e
2πij
q ρq,τ (j) = ρ̂q,τ (1) ≥ e

−2
(

πτ
q

)2

.

Similarly, we have

E
((

e
2πi
q
X
)2)

= ρ̂q,τ (2) ≤ 2e
−8

(
πτ
q

)2

.
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Here we assume that τ ≥
√

q log 2
8π2 , which holds for our range of parameters (see Sec-

tion 7.3 for the parameters used)1.
Finally, we calculate the variance τ2 of yTj,latslat + xTj e. Recall that Algorithm 3 is

applied to the column space of

B =

(
αIm 0
ATlat qIklat

)
,

where α = σe
σs

is chosen in order to balance the error terms in our equations. Let

v = (αx, ylat) be a vector in Rm+klat output by Algorithm 3, and let ℓ its expected

length. By Assumption 4.4, each coordinate of v has variance ℓ2

m+klat
and mean 0.

Therefore

τ2 = Var

(∑
t

xtet +
∑
t

(ylat)t (slat)t

)
=

= E

(
1

α2

∑
t

v2t e
2
t +

∑
t

v2t (slat)
2
t

)
=

=
1

α2

∑
t

e2t E
(
v2t
)
+
∑
t

(slat)
2
t E
(
v2t
)
=

=
(
α−2 ∥e∥2 + ∥slat∥2

) ℓ2

m+ klat
,

as required.

Proof of Lemma 5.4. Recall that εj,round = 1
ψ(sfft)

e

{
p
q
yj,fft

}T
sfft

2πi
p . Note that the ex-

ponent e

{
p
q
yj,fft

}T
sfft

2πi
p is the product of independent identically distributed variables.

Denoting a single coordinate of yfft as yt and a single coordinate of sfft as st, we get

E (εj,round) =
1

ψ(sfft)

∏
t E
(
e

{
p
q
yt
}
st

2πi
p

)
.

Let q′ := q
gcd(p,q) . When q′ is odd,

{
p
qyt

}
is distributed uniformly over the set{

−q′+1
2q′ , −q

′+3
2q′ , . . . , q

′−1
2q′

}
. When q′ is even, it is distributed uniformly over the set{

1
q′ −

1
2 ,

2
q′ −

1
2 , . . . ,

1
2

}
. The second set is the same as the first set up to a constant

added to all of the values. In order to treat both cases at the same time, we use the set{
−q′+1
2q′ + cq′ ,

−q′+3
2q′ + cq′ , . . . ,

q′−1
2q′ + cq′

}
, where cq′ = 0 when q′ is odd and 1

2q′ when

q′ is even.

When st = 0, the expectation E
(
e

{
p
q
yt
}
st

2πi
p

)
is 1. Otherwise, we write

E
(
e

{
p
q
yt
}T

st
2πi
p

)
=

1

q′

q′−1∑
k=0

e
2πist

p

(
−q′+1+2k

2q′ +cq′
)
=
e

2πistcq′
p

q′

q′−1∑
k=0

e
2πist(−q′+1+2k)

2pq′ .

1We remark that for a range of parameters where the inequality doesn’t hold, namely that τ <
√

q log 2
8π2 ,

then εj,eq can be shown to be large, which improves the running time of the attack.
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The sum
∑q′−1

k=0 e
2πist(−q′+1+2k)

2pq′ is the sum of a geometric series with ratio e
2πist
pq′ . When

st ̸= 0, it equals

e
2πist(q

′+1)
2pq′ − e

2πst(−q′+1)
2pq′

e
2πist
pq′ − 1

=
sin
(
πst
p

)
sin
(
πst
pq′

) ,

Thus the total expectation equals

E (εj,round) =
1

ψ (sfft)

kfft∏
t=1

E
(
e

{
p
q
yt
}
st

2πi
p

)
=

=
1

ψ (sfft)

kfft∏
t=1
st ̸=0

e
2πistcq′

p sin
(
πst
p

)
q′ sin

(
πst
pq′

) =

=
e

2πicq′
p

∑
t st

ψ (sfft)

kfft∏
t=1
st ̸=0

sin
(
πst
p

)
q′ sin

(
πst
pq′

) .

Defining ψ (sfft) = e
2πicq′

p

∑
t st , we get

E (εj,round) =

kfft∏
t=1
st ̸=0

sin
(
πst
p

)
q′ sin

(
πst
pq′

) ≥
kfft∏
t=1
st ̸=0

sin
(
πst
p

)
πst
p

= D
− 1

2
round ,

which completes the proof.

Proof of Lemma 5.5. We have

E (F (senum, sfft)) = E (ℜ (εj,eq · εj,round)) = ℜ (E (εj,eq · εj,round)) =
ℜ (E (εj,eq)E (εj,round)) = E (εj,eq)E (εj,round) ,

since εj,eq and εj,round are independent and have real expectations by Lemmas 5.3
and 5.4.

Proof of Lemma 5.6. We write s̃enum = senum + ∆senum, and s̃fft = sfft + ∆sfft. We
have

F (s̃enum, s̃fft) =

= ℜ

 1

ψ (sfft)

∑
j

e

(
p
q
yTlatslat+

p
q
xT e+

{
p
q
yj,fft

}T
sfft− p

q
yTj,enum∆senum−

[
p
q
yj,fft

]T
∆sfft

)
2πi
p

 =

=
∑
j

ℜ

(
1

ψ (sfft)
e(

−yTj,enum∆senum) 2πi
q e

(
p
q
yTlatslat+

p
q
xT e+

{
p
q
yj,fft

}T
sfft−

[
p
q
yj,fft

]T
∆sfft

)
2πi
p

)
=

=
∑
j

ℜ
(
e(

−yTj,enum∆senum) 2πi
q e2πiWj

)
,
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where Wj is independent of yj,enum by Assumption 5.8. When ∆senum is nonzero,
yTj,enum∆senum is uniform mod q, which implies

E (F (s̃enum, s̃fft)) =
∑
j

ℜ
(
E
(
e(

−yTj,enum∆senum) 2πi
q

)
E
(
e2πiWj

))
= 0

as required.

Proof of Lemma 5.7. For any (s̃enum, s̃fft), we have

F (s̃enum, s̃fft) =

= ℜ

 1

ψ (sfft)

∑
j

e

(
p
q
yTlatslat+

p
q
xT e+

{
p
q
yj,fft

}T
sfft− p

q
yTj,enum∆senum−

[
p
q
yj,fft

]T
∆sfft

)
2πi
p

 =

=
∑
j

ℜ

(
1

ψ (sfft)
e(
yTlatslat+x

T e) 2πi
q e

({
p
q
yj,fft

}T
sfft− p

q
yTj,enum∆senum−

[
p
q
yj,fft

]T
∆sfft

)
2πi
p

)
=

=
∑
j

ℜ
(
εj,eqe

2πiZj
)
,

where Zj is independent of εj,eq by Assumption 5.8. Therefore,

Var (F (s̃enum, s̃fft)) = D ·Var
(
ℜ
(
εj,eqe

2πiZj
))

≤

≤ D · E
(
ℜ
(
εj,eqe

2πiZj
)2)

= D · E

(
ε2j,eqe

4πiZj + 2 + ε2j,eqe
4πiZj

4

)
=

=
D

4

(
2 + 2E

(
ℜ
(
ε2j,eqe

4πiZj
)))

=
D

2

(
1 + ℜ

(
E
(
ε2j,eq

)
E
(
e4πiZj

)))
≤

≤ D

2

(
1 +

∣∣E (ε2j,eq)E (e4πiZj
)∣∣) ≤ D

2

(
1 + 2e

−8
(

πτ
q

)2)
= Darg ·D ,

where the second-to-last transition follows from
∣∣e4πiZj

∣∣ = 1 and Lemma 5.3.

5.2.2 Parameters for Advantage 1
2

In this section we give concrete parameters (D,C) for which the attacker gains ad-
vantage close to 1

2 . Whereas Theorem 5.2 gives parameters that are dependent on the
secret (s, e), the following theorem gives parameters for which the attack succeeds for
at least half of the vectors (s, e).

Theorem 5.9. Let (n,m, q, χs, χe) be LWE parameters, (β1, β2, kenum, kfft, klat, p) be a
partial tuple of parameters for Algorithm 2, let ℓ be the expected length of the vectors
returned by Algorithm 3, and let 0 < µ < 1. Then Algorithm 2 with parameters

D ≥ D̃eq · D̃round · D̃arg · D̃fpfn (µ)

C = ϕ̃fp (µ)

√
D̃arg ·D
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where

D̃eq = e
4
(

πσsℓ
q

)2

D̃round =
∏
s ̸=0

sin
(
πs̄
p

)
πs̄
p

−2kfftχs(s̄)

D̃arg =
1

2
· e

2

χe(0)+e
− 8π2α−2ℓ2

q2(m+klat)

mχs(0)+e
− 8π2ℓ2

q2(m+klat)

klat

≈ 1

2

D̃fpfn (µ) =
(
ϕ̃fp (µ) + ϕ̃fn (µ)

)2
ϕ̃fp (µ) = Φ−1

(
1− µ

2 · 2kenumH(χs) · pkfft

)
ϕ̃fn (µ) = Φ−1

(
1− µ

2

)
outputs the correct senum with probability at least 1−µ

2 .

See the beginning of Section 5.2 for informal explanations of these different factors,
and Corollary 5.10 for simpler asymptotic expressions.

Proof. By Theorem 5.2, the attack succeeds with probability 1 − µ given that D ≥
Deq ·Dround ·Darg ·Dfpfn (µ) and C is chosen accordingly.
Note that log (Deq ·Dround ·Darg ·Dfpfn (µ)) is approximately normally distributed (over
the randomness of (s, e)), and so it is greater than its expectation with probability ≈ 1

2 .
It remains to show that the logarithmic expectation of Deq ·Dround ·Darg ·Dfpfn (µ) is
at most D̃eq · D̃round · D̃arg · D̃fpfn (µ).

Recall that log (Deq) =
4π2

q2
τ2 where τ2 = α−2∥e∥2+∥slat∥2

m+klat
ℓ2 and α = σe

σs
. Since each

coordinate of e, slat is independently distributed, log (Deq) is approximately normal
with expectation

E (log (Deq)) =
4π2

q2
α−2σ2em+ σ2sklat

m+ klat
ℓ2 =

4π2

q2
σ2sℓ

2 = log
(
D̃eq

)
.

Recall further that log (Dround) = −2
∑

t log
(
sin(πst/p)
πst/p

)
, where the sum is taken

over all nonzero coordinates st of sfft. As above, since each coordinate of sfft is inde-
pendently distributed, log (Dround) is approximately normal with expectation

E (log (Dround)) = −2kfft
∑
s ̸=0

χs (s) log

(
sin (πs/p)

πs/p

)
= log

(
D̃round

)
.

Next, we have log (Darg) = log

(
1
2 + e

− 8π2τ2

q2

)
≤ log

(
1
2

)
+ 2e

− 8π2τ2

q2 which is very
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close to log
(
1
2

)
for relevant parameter sets. For concreteness, we have

E (log (Darg)) ≤ log

(
1

2

)
+ E

(
2e

− 8π2τ2

q2

)
=

= log

(
1

2

)
+ 2

(
E

(
e
−

8π2α−2e2j ℓ
2

q2(m+klat)

))m(
E

(
e
−

8π2s2j ℓ
2

q2(m+klat)

))klat
≤

≤ log

(
1

2

)
+ 2

(
χe(0) + e

− 8π2α−2ℓ2

q2(m+klat)

)m(
χs(0) + e

− 8π2ℓ2

q2(m+klat)

)klat
= log

(
D̃arg

)
.

We emphasize that this expression is very close to log
(
1
2

)
for all reasonable parameter

sets.
Lastly, we have

Dfpfn =

(
Φ−1

(
1− µ

2

)
+Φ−1

(
1− µ

2 ·Nenum(senum) · pkfft

))2

=

=

(
a+Φ−1

(
1− b

Nenum(senum)

))2

.

for certain constants a, b > 0 not dependent on (s, e). Since x 7→
(
a+Φ−1

(
1− b

x

))2
is a concave function in the relevant domain and since E (Nenum(senum)) ≤ 2kenumH(χs),
we have

E (log (Dfpfn)) ≤ log (E (Dfpfn)) ≤ log

(
a+Φ−1

(
1− b

2kenumH(χs)

))2

= log
(
D̃fpfn

)
,

by applying Jensen’s inequality twice. We remark again that since Dfpfn is only a poly-
nomially large factor, its contribution to the overall complexity is relatively negligible.

In total, we get

E (log (Deq ·Dround ·Darg ·Dfpfn)) =

= E (log (Deq)) + E (log (Dround)) + E (log (Darg)) + E (log (Dfpfn)) ≤

≤ log
(
D̃eq

)
+ log

(
D̃eq

)
+ log

(
D̃eq

)
+ log

(
D̃eq

)
=

= log
(
D̃eq · D̃round · D̃arg · D̃fpfn

)
,

as required.

5.3 Asymptotic Complexity

In this section we give simpler asymptotic expressions for the time complexity of Algo-
rithm 2. The goal of this section is to give a clearer view of the asymptotic contributions
of the different parameters. We begin by calculating an asymptotic expression for D,
the required number of short vectors to be sampled. We then combine this expression
with Theorem 5.1 to state the asymptotic complexity of the entire algorithm.
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5.3.1 Asymptotic Number of Samples

Theorem 5.9 gives an exact bound on the required number of samples. The following
corollary gives an asymptotic bound as a function of the parameters for the algorithm.

Corollary 5.10. Let (n,m, q, χs, χe) be LWE parameters, (β1, β2, kenum, kfft, klat, p) be
a partial tuple of parameters for Algorithm 2, let ℓ be the expected length of the vectors
returned by Algorithm 3, and let 0 < µ < 1. Then the number of samples D can be
chosen such that

D = O

(
e
4
(

ℓσsπ
q

)2

· e
kfft
3

(
σsπ
p

)2

· (kenum ·H(χs) + kfft · log(p) + log(1/µ))

)
,

where

ℓσs = σe
m

m+klat · (σsq)
klat

m+klat ·
√
4/3 ·

√
β2
2πe

· δ(β1)
m+klat−β2

2 · (1 + o(1)) ,

and such that Algorithm 2 outputs the correct senum with probability at least 1−µ
2 .

Proof. Recall that by Theorem 5.9, we need to sample D ≥ D̃eq ·D̃round ·D̃arg ·D̃fpfn (µ)
vectors in order to achieve advantage 1−µ

2 . We give asymptotic expressions for each of
these four factors, and combine them to get an asymptotic estimate for the required
D.

Recall that the first term, D̃eq = exp

(
4
(
πσsℓ
q

)2)
, comes from the Fourier coeffi-

cient of the error of the original dual attack equations, and is exponentially large. Here
ℓ is the expected length of the vectors generated by Algorithm 3, which by Lemma 4.2
equals

ℓ = det(Λ)1/(m+klat) ·Nsieve(β2)
1/β2 ·

√
β2
2πe

· (πβ2)1/β2 · δ(β1)
d−β2

2 =

=

(
σe
σs

) m
m+klat · q

klat
m+klat ·

√
4/3 ·

√
β2
2πe

· δ(β1)
d−β2

2 · (1 + o(1)) .

The second term, D̃round =
∏
s̄ ̸=0

(
sin(πst/p)
πst/p

)−2kfftχss̄
, comes from the rounding

error from the modulus switch, and is also exponentially large. To approximate

log
(
D̃round

)
= −2kfft

∑
s̄ ̸=0 χs (s̄) log

(
sin(πs̄/p)
πs̄/p

)
, we approximate sin(x) as x(1− 1

6x
2)

using its Taylor series around x = 0, and log(x) as x− 1 using its Taylor series around
x = 1. This approximation is accurate when s̄ is close to 0, and is inaccurate when
s̄ is close to p. For values of s̄ in

[
−p

2 ,
p
2

]
, the approximation error is less than 10%.

In the analyzed cryptographic schemes, the error introduced by the approximation is
small close to the optimal parameter sets, and using the approximation induces very
minor errors in the optimization results.
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We get:

log
(
D̃round

)
= −2kfft

∑
s̄ ̸=0

χs (s̄) log

(
sin (πs̄/p)

πs̄/p

)
≈

≈ −2kfft
∑
s̄ ̸=0

χs (s̄) log

(
1− π2s̄2

6p2

)
≈

≈ 2kfft
∑
s̄ ̸=0

χs (s̄)
π2s̄2

6p2
=

=
kfft
3

π2

p2

∑
s̄ ̸=0

χss̄
2 =

kfft
3

(
σsπ

p

)2

and in total,

D̃round = O

(
exp

(
kfft
3

(
σsπ

p

)2
))

.

The third term, D̃arg ≈ 1
2 , is a constant improvement factor obtained by considering

the complex argument of the Fourier coefficient. We have D̃arg = O (1), and in fact it
is very close to 1

2 for all reasonable parameter sets.

The fourth and final term, D̃fpfn =
(
ϕ̃fp (µ) + ϕ̃fn (µ)

)2
where

ϕ̃fp (µ) = Φ−1
(
1− µ

2·2kenumH(χs)·pkfft

)
and ϕ̃fn (µ) = Φ−1

(
1− µ

2

)
, is a factor which

ensures small false and false negative probabilities, and is only polynomially large. By

the bound Φ−1(1− x) = O
(√

log
(
1
x

))
for x < 1/2, we get

D̃fpfn =

(
O
(√

log (2/µ)
)
+O

(√
log
(
2 · 2kenumH(χs) · pkfft/µ

)))2

= O
(
log
(
2kenumH(χs) · pkfft/µ

))
= O (kenumH(χs) + kfft log (p) + log (1/µ)) .

5.3.2 Asymptotic Time Complexity

The following corollary gives an asymptotic expression for the time complexity of Al-
gorithm 2.

Corollary 5.11. Let (n,m, q, χs, χe) be LWE parameters, (β1, β2, kenum, kfft, klat, p)
be a partial tuple of parameters for Algorithm 2, and let 0 < µ < 1. Choosing the
parameters C,D according to Theorem 5.2, Algorithm 2 outputs senum with probability
at least 1−µ

2 in time

O




D(√
4/3
)β2+o(β2)

 · (TBKZ(d, β1) + Tsieve(β2)) + 2kenumH(χs) ·
(
kfftp

kfft +D
) ,

30



where

D = O

(
e
4
(

ℓσsπ
q

)2

· e
kfft
3

(
σsπ
p

)2

· (kenum ·H(χs) + kfft · log(p) + log(1/µ))

)
,

ℓσs = σe
m

m+klat · (σsq)
klat

m+klat ·
√
4/3 ·

√
β2
2πe

· δ(β1)
m+klat−β2

2 · (1 + o(1)) ,

and TBKZ, Tsieve are the running times of the BKZ algorithm and lattice sieving algo-
rithm, respectively.

Proof. By Theorem 5.1, the running time of the algorithm is

Tsampleβ1,β2,D
(m+ klat) + 2kenumH(χs) · (Tfft(kfft, p) + Ttable) ,

where Tsampleβ1,β2,D
(m+ klat) is the cost of Algorithm 3, Tfft(kfft, p) is the cost of FFT,

and Ttable is the cost of the updating the table in each iteration. By Lemma 4.1,

Tsampleβ1,β2,D
(m+ klat) = O

(⌈
D

Nsieve(β2)

⌉
· (TBKZ(d, β1) + Tsieve(β2))

)
=

= O




D(√
4/3
)β2+o(β2)

 · (TBKZ(d, β1) + Tsieve(β2))

 .

Moreover, it is well known that FFT can be implemented in Tfft(kfft, p) = O
(
kfftp

kfft
)

operations (see e.g. [Knu98]). Lastly, the table updating can be performed in Ttable =
O(D) operations according to Lemma 5.12 below. Combining the above with the
formula for D from Corollary 5.10, we get the desired result.

5.4 Efficient Updating of the FFT Input

Recall that in Algorithm 2, we enumerate on the value of senum. Under that enumer-
ation, we calculate a table T, and for every short vector pair (x, y) we add the phase

e(
xTj b−yTj,enums̃enum)

2πi
q to cell

[
p
qyj,fft

]
of T. Then, we use the FFT algorithm to calculate

the Fourier transform of T. Naively, updating the tables requires computation of the
inner product yTj,enums̃enum for each pair, which costs O(kfftD). We can improve this
algorithmically.

Lemma 5.12. Preparing the table T when iterating over the possible values of senum
in descending order of probabilities can be done in amortized 4D addition operations.

Proof. We describe an efficient algorithm for updating the table T while iterating
over all possible values of senum with log-likelihood above some constant C. We first
note that instead of calculating each inner product yTj,enums̃enum from scratch, we can
store the inner products and use them to calculate subsequent inner products faster.
If we have already calculated the inner product yTj,enums̃enum, we can calculate the
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inner product yTj,enums̃
′
enum as yTj,enums̃enum + yTj,enum (s̃′enum − s̃enum). The update op-

erations requires only as many multiplications as there are non-zero coordinates in
(s̃′enum − s̃enum).

Thus, to calculate all inner products yTj,enums̃enum for all values of senum, we just have
to find an efficient iteration order where only one coordinate changes in every iteration
step. To efficiently iterate over the possible values of senum with log-likelihood above
some cutoff, we use the following algorithm:

1. We use the most likely s̃enum as the starting point for the iteration.

2. We then enumerate over all values for the first coordinate which do not lower
the log-likelihood below the cutoff, and for each we recursively iterate over the
remaining coordinates using the same algorithm.

We note that for some s̃enum to be reached, the algorithm has to perform a series
of recursive calls with intermediate possible values of senum. In the i’th intermediate
value, the first i coordinates are equal to those of s̃enum, and the last n− i coordinates
have the most likely value of χs. Since the coordinates are sampled independently,
the log-likelihood of every intermediate is larger than that of s̃enum. Thus, if the log-
likelihood of s̃enum is above the cutoff, the likelihoods of all necessary intermediates
are also above the cutoff, and it will be reached by the algorithm. It follows that all
possible values of s̃enum are found by the algorithm.

This iteration order does not guarantee, however, that the iteration proceeds in
order of decreasing probability. To iterate over the values of the secret in descending
order of probabilities, we perform a series of iterations, with decreasing cutoffs for the
minimal log-likelihood of a value of s̃enum found by the iteration. We pick the cutoffs so
that in the i’th iteration, we iterate over 2i values for s̃enum. This ensures that we reach
the j’th most likely value for senum in step ⌈log2(j)⌉, and do 1+2+4+· · ·+2⌈log2 j⌉ < 4j
iterations. Thus, during our iteration, when we reached the j’th value for the first time,
we will have updated the table no more than 4j times.

6 Lattice Sieving Cost Model

In this section we review our model for the cost of lattice sieving in the RAM model.
Our model largely follows [AGPS20], apart from a number of changes. We start by
describing the model used in [AGPS20], then describe the differences in our model.

The costs of our algorithm are calculated according to our model, as well as the
model in [AGPS20], in Section 7.3.

6.1 General Overview of the Model

As stated above, our cost model is based on the model presented in [AGPS20]. For the
purposes of this work, we limit ourselves to the classical model and leave the quantum
model for future work. In this section we review basic properties of the model, as
present in [AGPS20].

Recall that lattice sieving is an algorithm for finding a list of short vectors in a
lattice. The algorithm starts by generating a list of long lattice vectors. It then
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repeatedly applies the “AllPairSearch” routine, finding short combinations of vectors in
the list and adding them to the list. Heuristically, after some number of repetitions of
this routine, the list contains the Nsieve(d) shortest vectors in the lattice. The cost of a
sieve in this model is the number of basic logic gates required in total for implementing
the “AllPairSearch” routines.

Progressive Lattice Sieving. Following [AGPS20, ABD+21], our model uses
progressive lattice sieving [LM18], which is a variant of lattice sieving in which sieves on
sublattices of increasing dimensions are performed. This model assumes that running a
sieve in dimension d requires performing one “AllPairSearch” in dimension d′ for every
d′ ≤ d.

Locality Sensitive Filtering. The implementation of the “AllPairSearch” routine
in this model uses Locality Sensitive Filtering (LSF) [BDGL16]. In order to find close
pairs of vectors in a list, the algorithm constructs buckets according to certain filters,
such that vectors in the same bucket are more likely to be close to each other. The
algorithm then iterates over all such pairs to find all close pairs in the list.

Locality Sensitive Filtering uses Random Product Codes for the construction of the
buckets. The core part of the algorithm is the decoding routine, which efficiently finds
the set of buckets in which a given vector lies.

Popcount Filter. The “popcount-filter” is a practical improvement of Locality Sen-
sitive Filtering introduced in [AGPS20]. The core idea is that instead of directly check-
ing whether a pair of vectors is close by calculating their inner product, the algorithm
first performs a cheaper test which is more likely to succeed for close pairs of vectors.
If the test is passed, the heavier inner product calculation is performed.

6.2 Modifications of the Model

In this section we list the main differences between the model from [AGPS20] and our
model.

• The main difference is the cost of the random product code decoding algorithm.
Our algorithm requires one addition, one xor, and three comparisons per legal
codeword, which translate to 433 gates for a lattice of rank 400, as opposed
to [AGPS20] which requires a super-constant number of inner products per legal
codeword, which translate to 3,540,524 gates for a lattice of rank 400. This
algorithm is described in Section 6.2.1.

• Additionally, we optimize the popcount filters over a larger set of parameters than
the one considered in [AGPS20]. Popcount filters allow skipping the calculation
of the inner product of two vectors by checking if the sign bits of their coordinates
tend to be the same (or, more generally, the sign bits of their projections to one
dimensional vector spaces). When two vectors are close to each other, their sign
bits are the same with probability ≈ 2

3 , while two random vectors are expected to
share sign bits with probability 1

2 . When checking if two vectors are close, before

33



calculating the inner product, we calculate how many bits differ among their sign
bits. If the number of differing bits is above some threshold, we conclude that
the two vectors are likely not close without calculating their inner product.

The popcount filters have two parameters – the number of sign bits and the
threshold. In [AGPS20], the threshold is fixed to be 1/3 of the number of sign
bits. With these parameters, roughly half of the close vector pairs are rejected
by the filter. We optimized both of these parameters. For a lattice of rank 400,
we use the sign bits of 576 projections, and require that no more than 208 sign
bits are different. This allows ≈ 91% of the close vector pairs to pass the filter.

• Similarly to [ADH+19], we treat every lattice vector v as ±v. This reduces the
number of list vectors used in the sieve by a factor of 2. Additionally, since
the number of queries to the LSF data structure becomes twice the number of
vectors used in its construction, the LSF parameters involved in the construction
and querying are optimized independently.

• Finally, our model considers two additional factors which make it more realistic
and pessimistic for the attacker.

– Originally, the number of filters in the LSF construction is determined by
the probability of two close vectors to lie in the same bucket. Namely, if
this probability is p, then one constructs 1

p filters such that each pair has

probability 1− 1
e to be found. However, this means that a constant proportion

of the close pairs will not be found. Since the size of the list is the same as
the number of close pairs in it, the list size will shrink by a constant factor
after one iteration, and the next iterations will not continue properly.
In order to solve this problem, we increase the size of the list by a constant
factor such that only a constant proportion of the close pairs is required
for the iterations to continue. We then multiply the number of filters by
an appropriate constant such that the required proportion of the close pairs
is found. We optimize these constant factors to minimize the cost of the
algorithm.

– The cost of “AllPairSearch” in [AGPS20] is mainly composed of two parts:
the total cost of “popcount-filter” calculations, and the total cost of inner
product calculations. The cost of the inner product calculations is ignored,
but is ensured to be smaller than the cost of the popcount calculations. In
our model, we add the two costs together.

Despite these pessimistic factors, our model predicts significantly lower costs for
lattice sieving, mainly due to the improved random product code decoding algo-
rithm.

6.2.1 Random Product Code Decoding Algorithm

In this section, we describe our Random Product Code decoding algorithm, which is a
slightly optimized version of the algorithm presented in [BDGL16]. Since the algorithm
is outside the scope of this paper, we describe it in general terms and do not give a
formal analysis of its running time.
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We start by describing the Random Product Code decoding problem. Let v ∈ Rl·k
be a given vector, and let V1, . . . , Vk ⊆ Rl·k be l-dimensional vector spaces such that
Vi ⊥ Vj for all i, j. Let Li ⊆ Vi for i = 1, . . . , k be lists of vectors of length 1√

k
called

filters. A codeword is a k-tuple of filters, (f1, . . . , fk) ∈ L1 × · · · ×Lk, which represents
the vector

∑
i fi. A legal codeword is a codeword for which

∑
i ⟨fi, v⟩ ≥ C for a given

constant C ∈ R. We refer to this sum as the inner product of a codeword and v. The
problem is to efficiently find all legal codewords.

Our general strategy is, given a vector, to define an iteration tree over all legal
codewords. The algorithm is similar to the algorithm for updating the FFT table
presented in Section 5.4. The nodes of the tree represent legal codewords. For each
codeword, we define several codewords as possible child nodes, and the child nodes are
the subset of those that are legal. When iterating, we store only the current codeword
and its inner product with the query vector.

The iteration order must satisfy three properties:

1. For every legal codeword except for the root codeword, there exists a legal parent
node with a larger inner product with the query vector.

2. Given the inner product of a codeword and the query vector, the inner prod-
ucts between its child codewords and the query vector can be calculated using a
constant number of operations.

3. For every node, only a constant number of possible child codewords are checked
and found to be illegal codewords.

Property 1 ensures that all legal codewords are visited by the iteration. Properties
2 and 3 ensure that the iteration requires a constant number of operations per legal
codeword.

We preprocess the lists Li to allow quick iteration. Each list Li is sorted by de-
scending order of inner product with the query. Then, the lists are relabeled so that
the inner product of the difference between first two vectors and the query vector is
descending: ⟨Li[1]− Li[0], v⟩ ≥ ⟨Li+1[1]− Li+1[0], v⟩.

We now define the iteration order. Each codeword is represented as a k-tuple of
indices in the Li: the codeword w is represented by a tuple of indices (w1, w2, . . . , wk),
and represents the vector

∑
i Li [wi]. The root node is the codeword (0, 0, . . . , 0). For

every codeword, we denote by nw its largest nonzero index, or −1 for the root. The
possible child nodes of the node w are obtained by incrementing w[j] for any j ≥ nw.

For every child node, its parent node can be obtained by decrementing the last
nonzero index. Since each list Li is sorted by decreasing inner product with v, decre-
menting any index in the codeword increases the inner product with v, so property 1
is satisfied.

A parent node w(p) and a child node w(c) differ in a single filter, where w
(c)
i =

w
(p)
i +1. Thus, the difference between the vectors they represent is Li [j + 1]−Li [j] for

some j, and the difference between their inner products with v is ⟨Li [j + 1]− Li [j] , v⟩.
This term can be precomputed so that the calculation takes a constant number of
operations, so property 2 is satisfied.

The second term can be precomputed so that the calculation takes a constant
number of operations, so property 2 is satisfied. All child nodes of the codeword
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w are obtained by incrementing wj for some j ≥ nw. Except for wnw , the values
of wj are all zero, by the definition of nw. Thus, the inner products of v with the
child nodes of w are all equal to the inner product of v with w, plus a term of the
form ⟨Lj [1]− Lj [0]⟩. In the preprocessing stage, the lists Li were relabeled so that
⟨Lj [1]− Lj [0]⟩ ≥ ⟨Lj+1 [1]− Lj+1 [0]⟩. Therefore, if for some j > nw the child node
obtained by incrementing j is illegal, it implies that the child nodes obtained by incre-
menting any j′ > j are also illegal. This means that the iteration can stop considering
child nodes after the first illegal child node in which j > nw. Thus, up to two illegal
child nodes are considered, and property 3 is satisfied.

A careful analysis shows that the number of operation per legal codeword is a single
addition, three comparisons, and a single xor.

As a further optimization, we note that the inner product calculations do not require
floating-point operations, and can be performed using 16-bit integers instead. The sum
of k b-bit numbers has an error of no more than k2−b. When the error is smaller than
O( 1n), the effect on the accuracy of the LSF is insignificant. Thus, for relevant lattice
ranks and values of k, 16 bits are more than sufficient.

7 Analysis in the RAM Model

In this section we perform a detailed analysis of our attack in the RAMmodel. We start
off by stating the different assumptions we make when analyzing lattice algorithms.
Afterwards, we describe our refined analysis of the cost of sieving. We then determine
the cost of our attack under these assumptions. Finally, we present the concrete costs
of our attack for various LWE-based candidates.

7.1 Description of the Model and Assumptions

We now state the exact costs and assumptions on the behaviour of the various lattice
algorithms in the RAM model. Our assumptions are standard and follow e.g. [AGPS20,
ABD+21, DKL+21]. We list them here for completion and clarity.

Recall the Geometric Series Assumption (Assumption 2.1), and the Gaussian Heuri-
stic (Assumption 2.2) from Section 2.2. Both are used in the analysis of the Short
Vectors Sampling Algorithm (Algorithm 3) in Lemma 4.2 which we use in this section.
Also recall Assumption 4.4 and its extension, Assumption 5.8, regarding the distribu-
tion of the outputs of Algorithm 3. We use these assumptions in the analysis of the
attack in Section 5.

Our additional assumptions are as follows.

Assumption 7.1 (Sieve Quality [AGPS20]). Let Λ be some lattice of dimension β.
The number of lattice points produced by a sieve is

Nsieve(β) =
1

Caps(β, π/3)
,

where Caps(d, θ) is the probability that a vector sampled uniformly from the unit d-
sphere has angle at most θ with some fixed unit vector.
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Assumption 7.2 (“Dimensions-for-Free” [Duc18, ADH+19]). Solving SVP for lattices
in dimension β can be done using a sieve of dimension βeff .
In [Duc18], βeff is estimated as

βeff = β − β log(4/3)

log(β/(2πe))
.

We refer to this model as the Asymptotic Model.
In [ADH+19], βeff is estimated as

βeff = β − (11.46 + 0.0757 · β) .

for a certain range of dimensions. We refer to this model as the G6K Model.

In Section 7.3, we analyze our attack for different candidates both under the asymp-
totic and the G6K models. Skipping ahead, the log2 of the running time is smaller by
no more than 2 (and the difference is is usually smaller, around 1) when assuming the
G6K model over the asymptotic one. Compared to the effect of the proposed attack
itself, and the suggested sieving costs, the effect of the choice of the dimensions-for-free
model is not dramatic.

We note that the G6KModel is an extrapolation of experimental results in [ADH+19],
and the authors recommend against using this model for higher dimensions than pre-
sented in the paper. Nevertheless, we choose to present our results in the G6K Model
as well, mainly for purposes of comparison with previous results in [GJ21]. The dif-
ference between the two models has a small effect on the estimated complexity of the
attack.

Assumption 7.3 (Sieve and BKZ Cost [LM18, ABD+21]). The cost of lattice sieving
in a β-dimensional lattice using progressive sieving is

Tsieve (β) = Cprog · TNNS(β) ,

and the cost of progressive BKZd,β is

TBKZ (d, β) = C2
prog · (d− β + 1) · TNNS(βeff) .

Here TNNS(β) is the cost of an “AllPairSearch” routine in dimension β. Moreover,
Cprog = 1/

(
1− 2−0.292

)
is the sum of a geometric series which accounts for the total

number of calls to “AllPairSearch”, and βeff is the effective sieving dimension due to
the “dimensions-for-free” (see Assumption 7.2).

We consider two cost models for TNNS – the one by [AGPS20] and our refined
model described in Section 6. Our results are optimized for each model and discussed
in Section 7.3.

Finally, let us make some assumptions about the cost of the FFT operation.

Assumption 7.4 (FFT Cost [Knu98]). Given a table T of dimensions pn for some
integers n, p, the cost of performing FFT on T is

Tfft (n, p) = Cmul · n · pn+1 ,

where Cmul is the cost of a single multiplication. We assume that Cmul = |word|2, using
naive multiplication.
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We work with wordsize of 4 bytes (32 bits). This is sufficient precision for the
floating-point arithmetics involved for the candidates considered.

7.2 Complexity Analysis

We now turn to analyze the complexity of Algorithm 3 and Algorithm 2 in the RAM
model. Our analysis relies on the assumptions stated in Section 7.1, and follows the
same notations.

Lemma 7.5 (Cost of Short Vectors Sampling Procedure). Let Λ be a d-dimensional
lattice, let β1, β2 be the basis reduction block size, and vectors sampling block size re-
spectively, and let D be the required number of vectors. Recall the notations from
Assumption 7.3. The cost of Algorithm 3 is

Tsampleβ1,β2,D
(d) =

⌈
D

Nsieve(β2)

⌉
·
(
C2
prog · (d− β1 + 1) · TNNS(βeff1 ) + Cprog · TNNS(β2)

)
.

Proof. Algorithm 3 consists of
⌈

D
Nsieve(β2)

⌉
iterations, and each iteration has two steps.

The first is a progressive BKZ on a lattice of dimension d using block size β1. The
second is a progressive sieve of dimension β2. By Assumption 7.3, the cost of the former
is

C2
prog · (d− β1 + 1) · TNNS(βeff1 ) .

Similarly, the cost of the latter is

Cprog · TNNS(β2) .

We turn to analyze our attack. The analysis, as formally stated below, is straight-
forward – it follows from Theorem 5.1 and the supporting lemmas and assumptions
referenced in the statement. Recall the parameters of the algorithm, as described in
Section 3.2.

Theorem 7.6. Let (n,m, q, χs, χe) be LWE parameters, (β1, β2, kenum, kfft, klat, p) be
a partial tuple of parameters for Algorithm 2, and 1−µ

2 the desired success probability.
Set C,D to be integers determined by Theorem 5.9. Then the cost of Algorithm 2 in
the RAM model is

Tsampleβ1,β2,D
(klat +m) + 2kenumH(χs) (Tfft(kfft, p) + Ttable(D)) ,

where

• The sampling time is:

Tsampleβ1,β2,D
(klat +m) =

=

⌈
D

Nsieve(β2)

⌉
·
(
C2
prog · (klat +m− β1) · TNNS(βeff1 ) + Cprog · TNNS(β2)

)
by Lemma 7.5.
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• The FFT time is: Tfft(kfft, p) = Cmul · kfft · pkfft+1 by Assumption 7.4.

• The required number of samples is:

D = D̃eq · D̃round · D̃arg · D̃fpfn (µ) ,

where

D̃eq = e
4
(

πσsℓ
q

)2

D̃round =
∏
s ̸=0

sin
(
πs̄
p

)
πs̄
p

−2kfftχs(s̄)

D̃arg =
1

2
· e

2

χe(0)+e
− 8π2α−2ℓ2

q2(m+klat)

mχs(0)+e
− 8π2ℓ2

q2(m+klat)

klat

≈ 1

2

D̃fpfn (µ) =
(
ϕ̃fp (µ) + ϕ̃fn (µ)

)2
ϕ̃fp (µ) = Φ−1

(
1− µ

2 · 2kenumH(χs) · pkfft

)
ϕ̃fn (µ) = Φ−1

(
1− µ

2

)
by Theorem 5.9,

ℓσs = σe
m

m+klat · (σsq)
klat

m+klat ·
√
4/3 ·

√
β2
2πe

· δ(β1)
m+klat−β2

2 · (1 + o(1))

by Lemma 4.2.

• The table generation time is Ttable(D) = 4 · Cadd ·D by Lemma 5.12.

7.3 Application to NIST Candidates

We now present the complexity of our attack on various NIST candidates. We opti-
mized our attack for CRYSTALS-Kyber [BDK+18], CRYSTALS-Dilithium [DKL+18],
and Saber [DKRV18] and the results are presented below. We compare the estimated
security parameters by the candidates’ authors, the security level as defined in the Call
for Proposals [Nat16] and our proposed attack.

Our research primarily focused on CRYSTALS-Kyber. As our results also apply to
CRYSTALS-Dilithium and Saber, we analyzed the proposed attack for these candidates
as well. We note that the largest gap between the previously estimated security level,
and the one arising from this work is obtained for CRYSTALS-Kyber, which was our
main focus.

The results are given in Tables 3-6. The tables differ by their exact cost models. As
detailed in Section 7.1 above, we consider both the asymptotic model [Duc18] and the
G6K [ADH+19] model for the effect of “dimensions-for-free”, see Assumption 7.2 and
the discussion following it. We also consider two cost models for the cost of sieving –
the one suggested by [AGPS20], and our estimations, see Assumption 7.3. The tables
present the costs in every combination of these models.
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Table 3: Evaluation of the security level using [AGPS20] sieve costs and the asymptotic
model [Duc18].

Candidate

Required
Security
Level
[Nat16]

Estimated
Security
Level

[DKL+21]
[ABD+21]
[BMD+20]

This
Work

Parameters
m p β1 β2 kenum kfft

Kyber512 143 151.5 143.8 474 5 377 380 19 34
Kyber768 207 215.1 200.5 659 4 576 570 30 59
Kyber1024 272 287.3 266.0 836 4 809 790 40 82
Dilithium2 146 159 153.4 1002 6 409 406 21 31
Dilithium3 207 217 210.5 1280 12 609 601 21 34
Dilithium5 272 285 273.3 1679 6 832 814 36 64
LightSaber 143 Unspecified 144.8 512 7 380 383 16 29
Saber 207 Unspecified 210.4 712 6 612 603 25 48
FireSaber 272 Unspecified 273.4 885 5 835 816 36 72

Table 4: Evaluation of the security level using [AGPS20] sieve costs and the G6K
model [ADH+19].

Candidate
Required
Security

Level [Nat16]

Estimated
Security
Level

[DKL+21]
[ABD+21]
[BMD+20]

This
Work

Parameters
m p β1 β2 kenum kfft

Kyber512 143 151.5 143.1 474 6 380 378 19 30
Kyber768 207 215.1 199.5 655 4 580 566 31 58
Kyber1024 272 287.3 264.4 839 4 816 786 39 82
Dilithium2 146 159 152.2 1002 6 409 406 21 31
Dilithium3 207 217 208.9 1280 12 613 594 20 34
Dilithium5 272 285 270.9 1707 5 837 805 36 71
LightSaber 143 Unspecified 144.1 512 7 383 381 17 27
Saber 207 Unspecified 209.3 708 6 617 599 24 49
FireSaber 272 Unspecified 271.7 897 5 843 811 35 72

40



Table 5: Evaluation of the security level using the sieve costs from Section 6 and the asymp-
totic model [Duc18].

Candidate
Required
Security

Level [Nat16]

Estimated
Security
Level

[DKL+21]
[ABD+21]
[BMD+20]

This
Work

Parameters
m p β1 β2 kenum kfft

Kyber512 143 151.5 138.2 485 5 379 383 17 33
Kyber768 207 215.1 194.5 652 5 580 574 27 51
Kyber1024 272 287.3 259.3 834 4 813 794 36 82
Dilithium2 146 159 147.3 989 6 409 411 17 33
Dilithium3 207 217 203.7 1279 11 611 603 18 35
Dilithium5 272 285 266.2 1663 6 834 816 32 65
LightSaber 143 Unspecified 139.1 512 7 382 386 15 27
Saber 207 Unspecified 203.9 714 6 614 605 23 48
FireSaber 272 Unspecified 266.5 878 5 840 818 32 73

Table 6: Evaluation of the security level using the sieve costs from Section 6 and the G6K
model [ADH+19].

Candidate
Required
Security

Level [Nat16]

Estimated
Security
Level

[DKL+21]
[ABD+21]
[BMD+20]

This
Work

Parameters
m p β1 β2 kenum kfft

Kyber512 143 151.5 137.5 492 5 381 381 17 33
Kyber768 207 215.1 193.5 651 5 585 571 27 50
Kyber1024 272 287.3 257.8 844 4 820 789 37 80
Dilithium2 146 159 146.3 1008 7 410 409 17 30
Dilithium3 207 217 202.0 1274 12 615 594 18 34
Dilithium5 272 285 263.6 1680 6 840 804 32 64
LightSaber 143 Unspecified 138.4 512 7 385 383 15 27
Saber 207 Unspecified 202.7 714 6 619 602 23 47
FireSaber 272 Unspecified 264.9 905 5 846 814 32 72

Finally, we compare the results across the different models in Table 7. It can
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be seen that the proposed attack itself has the most dominant effect on the security
level, decreasing it by roughly 7 bits. Our proposed sieve costs yield a similar effect,
though slightly smaller. Finally, the choice of the dimensions-for-free model has a less
significant effect of roughly 1 bit.

Table 7: Evaluation of the security level across models.

Candidate

Required
Security
Level
[Nat16]

Estimated
Security
Level

[DKL+21]
[ABD+21]
[BMD+20]

This Work
G6K [ADH+19] Asymptotic [Duc18]

[AGPS20] Section 6 [AGPS20] Section 6

Kyber512 143 151.5 143.1 137.5 143.8 138.2
Kyber768 207 215.1 199.5 193.5 200.5 194.5
Kyber1024 272 287.3 264.4 257.8 266.0 259.3
Dilithium2 146 159 152.2 146.3 153.4 147.3
Dilithium3 207 217 208.9 202.0 210.5 203.7
Dilithium5 272 285 270.9 263.6 273.3 266.2
LightSaber 143 Unspecified 144.1 138.4 144.8 139.1
Saber 207 Unspecified 209.3 202.7 210.4 203.9
FireSaber 272 Unspecified 271.7 264.9 273.5 266.5

8 Future directions

The ideas presented in this paper are ones that have been analyzed carefully as part
of our audit. We note there are further improvements possible, concrete ideas which
require additional analysis to determine their impact. We hope to be able to publish
some of these improvements in the future. In addition, our audit raised more general
conjectural ideas that have broader applications, and which require further research.
This section is meant to outline some of these ideas that we find relevant to future
PQC research. Our goal with sharing these is to both point to where we believe our
analysis and algorithms can be improved, and to stimulate further research into these
fields and advance the understanding of these cryptosystems.

8.1 Partial Enumeration

Recall that in Algorithm 2, we first enumerate over possible values of senum, then use
FFT to enumerate over possible values of sfft. There are two problems with this scheme:

• When we enumerate over k coordinates, we perform 2kH(χs) guesses, while when
we use FFT we use pk guesses. When 2H(χs) < p, this means the FFT is highly
inefficient, and tests values of sfft which are very unlikely to be the real secret.
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• The rounding error induced by nonzero coordinate s̄ of sfft is p
πs̄ sin

(
πs̄
p

)
(see

Lemma 5.4). Note that it has two components: 1
s̄ , dependent on the size of s̄,

and sin
(
πs̄
p

)
, dependent on the value of s̄ mod p. If the probability of values of s̄

very close to ±p were lower, then the rounding error would be significantly lower.

To fix these inefficiencies, we could divide the secret distribution into two dependent
random variables: s = s(1) + s(2), enumerate directly over the value of s(1), and enu-
merate over the value of s(2) using FFT. If given a value of s(1), the distribution s(2)

is close to uniform on
[
−p

2 ,
p
2

]
, then p can be close to 2H(s

(2)) and the rounding error
is smaller, making the enumeration more efficient.

8.2 Partial FFT

Recall that in Algorithm 2, we enumerate over the values of sfft using FFT in (Z/pZ)kfft .
We choose p to balance the rounding error, εround, and the FFT cost, kfftp

kfft . To
better balance the terms, we could choose two moduli, p1 and p2, and perform FFT in
(Z/p1Z)k1 ⊕ (Z/p2Z)k2 . This would allow fine-grained control of the trade-off between
εround and the FFT work.

8.3 Improved Short Vectors Sampling Procedure

Recall that in Algorithm 3, we first perform BKZ to obtain a reduced basis, then
perform lattice sieving to get multiple short vectors. The second application of lattice
sieving cannot benefit from the “dimensions-for-free” optimization, as it has to return
all sieve vectors. However, the number of vectors found when using the “dimensions-
for-free” algorithm is actually a parameter, which we can optimize. To find short
vectors in the lattice Λ, we choose a sublattice of small volume Λ′ ⊂ Λ, and perform
lattice sieving in Λ/Λ′. Usually, The rank of Λ′ is chosen to be as large as possible
while maintaining that the shortest vector of Λ is found by the lattice sieving in Λ/Λ′.
We can choose Λ′ of smaller rank, and perform lattice sieving on a lattice of higher
rank, to find not only the shortest vector of Λ, but many short vectors. This could
potentially accelerate the second lattice sieve performed in Algorithm 3.

8.4 Adaptations for NTRU

NTRU-based cryptosystems are among the leading candidates for lattice-based post-
quantum cryptography. In this work, we propose improvements to the dual attack on
LWE, and as such our attack is not immediately applicable to NTRU-based cryptosys-
tems. It is an interesting question whether ideas from this work can be adapted to
similar improvements to attacks on NTRU. Specifically, there appear to be similarities
between the dual attack on LWE and the so-called “hybrid attack” [How07, Wun16]
on NTRU. The hybrid attack also involves enumerating over parts of the secret, and
then invoking some distinguisher to determine whether a resulting vector is close to
a certain constant lattice. It seems reasonable to the writers of this paper that ideas
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similar to those presented here can be used to reduce the running time of such attacks
as well, though anything definitive would of course require further research.

8.5 Quantum Speedups to Enumeration and FFT

The attack described in this paper can be further accelerated in the quantum setting.
Recall that the attack enumerates on possible values of senum directly, and enumerates
over possible values of sfft using the FFT algorithm. The enumeration can be acceler-
ated using Grover Boosting, reducing the enumeration component in the running time

from O
(
2kenumH(χs)

)
to O

(
2

kenumH(χs)
2

)
, and allowing us to enumerate over twice as

many coordinates of the secret at the same cost. In addition, the FFT could be re-
placed with QFT, which takes only polynomial time. However, after performing QFT
we do not possess a table storing all the outputs, but a weighted superposition over all
values of s̃fft. Efficiently recovering sfft from this superposition is a subject of further
research.

8.6 Quantum Improvements to Dimensions-for-Free

It appears possible to use Grover’s search [Gro96], to further increase Ducas’ [Duc18]
“dimensions-for-free” reduction in lattice size, given a quantum computer.

In the original “dimensions-for-free” algorithm, we search for the projection of the
shortest vector in the lattice to a quotient lattice of a smaller rank. This projection
is a moderately short vector in the quotient lattice. The rank of the quotient lattice
is chosen such that this vector is

√
4/3 times longer than the shortest vector in the

quotient lattice, and thus can be found by enumerating over the output of a lattice
sieve in the quotient.

The basic idea of the quantum variant is to use Grover’s algorithm to perform
this enumeration in square root of the number of iterations. Because the cost of this
enumeration is normally dominated by the sieve cost, simply adding Grover’s algorithm
does not improve the overall complexity. Therefore, it is necessary to enumerate over
more vectors in the quotient lattice and gain more dimensions for free.

When decreasing the rank of the quotient lattice, the projection of the shortest
vector becomes even longer compared to the shortest vector in the quotient lattice,
such that it is not found by a lattice sieve. To find it, we first perform a lattice sieve.
We then employ an algorithm for sampling moderately short vectors in the quotient
lattice, which first samples a long vector, then successively shortens it using the output
of a sieve until it is of moderate size. We use Grover search to find the projection of the
shortest vector in the original lattice among these samples. This allows us to reduce
the rank of the quotient lattice and enumerate over longer vectors in it.

Further improvements may be obtained by observing that the sampling algorithm
does not need the entire output of the sieve, but rather only the vectors shorter than
c <

√
4/3 times the shortest vector. This subset may be found by performing a sieve

and discarding some of the vectors, but a more efficient way to do so is recursively
applying the previous algorithm – sampling moderately short vectors in a quotient
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of the quotient, and searching for projections of short vectors in the quotient among
them. This procedure can be continued recursively several times.

We estimate that this recursive procedure allows to significantly reduce the dimen-
sion of the lattice in which we eventually perform a full sieve, and further reduce the
running time of a quantum attack on the level 1 parameters of most candidates by
roughly ≈ 20 bits of security.
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[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part
II, volume 11477 of Lecture Notes in Computer Science, pages 717–746.
Springer, 2019. doi:10.1007/978-3-030-17656-3\_25. 1.2, 2, 6.2, 7.2,
7.1, 7.3, 4, 6, 7

[AGPS20] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and
John M. Schanck. Estimating quantum speedups for lattice sieves. In
Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Ko-
rea, December 7-11, 2020, Proceedings, Part II, volume 12492 of Lec-
ture Notes in Computer Science, pages 583–613. Springer, 2020. doi:

10.1007/978-3-030-64834-3\_20. 2, 1.3.4, 2, 6, 6.1, 6.1, 6.1, 6.2, 7.1,
7.1, 7.1, 7.3, 3, 4, 7

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wun-
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[BSW18] Shi Bai, Damien Stehlé, and Weiqiang Wen. Measuring, simulating
and exploiting the head concavity phenomenon in BKZ. In Thomas
Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Brisbane, QLD, Aus-
tralia, December 2-6, 2018, Proceedings, Part I, volume 11272 of Lec-
ture Notes in Computer Science, pages 369–404. Springer, 2018. doi:

10.1007/978-3-030-03326-2\_13. 2.2, 2.2

[CCD+15] Matthew Campagna, Lidong Chen, Özgür Dagdelen, Jennifer K. Fernick,
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