Report on the Security of LWE:
Improved Dual Lattice Attack

The Center of Encryption and Information Security — MATZOV*T
IDF

Abstract

Many of the leading post-quantum key exchange and signature schemes rely on the
conjectured hardness of the Learning With Errors (LWE) and Learning With Rounding
(LWR) problems and their algebraic variants, including 3 of the 6 finalists in NIST’s
PQC process. The best known cryptanalysis techniques against these problems are
primal and dual lattice attacks, where dual attacks are generally considered less prac-
tical.

In this report, we present several algorithmic improvements to the dual lattice
attack, which allow it to exceed the efficiency of primal attacks. In the improved attack,
we enumerate over more coordinates of the secret and use an improved distinguisher
based on FFT. In addition, we incorporate improvements to the estimates of the cost
of performing a lattice sieve in the RAM model, reducing the gate-count of random
product code decoding and performing less inner product calculations.

Combining these improvements considerably reduces the security levels of Kyber,
Saber and Dilithium, the LWE/LWR based finalists, bringing them below the thresh-
olds defined by NIST.

1 Introduction

In this report, the Center of Encryption and Information Security (MATZOV) presents
an overview of results of an inner audit project regarding leading post-quantum cryp-
tographic schemes. This work does not aim to provide a complete analysis of all
candidate post-quantum encryption schemes, nor to recommend cryptographic algo-
rithms to use. Rather, this publication is meant to share advances in the cryptanalysis
of lattices which we believe to be relevant to academic research in the field. Some of
the additional results of the audit, regarding quantum security ramifications, possible
extension of the claims to NTRU-based lattice schemes and additional improvements

*matzov@idf.il

TMATZOV is a unit of the IDF, exclusively responsible for all aspects of Defensive Information Security
and Encryption in Israel, providing security solutions to Israeli security establishments and to critical state
infrastructures.

mailto:matzov@idf.il

to the presented attack are mentioned in Section 8, and might be published at a later
date.

1.1 Motivation

Since the 1990s, the threat of quantum computers to modern security protocols has
been well known, with ongoing research regarding applications of the Shor [Sho94,
HRS17, RNSL17, HIN*20, BBvHL21, GE21] and Grover [Gro96, Ber10, GLRS16,
BNS19, JNRV20] algorithms to cryptanalysis of cryptographic schemes. It is heavily
debated by experts whether and when a quantum computer capable of executing those
algorithms for relevant cryptanalytic problems will be feasible. However, the grow-
ing interest in academic cycles, followed by governments [BPS21, EHH 21, BDH'21,
ANS22, Dir22] and industry powers [CCD*15, Ant20, Gri21] - led to accelerated de-
velopment of quantum-resistant countermeasures, such as Quantum Key Distribution
(QKD) and Post-Quantum Cryptography (PQC).

The main initiative for determining new cryptographic schemes is led by NIST —
NIST PQC Standardization Process [CJLT16, Nat16]. Starting with 69 candidates in
2017, the process now consists of 7 finalists which are being considered for standardiza-
tion [AASAT19, MAAT20]. The majority of the finalists are based on structured lat-
tices, and rely on the hardness of various lattice problems [Ajt98, Mic98, Kho04, HRO7].

Lattice-based cryptography was first proposed by Ajtai and Dwork [AD97], and
later expanded by the introduction of the NTRU cryptosystem [HPS98]. Over the
years, lattice-based cryptography has become one of the most promising solutions for
the quantum computing threat. A large fraction of lattice-based cryptographic mech-
anisms is built upon the Learning With Errors (LWE) problem [Reg09] and variations
of it, such as Ring-LWE (RLWE) [LPR13], Module-LWE (MLWE) [LS15] and Learn-
ing With Rounding (LWR) [BPR12]. LWE and its variations benefit from a series
of worst-case to average-case reductions — breaking certain random instantiations of
these problems is at least as hard as solving worst case lattice problems [Reg09, Pei08,
BLP*13, LPR13, LS15]. This work is focused on lattice schemes whose hardness relies
on the LWE/R problems — CRYSTALS-KYBER [BDK'18, ABD*17], CRYSTALS-
DILITHIUM [DKL*18, DKL"21] and SABER [DKRV18, BMD*20].

Understanding the exact hardness level of the underlying lattice problems is an ac-
tive and rapidly changing research area. As such, we took an interest in understanding
and verifying the current assumptions regarding the strength of lattice cryptosystems,
starting with LWE /R problems. Various publications have shown substantial improve-
ments in recent years [Laalb, Laal6, AGVW17, Ducl8, LM18, PHS19, ABF*20, BR20,
DLAW20, BLL 21, CL21, Hei21] in the classical and quantum analysis of lattice prob-
lems. We therefore assumed further improvements are imminent — and our security
evaluation of the different cryptosystems takes this into consideration.

1.2 Contributions

In this work we present several improvements to the dual lattice attack which reduce the
security level of Kyber [BDK™ 18], Saber [DKRV 18], and Dilithium [DKL* 18] below the

required security level specified by NIST [Nat16]. In particular, the security of Kyber is

reduced to between 4 and 14 bits below the security cutoff requirement. This reduction

in security is independent of the refined BKZ strategies suggested in [ADH19] and the

further reduction in security foreseen in the Kyber submission document [BDK'18].
Our improvements consist of three main results.

1. We present an improved enumeration strategy over the secret, combined with a
more efficient distinguishing algorithm. The standard dual lattice attack per-
forms an exhaustive search on the first coordinate of the secret, and for each
guess invokes a distinguishing algorithm. Owur attack enumerates over several
coordinates of the secret simultaneously, and uses a more efficient distinguishing
algorithm. Its efficiency stems from a tailored usage of the Fast-Fourier-Transform
(FFT) combined with modulus switching. Our attack requires reducing lattices of
much smaller dimension than was believed to be necessary [ACD*18, BMD™ 20,
ABD*21, DKL*21] which translates to a more efficient attack in total.

2. We improve the estimated costs of sieving in the RAM model compared to pre-
vious estimates [AGPS20]. The main improvement is the random product code
decoding algorithm which requires a smaller number of gates. Our algorithm
requires one addition, one xor, and three comparisons per legal codeword, which
translate to ~ 430 gates for a lattice of rank 400, as opposed to [AGPS20] which
requires a super-constant number of inner products per legal codeword, which
translate to ~ 3,500,000 gates for a lattice of rank 400.

We also optimize over a larger set of parameters than considered in [AGPS20],
which leads to further improvements. Overall, the cost of sieving is reduced by
~ 6 bits in rank 400.

3. We propose a faster short vectors sampling procedure. We first run the BKZ
algorithm using a sieve as the relevant SVP oracle. As observed previously, in
such cases one enjoys the so-called “dimensions-for-free” trick [Ducl8]. Then, we
run a final sieve on the first block of the reduced basis to find many short vectors
(this time without using dimensions-for-free, as we use many resulting vectors
from the output of the sieve). However, we use a different block size for this task,
which allows us to optimize the overall cost by balancing the costs of the two
parts.

We optimize our proposed attack and review the security level of various NIST
candidates. We analyze Kyber [BDK™ 18], Dilithium [DKL*18], and Saber [DKRV18§]
and present the results in Table 1. We compare the security level, as specified by the
Call for Proposals [Nat16], the security estimates by the candidate’s authors, and our
proposed attack.

We remark that our research primarily focused on Kyber. As such, this candidate
is the one that is most affected by our proposed attack. Our attack can also be applied
to Dilithium and Saber, and so we analyze the cost of our attack on these candidates.
We believe that certain adaptations can be made to improve our attack for the other
specific candidates, but have not yet completed such research. We mention some of
these ideas in Section 8.

Table 1: Security estimations for Dilithium, Kyber and Saber. Comparison between the
security level required by NIST, the authors’ claimed security, and the security level as
shown in this work. All of the costs are log, in the gate-count metric.

Estimated Security
Required Security Level
Candidate Level By NIST [DKL*21] This Work
[Nat16] [ABD"21]
[BMD*20]
Kyber512 143 151.5 137.5
Kyber768 207 215.1 193.5
Kyber1024 272 287.3 257.8
Dilithium?2 146 159 146.3
Dilithium3 207 217 202.0
Dilithiumb 272 285 263.6
LightSaber 143 Unspecified 138.4
Saber 207 Unspecified 202.7
FireSaber 272 Unspecified 264.9

We see that for almost all candidates and security levels, with the sole exception of
Dilithium with Security Level 2, our proposed attack’s cost is below the required cost.

A recent paper by Guo and Johansson [GJ21] presented a similar attack for Kyber
and Dilithium, and achieved the best known results to date. Their attack also uses an
FFT-based distinguishing algorithm in a small modulus, which allows them to reduce
the error of some of the equations while keeping the running time of the FFT low.
Our attack calls for a larger modulus compared to theirs, and allows us to use a lattice
reduction algorithm on a lattice of a much smaller rank. Guo and Johansson also
presented a “two-step lattice reduction strategy” which is the same as our improved
short vectors sampling procedure. In Section 1.4 we compare our attack with the
results of [GJ21] and show that it presents a significant improvement over them. In
particular, a comparison between the results of the two techniques is given in Table 2.

1.3 Technical Overview

We present the main techniques used in the different components of our proposed
attack. We first describe the attack from a high-level point of view, listing the core
improvements over the standard dual lattice attack. We then describe our short vectors
sampling algorithm, and conclude by discussing the reduced cost of the underlying
sieving algorithms.

1.3.1 Overview of the Dual Attack

We first recall the dual lattice attack, which is a distinguishing attack. Given an input
sample (A, b) € (Z/qZ)™" x (Z/qZ)™, the attacker needs to decide whether the pair
(A, b) was sampled uniformly at random, or is of the form b = As+e mod g, for some
short (s,e) € (Z/qZ)" x (Z/qZ)™. The attack consists of two parts. First, one uses A
to find many vectors such that when (A, b) is sampled from the LWE distribution, their
inner products with b tend to be small. On the other hand, when (A,b) is sampled
from a uniform distribution, the inner products are distributed uniformly. The second
part of the attack boils down to distinguishing between a modular (discrete) Gaussian
and the uniform distribution. We remark that the first part is done by finding short
vectors in the lattice A = {(z,y) € Z™ x Z" | 2T A = yT'}. The second part employs
statistical tools to distinguish between two similar distributions.

The distinguishing attack can then be used to recover the secret as follows. The
attacker generates short vectors (z,y) € A as before. They then iterate over the
coordinates of the secret. For each one, the attacker guesses the value of the secret in
that coordinate and test the guess using the distinguishing algorithm, until they find
the correct guess. In each step, one utilizes the parts of the secret already recovered. As
such, the complexity of the entire attack is dominated by the complexity of recovering
the first coordinate of the secret.

1.3.2 FFT-Based Distinguisher

Our first observation is that we can easily improve the attack by enumerating over
several coordinates of the secret simultaneously. Note that this not only lets us recover
more coordinates of the secret, but also reduces the dimension of the lattice. Indeed, as
we enumerate over some coordinates of the secret, we can drop the constraint that the
corresponding coordinates of y7 = 27 A should be small. This decreases the running
time by a corresponding exponential factor.

Our second and main observation is that the Fast Fourier Transform can be used as
an efficient distinguishing algorithm. Instead of enumerating over several coordinates
of the secret, and invoking the distinguishing algorithm for each candidate, the FFT
algorithm allows us to check all of the guesses simultaneously at the cost of a single
FFT and a single iteration over the vectors (z;,y;). A-priori, the use of FFT is limited
because the cost of the FF'T algorithm on multiple dimensions with modulus ¢ is very
expensive. Instead, we pass to a smaller modulus p where the cost of the FFT is
smaller. Since the secret is short, using modulus switching introduces only a small
€rTor.

Finally, we note that we can further reduce the total running time by first enumer-
ating over some coordinates of the secret, and only then applying the FFT distinguisher
on some other coordinates of the secret.

To summarize, our attack consists of three stages. We first generate many pairs
of vectors (z,y), where x and only a part of y are required to be short. Then, we
enumerate over some coordinates of the secret. Finally, for each guess we apply an
improved distinguishing algorithm that involves modulus switching and FFT over the
new modulus.

1.3.3 Improved Short Vectors Sampling Procedure

The first part of our attack, as described above, consists of finding a list of short vectors
in a lattice. This is usually done by running a BKZ reduction on the lattice, using
sieving as an SVP oracle. To generate many short vectors, one simply outputs all the
vectors found by the sieve on the final invocation on the first block.

We propose a more efficient algorithm for this task. Note that the last sieve, as
described above, is inherently different from the rest of the sieves in the BKZ algorithm.
When performing BKZ, lattice sieving is used as an SVP oracle, and only the shortest
vector found by the sieving is used. In the last sieve, however, we use all of the resulting
vectors. Therefore, we can use the “dimensions-for-free” optimization [Ducl8] for all
the sieves but the last. Our improved algorithm uses different block sizes for these two
kinds of sieves — the first block size is used for obtaining a BKZ reduced basis; and in
this case the “dimensions-for-free” optimization can be used. The second block size is
used only for the last sieve, in which we use all of the output vectors.

1.3.4 Sieve Costs

Lattice sieving is a major component of our attack. The asymptotically best lattice
sieving algorithm uses Locality Sensitive Filtering (LSF) [BDGL16]. In [AGPS20],
Albrecht et al. calculate the cost of lattice sieving in the RAM model, a calculation
used by following works for estimating the security of lattice based schemes [ABD 21,
DKL™*21].

We have performed a careful analysis of the sieve’s running time, which reduced its
cost in the RAM model by about 6 bits for cryptographically relevant block sizes. These
improvements mainly stem from an improved random product code decoding algorithm
and better parameter optimization. We also take into account the probability that close
vector pairs are not detected by the LSF. This requires increasing the list sizes used,
and means that the running time estimate taking this into account is slightly larger
and more accurate.

Our improved random product code decoding algorithm is described in Section 6.
The exact sieve cost analysis is beyond the scope of this paper, and will be published
in future works.

1.4 Comparison to GJ21

In a recent paper, Guo and Johansson [GJ21] proposed an improvement of the dual
lattice attack which is similar in spirit to our improvements. Despite the similarities,
our attack still gives further improvements, as illustrated in Table 2. We explain some
of the differences between our attacks. We use some of the notations from Section 1.3
above.

Table 2: Comparison between [GJ21] and our proposed attack in different models, see Sec-
tion 7.1 for the definitions of the different models. All the costs are given in log, of the
gate-count metric.

[GJ21] This Work

Asymptotic Dimensions-for-Free Model [Ducl8|
Sieve Cost Model || [AGPS20] | [AGPS20] | Section 6

Kyberb12 148.3 143.8 138.2
Kyber768 207.3 200.5 194.5
Kyber1024 2754 266.0 259.3
Dilithium-2 155.4 153.4 147.3
Dilithium-3 212.9 210.5 203.7
Dilithium-5 278.1 273.3 266.2

G6K Dimensions-for-Free Model [ADH*19]
Sieve Cost Model || [AGPS20] | [AGPS20] | Section 6

Kyberb12 147.1 143.1 137.5
Kyber768 205.2 199.5 193.5
Kyber1024 272.3 264.4 257.8
Dilithium-2 153.8 152.2 146.3
Dilithium-3 210.4 208.9 202.0
Dilithium-5 274.4 270.9 263.6

In [GJ21], the authors partition the secret into three parts — a part of the secret
over which they enumerate; a part of the secret on which an FFT-based distinguishing
algorithm is used; and a part of the secret which is attacked similarly to the dual attack.
Our attack uses the same partitioning. Moreover, their “two-step lattice reduction
strategy” is the same as our improved short vectors sampling procedure. However,
there are two key differences between the two attacks, which have significant effects on
the running time.

First, although both attacks use FFT-based distinguishers, their inputs and algo-
rithmic consequences are different. [GJ21] use FFT to efficiently enumerate over the
second part of the secret (defined above) mod p, and modify the equations so that
given that information, the equation error is reduced by a factor of %. We, however,
use modulus switching to reduce the modulus of the equations to p. After the modulus
switching, enumeration over the mod p part of the secret is equivalent to enumeration
on the whole secret coordinate. The effect is dramatic, as it decreases the dimension
of the lattice we reduce significantly (the change in the dimension can be as large as
80 in Kyber1024, for instance).

Second, [GJ21] do not aim to improve the cost of sieving, which as shown in the
tables is an additional significant improvement in our attack.

7

1.5 Organization

The paper is organized as follows. In Section 2, we present some notations and prelim-
inaries. In Section 3, we present the improved dual attack. In Section 4, we present
the improved short vectors sampling procedure. In Section 5, we present the exact
calculation of the attack parameters, and analyze the running time as a function of
the parameters. In Section 6, we present the improved analysis of sieving in the RAM
model. In Section 7, we present the exact parameters and running times of the algo-
rithm in the RAM model when applied to Kyber, Dilithium, and Saber. In Section 8§,
we present future directions that might further reduce the running time of the attack.

2 Preliminaries

2.1 Notations

We denote matrices by uppercase letters, e.g. A, and vectors by lowercase letters,
e.g. v. We treat vectors as column matrices. For vectors and matrices, 7 denotes
the transpose of the vector or matrix. For a random variable x, the notation x(z)
stands for the value of the probability distribution at x, E(x) denotes its expectation,
Var(x) denotes its variance, and H(x) denotes its Shannon entropy. We let ®(z) =
\/#27 I, e~t*/2d¢ be the cumulative distribution function (cdf) of the standard normal

distribution, and ®~1 : [0,1) — R its inverse. For a value z € R, we denote [z] =
argmin,y (|z — z[) and {2} = = — [z]. We define [n+ 1] = n+ 1 for n € Z, since %
could be rounded both ways. As part of lattice algorithms, one often enumerates over

the values of a variable x. We denote the guesses of the value of z by Z.

2.2 Lattices and Lattice Algorithms

We use standard definitions for lattices, lattice problems, and lattice algorithms. See
e.g. [ACD™18, BSW18] for reference. We list here notations used in the paper which
may not be standard as well as several standard assumptions.

Recall that lattice sieving is a method for obtaining a list of short vectors in a given
lattice. For an integer 3, we denote by Ngieve() the number of vectors output by a
sieve on a lattice of dimension 5. We provide explicit estimates for this quantity when
analyzing our attack in Section 7. We make the heuristic assumption that the sieve
returns the Ngeve(8) shortest vectors in the lattice.

For integers d and 3, we denote by BKZ; s the BKZ algorithm for lattices of
dimension d and block-size 8. We recall the Geometric Series Assumption.

Assumption 2.1 (Geometric Series Assumption (GSA) [Sch03]). Let A be some lattice
of dimension d, and let 2 < B < d be some integer. Denote by {b} 4 | the Gram-
Schmidt’s orthogonalization of the basis of A after running BKZg 5. Assuming that
B> 200 and k < d — 23, then the first k vectors (b},...,b;) follow the Geometric-

Series-Assumption (GSA). That is,

5(8) == 16311/ ||bt1a || ~ <2ie . (Wﬁ)lm> =

The GSA is considered to be inaccurate for some range of parameters due to the
“head” and “tail” phenomena [CN11]. However, for our range of parameters, where
B > 200, the head phenomenon is considered insignificant [BSW18]. The size of the
tail is usually estimated to be around the block size. In our attack we rely on the
GSA for the O(8) < d — 20 first vectors, so we assume that we can ignore the tail
phenomenon.

We recall the Gaussian Heuristic.

Assumption 2.2 (Gaussian Heuristic). Let A be a “random” lattice of dimension
d and determinant 1. Let S be a centrally symmetric convex set. Then with high
probability,

#(ANS) = Vol(S)

In particular, the length of its shortest vector is

[d

#{veA||v]<c-AMA)}=ct.

and for every ¢ > 1,

The two conclusions follow by choosing S to be a ball of certain radius. The latter
conclusion implies that the vectors returned by a sieve in a lattice of dimension g,
which are the Nieve() shortest lattice vectors, have length at most Nsieve(ﬁ)l/ B times
the length of the shortest lattice vector.

We do not define formally what is a “random lattice”, rather assume that un-
structured lattices encountered during the algorithm follow the Gaussian Heuristic.
Specifically, we assume that the projected lattices corresponding to block in the BKZ
algorithm follow the Gaussian Heuristic. As in Assumption 2.1, and the discussion
following it, we assume the Gaussian Heuristic for blocks in the head and body parts,
but not the tail.

2.3 LWE

The Learning with Errors (LWE) problem, introduced by Regev [Reg09], is a computa-
tional problem whose presumed hardness gives rise to several cryptographic construc-
tions.

Definition 2.3 (LWE). Let n,m,q € N, and let ys, x. be distributions over Z/qZ.
Denote by LWE,, . 4.v..x. the probability distribution on (Z/qZ)™*" x (Z/qZ)™ ob-
tained by sampling the coordinates of the matrix A € (Z/qZ)™"" independently and
uniformly over Z/qZ, sampling the coordinates of s € (Z/qZ)" ,e € (Z/qZ)™ indepen-
dently from x, and x. respectively, and outputting (A, As + e).

We define two problems:

e Decision-LWE. Distinguish the uniform distribution over (Z/qZ)™*" x (Z/qZ)™
from LWEn7m7q7XS7Xe'

e Search-LWE. Given a sample from LWE,, , . \., recover s.

2.4 Discrete Fourier Transform

The Fourier Transform is an operation that, given a function f : G — C on an abelian
group G, evaluates f (x) := deG f(g)x(g) for all characters y € G in the dual group
G of G. For a function f : (Z/qZ)" — C, its Fourier transform f is given by

f)y =3 f(u).

u

The Fourier transform of a function f : (Z/qZ)" — C can be calculated in time O (ng™)
using the Fast Fourier Transform (FFT) algorithm.

2.5 Modular Gaussian Distribution

Let ¢ > 0. For all x € R, the density of the centered Gaussian distribution with stan-
2

1
V2mro?
mod ¢ is a probability distribution over Z/qZ, defined as:

1 _a?
o) = e 3 e
q,0

rEt+qZ

dard deviation o is defined as p,(z) = e 2.2, The Modular Gaussian distribution

2
x
. — -
where Cy o = > ,cz € 207 is a normalizing factor.

Theorem 2.4 ([SWT71]). The discrete Fourier transform of pg s iS pgo = %&0)9%0’
q,0

where o' = QL.
yiyes

We state here bounds on the first and second Fourier coefficient which will later be
useful.

Lemma 2.5. Let ¢ € N be some modulus, and o > 0 some real number. Then the
following inequality holds
2
pr (2 e 2%)

If further o > q;‘;%Q, then

2
oo (2) < 2c780%)
Proof. Fix q and 0. By Theorem 2.4, we have that

— Pq,0’ (1) q
q,0 (1) . =

Pg.o (0) - 2o

10

Hence,

)

,% (1+rg)?
! Y
5 (1) = Pg.o (1) _ erque 2 dorez€ 2
q70- - - _ 12 - (,rq)2
AP D D
Note that
_(ra)? 1 (ro)?41 1 _a)?t2rgrl _ (rq)2—2rg+1
e 202 = e202¢ 202 = e20/2 e 2072 - e 2072 =
1
1 _O+r9?2 _(—r)? 2572 _(+rg)? _(-rg)?
g 620'2 e 2072 - e 2072 S 2 (&} 2072 —|— e 2072
Therefore,
(1+rq)? (1+4rg)?
12 12
ZTEZ € 2 > 9¢ 3072 ZTEZ € 27
(rq)? _ (1+rg)? _ (1-rg)?
ZmEqZ e 207 ZTEZ € 207 +e 2072
S e 2
(& 20 1 _2<M>
= 2¢ 3,7 rEL —e 27 =¢ \a/) |
_ (+rg)?
ZTEZ 2e 2072
For the second coefficient we similarly have
z? (2479)2
— =2 _ g
g0’ (2) . erQJque 27 < ZTEZe 20! <
= — < <
Pq,o’ (0) vl 1
erqze 20
L4 SN g _ 4 1
S € 20”2 e 20"2 = e 20"2 72(1 g
Zr—o 1—e ot

< 26_8(%)2

where the last inequality follows since

2q qlog?2
' < So >)
7= log 2 7= 82

3 FFT-Based Dual Lattice Attack

In this section we describe the main idea of the FFT based dual lattice attack. We
begin with an informal sketch of its main components in Section 3.1, and in Section 3.2
we present a more thorough description of the attack. The analysis of the attack is

presented in Section 5.

11

3.1 Motivation

We now present the main idea of the FFT-based dual attack presented in Section 3.2.
Our starting point is a generalization of the dual attack, along the lines of [EJK20].
The central part of the dual attack is a method for distinguishing between a pair
(A,b) € (Z)qZ)™ "™ x (Z/qZ)™ sampled from the uniform distribution over
(Z)qZ)" " x (Z/qZ)™, and a pair sampled from an LWE distribution, that is b = As+e
mod ¢ for some s € (Z/qZ)" sampled from x" and e € (Z/qZ)™ sampled from 7. We
suppose that ys and x. are supported on small values with high probability. We find
many short vectors x; € (Z/qZ)™ such that y] = x] A € (Z/qZ)" are also short, and

calculate the list of values <x?b> For a random pair (A, b), these values are distributed

uniformly. For an LWE pair, we have l‘?b = ijs + x?e which are approximately
distributed according to a modular Gaussian distribution. Given sufficiently many
samples, we can distinguish between the two distributions.

In order to perform a key recovery attack, we partition s into two components:
sT = (sT||s}). We partition the matrix A analogously: A = (A;||Az), so that

b=As+e= Ay1s1 + Agsy +e.
If s1 were known, we could create a new LWE problem
b = Assy + e,

where b = b — Ays;. However, s; is unknown. Nonetheless, we may enumerate over
s1 and use the distinguishing attack on the pairs (A2,b — A151) for every guess 51 of
s1 to determine the correct one, for which the pairs come from an LWE distribution.
In the standard dual attack, s; consists of a single coordinate of s. [EJK20] suggested
letting s1 consist of an arbitrary number of coordinates. This generalized algorithm is
described in Algorithm 1.

Algorithm 1 Generalized Dual Attack
Input: LWE parameters (n,m, ¢, xs, Xe), integers ky, ko such that ki + ko = n, and an LWE
pair (A,b) € (Z/qZ)™ " x (Z/qZ)™.
Output: The first k; coordinates of s.
1: Find sufficiently many vectors (x;,y;) such that 2T A = (y7,||yT,) and the pair (x;,y;)
is short.
. for every value §; of s; do
Calculate the list of values (z7 (b — A;51)).
if the distribution of these values is Gaussian rather than uniform then
return s;.
end if
end for

Our main improvement to this generalized algorithm is a method of using the FFT

algorithm to test whether the values of (1:? (b— A1.§1)) are sampled from a modular

12

Gaussian distribution for all possible values of s; at the same time. As stated in
[EJK20], an efficient way to determine if a list of values wy,ws,...,wp € Z/qZ has
been sampled from a modular Gaussian distribution or a uniform distribution is by
calculating the quantity > j e2™w;/4 whose real value is expected to be large when w;
are distributed according to a centered Gaussian distribution, and close to zero when
w; are distributed uniformly, provided sufficiently many samples.

In our case, the values are w; = 5 (b A151), which we write as w; = u]T§1 + ¢
where u; = —y;1 and ¢; = T; Th are known. The aforementioned quantity equals

POEEIED B A &
J J

We recall that the FFT algorithm, given function f : (Z/qZ)" — C, computes

27
> e(ufTv)Tf (uj) for all vectors v € (Z/qZ)®. This allows us to evaluate Eq. (1) for
27, .
all values of §; simultaneously, by setting f (u) =>.. _ e .

Jiuj=u

However, this would take O (qukl) operations, and quickly become infeasible. Ad-
ditionally, it would calculate Eq. (1) for all values §, € (Z/qZ)™, while the secret
distribution likely permits significantly fewer possible values.

To accelerate the FFT we transform the problem from distinguishing between uni-
form and Gaussian distributions in Z/¢Z to distinguishing between those distributions
in Z/pZ, for some p < q. We transfer the problem to Z/pZ by rounding the equations:
We multiply each equation by £, and round 2u; to the closest integer. Recall the
rounding notations [a] , {a} as defined in Section 2.1. The original samples are defined
in (Z/qZ):

w; =q¢ u?gl +cj .

We explicitly write the modular equation, so it is defined in Z:
. Tz
wj = u; s1+¢j +aq .
When multiplying by g, the equations are defined in %Z:

Bwj puT§1 + c] + ap .
q q q

The FFT algorithm works on functions (Z/pZ)" — C. Since the coordinates of %u]T

are not integral, they cannot be used directly by the algorithm. We separate it to the
integer and the fractional components, and write:

T T
p p = p ~ p
—w; = |=Uj| S1+9§-Uj ¢ S1+=¢;+ap 2
uy = | 2u] e {Bu} e e ®
The vectors {%uj} are defined in (Z/pZ)*'. Thus, we can perform FFT to calculate

the values

27”

Ze([R) . :Zeu 5 te; T_({ w) sl)f .

J

13

T
which is the same as Eq. (1) up to a small factor involving the fractional part {%uj} 51,

which essentially becomes part of the Gaussian error term. This is the essence of our
improved algorithm.

Additional algorithmic improvements include externally enumerating over a third
part of the secret, as well as an improved sampling method for short vectors (z;,;.2)
described in section 4. The full algorithm is described below in detail.

3.2 Formal Description

In this section, we give a formal description of the algorithm, while deferring the

analysis to Section 5. We first describe the algorithm formally, then explain what each

part does. We remark that, by ignoring some of the LWE equations, we may replace

the number of equations m with m’ < m of our choice. Without loss of generality, we

present the algorithm for m’ = m, but optimize the parameters in the general setting.
The parameters our algorithm uses are

e D: The number of vectors used in the dual attack.

e (': The cutoff used to differentiate between incorrect and correct guesses t0 Senum
and sg.

e (31, B2: Parameters used by the short vectors sampling algorithm.

® kepum: The number of secret coordinates over which we enumerate directly.
e kgi: The number of secret coordinates over which we enumerate using FFT.
e kit The number of remaining secret coordinates.

e p: The modulus in which we perform FFT.

We are given a matrix A € (Z/qZ)™ ", and a vector b € (Z/qZ)™ that satisfies
b = As + e, where the coordinates of s and e are sampled according to some known
distributions s and Y. respectively, which have small variances o2 and o2 respectively.
We partition s into three components:

Senum

s = Sfft 3

Slat

where Senum has kenum coordinates, sgy has kg coordinates, and spn; has kjy = n —
Kenum — Ky coordinates. We similarly partition A into three components:

A= (Aenum Afft Alat)7
SO that AS — Aenumsenum + Aﬂtsﬁt + Alatslat'

We define the matrix:
(% 2)
Alat qulat ’

where « is a constant equal to g—‘z and is used for normalization in the case that s,e
have different distributions. We find D short vectors in the column space of B using

14

Algorithm 2 Improved Dual Attack

Input: LWE parameters (n,m,q, xs, Xe), integers 81, B2 < d, integers Kenum, Kiie, k1ay Such

that kepum + kgt + kot = n, an integer p < ¢, an integer D, a real number C, and an
LWE pair (A,b) € (Z/qZ)"™"" x (Z/qZ)™

Output: The first kepum coordinates of s.

1:
2:

3:

o

6:
7
8
9

10:
11:
12:
13:
14:
15:

Compute Ay composed of the last ky,; columns of A.
Compute the matrix B = (@y 0), where o = 2=

Alat qulat s
Run the short vectors sampling algorithm (Algorithm 3) on the basis B with parameters
b1, B2, D, to get a list L of D short vectors.

. for every value of Squm, in descending order of probability according to secret distribution

do
Initialize a table T" of dimensions p X p x --- x p
kmgirmes
for every short vector (ax;, yat) in L do
Compute y; g = =] Ag.
Compute Yjenum = =] Aenum-
A0 el o 5 g el [24,0] of T
end for
Perform FFT on T'.
if for any Sg, the real part of (~)T[Sﬁt] is larger than C then
return S.,um.
end if
end for

15

our improved short vectors sampling procedure (Algorithm 3). Each such vector can
be partitioned to two parts:
= < ax)
fllea,ta3

For each such vector, we have 27b = 27 As + 2" e.
Writing 27 A = ¢ = (y¨lyhllvih,), we get

T T T T T
Yenum Senum T Y St — & b= “YlatSlat — T € .

To perform the modulus switching, we multiply the equation by g and round the
Y- We get

T T
p p b r P T b r p
|:qyfft:| See + qyenumsenum - g-r b= _gylatslat - 633 € — {qyﬂt} Sfft -

The right hand term is approximately distributed according to a modular Gaus-
sian distribution. Thus, for the correct guess (Senum,St) = (Senum; Sfrt), the term

T
[gyﬁt} S + gygﬂum%num — %be is distributed according to a modular Gaussian

distribution, while for an incorrect guess (Senum,Sfit) 7 (Senum, St) it is distributed
uniformly.

The modular Gaussian distribution induced by the correct guess is not always
centered. To center it, we use a normalization constant ¢ (Sg) with |¢ (§m)| = 1,
which will be calculated in Lemma 5.4.

Therefore, the expectation of the quantity

T
p N % P 1y . 27
E exp ~Yift| S+ —Y; Senum — — b 4
Sﬂt <<|:q J t:| t q j,enum©enu q) D) ()

has a large real value when (Senum, Sft) = (Senum, Stit), and is close to zero otherwise.
We thus define the score of a pair (Sepum, Sfrt) as

T
~ ~ ~ P T ~ p 27 2mi
F E S —Zz]b
(Senum, 8ft) = Sfft exp < (|: Yj, Ht:| S + qy],cnumsenum q) D)
()

We use this to determine the correct value of senum: For each Sonum we calculate
F (Senum, S¢) for all values of sg, via FFT. If for a given Sepum, the score of any
(Senum, Srt) is larger than the cutoff C', we determine that Sepym = Senum, and otherwise
Senum ?é Senum-

Having determined the first kepum coordinates of the key, we continue to recover the
complete key by recursively solving the resulting LWE problem, which is significantly
smaller.

To simplify the analysis, we do not assume the recovery of sg;. Although the above
sum is expected to have large real value when sg is guessed correctly, it may also be
large for certain wrong guesses of sg, provided Sepum 1S guessed correctly. This does
not concern us since we only wish to recover Senum-

16

4 Short Vectors Sampling Procedure

In this section we present and analyze our improved procedure for sampling multiple
short lattice vectors, a key part of the dual attack. In an independent and concur-
rent work, Guo and Johansson [GJ21] proposed the same sampling procedure. Our
presentation and analysis is slightly different, and is presented here for completeness.
Informally, to find many short vectors in the lattice A, we first run the BKZ al-
gorithm using a sieve with block size 51 as the SVP oracle to find a reduced basis of
A. Since the output of this stage of the algorithm is a reduced basis, we can employ
all known BKZ optimizations, such as the “dimensions-for-free” trick [Ducl18]. To find
many short vectors, we perform lattice sieving on the sublattice spanned by the first
B2 vectors of the reduced basis, this time without using dimensions-for-free, as we use
all the vectors found by the sieve. Performing lattice sieving on a lattice of rank S
returns Ngieve(2) vectors. To sample D > Ngjeve(/32) vectors, we repeat the algorithm

{NL(@)W times, using random initial bases. Heuristically, running BKZ on random

initial bases returns random reduced bases, and new vectors are found in each iteration.
The advantage of the improved short vectors sampling procedure over standard BKZ
is that we use different block sizes for lattice sieving where dimensions-for-free can be
employed and where it cannot be, and can optimize both to reduce the overall cost of
the algorithm.

The algorithm is described formally in Algorithm 3. We analyze its quality by
computing the number of vectors found by the algorithm and their length.

Recall the notations from Section 2.2 for Ngieve(/), the number of sieve results, and
d(p), the ratio in the Geometric Series Assumption.

Algorithm 3 Short Vectors Sampling Procedure
Input: A basis B = (by,...,by) for a lattice and integers 3y, 52 < d and D.
Output: A list of length at least D of vectors from the lattice.

1: forv=1,..., [m—‘ do

2: Randomize the basis B.

3: Run BKZ4g, on B to obtain a reduced basis (b}, ..., b)).

4: Run a sieve of dimension 3, on the sublattice (b}, ...,b,) to obtain a list of vectors,
and add them to L.

5: end for

6: return L.

Lemma 4.1 (Short Vectors Sampling Complexity). Let B be a basis for a d-dimensional
lattice, and (1,52, D) be integer parameters for Algorithm 3. Then the running time
of the algorithm is

D
’V]\fsieve(ﬂg)-‘ ' (TBKZ(d’ 61) + TSieve(ﬁQ)) .

The proof of the lemma is clear from the description of the algorithm. We give a
fine-grained analysis of the running time in the RAM model in Section 7.

17

Lemma 4.2 (Short Vectors Sampling Procedure’s Quality and Correctness). Let A
be a d-dimensional lattice. Let B1, B2 be the basis reduction block size, and the vectors
sampling block size, respectively. Then Algorithm 3 outputs at least D vectors of length

det(A)l/d ' Nsieve(62>1//82 : % . (7’['/82)1/62 . 5(/@1)d72g2 .

Proof. Consider the lattice A’ given by the basis (b, ..., b,). Its volume is given by

d—fBo

B2
det (A") = [[11671l = det(A)*/ - 5(8,)% =
=1

where the last equality follows from the GSA (Assumption 2.1). Therefore, by the
Gaussian Heuristic (Assumption 2.2),

)\1(/\/) = det(A)l/d . 5372 . (71'62)1/52 . 5(61)(1_2[32 .
me

Step 4 in the algorithm is a sieve on A’. The sieve outputs the Ngeve(32) shortest
lattice vectors, so their length is at most Nsieve(ﬂg)l/ B2\ (A') (see Assumption 2.2
and the discussion following it). In each iteration we add Ngeve(S2) new vectors,

therefore, after [NL(BQ)—‘ iterations, the list L contains at least D vectors of the
required length. O

Remark 4.3 (Comments on randomization). We note that for the range of param-
eters relevant for the NIST candidates considered, which are given in Section 7.3,
Nsieve(B2) = D. That means that a single iteration yields enough short vectors, and
we do not need to randomize the basis. See also Section 8.3 for further relevant future
directions.

We make the following assumption regarding the output of the algorithm.

Assumption 4.4 ([CN11, EJK20]). Let ¢ be the expected length of the vectors returned
by Algorithm 3, as described in Lemma 4.2. Then the coordinates of the returned vec-

tors have approximately independent Gaussian distributions with mean 0 and standard
deviation 5/\/&

5 Analysis

In this section we analyze the time complexity of our algorithm. The algorithm, as
presented in Section 3, has several parameters. We first describe the complexity of
the attack in terms of these parameters. Then, we show how to set the parameters
(specifically the number of samples required for distinguishing) to guarantee its success
with high probability. We note that our analysis is exact, and not asymptotic, as we
use it for the fine-grained RAM model. Finally, we state the asymptotic cost of the
attack as a function of the desired success probability.
We follow the notations from Section 3.

18

5.1 Running Time

We now describe the number of operations performed by the algorithm, as a function
of its parameters.

Recall that the algorithm iterates over parts of the secret in descending order of
probabilities. We therefore analyze the expected time complexity (expectation over the
choice of the secret). The algorithm can be converted into a Monte Carlo Algorithm
using the standard transformation.

Theorem 5.1. Let (n,m,q, Xxs, Xe) be LWE parameters and (81, B2, kenum, Kttt, Klat, Ds
D, C) be parameters for Algorithm 2. The expected running time is

Tsamples, 5, p (M + Kiat) + Qkenum) (T (kggy, p) + Trable)

where

. Tsampleﬁl 80D (d) is the time complexity of Algorithm 3 with parameters (81, B2, D)
on an input basis of dimension d.

o T (k,p) is the time complexity of FFT of dimension k with modulus p.

o Tiable s the time complexity of updating the table in each iteration.

Proof. The attack has three stages:
1. Finding short vectors using the short vectors sampling procedure.
2. Enumerating over possible values of sepum-
3. Calculating the score for all values of Sg; given the enumerated Sepum.

We find D short vectors using our short vectors sampling algorithm (Algorithm 3)
on a lattice of dimension m + ki, taking Tiample 51 59D (m + kjat) operations.

After finding short vectors, we enumerate over guesses for Sepum. It has kenum
coordinates, each with entropy H (xs). Therefore, the expected number of steps before
reaching Sepum 1S at most Qkenum H (xs)

For each possible value of Senum, we perform an FFT on a table of size p*#t, taking
T (ke p) = O(kgp"t) operations. Searching the table for an 3g with value above
the threshold takes only O(pkfft) operations, and is insignificant compared to the FFT
calculation. We then update the table for the next iteration. This update is performed
according to Section 5.4 and takes Ti,ple Operations.

Combining all the terms, the total number of operations performed by the algorithm
is

Tsampleﬂl,/BQ’D(m + klat) + 2kcnumH(X5) : (Tﬁt(kfftyp) + CZ1table) .

5.2 Required Number of Samples

In this section we calculate the parameters D, the number of samples required to launch
the dual attack, and C, the cutoff used to distinguish between correct and incorrect
guesses, as a function of the desired success probability.

19

Our calculation is exact and not asymptotic, which allows accurate estimations. We
first determine the value of the parameters as a function of the secret and the error.
We then analyze how to set the parameters as a function of the distributions and not
specific values.

Notations. For the sake of clarity, we introduce several notations that will make
the contribution of different factors to the final expression clearer. In what follows,
let (n,m,q, Xs, Xe) be LWE parameters, and let (51, 82, kenum, Kit, K1at, p) be a partial
tuple of parameters for Algorithm 2. We fix a secret vector and an error term (s, e) €
(Z)qZ)" x (Z/qZ)™. We denote by ¢ the expected length of the vectors returned by
Algorithm 3. We first define

2
Deq = €4<%> 5
where
_ 2 2
2_Q ?lell” + llstall e
-)
m —+ klat

Oe
a=—.

Os

Informally, D is an exponential factor which comes from the clean Fourier coefficient
of the error in the dual attack equations. Moreover, we define

-2
ki [sin (7’;’5>
Dround = TSt 5
t=1 p
st7£0
where we write sg, = (s1,...,Skg,). Informally, Dyound is an exponential factor which

accounts for the effect of rounding on the Fourier coefficient after performing a modulus
switch. Furthermore, we define

2
Darg - % T 678(%) 9

_2 2 2
where 72 = 9Z2Iel2 s 2

as above. Informally, D, ~ ; is a constant improvement
factor obtained by con51der1ng the complex argument of the Fourier coefficient rather
than just its magnitude.

We denote by Nepum (Senum) the number of guesses Sepum with probabilities larger
than the probability of Senum, according to the distribution xs. This is the number of
candidates Senum that will be enumerated upon before the correct guess is reached.

Lastly, suppose that 0 < p < 1 is a target failure probability for the algorithm. We
define

Diptn (1) = (dtp (1) + ¢ (1))

B 2
i () = @7 (1 B) ’
P (:u) 2. Nenum(senum) : pkﬁt

o () =07 (1-5) .

20

where ®~1 is the inverse of the cumulative distribution function of the standard normal
distribution. Informally, Dy,s, is a polynomial factor that ensures small false positive
and false negative rates. That is, ensures detecting the correct value of Sepum, and only
the correct one, with probability 1 — p.

5.2.1 Parameters as a Function of the Secret

Having defined several relevant notations, we state an upper bound on the required
number of samples D for the algorithm to succeed with high probability.

Theorem 5.2. Let (n,m,q, xs, Xe) be LWE parameters, (81, B2, kenum, Ktt, Klat, P) be a
partial tuple of parameters for Algorithm 2, and let 0 < p < 1 be the desired failure
probability.

Fiz (s,e) € (Z/qZ)" x (Z/qZ)™. Then Algorithm 2 with parameters

D > Deq . Dround . Darg . Dfpfn (,U/))
C= ¢fp (M) Darg -D 5

outputs the correct Sepum with probability at least 1 — p.

We note that Theorem 5.2 gives bounds for a given value of (s,e). In order to
achieve an advantage of % for the attacker, we use parameters for which the attack
succeeds for at least half of the values of s. Since log (D) is approximately normally
distributed, the logarithmic mean value of D satisfies this condition. These results are
formalized in Theorem 5.9.

We now prove the Theorem.

Proof of Theorem 5.2. Recall that for every guess (Sepum, Siit) we calculate the sum

T
p,.Ty_p,T 3 p 3 27
F (Sermomms 81) = R | — S el 024 o Somm = £ ff) »
enum t) —

(0 (Sfft)

via FFT. When (Scnum, Sft) = (Senum, Sit) we have

1 2T g +295.Te+{2y~ }Ts 2mi
F(S Sﬁt) o §R Ze qYj,latSlat ™ oLy q 99, it D
enum =
Y (set)

J

By Assumption 5.8 (see below), the value F'(Senum,Sgt) 1S the sum of independent
identically distributed variables

Y (i)

F () R 1 (%yflatslat+§xfe+{gyj,gt}Tsm) %
Senum, Sfft) = § € ,

J

= Z R (5j,eq . 5j,round))

J

21

T .

T T)\ 2mi Pyjae [s)m .
where Ejeq = e(yj,lacslaterg e) 7« and Ejround = w(slﬂt)e({q J t} t] p . When D is
large, the distribution of F' (Sepum, Sfit) is approximately normal with mean and vari-
ance determined by the distributions of €4 and €; ouna. We briefly describe results

regarding the mean and variance that will be proven later.

Lemma 5.3. We have

—op 2 2
where 72 — @2 lelP+lsiadl® g2
m+FKiag

vectors sampling algorithm.

and £ is the average length of the vectors given by the short

Lemma 5.4. Writing sg, = (1, ..., Skg,), we have

_1
E (5j,round) Z D 2

round *
Lemma 5.5. We have E (F (Senum, 5at)) = D E (€j.eq) E (€ round)-
Lemma 5.6. When Senum 7 Senum, we have E (F' (Sepum, St)) = 0.

Lemma 5.7. For all (Sepum, St), we have
iy <0 (L)
Var (F (Senum, Sat)) < D 3 +e a =D Dy .

The score F' (Senum, Sft) is the sum of many independent and identically distributed
variables, and is thus approximately distributed according to a normal distribution.
According to Lemmas 5.3-5.7, the score of the correct guess, F' (Senum, Sfft), is normally

_1 _1
distributed with mean > Deg® - D, 2

round - P and variance at most Dy - D. Therefore

Pr [F (Senun’n Sfft) < C] <
P

round
_1 1
2 2
—1-® -Deq Dround D-C <
Darg - D
C
st vhen = 5 =5 =
arg

1_(p(¢fp+¢fn_¢fp) :1_(I)(¢fn) = g s
where the third transition follows from our choice of D > Deq - Dyound - Darg - Dipfn, the

fourth transition follows from the definition of Depy = (dgp + gbfn)2 and choice of C =
®tpr/Darg - D, and the last transition follows from the definition of ¢g, = o1 (1 — %)

22

Moreover, for any fixed (Senum, Sft) where Senum 7 Senum, the score F' (Senum, Stt)
is normally distributed with mean 0 and variance at most D, - D according to Lem-
mas 5.6 and 5.7. Therefore

Pr [F (Senum, 5t) > C] < Pr[N (0, Darg - D) > C] =

-2 =

=1-9 (¢fp) =
,u
2Nenum (Senum) pkﬂt

)

where the third transition follows from the choice of C', and the fourth transition follows
o). _ _1 _ l’l’
from the definition of ¢g, = ® (1 C A Po——)
The number of guesses Sepum before reaching Senum 18 Nenum (Senum), S0 the number

of pairs we check before reaching Senum S Nenum (Senum) pkf“. By the union bound, we
get

MNenum (Senum) pkm
2Nenum (Senum) pkm

Pr [Algorithm 2 does not return Sepum| < g + =u.

O]

We now prove Lemmas 5.3-5.7. In the proofs we use the following extension of
Assumption 4.4 regarding the distribution of the output of the short vectors sampling
algorithm.

Assumption 5.8. The vectors xj,Y;at, Yjenum, ¥j it are approvimately independent.
The distributions of Yjenum, Yj,m are approrimately uniform mod q, while the distribu-
tions of axj, y;1ar are as described in Assumption 4.4.

Recall that ¥;enum and y; g are determined as a linear function of z;, namely
Agnumxj and Agtxj respectively. However, since the entries of Aenum, A are uniformly

random mod ¢, the dependency is negligible for our purposes.

2mi

T T
Proof of Lemma 5.5. We recall that €0, = E e(yﬂllatslat"_zﬂ' °)% . The exponent is

the sum of two inner products. By Assumption 5.8, each inner product is the sum of
multiple independent modular Gaussian random variables. Hence it is also a modular
Gaussian, namely, y}:latslat + x;‘re ~ pqr for some 7 > 0 we will later compute. When
X is distributed according to pq -, Theorem 2.4 along with Lemma 2.5 gives

2mi ! 2mig i o _2<H>2
]E(eq):Zeq Pgr (J) = Pgr (1) =€ "N/
=0

Similarly, we have

E ((623"}()2> = par(2) < 0e8(5)"

qlog 2
872

tion 7.3 for the parameters used)!.
Finally, we calculate the variance 72 of yjq-:latslat + x;‘re. Recall that Algorithm 3 is

applied to the column space of
al 0
5= (5 i)
Aizé;t qulat

where o = 7¢ is chosen in order to balance the error terms in our equations. Let
S

Here we assume that 7 > , which holds for our range of parameters (see Sec-

v = (ax,y1at) be a vector in R™*Mat output by Algorithm 3, and let ¢ its expected

length. By Assumption 4.4, each coordinate of v has variance ﬁcm and mean O.
Therefore
7—2 = Var <Z Tier + Z (ylat)t (slat)t> =
t t
1 2.2 2 2
=K <0¢2 thet + th (S1at); | =
t t
1 2 2 2 2
= @Z%E(%) +Z(Slat)tE(Ut) =
t t
52
—2 112 2
= |« el|” +||s) _—,
(o el + flsel®)
as required. O
1 {By'ﬁt}TSﬁ’tm
Proof of Lemma 5.4. Recall that €; quna = el 7 » . Note that the ex-
By o Vg 2mi
ponent e{qyj’m} "5 is the product of independent identically distributed variables.

Denoting a single coordinate of yg; as y: and a single coordinate of sg; as sy, we get

27

Py ts
E(gj,round) = m HtE <e{qyt} tp >

Let ¢ := m. When ¢ is odd, {%yt} is distributed uniformly over the set
{73;,“, 73;3, e q;;,l}. When ¢ is even, it is distributed uniformly over the set
{% — %,% — %, cen %} The second set is the same as the first set up to a constant
added to all of the values. In order to treat both cases at the same time, we use the set
{_g;fl +cqs _3;73 +cgy, q;—;,l + cq/}, where ¢y = 0 when ¢’ is odd and 2%], when
q is even.

P 2mi
When s; = 0, the expectation E (e{qyt}st P) is 1. Otherwise, we write

r_q 27risth/ r_q
T . q — . ’ q — . /
D 2mi 2misy [—q'+142k D 27'rzst(7q +1+2k)
E (e{qyt} 57) = l g e P (2¢’ +Cq'> = cr E e 2pq’ .
/ /
T =0 O
"'We remark that for a range of parameters where the inequality doesn’t hold, namely that 7 < qéfr%Q,

then €4 can be shown to be large, which improves the running time of the attack.

24

;o 2misg(=d'+142k) 27isy
The sum > 7 e 2pd/ is the sum of a geometric series with ratio e »¢ . When
s¢ # 0, it equals

2misg ql+1 27sy 7q/+l .
e 2]qu) —e gpq/) S1n I3y
. p
2mwisy - . _—)
[S1n
e pa 1 <pq,)

Thus the total expectation equals

i
P 271
G Yt St
E (¢jround) = HE(e{q foi2 >:
(sft)
27risth/

1 ﬁ e » sin (%)
¥ (siit) =1 q sm()
st#0
2mcq/ Zt - sin (L)
p

pq/ >

(&

(0 (sfft) +—1 q'sin
St7$0

/\

2mic _y

Defining ¢ (sgy) = e » 2 * we get

osin (22) 0 kwosin ()
Nl |
s

o 5 TSt ~ “round °
t:7610 q’ s111 I t=1 P
St

which completes the proof. O

E (5j,round) =

Proof of Lemma 5.5. We have

E (F (Senuma Sﬁt)) =K (§R (5j,eq : Ej,round)) =R (E (Ej,eq : 5j,round)) =
R (E (Sj,eq) E (5j,round)) =E (Ej,eq) E (5j,round))

since €je0q and € 0und are independent and have real expectations by Lemmas 5.3
and 5.4. [

Proof of Lemma 5.6. We write Senum = Senum + ASenum, and Sg = sgy + Asg. We
have

F(genumagﬁt) =

§R 1 Z (ylatslat+ z e+{ Yj, Fft} St — yJ enumAscnum [Yj, Fft] Asﬂt)
= — e

Y (sge)
J
1 T omi | 2yl s +£IT8+{£Z/'H }TSff —[Ey'ff} Asgy) 22t
— § R e<_ij°n“mASenum)Te qJlat”lat g q 7ttt v g 7ot t)p _
(sfe)

= Z % (e(_yjj':enumASenum) 27I'ZW > ’
J

25

where W; is independent of yjenum by Assumption 5.8. When Asenum is nonzero,

ij,cnumASenum is uniform mod ¢, which implies
E(F (genuma 5?&)) = Z R (E (e(iy??enumAsenum)%> E (egﬂ-iwj)> _0
J
as required. -

Proof of Lemma 5.7. For any (Senum, Sft), we have

F (genumv gﬁ"t) =

(0 (Sfft)

1 Ele 51at+nge+{£yj fft }TSHC_QZJT ASenum— [Byj fft] TASfft 2mi
— §R z :e q “lat q q“7 q 7J,enum q“J p
J

T T
) T omi
:z%< L (a2 ({Bnn) s S [Bn] don)22\
X w(Sﬁ‘t)
J

_ Z §R (gj,eqe2ﬂ-izj) ,
J

where Z; is independent of €;¢q by Assumption 5.8. Therefore,

Var (F (genuma gﬂt)) =D - Var (% (5j7eqe2m'zj)) S

2 AmiZ; 2 _AmiZ;
) €% on€ i4+24¢e% e J
<D-E (?R (ajjeqe2mzj)2> =D -E (J:eq Jeq)

4

= D Q1 2E (R (Seg'))) = 5 (14 R (E () E (7)) <

2
< g (1+ ‘IE (5?,eq)E(e4MZj)D < g <1+268<q>) =Dag- D,

where the second-to-last transition follows from ’e4“izj} =1 and Lemma 5.3. O

1

5.2.2 Parameters for Advantage ;

In this section we give concrete parameters (D, () for which the attacker gains ad-
vantage close to % Whereas Theorem 5.2 gives parameters that are dependent on the
secret (s, e), the following theorem gives parameters for which the attack succeeds for
at least half of the vectors (s, e).

Theorem 5.9. Let (n,m,q, xs, Xe) be LWE parameters, (81, B2, kenum, Kttt, Klat, P) be a
partial tuple of parameters for Algorithm 2, let £ be the expected length of the vectors
returned by Algorithm 3, and let 0 < p < 1. Then Algorithm 2 with parameters

D > Deq : Dround ' Darg : Dfpfn (M)

C= &fp () barg D

26

where

_ 87r2a_2€2 m _ 871'2Z2 klat
2(X6(0)+e qg(m+k1at)> (XS(0)+8 qg(m+klat)>

1
2
- . _ 2
Dipn (1) = (tp (1) + P (H))
)

-1(1_ K
2 . 2kenumH(Xs) . pkﬂt

O (1) = @71 (1 - g)

N

~
~

outputs the correct Sepum with probability at least 1;“.

See the beginning of Section 5.2 for informal explanations of these different factors,
and Corollary 5.10 for simpler asymptotic expressions.

Proof. By Theorem 5.2, the attack succeeds with probability 1 — p given that D >
Deq - Dyound - Darg - Dipin (1t) and C'is chosen accordingly.

Note that log (Deq - Dround * Darg - Dip (1)) is approximately normally distributed (over
the randomness of (s, e)), and so it is greater than its expectation with probability ~ 3.
It remains to show that the logarithmic expectation of Deq * Dyound * Darg * Dipn (1) is
at most Deq * Diound - Darg * Diptn ().

_ 42 2 2 _ o ?[lel*Hsiatll? p2 _ 0. g
Recall that log (Deq) = T where 7 = e 200 and a = Z¢. Since each

coordinate of e, sy is independently distributed, log (Deq) is approximately normal
with expectation

4% o 202m + o2k 472 -

— ¢ + 5 latEQ = TU§€2 = log <Deq) .

q m + Kiat q

E (log (Deq)) =

Recall further that log (Dyound) = —2)_,log (%), where the sum is taken

over all nonzero coordinates s; of sg;. As above, since each coordinate of sg is inde-
pendently distributed, log (D;ound) is approximately normal with expectation

E oz (Drma)) = ~241 1 (5o (220 — 10 (Dr) -

87r27' 8#272

2
Next, we have log (Darg) = log <5 +e 4 > <log(3) +2¢ <« which is very

27

close to log (%) for relevant parameter sets. For concreteness, we have

]_ _87'r2‘r2
E (log (Durg)) < log (2) TR <2e z) _

87\'204_26?22 m 87\—255_@2 klat
= log (;) + 2 (E (qu(mﬂLklac)>> (IE <e ‘12(m+k1at)>> <
1 _ sr2a 242 m _ 8242 Fiat -
< 10g <2> +2 (XQ(O) + e q2(m+k1at)> (XS(O) +e q2(m+k1at)) =]og (Darg> .
We emphasize that this expression is very close to log (%) for all reasonable parameter

sets.
Lastly, we have

2
Dipn = @1(1—“)+c1>1<1— a >) -
fpfn < 2 2- Nenum(senum) 'Pkf“

oot (0 i)

for certain constants a,b > 0 not dependent on (s,e). Since z — (a+ @' (1— %))2

is a concave function in the relevant domain and since E (Nepum (Senum)) < 2Fenum ! (xs) |
we have

. b ? -
E (log (Dipn)) < log (E (Dipin)) < log <a o (1 = W)) —10g (Dppm)

by applying Jensen’s inequality twice. We remark again that since Dypy, is only a poly-
nomially large factor, its contribution to the overall complexity is relatively negligible.
In total, we get

E (log (Deq : Dround . Darg . Dfpfn)) =
= E (log (Deq)) + E (log (Dround)) + E (log (Darg)) + E (log (Dfpfn)) <
< log (Deq> + log (Deq) + log (Deq) + log (Deq) =

= log ([)eq * Dround - Darg) Dfpfn))

as required.]

5.3 Asymptotic Complexity

In this section we give simpler asymptotic expressions for the time complexity of Algo-
rithm 2. The goal of this section is to give a clearer view of the asymptotic contributions
of the different parameters. We begin by calculating an asymptotic expression for D,
the required number of short vectors to be sampled. We then combine this expression
with Theorem 5.1 to state the asymptotic complexity of the entire algorithm.

28

5.3.1 Asymptotic Number of Samples

Theorem 5.9 gives an exact bound on the required number of samples. The following
corollary gives an asymptotic bound as a function of the parameters for the algorithm.

Corollary 5.10. Let (n,m,q, xs, xe) be LWE parameters, (51, 52, kenum, Kftt, Klat, p) be
a partial tuple of parameters for Algorithm 2, let £ be the expected length of the vectors
returned by Algorithm 3, and let 0 < p < 1. Then the number of samples D can be
chosen such that

D=0 <e4(&?”> () -<kbnunl.zf<xs>a-kax‘1og<p>—%log<1/u>>) ,

where

m m+kjae —B
log = oc™ Rt - U q m+k1at \/ Bl) i (1+0(1)))

and such that Algorithm 2 outputs the correct Senum with probability at least I_T“

Proof. Recall that by Theorem 5.9, We need to sample D > ﬁeq Dround - Darg _Dfpfn (1)
vectors in order to achieve advantage “ We give asymptotic expressions for each of

these four factors, and combine them to get an asymptotic estimate for the required
D.

. 2
Recall that the first term, Deq = exp (4 (%ﬁe) >, comes from the Fourier coeffi-
cient of the error of the original dual attack equations, and is exponentially large. Here

¢ is the expected length of the vectors generated by Algorithm 3, which by Lemma 4.2
equals

d—p
= det(A) /74 - N (82172 f—Q (B 5(81)"F =
Te
oo\ "t Flat
:<J> g VA 5(61) F - (14 0(1) .
S
Th d term, Dioyna = sin(msy /p)) ~2HXE from th di
e second term, Diouna = [20 \ s/ , comes from the rounding
error from the modulus switch, and is also exponentially large. To approximate
log (f)mund> = =2k D 50 Xs (5) log (%), we approximate sin(z) as z(1 — t2?)

using its Taylor series around x = 0, and log(x) as — 1 using its Taylor series around
x = 1. This approximation is accurate when s is close to 0, and is inaccurate when
5 is close to p. For values of 5 in [55 2] the approximation error is less than 10%.
In the analyzed cryptographic schemes, the error introduced by the approximation is
small close to the optimal parameter sets, and using the approximation induces very
minor errors in the optimization results.

29

We get:

IOg (Dround> = _Qkﬁt ZXS <Sln TrS/p >

oy 7TS/p
~ _2kfft Z Xs < >
540
~ 2kfft Z Xs -
5#0
kg w2 o kit <US7T>
== 5
3 p° 4 o 3 P

and in total,

- k o\ 2
Dround:C)(eXp(?(;) >> .

The third term, Darg ~ %, is a constant improvement factor obtained by considering
the complex argument of the Fourier coefficient. We have D, = O (1), and in fact it
is very close to % for all reasonable parameter sets.

~ ~ ~ 2
The fourth and final term, Dgpp, = <¢fp (1) + o (,u)) where
qgfp (n) = @1 (1 - Q.chnumZ(Xs).pkﬁt) and ¢p, (u) = d1 (1-1%), is a factor which
ensures small false and false negative probabilities, and is only polynomially large. By
the bound @~ }(1 —z) = O (log (%)) for x < 1/2, we get

2
Dip = (log 2/u)) +0 <\/ log (2 - 2kenum H(xs) -p’“f“/u)»

= 0 (log (209 pht /1)) = O (eaH () + b log (p) + log (1/p)) -

5.3.2 Asymptotic Time Complexity

The following corollary gives an asymptotic expression for the time complexity of Al-
gorithm 2.

Corollary 5.11. Let (n,m,q,xs,Xxe) be LWE parameters, (B1, 52, kenum, kftt, Klat, P)
be a partial tuple of parameters for Algorithm 2, and let 0 < u < 1. Choosing the
parameters C, D according to Theorem 5.2, Algorithm 2 outputs Senum with probability
at least 1_7“ n time

D
@ 18 (Tokz(d, B1) + Thieve(Ba)) + 2kenumH) . (kﬁtpkm + D) ,

(\/‘%) B2+o(B2

30

where
4(@) @(m)Q
D = O (6 q -e 3 p : (kenum . H(Xs) + kfft : IOg(p) + 10g(1//.£))> 9

Kiat

go_s — O'Bm+77]zlat . (O-Sq)m+klat . \/m % . 6(61)M . (1 +0(1)) ’
T

and Tz, Tsieve are the running times of the BKZ algorithm and lattice sieving algo-
rithm, respectively.

Proof. By Theorem 5.1, the running time of the algorithm is

Tsampleﬁ1752,D (m + klat) + 2]€enumH(XS) . (Tﬂt(kﬁt7p) + ﬂable) ,

where Tgample 515 L, (m =+ kiat) is the cost of Algorithm 3, T (kg, p) is the cost of FFT,
and Tiapie is the cost of the updating the table in each iteration. By Lemma 4.1,

_b
Nsieve (ﬁQ)

=0 D . (TBKZ(da ,81) + Tsieve(ﬁ?))

<\/‘W) B2+o(B2)

Moreover, it is well known that FFT can be implemented in T (kg, p) = O (kﬁctpkﬂ”t)
operations (see e.g. [Knu98|). Lastly, the table updating can be performed in Tiaple =
O(D) operations according to Lemma 5.12 below. Combining the above with the
formula for D from Corollary 5.10, we get the desired result. 0

TsampleﬂlﬁgyD(m + klat) =0 (’V -‘ . (TBKZ(d, Bl) + Tsieve(/BQ))) =

5.4 Efficient Updating of the FFT Input

Recall that in Algorithm 2, we enumerate on the value of Sepum. Under that enumer-
ation, we calculate a table T, and for every short vector pair (z,y) we add the phase

(befyT §enum) pu) p :
e\ " Pienum 7 to cell TYi.f of T. Then, we use the FFT algorithm to calculate

the Fourier transform of T. Naively, updating the tables requires computation of the
inner product yfenuméenum for each pair, which costs O(kgD). We can improve this
algorithmically.

Lemma 5.12. Preparing the table T when iterating over the possible values of Senum
in descending order of probabilities can be done in amortized 4D addition operations.

Proof. We describe an efficient algorithm for updating the table T' while iterating
over all possible values of Ssenum With log-likelihood above some constant C. We first
note that instead of calculating each inner product ?/}:enumgenum from scratch, we can
store the inner products and use them to calculate subsequent inner products faster.
If we have already calculated the inner product yfenum§enum, we can calculate the

31

: T T : T o :
inner product ¥; opumSenum S Yj enumSenum + Y enum (Senum — Senum). The update op-

erations requires only as many multiplications as there are non-zero coordinates in
(ggnum - genum)-

Thus, to calculate all inner products ij,enumgenum for all values of Sepum, we just have
to find an efficient iteration order where only one coordinate changes in every iteration
step. To efficiently iterate over the possible values of Senum with log-likelihood above
some cutoff, we use the following algorithm:

1. We use the most likely Sepum as the starting point for the iteration.

2. We then enumerate over all values for the first coordinate which do not lower
the log-likelihood below the cutoff, and for each we recursively iterate over the
remaining coordinates using the same algorithm.

We note that for some S¢pum to be reached, the algorithm has to perform a series
of recursive calls with intermediate possible values of Sepum. In the i’th intermediate
value, the first ¢ coordinates are equal to those of S¢pum, and the last n — ¢ coordinates
have the most likely value of xs. Since the coordinates are sampled independently,
the log-likelihood of every intermediate is larger than that of Sepum. Thus, if the log-
likelihood of Senum is above the cutoff, the likelihoods of all necessary intermediates
are also above the cutoff, and it will be reached by the algorithm. It follows that all
possible values of Sepum are found by the algorithm.

This iteration order does not guarantee, however, that the iteration proceeds in
order of decreasing probability. To iterate over the values of the secret in descending
order of probabilities, we perform a series of iterations, with decreasing cutoffs for the
minimal log-likelihood of a value of Sepym found by the iteration. We pick the cutoffs so
that in the i’th iteration, we iterate over 2¢ values for Sepum. This ensures that we reach
the 5’th most likely value for Senum in step [logy(5)], and do 14244+ - -4+2M108271 < 45
iterations. Thus, during our iteration, when we reached the j’th value for the first time,
we will have updated the table no more than 45 times. O

6 Lattice Sieving Cost Model

In this section we review our model for the cost of lattice sieving in the RAM model.
Our model largely follows [AGPS20], apart from a number of changes. We start by
describing the model used in [AGPS20], then describe the differences in our model.

The costs of our algorithm are calculated according to our model, as well as the
model in [AGPS20], in Section 7.3.

6.1 General Overview of the Model

As stated above, our cost model is based on the model presented in [AGPS20]. For the
purposes of this work, we limit ourselves to the classical model and leave the quantum
model for future work. In this section we review basic properties of the model, as
present in [AGPS20].

Recall that lattice sieving is an algorithm for finding a list of short vectors in a
lattice. The algorithm starts by generating a list of long lattice vectors. It then

32

repeatedly applies the “AllPairSearch” routine, finding short combinations of vectors in
the list and adding them to the list. Heuristically, after some number of repetitions of
this routine, the list contains the Ngjeve(d) shortest vectors in the lattice. The cost of a
sieve in this model is the number of basic logic gates required in total for implementing
the “AllPairSearch” routines.

Progressive Lattice Sieving. Following [AGPS20, ABD"21], our model uses
progressive lattice sieving [LM18], which is a variant of lattice sieving in which sieves on
sublattices of increasing dimensions are performed. This model assumes that running a
sieve in dimension d requires performing one “AllPairSearch” in dimension d’ for every
d <d.

Locality Sensitive Filtering. The implementation of the “AllPairSearch” routine
in this model uses Locality Sensitive Filtering (LSF) [BDGL16]. In order to find close
pairs of vectors in a list, the algorithm constructs buckets according to certain filters,
such that vectors in the same bucket are more likely to be close to each other. The
algorithm then iterates over all such pairs to find all close pairs in the list.

Locality Sensitive Filtering uses Random Product Codes for the construction of the
buckets. The core part of the algorithm is the decoding routine, which efficiently finds
the set of buckets in which a given vector lies.

Popcount Filter. The “popcount-filter” is a practical improvement of Locality Sen-
sitive Filtering introduced in [AGPS20]. The core idea is that instead of directly check-
ing whether a pair of vectors is close by calculating their inner product, the algorithm
first performs a cheaper test which is more likely to succeed for close pairs of vectors.
If the test is passed, the heavier inner product calculation is performed.

6.2 Modifications of the Model

In this section we list the main differences between the model from [AGPS20] and our
model.

e The main difference is the cost of the random product code decoding algorithm.
Our algorithm requires one addition, one xor, and three comparisons per legal
codeword, which translate to 433 gates for a lattice of rank 400, as opposed
to [AGPS20] which requires a super-constant number of inner products per legal
codeword, which translate to 3,540,524 gates for a lattice of rank 400. This
algorithm is described in Section 6.2.1.

e Additionally, we optimize the popcount filters over a larger set of parameters than
the one considered in [AGPS20]. Popcount filters allow skipping the calculation
of the inner product of two vectors by checking if the sign bits of their coordinates
tend to be the same (or, more generally, the sign bits of their projections to one
dimensional vector spaces). When two vectors are close to each other, their sign
bits are the same with probability ~ %, while two random vectors are expected to
share sign bits with probability % When checking if two vectors are close, before

33

calculating the inner product, we calculate how many bits differ among their sign
bits. If the number of differing bits is above some threshold, we conclude that
the two vectors are likely not close without calculating their inner product.

The popcount filters have two parameters — the number of sign bits and the
threshold. In [AGPS20], the threshold is fixed to be 1/3 of the number of sign
bits. With these parameters, roughly half of the close vector pairs are rejected
by the filter. We optimized both of these parameters. For a lattice of rank 400,
we use the sign bits of 576 projections, and require that no more than 208 sign
bits are different. This allows ~ 91% of the close vector pairs to pass the filter.

Similarly to [ADH'19], we treat every lattice vector v as +v. This reduces the
number of list vectors used in the sieve by a factor of 2. Additionally, since
the number of queries to the LSF data structure becomes twice the number of
vectors used in its construction, the LSF parameters involved in the construction
and querying are optimized independently.

Finally, our model considers two additional factors which make it more realistic
and pessimistic for the attacker.

— Originally, the number of filters in the LSF construction is determined by
the probability of two close vectors to lie in the same bucket. Namely, if

this probability is p, then one constructs 119 filters such that each pair has

probability 1—% to be found. However, this means that a constant proportion
of the close pairs will not be found. Since the size of the list is the same as
the number of close pairs in it, the list size will shrink by a constant factor
after one iteration, and the next iterations will not continue properly.

In order to solve this problem, we increase the size of the list by a constant
factor such that only a constant proportion of the close pairs is required
for the iterations to continue. We then multiply the number of filters by
an appropriate constant such that the required proportion of the close pairs
is found. We optimize these constant factors to minimize the cost of the
algorithm.

— The cost of “AllPairSearch” in [AGPS20] is mainly composed of two parts:
the total cost of “popcount-filter” calculations, and the total cost of inner
product calculations. The cost of the inner product calculations is ignored,
but is ensured to be smaller than the cost of the popcount calculations. In
our model, we add the two costs together.

Despite these pessimistic factors, our model predicts significantly lower costs for
lattice sieving, mainly due to the improved random product code decoding algo-
rithm.

6.2.1 Random Product Code Decoding Algorithm

In this section, we describe our Random Product Code decoding algorithm, which is a
slightly optimized version of the algorithm presented in [BDGL16]. Since the algorithm
is outside the scope of this paper, we describe it in general terms and do not give a
formal analysis of its running time.

34

We start by describing the Random Product Code decoding problem. Let v € R
be a given vector, and let Vi,...,V}, C R“* be [-dimensional vector spaces such that
Vi LVjforall i,5. Let L; CV; for i = 1,...,k be lists of vectors of length ﬁ called

filters. A codeword is a k-tuple of filters, (fi,..., fx) € L1 X --+ X Lj, which represents
the vector), fi. A legal codeword is a codeword for which), (fi,v) > C for a given
constant C' € R. We refer to this sum as the inner product of a codeword and v. The
problem is to efficiently find all l