
Postprint, February 2020

Goal Recognition Using Off-The-Shelf
Process Mining Techniques

Artem Polyvyanyy
The University of Melbourne

artem.polyvyanyy@unimelb.edu.au

Zihang Su
The University of Melbourne

zihangs@student.unimelb.edu.au

Nir Lipovetzky
The University of Melbourne

nir.lipovetzky@unimelb.edu.au

Sebastian Sardina
RMIT University

sebastian.sardina@rmit.edu.au

ABSTRACT
The problem of probabilistic goal recognition consists of automat-
ically inferring a probability distribution over a range of possible
goals of an autonomous agent based on the observations of its behav-
ior. The state-of-the-art approaches for probabilistic goal recognition
assume the full knowledge about the world the agent operates in and
possible agent’s operations in this world. In this paper, we propose
a framework for solving the probabilistic goal recognition problem
using process mining techniques for discovering models that de-
scribe the observed behavior and diagnosing deviations between the
discovered models and observations. The framework imitates the
principles of observational learning, one of the core mechanisms
of social learning exhibited by humans, and relaxes the above as-
sumptions. It has been implemented in a publicly available tool. The
reported experimental results confirm the effectiveness and efficiency
of the approach, both for rational and irrational agents’ behaviors.

KEYWORDS
Goal recognition; process mining; observational learning

ACM Reference Format:
Artem Polyvyanyy, Zihang Su, Nir Lipovetzky, and Sebastian Sardina. 2020.
Goal Recognition Using Off-The-Shelf Process Mining Techniques. In Proc.
of the 19th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020,
IFAAMAS, 9 pages.

1 INTRODUCTION
We propose a technique for goal recognition (GR) that forgoes the
need of predefined plan libraries and dynamic models, two onerous
requirements in current GR approaches. Goal recognition1 involves
identifying an agent’s intent by observing its behavior [8, 18]. With
robots and agent software becoming ubiquitous, from smart houses
to autonomous driving to video games, the ability to understand
what other agents—be software, robots, or humans—are trying
to accomplish is paramount to the realization of truly intelligent
behavior and effective human-machine interaction. An intelligent
aircraft support system should figure out what maneuver the pilot

1While subtleties do exist among them, we shall use the terms goal, intention, plan, or
activity recognition interchangeably.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar
(eds.), May 9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for
Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

is executing, and a smart house ought to understand whether the
household is trying to cook, watch a movie, or sleep by sensing her
behavior (e.g., household entered the kitchen, turned on the light,
and set the coffee machine timer). As the need for more autonomous
systems increases, so does the attention on the GR problem [35], with
numerous applications, from the support of adversarial reasoning
for games and the military [20, 36] to smart homes and wheelchair
movement [10, 34] to trajectory/manoeuvre prediction [12, 19, 21]
and human-computer collaboration [22].

In traditional GR approaches, observations of agent’s actions
are “matched” to a plan (the one judged to being carried out by
the agent) in a predefined library encoding the standard operational
procedures of the domain [8, 11, 18]. While the first proposals did
not accommodate uncertainty, numerous subsequent probabilistic
solutions have later been developed [35]. Nonetheless, the challenge
to obtain or hand-code the possible set of activities in a domain has
triggered research in GR techniques that dispense from plan libraries
altogether [16]. In particular, more recent work by Ramirez and
Geffner [32, 33] has sparkled a plethora of approaches to perform
GR by exploiting planning systems to automatically generate plans
relative to a domain theory, hence not needing any a priori set of
plans. Appealing to the principle of rational behavior, an agent is
assumed to be taking the “optimal” path to the goal: the more rational
a behavior appears towards a goal, the more probable such goal is
the agent’s goal. Notwithstanding the fact that specifying dynamic
models could be less demanding than hand-coding plans in some
domains, and that “new” plans can be found, the acquisition of such
domain models at the outset is still far from trivial [15].

Relying on the fact that, in many settings, logs of recorded traces
are readily available, we propose an approach to probabilistic GR
that analyzes deviations of the observed behavior from process mod-
els that are automatically discovered using process mining tech-
niques [38]. In this way, we are able to perform GR without the
need of either predefined plan libraries or planning domain models,
just traces. Importantly, traces are not complex structured plans (and
logs are not plan libraries), but they do stand for execution instances
of some underlying “hidden” standard operational procedures of
the domain. Because of all this, we argue our proposal sits between
traditional plan recognition (based on reasoning over plans) and
more recent planning-based approaches (based on reasoning over
cost difference). In addition, it is designed to imitate the principles
of observational learning, one of the core mechanisms of social
learning exhibited by humans.



0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
I

A

B C D E

F
5

Figure 1: Two walks of an agent in a grid from initial cell I to
goal cell E: rational (green) and irrational (red).

After explaining the approach, we report experimental results
providing evidence of its effectiveness. In particular, we conducted
goal recognition in three real-world domains from the Business Pro-
cess Intelligence community for which only event logs are available,
two regarding permits (building and environmental) and one on hu-
man daily activities. Such experiments show that, unlike previous
approaches to GR, ours can be applied when no planning domains
or predefined domain processes are available. For completeness,
though, we also report experiments on domains where planning do-
mains are readily available, by synthesizing traces compatible with
such domains. Nonetheless, we stress that the aim of this work is
not per se to improve on GR performance when predefined plans or
dynamic models are at disposal (despite the fact that the conducted
experiments evidence our approach is scalable), but to be able to
achieve GR in their absence.

2 MOTIVATING EXAMPLE
Figure 1 shows two walks of an agent in an 11x11 grid that both
start at the cell denoted by I and end at the cell denoted by E. Cells
A to F represent six goals in the grid. Hence, the walks represent two
observed agent’s behaviors for achieving goal E starting from I. To
achieve a goal, the agent can perform horizontal and vertical moves
at the cost of 1, and diagonal moves at the cost of

⌋︂
2. The grid, the

positions of the initial cell and the six goal cells, and the red walk
from I to E are taken from [33]. The green walk in the figure has
the cost of 7 + 4

⌋︂
2. As this cost is close to the cost of an optimal

walk from I to E, i.e., 5 + 5
⌋︂
2, we say that it is rational. The red

walk has the cost of 7 + 6
⌋︂
2 and is, thus, irrational. Indeed, the red

walk starts towards goal A and then diverges to visit cells close to
goals C, D, and F prior to reaching target goal E.

Often, the environment the agent operates in and the moves it
can take are not known. However, one can learn both by observing
agent’s behavior. For each of the six goals from Figure 1, Figure 2
shows “footprints” of six sample observed walks of the agent from
cell I to that goal; the thickness of arrow denotes the frequency the
corresponding move was taken (only explored cells are shown).

Using these observations, one can construct models that describe
skills for accomplishing the goals. Then, new observations of an
agent in the environment can be compared with the acquired models

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
I

A

B C D E

F

I

A

B C D E

F

Figure 2: Observed agent behaviors from initial cell I to the six
goal cells from Figure 1.
to infer a probability distribution over the goals. Intuitively, the more
discrepancies between the observed behavior and a skill model, the
less likely the agent is attempting to achieve the corresponding goal.

Figures 3(a) and 3(b) show probability distributions over the goals
as functions of time (number of moves) for the walks from Figure 1.
The distributions were inferred using the discrepancies captured in
alignments, cf. Section 3.2, between the skill models discovered from
the observations in Figure 2 and the walks. Goal E is consistently
(one of) the most likely goal(s) along the rational walk. Note that
goals A, B, C, and D prevail at the start of the irrational walk, while
goal E is identified as the most likely goal towards the end.

3 BACKGROUND
3.1 Probabilistic Goal Recognition as Planning
A decade ago, Ramirez and Geffner [32, 33] proposed to move
away from intention recognition over a plan library and considered
the problem, instead, over a domain theory and a set 𝒢 of possible
candidate goals. To do so, they leveraged on the insight that a rational
agent is expected to be taking the optimal, or close to optimal,
plan to its (hidden) goal, also noted in [3, 27], so the probability
of a plan can be linked to its cost. And candidate plans can be
automatically synthesised using planning technology [14]! By doing
this, the proposal eliminated the need to obtain (or hand-code) the
typical processes in a domain, and allows the recognition problem
to leverage advances in automated planning.

Technically, the input is a planning domain encoding the dynam-
ics of the domain (i.e., a theory of action), an initial state, a set
of possible goal states, and a sequence of observed actions. The
solution is a posterior probability distribution which “prefers” those
goals whose “best" plans satisfy observations. In their [2010] work,
Ramirez and Geffner derive such probability distribution over the
possible goals from Bayes’ Rule based on the assumption that the
probability of a plan is inversely proportional to its cost. Such as-
sumption is encapsulated in the notion of cost difference between
the (cost of the) optimal plan for a goal matching the observed
actions and the optimal plan that could have been reached other-
wise (not embedding the observed actions). Concretely, this yields a
Boltzmann-like sigmoidal distribution with the important property
that the lower the cost difference, the higher the probability.



1 2 3 4 5 6 7 8 9 10 11
0.0

0.2

0.4

0.6

0.8

1.0

Step No.

Pr
ob

ab
ili

ty

A
B
C
D
E
F

(a) Rational walk in Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

Step No.

Pr
ob

ab
ili

ty

A
B
C
D
E
F

(b) Irrational walk in Figure 1.

Figure 3: Inferred probability distributions over the six goals from Figure 1 based on the observed behaviors shown in Figure 2.

Several works have followed elaborating or extending Ramirez
and Geffner’s set-up, or grounding it to specific interesting settings
(e.g., navigation). Here, we shall adopt the most recent elaboration
by Masters and Sardina [23–25], which refined the original set-up to
achieve a simpler and computationally less demanding GR account,
and one able to handle irrational agent behavior parsimoniously
without counter-intuitive outcomes. Concretely, taking optc(S,τ ,G)
to denote the optimal cost of reaching goal G from state S by em-
bedding the sequence of observations τ ,2 we first define the cost
difference of reaching G from S via observations τ as follows:

costdiff (S,τ ,G) = optc(SI ,τ ,G) − optc(S,ϵ,G).

When the agent is observed acting optimally for G, the cost differ-
ence is zero; as the agent becomes more suboptimal towards G, the
cost difference increases. Using this, and assuming for simplicity
that all goals are initially equally likely, the probability of a candi-
date goal G ∈ 𝒢 given observations τ can be obtained as follows
(note the denominator acts here as the normalization factor):

Pr(G ⋃︀ τ) =
e−β×costdiff(SI ,τ ,G)

∑
G ′∈𝒢

e−β×costdiff(SI ,τ ,G ′)
, (1)

where β is a parameter that allows the goal “recognition system
developers to soften the implicit assumption of the agent being ratio-
nal” [33]. In Masters and Sardina’s self-modulating GR account [25],
β is dynamic and adjusts the confidence of the GR system based on
the degree of agent rationality observed so far; formally β ∈ (0, 1⌋︀
is defined as follows (here, η is a positive constant regulating how
quickly confidence should drop when irrational behaviour is seen):

β = (max
G∈𝒢

optc(SI ,ϵ,G)
optc(SI ,τ ,G)

)

η

. (2)

Intuitively, β expresses the most optimistic rationality ratio among
all goals, with β = 1 when the agent is seen fully rational towards
some goal. By using this dynamic parameter, the more erratic the
agent behavior (irrational to all goals), the more Pr(⋅) approaches a
uniform distribution.

Below, we will adapt and instantiate the above account to apply
notions and techniques from process mining [38].

2Under no observations (i.e., τ = ϵ ), optc(S, τ , G) reduces to optimal cost to G .

3.2 Process Mining
Process mining studies methods, techniques, and tools to discover,
monitor, and improve processes carried out by organizations using
the knowledge accumulated in event logs recorded by information
systems that support execution of business processes [38]. An event
log, or log, is a collection of traces, where each trace consists of
a sequence of timestamped actions observed and recorded during
execution of a single case of a business process.

One can encode each collection of six sequences of actions to-
wards each of the six goals from Figure 2 in an event log. Log LA =
{τ1, . . . ,τ6} that encodes the six walks towards goal A contains six
traces each capturing the moves from the corresponding walk. For ex-
ample, traces τ3,τ5 ∈ LA are given as τ3 =̂︀(5,04,1), (4,14,2), (4,24,3), (4,33,3), (3,32,3),
(2,31,4), (1,41,5), (1,50,6)̃︂ and τ5 =̂︀(5,04,1),(4,14,2),(4,24,3),(4,33,3),(3,32,3),(2,33,2),(3,24,1),(4,14,2),(4,24,3),
(4,33,3), (3,32,3), (2,31,4), (1,41,5), (1,50,6)̃︂, where elements represent moves in the
grid. For instance, the first element (5,04,1) in τ3 encodes the move
from cell (5, 0) to cell (4, 1), a move away from cell I.

Two core problems tackled in process mining research are pro-
cess discovery and conformance checking. Process discovery aims
to automatically construct a “good” process model from an event
log [2, 40, 41], while conformance checking measures and explains
commonalities and discrepancies, i.e., the “goodness”, of the model
with respect to the log it is constructed from [9, 31, 39, 42]. In a
nutshell, a process discovery technique takes a log as input and pro-
duces a process model, e.g., a Petri net, BPMN model, UML activity
diagram, or an EPC, as output [38].

t1

t3

t15

t2

t12

t5 t6 t7 t8

t10t11

t16 t17 t18

t14

t13

t19

t23

t21t22
t24

t4

t9

t20

A

I

Figure 4: A net discovered from the walks to goal A in Figure 2.



Let L andM be a universe of logs and a universe of process mod-
els, respectively. A process discovery technique is a function that
maps event logs onto process models, i.e., π ∶ L→M. We say that
the model π(L), L ∈ L, is discovered from L using technique π . For
example, the model in Figure 4 is the Petri net discovered from log
LA mentioned above using the Split miner discovery technique [2].
The net aims to describe the traces from the log and generalize the
“useful” behavior. In particular, it encodes all the six traces in log
LA and generalizes the repetitive fragment in trace τ5, via transitions
t5, t6, t7, t8, t10, and t11. Note that every transition in the net encodes
a move in the grid. For example, transitions t1 and t5, despite both
capturing a move towards north, describe two different moves in the
grid, namely (5,04,1) and (4,14,2), respectively.

One of the central concepts in conformance checking is the con-
cept of an alignment. An alignment describes a relation between a
trace and an execution of a process model as a sequence of steps [39].
Model and trace make a synchronous step in the alignment if they
agree, i.e., they both take the same action. If trace and model dis-
agree, either the model or trace takes an action that is not mimicked
by the counterpart in the alignment. An optimal alignment between
a model and trace is an alignment that yields the lowest cost among
all the possible alignments between the trace and model according
to some predefined cost scheme over the steps.

Synchronous steps are often assigned zero cost, while all other
steps are given some positive cost. For such a cost scheme, an
optimal alignment describes some minimal disagreements between
the model and trace. Then, a trace and model agree perfectly, i.e.,
every action in the trace can be mimicked by an action in the model,
iff there exists an optimal alignment of zero cost between them.

It is convenient to represent alignments as tables. Below, γ1 is an
optimal alignment between the prefix of size five of the irrational
walk from Figure 1 and the net in Figure 4, while γ2 is an optimal
alignment between the irrational walk and the net discovered from
the traces towards goal E from Figure 2.3

γ1=

5,0
5,1

5,1
4,2

4,2
3,3

3,3
3,4

3,4
3,5

⇑ ⇖⇖ ≫ ≫ ≫ ⇑ ⇑

⇑ ⇖⇖⇖⇖⇖≫≫
5,0
5,1

5,1
4,2

4,2
3,3

3,3
2,4

2,4
1,5

1,5
A

t1 t15 t16 t17 t18 t23

γ2=

5,0
5,1

5,1
4,2

4,2
3,3

3,3
3,4

3,4
3,5

3,5
4,6

4,6
5,7

5,7
5,8

5,8
6,8

6,8
7,8

7,8
8,8

8,8
9,9

9,9
E

⇑ ⇖≫≫≫≫⇖ ⇑ ⇑ ⇗⇗≫ ⇑ ⇒⇒⇒⇗⇗

⇑ ⇖ ⇑ ⇗ ⇑ ⇖≫≫≫≫⇗⇗≫≫⇒⇒⇗⇗
5,0
5,1

5,1
4,2

4,2
4,3

4,3
5,4

5,4
5,5

5,5
4,6

4,6
5,7

5,7
6,8

6,8
7,8

7,8
8,8

8,8
9,9

9,9
E

In a table that describes an alignment, steps are encoded as columns.
Two successive columns in a table refer to two successive steps in
the alignment. In γ1, each column has five rows. The top two rows
of each column correspond to the trace contribution to the step.
They encode either an action from the trace, e.g., a direction and
coordinates of a move by the agent in the grid, or a skip denoted by
‘≫’. The bottom three rows of each column correspond to the model

3The net discovered from traces to goal E is not shown in the paper. However, all the logs
shown in Figures 1 and 2 and the Petri nets discovered from the logs that describe walks
towards the six goals in Figure 2 captured using the XES standard (https://xes-standard.
org/) and PNML standard (http://www.pnml.org/), respectively, can be accessed here:
https://github.com/zihangs/fp1189_aamas2020/tree/master/training_examples.

contribution to the step. They encode either an execution of an action
in the model, i.e., an occurrence of a transition that describes a move
of the agent in the grid, or again, a skip ‘≫’. For example, the first
step in γ1 represents the occurrence of transition t1 in the net from
Figure 4 that describes the move from cell (5, 0) to cell (5, 1). Steps
at positions one, four, and seven in γ1 are, respectively, examples
of synchronous, asynchronous (on model), and asynchronous (on
trace) steps. Note that in γ2 we omit the fifth row.

Alignments γ1 and γ2 have costs of 2 + 3
⌋︂
2 and 6 + 5

⌋︂
2, respec-

tively, assuming zero cost of all synchronous steps, cost of
⌋︂
2 of all

asynchronous diagonal steps, and cost of 1 of all other asynchronous
steps, following the cost model of the motivating example.

4 APPROACH
In this section, we first present an approach for performing proba-
bilistic GR based on alignments with mined processes (Section 4.1).
After that, we present a GR agent architecture that mimics the princi-
ples of observational learning (from social cognitive learning theory)
and can be operationalized with process mining techniques and our
alignment-based inference approach (Section 4.2).

4.1 Goal Recognition over Alignments
In Section 3.1, we explained how probabilistic GR can be realized
by relying on the so-called cost-difference for each candidate goal.
To get such cost-differences, optimal plans are synthesized relative
to a (PDDL) model of the domain.

To get away from the burden of obtaining or crafting domain mod-
els, we shall propose a GR probability distribution relative to a set
of Petri net models that are assumed to have been automatically ex-
tracted from recorded past executions, one model per candidate goal
(for example, by observing and recording the household’s actions
for a period of time). More concretely, given a set of goals 𝒢 and
a sequence of observations τ , we adapt Equation (1) by re-stating
cost-difference in terms of (level of) misalignment between τ and
each learned Petri net model αG , with G ∈ 𝒢. The less misalignment
the observed behavior τ displays against the skill model αG learned
for goal G, the most probably G is the true goal.

So, considering ω(τ ,αG) to be an alignment weight (defined be-
low) of τ against the model αG learned for goalG, we follow Masters
and Sardina [23] in using a true Boltzmann distribution instead of a
sigmoidal, and re-write Equation (1) as follows:

Pr(G ⋃︀ τ) =
e−β×ω(τ ,αG)

∑
G ′∈𝒢

e−β×ω(τ ,αG′)
. (3)

Here, ω(τ ,αG) ≥ 0 and the “temperature” β controls the GR level
of confidence; can also be interpreted as the trust over the learned
models. For the temperature parameter, we define:

β =
1

1 +min
G∈𝒢

ω(τ ,αG)
. (4)

While apparently different, this actually follows Equation (2), sim-
plified given that the best case scenario is an alignment cost of zero.4

As the minimum (among all goals) alignment weight ω increases,

4This implies we inherit the confidence-based properties described in [25].

https://xes-standard.org/
https://xes-standard.org/
http://www.pnml.org/
https://github.com/zihangs/fp1189_aamas2020/tree/master/training_examples


the observed agent is arguably more “irrational”, β approaches zero
and the GR probability distribution resembles more the uniform one.

Finally, the alignment weight between an observation trace τ =
∐︀a1, . . . ,añ︀ and a skill model αG is defined as:

ω(τ ,αG) = ϕ + λ
m
×

n
∑
i=1

(iδ × c(τ ,αG , i)) ,where (5)

● c(τ ,αG , i) is the cost of the step in an optimal alignment between
trace τ and model αG that involves trace action ai ;
● iδ , with δ ≥ 0, is a discount factor that emphasizes later—more

recent—disagreements;
● ϕ ≥ 0 is a constant to “smooth” the likelihoods of various goals

when the trace results in (close-to-)perfect alignments (indirectly
setting the max. β allowed); and
● λm , λ ≥ 1 is a constant andm is the number of consecutive asyn-

chronous steps on trace occurring at the end of the optimal align-
ment to penalize when the suffix of the trace cannot be aligned.

We observe that, as shown in the next section, all these constants
are useful in the presence of irrational agents, but can be omitted
in practice if all agents are (close to) rational. To avoid artificially
penalizing short traces, we only account for the cost of asynchronous
steps on trace, as the model would typically complete a short trace
with asynchronous steps on model until the goal is reached.

Given ϕ = 0, λ = 2, and δ = 1, the weight (ω) of alignment γ1
from Section 3.2 is 0+22×(11×0+21×0+31×0+41×1+51×1) =
36; the computation only uses steps that involve trace actions to
measure the inability to match the trace with the skill model. Here,
we used costs of asynchronous steps from the motivating example.
Note that the weight (ω) of the alignment of the same prefix of
the irrational walk from Figure 1 and the model for skill E, based
on the first nine steps of alignment γ2 from Section 3.2, is equal to
0+23×(11×0+21×0+31×

⌋︂
2+41×1+51×1) ≈ 105.94; same step

costs were used. Because the weight of disagreement for goal E is
greater than that for goal A, after five steps along the irrational walk,
our approach would suggest that it is more likely that the agent aims
for goal A than for goal E, as it is done in Figure 3(b).5 Finally, the
weight (ω) of alignment γ2 from Section 3.2, assuming the constant
values and step costs from above, is equal to 26 + 9

⌋︂
2.

Putting it all together, Equation (3) provides a novel middle
ground between traditional plan-library-based activity recognition
and the more recent cost difference based approach from the plan-
ning literature. Indeed, observations are matched to a sort of library
of plans, implicitly represented and aggregated in each Petri net skill
model, by re-interpreting plan cost as level of misalignment.

Next, we show how the proposed GR account can be framed
within an long-lived intelligent system.

4.2 Towards Goal Recognition Framework
While significant effort has been devoted to develop probabilistic
models for GR, not much emphasis has been put in discussing how to
operationalize the GR process within a full intelligent agent system.
Such systems are not meant to merely solve one shot problems, but to
run continuously for extended periods. Next, we present our frame-
work consisting of components that can be selectively replaced to

5Note that the probability distributions in Figure 3 were obtained using constantsϕ = 50,
λ = 1.1, and δ = 1.

embed in such a system. The framework is inspired by the principles
of observational learning, which is concerned with the acquisition
of attitudes, values, and styles of thinking and behaving through
observation of the examples provided by others [4]. Recently, it was
shown that observational learning could emerge from reinforcement
learning with memory and without explicit modeling of the observed
“teacher” agent [7]. Observational learning occurs via four functions:

(1) Attentional function (Attention) governs which observed stimuli
a student agent selects from the teacher’s behavior to implement
learning, as not all observations may be of interest to the student;

(2) Representational function (Retention) concerns with transforming
observations of the teacher’s behavior into models suitable for
informing the student’s behavior;

(3) Motivational function (Motivation) controls when and how the
learned knowledge is used by the student, which involves cost and
benefit analysis of applying the knowledge in the environment;

(4) Production function regulates transformation of fresh observa-
tions and conceptions of student into a course of her actions.

In this work, the production function is concerned with applying the
knowledge retained by the student to recognize the goal the observed
teacher agent attempts to achieve (Recognition). Figure 5 shows our
GR framework schematically. It consists of four parts that implement
the four functions of observational learning, each composed of a
collection of workflows intended for simultaneous execution:

(1) The Attention part (top-left fragment of Figure 5) monitors teacher
agents’ actions and triggers two signals, viz. “Action captured”
and “Goal completion recognized.” The former is triggered when
the student identifies a fresh action of a teacher, e.g., the figure
shows that the student captured action w performed by teacher
B, while the latter is triggered when the student recognizes that a
teacher has achieved a goal, e.g., teacher A achieved goal α .

(2) The Retention part (top-right) processes the signals triggered
within the Attention part. Once an “Action captured” signal is
picked up, the corresponding action is added to the current trace
of the teacher agent (cf. the “Retain action” activity in Figure 5),
and then the “Action retained” signal is raised. Once the “Goal
completion recognized” signal is received, the trace of the teacher
that has led to the completion of the goal is added to the corre-
sponding skill library (“Retain skill trace”); in the figure, trace
α5 = ∐︀e,e,e,n,e,w, s̃︀ performed by teacher A to achieve goal α
is added to the α-skill library. Then, a process discovery tech-
nique is applied to construct a skill model from the traces in the
skill library to replace the old model for the corresponding goal
(“Discover skill model”). Consequently, a skill model aggregates
and generalizes the observed behavior for achieving the corre-
sponding goal. In this work, we implemented the “Discover skill
model” activity using the Transition System miner [40].

(3) The Motivation part (bottom-left) processes captured “Action
retained” signals by filtering those that correspond to the ob-
served actions of interest and subsequently triggering the “Goal
recognition initiated” signal; e.g., in the figure, the student agent
decides to initiate GR based on the observed action w by teacher
B. Otherwise, the processing of the observed action terminates.

(4) The Recognition part (bottom-right) governs the inference of
possible goals. The processing starts with the consumption of
a “Goal recognition initiated” signal. Next, the corresponding



Attention Retention

Motivation Recognition

Action
captured

Goal
completion
recognized

Action
captured

Retain
action

Goal
completion
recognized

Retain
skill trace

Discover
skill model

α-skill
library
{α4,α5}

β-skill
library
{β2,β3}

Goal
recognition

initiated

s
w

Action
retained

[else]

Action
retained

Goal
recognition

initiated

[interesting action]

Retrieve
partial

skill trace

Check
conformance

Infer
goal

Skill
modelsB

A

α

B
e ws

n e w s
A

e ee

w

Old α-skill model

New α-skill model

α5

w

w
B

e ws
α-skill model

β-skill model

α-goal

β-goal

α

Figure 5: Schematic visualization of our goal recognition framework.

observed fragment of the agent’s trace is retrieved (“Retrieve par-
tial skill trace”); in the figure, the fragment ∐︀s,e,w̃︀ performed
by agent B is retrieved. Then, the fragment is checked for confor-
mance with all the retained skill models to produce conformance
diagnostics (“Check conformance”). Finally, the diagnostics are
used to infer the insights into the goal the observed agent attempts
to achieve (“Infer goal”). In this work, the “Check conformance”
activity is operationalized with alignments, refer to Section 3.2,
between the retained models and the trace fragment. The opera-
tionalization of the “Infer goal” activity is detailed in Section 4.1;
Figure 5 suggests that β was inferred as the true goal of agent B.

5 EXPERIMENTAL RESULTS
The presented approach for GR has been implemented and is publicly
available.6 Using this implementation, we evaluated our GR frame-
work over five domains: three event logs made publicly available by
the process mining community and two classical planning domains;
collectively, these five domains constitute a heterogeneous collection
of GR problems. The event logs are real-world records of performed
actions towards different goals and, thus, are readily amenable for
GR using our approach. To test the robustness of our probabilistic
models for GR, we used classical domain models from planning to
simulate collections of traces of different characteristics towards vari-
ous goals. For each experiment, we computed two measures in terms
of true positive (TP), false positive (FP), and false negative (FN ) in-
ferred goals: precision defined as TP⇑(TP+FP) and recall defined as

6https://github.com/zihangs/fp1189_aamas2020/tree/master/tools

TP⇑(TP + FN). In our experiments, TP, FN ∈ {0, 1}, as there is only
one true hidden goal per problem, while FP ∈ {0, . . . , ⋃︀𝒢⋃︀− 1}, where
𝒢 stands for the set of goal hypothesis. The traces and skill models
used to obtain the results presented below are publicly available.7

All the experiments were conducted on a dual-processor Xeon(R)
‘Gold’ running a 3.00GHz, 24GB of RAM, using parameters ϕ = 50,
λ = 1.1, and δ = 1. We also tested ϕ = 0, λ = 1, δ = 0 and noticed
that results only change if traces are significantly sub-optimal.

Next, Section 5.1 presents the results of our experiments with
real-world event logs, while Section 5.2 is devoted to the discussions
of the results of the experiments with synthetic data.

5.1 Process Mining Domains
In this section, we evaluate our GR framework using three real-world
event logs, namely activities of daily living of several individuals,
and processes of handling building permit and environmental permit
applications by five Dutch municipalities. Each trace of each event
log can be seen as an instance of a business process aimed to achieve
a goal. In the reported experiments, we use 80% and 60% of traces in
each log for training, i.e., to discover the corresponding skill model,
and the remaining 20% and 40% of traces for actual GR.
Activities of Daily Living. This dataset consists of eight event logs
capturing the actions of daily living of four individuals, e.g., sleeping,
cooking, and cleaning; the dataset is publicly available.8 For each
individual, two event logs were obtained: one for weekdays and

7https://github.com/zihangs/fp1189_aamas2020/tree/master/datasets
8https://doi.org/10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176

https://github.com/zihangs/fp1189_aamas2020/tree/master/tools
https://github.com/zihangs/fp1189_aamas2020/tree/master/datasets
https://doi.org/10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176


80 / 20 Daily Living Build. PRMT Env. PRMT
%O p r t p r t p r t
10 0.47 0.77 0.15 0.29 0.47 2.90 0.31 0.49 2.00
30 0.54 0.65 0.26 0.45 0.49 6.79 0.45 0.50 4.64
50 0.62 0.71 0.37 0.55 0.57 10.55 0.45 0.49 6.99
70 0.61 0.71 0.48 0.65 0.66 14.10 0.55 0.60 8.85
100 0.62 0.74 0.65 0.74 0.77 18.32 0.57 0.69 10.46
60 / 40 Daily Living Build. PRMT Env. PRMT
%O p r t p r t p r t
10 0.42 0.69 0.04 0.33 0.48 1.92 0.32 0.50 1.15
30 0.51 0.60 0.06 0.47 0.52 4.48 0.44 0.49 2.80
50 0.57 0.63 0.08 0.57 0.59 7.06 0.47 0.50 4.23
70 0.51 0.57 0.10 0.62 0.63 9.47 0.50 0.55 5.41
100 0.54 0.60 0.14 0.70 0.72 12.45 0.60 0.67 6.26

Table 1: GR results for the three real-world datasets showing
for each % of sampled actions from observed trace (%O), avg.
precision (p), avg. recall (r), and avg. time in seconds (t) to infer
a goal based on a given trace fragment.

one for weekends. Each trace was derived from sensor data and
represents a daily routine of the corresponding individual at own
home. The logs show both similar and different behavior patterns of
the individuals. The event logs contain from 6 to 43 traces capturing
from 368 to 4200 actions and were used in [37] for analysis and
monitoring of personal processes.

The results of our GR experiment with this dataset are reported in
Table 1 (column “Daily Living”). The table shows average precision,
recall, and time to infer a goal, i.e., to determine the individual.
Note that each skill model was discovered within one second, and
often much faster; this performance is due to the small number of
traces in the logs. It is also evident that the increase of the number
of training traces leads to qualitatively better predictions, as both
precision and recall strictly increase when increasing the percentage
of training traces from 60% to 80%. Interestingly, for this dataset,
the values of precision and recall are not sensitive to the percentage
of sampled actions, i.e., they are similar across the experiments. A
notable exception in this regard is precision for the 80% training
experiments, which tends to increase with the increase in the number
of sampled actions. Finally, we observe that, for this dataset, the
approach achieves high values of precision and recall for both sizes
of training sets across different numbers of sampled actions. This
indicates that once a sufficient amount of training is attained, the
approach can be used as an early predictor of the agent’s goal, i.e.,
can deliver accurate GR results based on only a few observed actions.
Building Permit Applications. This dataset consists of five event
logs recording processes for handling building permit applications
by five Dutch municipalities, one municipality per log, over a period
of approximately four years. The event logs contain from 832 to
1199 traces capturing from 44 354 to 59 083 actions. This dataset was
made publicly available to the process mining community as part of
the Business Process Intelligence Challenge 2015.9 All the traces
try to reach a similar goal using a similar set of actions, making this
dataset particularly challenging for classifying an observed trace as
originating from a particular municipality.

The results of our GR experiment with this dataset are reported
in Table 1 (column “Build. PRMT”). Again, the average precision,
recall, and time to infer a goal are reported; in this case for five goals
pursued by the five municipalities. For this dataset, the goal inference
took more time, namely from two to eighteen seconds on average,

9https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

which is due to a high number of traces in the logs the skill models
were learned from. The similar values of precision and recall for both
percentages of training traces indicate that it is not always required
to strive to learn skill models from high volumes of data. Instead, one
should look for a point of “saturation” of skill models that permits
high-quality GR. Finally, for this dataset, early predictions are of
lower quality, with high precision and recall achieved only at and
after observing 50% of sampled actions.

Environmental Permit Applications. This dataset consists of five
event logs recording processes for handling environmental permit
applications by five Dutch municipalities, one municipality per log.
The event logs contain from 645 to 1087 traces capturing from
33 373 to 44 801 actions. This dataset was made publicly available
to the process mining community as part of the CoSeLoG project
executed under NWO project number 638.001.211.10

The GR results for this dataset are reported in Table 1, refer to
the “Env. PRMT” column; again, the average values over five goals
are shown. The general trends of the measurements for this exper-
iment are consistent with those obtained for the building permit
dataset. However, the measured precision and recall values for the
environmental permit dataset are consistently lower, which may in-
dicate that either more training is required, or the data is particularly
challenging for distinguishing the goals.

5.2 Planning Domains
In this section, we evaluate our GR framework using two classical
planning domains, namely Navigation, or grids, and Blocksworld.
As planning domains are not directly applicable for our purpose,
they describe rules one can follow to behave in the world and do
not provide sample traces in the world, we generated training and
testing traces by obeying the domain rules, refer to details below.

Navigation. The first domain we look at is a path-finding problem
over grids, cf. Section 2, of different sizes, with initial location at
bottom-middle cell and goals located at the left-, top-, and right-
middle cells when only three goals are tested. Goals are evenly
distributed across the left and right columns and top row when more
goals are tested. For each problem, we learn skill models from 1000
traces, uniformly distributed among the number of goal candidates,
and generated 100 new traces for testing. We test the implications of
learning a model from traces that have different levels of irrationality,
namely traces whose costs are between X% and (X + 10)% larger
than the optimal, while using observations for testing that match or
differ from the level of rationality used for training.

The results in Table 2 show that the learned models tend to have
perfect precision and recall for settings with three goals but for
traces that contain only 10% or 30% of the observations (%O). As
expected, with increasing number of goals, precision and recall
drops as goals are less differentiable. Remarkably, when the model
is learned from an agent acting with a level of irrationality that
differs from the traces used to define the new observations (last
multi-column in the table), still, the precision and recall remain
almost perfect. The lowest scores occur in the smaller grids with
more goals, as goals are closer to each other and traces share many
common observations. It took between 0.004 and 17 seconds to

10https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1


Irrationality 0%–10% 10%–20% 20%–30% 0%–10% train
train&test train&test train&test 20%–30% test

Grid %O p r t p r t p r t p r t
10x10 10 0.89 1.00 0.004 0.77 0.97 0.006 0.84 1.00 0.017 0.84 0.99 0.005

30 1.00 1.00 0.004 0.99 1.00 0.007 0.98 1.00 0.022 0.96 1.00 0.004
3 goals 50 1.00 1.00 0.004 1.00 1.00 0.007 1.00 1.00 0.025 0.99 1.00 0.004

70 1.00 1.00 0.004 1.00 1.00 0.007 1.00 1.00 0.025 1.00 1.00 0.004
100 1.00 1.00 0.004 1.00 1.00 0.007 1.00 1.00 0.023 0.99 0.99 0.005

10x10 10 0.65 1.00 0.011 0.60 0.96 0.024 0.65 0.99 0.061 0.59 0.89 0.011
30 0.84 1.00 0.010 0.81 0.98 0.028 0.80 0.97 0.074 0.73 0.88 0.010

6 goals 50 0.90 1.00 0.011 0.85 0.98 0.030 0.86 0.95 0.084 0.83 0.90 0.010
70 0.90 0.99 0.010 0.87 1.00 0.031 0.88 0.95 0.088 0.82 0.89 0.010
100 0.92 1.00 0.011 0.86 1.00 0.032 0.88 0.96 0.090 0.85 0.91 0.011

10x10 10 0.48 1.00 0.017 0.59 0.96 0.043 0.52 0.92 0.103 0.48 0.89 0.018
30 0.71 0.97 0.020 0.67 0.94 0.051 0.69 0.93 0.121 0.64 0.88 0.020

9 goals 50 0.79 0.96 0.021 0.74 0.96 0.057 0.85 0.94 0.138 0.68 0.80 0.021
70 0.82 0.97 0.021 0.74 0.87 0.059 0.87 0.97 0.147 0.71 0.82 0.022
100 0.85 0.96 0.022 0.77 0.90 0.061 0.87 0.95 0.153 0.74 0.82 0.023

20x20 10 0.97 1.00 0.015 0.97 0.99 0.084 0.92 0.97 0.521 0.88 0.98 0.017
30 1.00 1.00 0.019 1.00 1.00 0.111 1.00 1.00 0.739 0.99 1.00 0.020

3 goals 50 1.00 1.00 0.022 1.00 1.00 0.126 1.00 1.00 0.881 1.00 1.00 0.023
70 1.00 1.00 0.022 1.00 1.00 0.131 1.00 1.00 0.857 1.00 1.00 0.023
100 1.00 1.00 0.019 1.00 1.00 0.119 1.00 1.00 0.659 1.00 1.00 0.021

20x20 10 0.78 0.97 0.166 0.74 0.95 0.570 0.69 0.92 1.737 0.70 0.90 0.162
30 0.87 0.98 0.201 0.88 0.98 0.740 0.87 0.96 2.283 0.81 0.91 0.200

9 goals 50 0.89 0.97 0.229 0.90 0.96 0.877 0.89 0.97 2.767 0.86 0.92 0.239
70 0.91 0.96 0.242 0.91 0.97 0.941 0.92 0.97 3.012 0.88 0.92 0.261
100 0.90 0.95 0.250 0.91 0.97 0.982 0.91 0.96 3.216 0.89 0.91 0.281

30x30 10 0.99 1.00 0.096 0.99 1.00 0.598 0.93 1.00 2.620 0.96 1.00 0.108
30 1.00 1.00 0.147 1.00 1.00 0.887 1.00 1.00 4.080 0.99 1.00 0.150

3 goals 50 1.00 1.00 0.169 1.00 1.00 1.090 1.00 1.00 4.580 1.00 1.00 0.177
70 1.00 1.00 0.146 1.00 1.00 0.999 1.00 1.00 4.220 1.00 1.00 0.177
100 1.00 1.00 0.088 1.00 1.00 0.714 1.00 1.00 2.660 1.00 1.00 0.154

30x30 10 0.75 0.97 0.756 0.81 0.96 2.316 0.61 0.87 7.891 0.73 0.88 0.835
30 0.89 0.97 1.014 0.86 0.93 3.295 0.71 0.88 11.367 0.80 0.85 1.156

9 goals 50 0.91 0.97 1.222 0.89 0.94 4.014 0.73 0.85 14.462 0.83 0.84 1.425
70 0.92 0.97 1.285 0.89 0.92 4.297 0.74 0.84 16.101 0.87 0.88 1.589
100 0.90 0.94 1.293 0.89 0.92 4.478 0.75 0.83 17.343 0.88 0.88 1.726

Table 2: GR results for grids showing for each % of sampled
actions from observed trace (%O), avg. precision (p), avg. recall
(r), and avg. time in seconds (t) to infer a goal based on a given
trace fragment.

process observation traces, growing slower as a function of the length
of the trace. Learning each model took 5 seconds in the smallest grid
and up to 60 seconds in the biggest one. Table 3 shows the evolution
of performance while learning models from new traces (6 goals
in a 10x10 grid), exemplifying the continuous GR proposed in the
previous section. Recall improves as the number of traces available
for learning increases, but precision drops, due to sharing of sub-
optimal traces among different goals. This indicates the existence of
a trade-off between recall and precision when irrational agents are
allowed and the need of “forgetting” old traces.

Blocksworld. The Blocksworld domain has been widely used by
model-based GR systems [28], where a generative model of the prob-
lem is given in PDDL [15]. In our process mining (PM) framework,
we learned models for each goal from 1000 traces generated by a
planner [17], where most traces are optimal. Learning each model
took on average one second for each of the 20 goals in the domain.
We compared PM with existing model-based GR (R&G) [33] up-
graded to use the best planner of the agile track from the International
Planning Competition 2018 [13], and a version that trades off speed

10 traces 100 traces 1000 traces
%O p r t p r t p r t
10 0.61 0.89 0.009 0.63 0.94 0.052 0.59 0.94 0.290
30 0.80 0.91 0.008 0.83 0.96 0.062 0.79 0.98 0.360
50 0.88 0.91 0.008 0.88 0.97 0.069 0.86 1.00 0.410
70 0.94 0.96 0.008 0.91 0.99 0.071 0.88 1.00 0.420
100 0.95 0.96 0.009 0.90 0.99 0.077 0.86 1.00 0.430

Table 3: GR results for grids over training sets of different sizes.

PM Landmark R&G
%O p r t r t r t
10 0.08 0.45 0.037 0.89 0.111 0.84 1.656
30 0.28 0.70 0.040 0.97 0.122 0.90 1.735
50 0.40 0.72 0.045 1.00 0.127 0.97 1.836
70 0.70 0.91 0.056 1.00 0.148 0.99 2.056
100 0.89 0.99 0.070 1.00 0.185 1.00 2.378

Table 4: Comparison of GR results using PM and model-based
approaches over Blocksworld showing for each % of sampled
actions (%O), avg. precision (p), avg. recall (r), and avg. time in
seconds (t) to infer a goal based on a given trace fragment.

for accuracy relying on Landmark heuristics [29]. Performance met-
rics for the model-based approaches are taken from Pereira et al. [29],
which only reports the number of times the true goal belongs to the
candidate sets chosen by the algorithms (recall); hence, precision
is not reported. The results reported in Table 4 show that precision
and recall improve as observation traces become complete. While
our approach is faster, the model-based GR has better recall as it has
access to the full model of the problem.

6 CONCLUSION
We presented an approach to probabilistic GR based on aligning
observations against process models that are automatically extracted
using state-of-the-art process mining techniques for process discov-
ery from recorded past behaviors, available in domain logs as sets
of event traces. By doing so, GR can be performed in settings in
which predefined plan libraries or planning domains may not be
easily obtained. Indeed, we provided experimental results on three
real-world datasets for which no such knowledge is readily available,
but for which logs of traces do exist. We showed how our approach
can be used to instantiate a GR framework inspired by the princi-
ples of observational learning from social cognitive learning theory.
The framework constitutes a collection of components that can be
selectively replaced to tune the performance of the system.

There exists work in (statistical) learning that proposes to build
GR from previous behavior data. For example, [1] and [30] learn the
underlying domain transition model that can then support planning-
based GR, [5] learns the decision-making model of the observed
agent when executing an HTN-style plan-library (which is known
a priori), while [6] and [26] are cases of end-to-end learning from
observed behavior to the intended goal. Like our work, their over-
arching objective is to ease the traditional requirement of having
the observed agent model at hand. However, those approaches yield
black-box type GR systems. In contrast, our approach produces judg-
ments that can be directly interpreted by relying on the structured
processes synthesized and identified process misalignments.

We acknowledge a range of limitations of our work so far. We
have not tested with a wide range of process discovery and confor-
mance checking techniques developed [9, 38], and we have only
considered alignment steps that involve trace actions. We have also
used fixed constants on parameters, which can be learned over time
to yield the best performance. Finally, an interesting direction to
pursue in future work is to look at non-stationary environments, i.e.,
environments that continuously change. In this context, the concepts
of “forgetting” traces used to construct skill models and skill model
“saturation” should be investigated to yield robust GR experience.



REFERENCES
[1] Leonardo Amado, Ramon Fraga Pereira, João Paulo Aires, Mauricio Cecilio

Magnaguagno, Roger Granada, and Felipe Meneguzzi. 2018. Goal Recognition in
Latent Space. In Proc. of IJCNN. 1–8.

[2] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and
Artem Polyvyanyy. 2018. Split miner: automated discovery of accurate and simple
business process models from event logs. KAIS 59, 2 (may 2018), 251–284.
https://doi.org/10.1007/s10115-018-1214-x

[3] Chris L Baker, Rebecca R Saxe, and Joshua B Tenenbaum. 2009. Action under-
standing as inverse planning. Cognition 113, 3 (2009), 329–349.

[4] Albert Bandura. 2008. Observational Learning. American Cancer Society. https:
//doi.org/10.1002/9781405186407.wbieco004

[5] Francis Bisson, Hugo Larochelle, and Froduald Kabanza. 2015. Using a Recursive
Neural Network to Learn an Agent’s Decision Model for Plan Recognition. In Proc.
of IJCAI, Qiang Yang and Michael J. Wooldridge (Eds.). AAAI Press, 918–924.

[6] Nate Blaylock and James F. Allen. 2003. Corpus-based, Statistical Goal Recogni-
tion. In Proc. of IJCAI, Georg Gottlob and Toby Walsh (Eds.). Morgan Kaufmann,
1303–1308.

[7] Diana Borsa, Nicolas Heess, Bilal Piot, Siqi Liu, Leonard Hasenclever, Rémi
Munos, and Olivier Pietquin. 2019. Observational Learning by Reinforcement
Learning. In AAMAS. 1117–1124.

[8] Sandra Carberry. 2001. Techniques for plan recognition. User Modeling and
User-Adapted Interaction 11, 1-2 (2001), 31–48.

[9] Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Wei-
dlich. 2018. Conformance Checking—Relating Processes and Models. Springer
International Publishing. https://doi.org/10.1007/978-3-319-99414-7

[10] Eric Demeester, Marnix Nuttin, Dirk Vanhooydonck, and Hendrik Van Brussel.
2003. A model-based, probabilistic framework for plan recognition in shared
wheelchair control: Experiments and evaluation. In ICIRS, Vol. 2. 1456–1461.

[11] Robert Demolombe and Erwan Hamon. 2002. What does it mean that an agent is
performing a typical procedure? A formal definition in the situation calculus. In
IJCAI. 905–911.

[12] Jonas Firl and Quan Tran. 2011. Probabilistic Maneuver Prediction in Traffic
Scenarios. In ECMR. 89–94.

[13] Guillem Frances, Hector Geffner, Nir Lipovetzky, and Miquel Ramırez. 2018.
Best-first width search in the IPC 2018: Complete, simulated, and polynomial
variants. In IPC–2018–Classical Tracks. 22–26.

[14] Malik Ghallab, Dana S. Nau, and Paolo Traverso. 2004. Automated Planning:
Theory and Practice. Morgan Kaufmann Publishers Inc.

[15] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. 2019. An
Introduction to the Planning Domain Definition Language. Morgan & Claypool.

[16] Jun Hong. 2001. Goal recognition through goal graph analysis. Journal of
Artificial Intelligence Research (JAIR) 15 (2001), 1–30.

[17] Michael Katz, Shirin Sohrabi, Octavian Udrea, and Dominik Winterer. 2018. A
Novel Iterative Approach to Top-k Planning. In Proc. of ICAPS.

[18] Henry A. Kautz and James F. Allen. 1986. Generalized plan recognition, In Proc.
of AAAI. Proc. of AAAI, 32–37.

[19] Julian Kooij, Nicolas Schneider, Fabian Flohr, and Dariu Gavrila. 2014. Context-
based pedestrian path prediction. In Proc. of ECCV. 618–633.

[20] Alexander Kott and William McEneaney. 2006. Adversarial reasoning: Computa-
tional approaches to reading the opponent’s mind. CRC Press.

[21] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. 2014. A survey on
motion prediction and risk assessment for intelligent vehicles. Robomech Journal
1, 1 (2014), 1–14.

[22] Neal Lesh, Charles Rich, and Candace L Sidner. 1999. Using plan recognition in
human-computer collaboration. In Proc. of UM. 23–32.

[23] Peta Masters and Sebastian Sardina. 2017. Cost-based goal recognition for path-
planning. In Proc. of AAMAS. 750–758.

[24] Peta Masters and Sebastian Sardina. 2019. Cost-Based Goal Recognition in
Navigational Domains. Journal of Artificial Intelligence Research (JAIR) 64
(2019), 197–242. https://doi.org/10.1613/jair.1.11343

[25] Peta Masters and Sebastian Sardina. 2019. Goal Recognition for Rational and
Irrational Agents. In Proc. of AAMAS. 440–448.

[26] Wookhee Min, Eunyoung Ha, Jonathan P. Rowe, Bradford W. Mott, and James C.
Lester. 2014. Deep Learning-Based Goal Recognition in Open-Ended Digital
Games. In Proc. of the AAAI Conference on AI and Interactive Digital Entertain-
ment (AIIDE), Ian Horswill and Arnav Jhala (Eds.). AAAI Press.

[27] David Pattison and Derek Long. 2013. Accurately determining intermediate and
terminal plan states using Bayesian goal recognition, In Proc. of AAAI. Proc. of
AAAI, 32–37.

[28] Ramon Fraga Pereira and Felipe Meneguzzi. 2017. Goal and plan recognition
datasets using classical planning domains. (July 2017). https://doi.org/10.5281/
zenodo.825878

[29] Ramon Fraga Pereira, Nir Oren, and Felipe Meneguzzi. 2017. Landmark-based
heuristics for goal recognition. In AAAI.

[30] Ramon Fraga Pereira, Mor Vered, Felipe Meneguzzi, and Miquel Ramírez. 2019.
Online Probabilistic Goal Recognition over Nominal Models. In Proc. of IJCAI.
5547–5553.

[31] Artem Polyvyanyy and Anna Kalenkova. 2019. Monotone Conformance Checking
for Partially Matching Designed and Observed Processes. In Proc. of ICPM. 81–
88.

[32] Miquel Ramirez and Hector Geffner. 2009. Plan recognition as planning, In Proc.
of IJCAI. Proc. of IJCAI, 1778–1783.

[33] Miquel Ramirez and Hector Geffner. 2010. Probabilistic plan recognition using
off-the-shelf classical planners, In Proc. of AAAI. Proc. of AAAI, 1121–1126.

[34] Patrice C Roy, Abdenour Bouzouane, Sylvain Giroux, and Bruno Bouchard. 2011.
Possibilistic activity recognition in smart homes for cognitively impaired people.
AAI 25, 10 (2011), 883–926.

[35] Gita Sukthankar, Christopher Geib, Hung Hai Bui, David Pynadath, and Robert P
Goldman. 2014. Plan, activity, and intent recognition: Theory and practice.
Newnes.

[36] Gita Sukthankar and Katia Sycara. 2005. A cost minimization approach to human
behavior recognition, In Proc. of IJCAI. Proc. of IJCAI, 1067–1074.

[37] Timo Sztyler, Josep Carmona, Johanna Völker, and Heiner Stuckenschmidt. 2016.
Self-tracking Reloaded: Applying Process Mining to Personalized Health Care
from Labeled Sensor Data. T. Petri Nets and Other Models of Concurrency 11
(2016), 160–180. https://doi.org/10.1007/978-3-662-53401-4_8

[38] Wil M. P. van der Aalst. 2016. Process Mining—Data Science in Action, Second
Edition. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49851-4

[39] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. 2012.
Replaying history on process models for conformance checking and performance
analysis. Data Min. Knowl. Discov. 2, 2 (jan 2012), 182–192. https://doi.org/10.
1002/widm.1045

[40] Wil M. P. van der Aalst, Vladimir A. Rubin, H. M. W. Verbeek, Boudewijn F.
van Dongen, Ekkart Kindler, and Christian W. Günther. 2010. Process mining: A
two-step approach to balance between underfitting and overfitting. SoSyM 9, 1
(2010), 87–111. https://doi.org/10.1007/s10270-008-0106-z

[41] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. 2004. Workflow
Mining: Discovering Process Models from Event Logs. IEEE TKDE 16, 9 (sep
2004), 1128–1142. https://doi.org/10.1109/TKDE.2004.47

[42] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and Mathias
Weske. 2011. Process compliance analysis based on behavioural profiles. Infor-
mation Systems 36, 7 (nov 2011), 1009–1025. https://doi.org/10.1016/j.is.2011.04.
002

https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1002/9781405186407.wbieco004
https://doi.org/10.1002/9781405186407.wbieco004
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1613/jair.1.11343
https://doi.org/10.5281/zenodo.825878
https://doi.org/10.5281/zenodo.825878
https://doi.org/10.1007/978-3-662-53401-4_8
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1002/widm.1045
https://doi.org/10.1002/widm.1045
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1016/j.is.2011.04.002
https://doi.org/10.1016/j.is.2011.04.002

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Probabilistic Goal Recognition as Planning
	3.2 Process Mining

	4 Approach
	4.1 Goal Recognition over Alignments
	4.2 Towards Goal Recognition Framework

	5 Experimental Results
	5.1 Process Mining Domains
	5.2 Planning Domains

	6 Conclusion
	References

