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Abstract
In this paper, we investigate algorithms for finding centers of a given collection N  
of sets. In particular, we focus on metric rational set similarities, a broad class of 
similarity measures including Jaccard and Hamming. A rational set similarity S is 
called metric if D = 1 − S is a distance function. We study the 1-center problem on 
these metric spaces. The problem consists of finding a set C that minimizes the max-
imum distance of C to any set of N  . We present a general framework that computes 
a (1 + �) approximation for any metric rational set similarity.

Keywords Polynomial time approximation schemes · Clustering · 1-Center · 
Rational set similarity

1 Introduction

Clustering algorithms form a fundamental subroutine in any data analysis chain. The 
aim of clustering is to partition the data set N  such that similar objects are grouped 
together and dissimilar objects are grouped in distinct clusters. Often, we assume 
that the objects lie in some metric space, i.e., their similarity (or rather dissimilar-
ity) is characterized by some distance function D. In this case, center-based cluster-
ing objectives are particularly popular. For these problems, we aim to find a subset 
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of objects C, such that some function of the distances between the sets of N  and 
their respectively closest center in C is minimized. Among the most commonly used 
functions are the sum of distances, which corresponds to the k-median problem, the 
sum of squared distances, which corresponds to the k-means problem, and the maxi-
mum distance, which corresponds to the k-center problem.

In this paper, we focus on the 1-center problem for a large class of metrics defined 
on sets. Specifically given a collection of sets N  from some universe U and some 
distance function D, we aim to find a set C ⊂ U such that max

A∈N
D(A,C) is minimized. 

In this paper, we assume that the distance function is induced by rational set simi-
larities. Given two subsets A and B of some ground set U, the similarity between A 
and B is defined as a the ratio between linear combinations of the cardinalities of 
symmetric difference A△ B , intersection A ∩ B , and negated union A ∪ B . The 
induced dissimilarity function is 1 minus the similarity. If the dissimilarity is a dis-
tance function, the similarity is known as a metric rational set similarity. Well 
known examples for similarities include Sokal-Michener’s simple matching [17] 
|A∩B|+|A∪B|

|U|  , the Jaccard index [22] |A∩B||A∪B| , the Anderberg similarity [1] |A∩B|
|A∪B|+|A△B| , and 

the Rogers-Tanimoto coefficient [30] |A∩B|+|A∪B||U|+|A△B|  . For further examples, we refer to 
Gower and Legendre [18]. We are given a collection N  of n subsets of some ground 
set U. Our aim is to find a center C ⊆ U minimizing the maximum distance to all 
sets of N  . We obtain the following result (see Theorem 2 for a precise statement):

The 1-center in the metric space induced by sets and the distance function of a 
metric rational set similarity admits a polynomial time approximation scheme.

Prior to our work, the only metric rational set similarity for which the 1-center 
problem admits a PTAS was Sokal-Michener’s simple matching similarity.1 The 
induced distance function is equivalent to the Hamming distance on the Boolean 
hypercube and the problem itself is more commonly referred to as the Closest 
String Problem. We refer to more related work in Sect. 3. Our PTAS runs in time 
O(npoly(�

−1)) , where the exponent of �−1 depends on the underlying rational set simi-
larity and is never larger than 6. For the Closest String problem, the exponent of � is 
2, which matches the running time of the best previously known algorithms [2, 26] 
up to polylog �−1 factors in the exponent of n. We note that we require that the coef-
ficients of the linear combination of numerator and denominator are constants. Since 
all rational set similarities used in practice satisfy this property, we view this as a 
mild assumption.

Rational set similarities appear in a wide variety of areas, including nearest 
neighbor searching [6, 8], plagiarism detection [4], association rule mining [13], 
collaborative filtering [15], web compression [9], biogeographical analysis [29], and 
chemical similarity searching [33]. Most notably, many of them were initially pro-
posed for classification and cluster analysis [1, 17, 30]. However, a rigorous analysis 

1 A preliminary version of this paper proving polynomial time approximability of the Jaccard center 
problem appeared in ICALP 2017 [5].
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for classical clustering problems has been mostly constrained to the Closest String 
Problem and the Jaccard-median problem. Our work significantly expands upon this.

2  Approach and Techniques

The starting point of all known polynomial time approximation schemes for the 
Closest String problem, as well as the Jaccard-center problem, is a natural LP-
formulation [5, 25]. Specifically, the cardinality of symmetric difference |A△ C| , 
intersection |A ∩ C| , and negated union |A ∪ C| can all be expressed as a linear com-
bination of binary variables Ci = 1 if element i ∈ C or Ci = 0 if element i ∉ C , as 
long as A is fixed. Then both numerator Num(A,C) and denominator Den(A,C) of 
the similarity can be expressed as a linear combination. By testing the integer linear 
program

for feasibility, we know whether a center with maximum distance dist exists. For 
instance, if the similarity is Sokal-Michener’s simple matching and the associated 
distance function is the Hamming norm on the hypercube, the constraints have the 
form

The main idea is to compute a feasible fractional solution to the LP and subse-
quently apply randomized rounding. This simple strategy already provides a high 
quality center given that the symmetric difference between center and any input set 
is sufficiently large. This behavior is also observed in real-world instances of these 
problems [11].

In the case that the rounding fails to provide a good solution, the algorithms 
switch to a number of enumeration strategies. The first important observation is that 
using Chernoff bounds [28], one can bound the symmetric difference between an 
optimal center and any input set by O(ln n) . This already gives rise to a simple quasi-
polynomial time algorithm: Pick an arbitrary input set A, and try all sets with sym-
metric difference O(ln n) from A. For a ground set U, there are at most ( |U|
O(ln n)

)
∈ |U|O(ln n) possibilities.

This type of enumeration may be substantially improved if we simultaneously 
consider the items of multiple sets A1,… ,Am , all of which have small symmetric 
distances to the optimum. Here, the number of candidate subsets cannot increase, 
but may be reduced. For Hamming center, this was achieved via the notion of a gen-
erator [27]. Essentially, a generator for an optimal center C is a collection M of sets 
such that the items either contained in all sets of M are in C and those items not con-
tained in any set of M are not in C. Formally, M is a generator of C if the items 
I ∶= {i ∈ {1,… , |U|} | ∀A∈M i ∈ A} and J ∶= {i ∈ {1,… , |U|} | ∀A∈M i ∉ A} 

Den(A,C) − Num(A,C) ≤ dist ⋅ Den(A,C)

|A△ C| =
|U|∑
i=1

Ai + Ci − 2AiCi ≤ dist ⋅ |U|.
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satisfy I ⊆ C and J ⊆ U ⧵ C . The conflict set of the generator, consists precisely of 
the items not included in either I or J, i.e., U ⧵ (I ∪ J) . Given that the conflict size is 
small, and that we can determine an appropriate M, we can extract C via brute force 
enumeration in polynomial time. Marx [27] showed how a generator may be effi-
ciently constructed for the Hamming center problem if the distance is small, and 
Andoni et  al. [2] further extended this to (1 + �)-approximations. Generators are 
therefore a natural starting point. The limits of the construction become apparent for 
the Jaccard-center problem. Items in C and not in C can be treated indiscriminately 
for the Hamming center problem, i.e., the Hamming center problem of the instance 
N  is identical to the Hamming center of the instance N ∶= {A ⊂ U|U�A ∈ N} . The 
same does not hold for arbitrary rational set similarities. For instance the Jaccard 
distance |A△C|

|A∪C|  is highly sensitive to the support of both A and C.
We therefore aim to expand the properties of a generator to account for the sup-

port of the subsets. This is made more precise via the notion of core-cover. We call 
a collection of sets M a core-cover, if an optimal center C is (mostly) contained 
in 

⋃
A∈M A . Specifically, we require that 

⋃
A∈M A contains an (1 + �)-approxi-

mate solution. An anchored core-cover further restricts the possible solutions by 
always containing the items in the intersection of all sets of the core-cover, i.e., ⋂

A∈M A ∪
�
C ∩

⋃
A∈M A

�
 is an (1 + �)-approximate solution. Crucially, we show that 

the size of an anchored core-cover depends only on �−1 . This allows us to determine 
by brute force in time n|M| an anchored core-cover and enumerate all possible solu-
tions 

⋂
A∈M A ∪

�
C ∩

⋃
A∈M A

�
 . For more technical remarks comparing core-covers 

to generators, we refer to Sect. 6. They are also related in spirit to coresets for the 
minimum enclosing ball, which corresponds to the 1-center problem in Euclidean 
space [3, 12, 24, 34].

To extend our analysis to arbitrary rational set similarities, we require a number 
of additional ideas. First, the denominator of any rational set similarity can be writ-
ten as linear combination of the denominator of Hamming-distance and Jaccard dis-
tance. With this observation, we are able to identify a set of “characteristic” rational 
set similarities to which any other rational set similarity may be (non-trivially) 
reduced. These characteristic rational set similarities are sufficiently closely related 
to either Hamming and Jaccard such that the analysis of the LP rounding as well as 
the construction of a core-cover can be extended.

3  Related Work

Most center problems for rational set similarities were heuristic, see for instance 
Guha et al. [20]. In theory, most attention has been shown to the Closest String 
Problem. The first PTAS was proposed by Li, Ma and Wang [25]. Subsequently, 
the running time of the PTAS was further improved by Andoni, Indyk and 
Patrascu [2], and by Ma and Sun [26], with the currently best running time being 
nO(�

−2) . Andoni, Indyk and Patrascu [2] further gave a conditional lower bound 
showing that any PTAS must have running time exp(�−2) , assuming the exponen-
tial time hypothesis (ETH). Cygan et al. [14] further showed that assuming ETH, 
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any (1 + �) must require time O(n�−1) . Further, no efficient PTAS (i.e., a PTAS 
running in time f (�) ⋅ poly(n) ) can exist unless FPT = W[1] . The Closest String 
Problem also has received substantial attention for fixed parameter algorithms, 
see [7, 16, 19, 21, 27] and references therein.

To the best of our knowledge, the only other rational set similarity for which 
theoretical clustering problems have been analyzed is the Jaccard-median prob-
lem, i.e., the task of finding a center C such that the sum of Jaccard distances 
to C is minimized. Spaeth [31] gave a structural result for continuous Jaccard 
measures, which proved that even in the Euclidean space, the problem is in NP. 
Watson [32] gave a vertex descent algorithm without bounds on the running time. 
Chierichetti et  al. [10] proved that the Jaccard-median problem is NP-hard, but 
admits a PTAS. In previous work [5], we showed that the Jaccard-center problem 
admits a PTAS.

4  Preliminaries

Let U = {u1, u2,… , ud} be a base set containing d elements and let N ⊆ P(U) 
be a collection of n subsets of U. Denote the symmetric difference of two sets 
by A△ B ∶= (A ⧵ B) ∪ (B ⧵ A) . We will refer to the complementary set by 
A ∶= U ⧵ A.

Definition 1 Rational Set Similarities [18] Given x, y ≥ 0 and z ≥ z′ ≥ 0 , the 
rational set similarity Sx,y,z,z′ between two non-empty item sets A and B is

if it is defined and 1 otherwise. The dissimilarity induced by Sx,y,z,z′ is defined as

if it is defined and 0 otherwise. If Dx,y,z,z′ is a distance function, we call Sx,y,z,z′ a met-
ric rational set similarity.

We will assume throughout this paper that x, y, z, z′ are either positive constant 
integers, or 0. Further, without loss of generality, we assume that x ≥ y , as 
Dx,y,z,z� (A,B) = Dy,x,z,z� (A,B) . The arguably most well-known rational set similarity 
is the Jaccard similarity S1,0,1,0(A,B) =

|A∩B|
|A∪B| . For distances induced by metric 

rational set similarities, D1,1,1,0 corresponds to the Hamming distance on the 
d-dimensional hypercube. The precise set of conditions under which a rational set 
similarity Sx,y,z,z′ yields a metric Dx,y,z,z′ can be found in Janssens’ thesis [23], see 
also Chierichetti and Kumar [8].

Sx,y,z,z� (A,B) =
x ⋅ |A ∩ B| + y ⋅ |A ∪ B| + z� ⋅ |A△ B|
x ⋅ |A ∩ B| + y ⋅ |A ∪ B| + z ⋅ |A△ B|

Dx,y,z,z� (A,B) ∶= 1 − Sx,y,z,z� (A,B) =
(z − z�) ⋅ |A△ B|

x ⋅ |A ∩ B| + y ⋅ |A ∪ B| + z ⋅ |A△ B|
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Proposition 1 Characterizations of Metric Rational Set Similarities, Janssens [23] 
(P(U),Dx,y,z,z� (A,B)) is a metric space if and only  if z ≥ max(x, y, z�).

We assume z > z′ as otherwise all distances are 0 and the problem is trivial. All 
rational set similarities considered in this paper will have metric distance functions. 
To simplify the analysis, we will only consider rational set similarities with certain 
parameters. In Sect. 5 we will show that the center problem on the corresponding 
distance of a general rational set similarity can always be reduced to the center prob-
lem on a simpler distance, the simple rational set distance, which we define next.

Definition 2 Simple Rational Set Distance (simple RSD) Given 1 ≥ y ≥ 0 the sim-
ple RSD Dy between two non-empty item sets A and B is

if it is defined and 0 otherwise.

In the subsequent section, we will establish a strong relationship between Dy′ and 
Dx,y,z,z′ , if 

y

x
= y� . For now, note that if y� = y∕x

We will assume that x, y′, z, z′ are constants.

Problem  1 RSD-Center Given the base set U = {u1, u2,… , ud} , and a collec-
tion N ⊆ P(U) of n subsets of U, the RSD-center problem consists of finding a set 
C ⊆ U such that

is minimized.

We denote by OPT  the value minC⊂U maxA∈N Dx,y,z,z� (A,C) throughout this paper. 
We further assume that OPT <

1

1+𝜀
 , as any candidate solution K ⊂ U has distance at 

most 1 to any other subset of U and therefore would be a (1 + �) approximation. 
Lastly, we will frequently use the following easy verifiable facts throughout the 
paper.

Fact 1 Let A,B ⊆ U be two item sets. Then the following statements hold: 

1. |A ∩ B| = |A ∪ B| − |A△ B| = |A ∪ B| − Dy(A,B) ⋅
[
y ⋅ |A ∪ B| + |A ∪ B|

]

Dy(A,B) ∶=
|A△ B|

|A ∪ B| + y ⋅ |A ∪ B|

Dy� (A,B) =
|A△ B|

|A ∪ B| + y� ⋅ |A ∪ B|
=

x ⋅ |A△ B|
x ⋅ |A ∪ B| + y ⋅ |A ∪ B|

=
x ⋅ |A△ B|

x ⋅ |A ∩ B| + y ⋅ |A ∪ B| + x ⋅ |A△ B|
= Dx,y,x,0(A,B).

max
A∈N

Dx,y,z,z� (A,C)
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2. |A ⧵ B| = |A△ B| − |B ⧵ A| = Dy(A,B) ⋅
[
|A ∪ B| + y ⋅ |A ∪ B|

]
− |B ⧵ A|

3. if y = 0 ⇒ |A ⧵ B| = D0(A,B) ⋅ |A ∪ B| − |B ⧵ A| ≤ D0(A,B) ⋅ |A|
4. if y = 0 ⇒ |A| ≥ (1 − D0(A,B)) ⋅ |B|

The remaining paper is now organized as follows. Section 5 contains the reduc-
tion from arbitrary metric RSD to simple RSD. Section 6 bounds the size of core-
covers for any simple RSD. Section  7 describes the algorithm containing the LP 
rounding procedure and the core-cover-based enumeration strategy, as well as prov-
ing correctness. We conclude with a minor remark showing that for continuous Jac-
card measures, the 1-center problem is solvable in polynomial time, whereas the 
1-median problem is NP-hard (Sect. 8).

5  Reduction from RSD Center to Simple RSD Center

Lemma 1 Let N ⊂ P(U) be a collection of item sets, let y′ be a rational number 
in [0,  1] and let x, y, z, z′ be non-negative integers satisfying z ≥ max(x, y, z�) and 
y� = y∕x .  Then for any set S, we have

Furthermore, let � ≥ 0 be a parameter. Then if S is an item set satisfying

we have

Proof In the following, let B = argmax
A∈N

Dy� (A,C) . We will first show that am opti-

mal solution C for the problem min
C�

⊂U
max
B∈N

Dy� (B,C
�) is also an optimal solution for 

the problem min
C�

⊂U
max
B∈N

Dx,y,z,z� (B,C
�) . By optimality of C, we know that for any can-

didate solution C′ there exists some B′ with Dy� (B,C) ≤ Dy� (B
�,C�) . Hence,

S = argmin
S�⊂U

max
A∈N

Dy� (A, S) ⟺ S = argmin
S�⊂U

max
A∈N

Dx,y,z,z� (A, S).

max
A∈N

Dy� (A, S) ≤ (1 + 𝜀) min
C⊂U

max
B∈N

Dy� (B,C),

max
A∈N

Dx,y,z,z� (A, S) ≤ (1 + 𝜀) min
C⊂U

max
B∈N

Dx,y,z,z� (B,C).
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This proves the first claim. What is left to show is that this still holds for approxima-
tions. With B defined as above and A = argmax

A∈N

Dy� (A, S) , we have

Combining the final equation with Eq. 1 now yields for any A� ∈ N  and B′,C′ as 
defined above

  ◻

We remark that while an optimal solution for the 1-center problem with distance 
function Dy is equivalent to an optimal solution for the 1-center problem with dis-
tance function Dx,y,z,z′ , the same does not hold for approximations. That is, approx-
imating the 1-center problem with distance funciton Dx,y,z,z′ may be easier than 

(1)

|B△ C|
|B ∪ C| + y�|B ∪ C|

≤
|B� △ C�|

|B� ∪ C�| + y�|B� ∪ C�|
⟺ |B△ C| ⋅ (|B� ∪ C�| + y�|B� ∪ C�|) ≤ |B� △ C�| ⋅ (|B ∪ C| + y�|B ∪ C|)
⟺ |B△ C| ⋅ (|B� ∪ C�| + y�|B� ∪ C�|) + z∕x|B△ C| ⋅ |B� △ C�|

≤ |B� △ C�| ⋅ (|B ∪ C| + y�|B ∪ C|) + z∕x|B△ C| ⋅ |B� △ C�|
⟺

|B△ C|
|B ∪ C| + y�|B ∪ C| + z∕x|B△ C|

≤
|B� △ C�|

|B� ∪ C�| + y�|B� ∪ C�| + z∕x|B� △ C�|
⟺

(z − z�)|B△ C|
x|B ∪ C| + y|B ∪ C| + z|B△ C|

≤
(z − z�)|B� △ C�|

x|B� ∪ C�| + y|B� ∪ C�| + z|B� △ C�|
⟺ Dx,y,z,z� (B,C) ≤ Dx,y,z,z� (B

�,C�).

|A△ S|
|A ∪ S| + y�|A ∪ S|

≤ (1 + �)
|B△ C|

|B ∪ C| + y�|B ∪ C|
⟹ |A△ S| ⋅ (|B ∪ C| + y�|B ∪ C|) ≤ (1 + �) ⋅ |B△ C| ⋅ (|A ∪ S| + y�|A ∪ S|)
≤ (1 + �) ⋅ |B△ C| ⋅ (|A ∪ S| + y�|A ∪ S|) + � ⋅ |B△ C| ⋅ (z∕x)|A△ S|
⟺ |A△ S| ⋅ (|B ∪ C| + y�|B ∪ C| + (z∕x)|B△ C|))
≤ (1 + �) ⋅ |B△ C| ⋅ (|A ∪ S| + y�|A ∪ S| + (z∕x)|A△ S|)
⟺

|A△ S|
|A ∪ S| + y�|A ∪ S| + (z∕x)|A△ S|

≤ (1 + �)
|B△ C|

|B ∪ C| + y�|B ∪ C| + (z∕x)|B△ S|
⟺

(z − z�)|A△ S|
x|A ∪ S| + y|A ∪ S| + z|A△ S|

≤ (1 + �)
(z − z�)|B△ C|

x|B ∪ C| + y|B ∪ C| + z|B△ S|
⟺ Dx,y,z,z� (A, S) ≤ (1 + �)Dx,y,z,z� (B,C).

Dx,y,z,z� (A
�, S) ≤ Dx,y,z,z� (A, S) ≤ (1 + �)Dx,y,z,z� (B,C) ≤ (1 + �)Dx,y,z,z� (B

�,C�).
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approximation the problem with distance function Dy . In this sense, the problem 
min
C�

⊂U
max
B∈N

Dy� (B,C
�) is the canonical hard problem.

Also, as mentioned in the preliminaries, this lemma implies a reduction for the 
metric spaces of the form (P(U),Dx,y,z,z� ) with y > x , as Dx,y,z,z� (A,B) = Dy,x,z,z� (A,B) . 
As a preprocessing step, we determine N ∶= {A | A ∈ N} and compute a (1 + �) 
approximation for the appropriate simple RSD center problem on N .

6  Core Covers

Throughout this section, we consider the metric space (P(U),Dy) . Let N  be a col-
lection of subsets of a base set U, let OPT be the maximum distance of an optimal 
center to any subset in N .

Our algorithms are based on the existence of a small collection M of input sets 
such that a high quality center can be extracted from M. Informally, the items of an 
optimal center are well represented by the items of the sets contained in M.

Definition 3 (Core-covers) Let 𝜀 > 0 be a constant. A collection M ⊆ N  with 
IM = ∩A∈MA and OM = ∪A,B∈MA△ B is an (�, y)-core-cover if there exists an opti-
mal center C with K =

(
IM ∪ OM

)
∩ C and:

A collection M ⊆ N  is an (�, y)-anchored-core-cover if there exists an optimal 
center C with K = IM ∪ (OM ∩ C) and:

Marx [27] proposed generator strings for the Hamming center problem on the 
Boolean hypercube (see Section 3 of the reference). In our terminology, the problem 
corresponds to the simple RSD D1 or more generally D1,1,0,1 . Given a collection of 
sets M, define OM ∶= {i ∈ [d],Ai ≠ Bi for some A,B ∈ M} . By showing that a gen-
erator M with constant size OM exists, he was able to obtain an FPT algorithm for 
the Hamming center problem, which was later also used by Andoni et al. [2] and 
Ma and Sun [26] to improve the running time of a PTAS. Hence, anchored core 
covers are a generalization of generators to arbitrary metrics induced by rational set 
similarities.

Marx [27] proved a (tight) bound of O
(
log

1

�

)
 on the size of the generator (or 

anchored core cover) M for the Hamming center problem. In the following, we will 

see that for y > 0 , a bound of O
(

log
1

�y

y

)
 can also be achieved for any (�, y)-anchored 

core cover. For the Jaccard-center problem (and other RSD with y = 0 ), we require a 
different type of analysis. The resulting bound of O(�−1) is substantially weaker, but 
we can also prove that this is necessary. We begin the analysis of the size of a core-
cover with the following observation.

max
A∈N

Dy(A,K) ≤ (1 + �) ⋅ OPT

max
A∈N

Dy(A,K) ≤ (1 + �) ⋅ OPT .
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Observation 1 Let A ∈ N  be a set such that 1 ≥ Dy(A,K) > (1 + 𝜀) ⋅ OPT  and 
K ⊆ C . Then:

Proof 
where the final inequality follows from y ≤ 1 and (1 + 𝜀)OPT < 1 . For y ≠ 0 we are 
done. For y = 0 , we have |A ∪ C| ≥ |C| .   ◻

The following lemma now bounds the size of a core-cover. The main argument 
is that if K is not a core-cover, Observation 1 guarantees us the existence of a set 
A containing many elements in C ⧵ K.

Lemma 2 For any collection of subsets N  and any simple RSD  Dy, there exists an 
(�, y)-core-cover M of size 

Proof We show the existence of the collection M by proving that we can itera-
tively add a set to M such that either K already contains a good approximate solu-
tion or the added set contains many elements from C ⧵ K . Thus, we either have C 
covered by ∪A∈MA or no set violates the approximation guarantee. Let M(0) = {A0} 
for an arbitrary A0 ∈ N  . Let A(i) be the set added in the ith iteration. We denote 

|A ∩ (C ⧵ K)| ≥
{

OPT ⋅ � ⋅ y ⋅ d + y ⋅ |(C ⧵ K) ⧵ A| if y ≠ 0

OPT ⋅ � ⋅ |C| if y = 0

|A∩(C⧵K)| K⊆C
= |A∩C| − |A∩K|

Fact 1.1
= |A∪C| − Dy(A,C)

⋅
(
|A∪C| + y ⋅ |A∪C|

)

− |A∪K| + Dy(A,K) ⋅
(
y ⋅ |A∪K| + |A∪K|

)

≥ |A∪C| − OPT
(
|A∪C| + y ⋅ |A∪C|

)

− |A∪C| + |(C⧵K)⧵A|
+ (1 + 𝜀) ⋅ OPT

[
|A∪C| + y ⋅ |A∪C|

+(y − 1) ⋅ |(C⧵K)⧵A|]

= OPT ⋅ 𝜀 ⋅ (|A∪C|
+ y ⋅ |A∪C|) + (1 + 𝜀) ⋅ OPT ⋅ (y − 1) ⋅ |(C⧵K)⧵A|
+ |(C⧵K)⧵A|

≥ OPT ⋅ 𝜀 ⋅ (y ⋅ d + (1 − y)|A∪C|) + y ⋅ |(C⧵K)⧵A|,

�M� =
⎧⎪⎨⎪⎩

O

�
log

1

𝜀

y

�
if y > 0

⌈ 1

𝜀

⌉ if y = 0

.



1381

1 3

Algorithmica (2021) 83:1371–1392 

by K(i) = C ∩
(
∪A∈M(i)A

)
 our solution after the i-th iteration. Then |C ⧵ K(i)| are the 

components of C that still have to be covered after i iterations. Note that this implies

for all i.
Moreover, we have the invariant

as otherwise the current collection M(i−1) is already a core-cover. Now we analyze 
separate cases for simple RSD with either y = 0 , and y ≠ 0.

Case y ≠ 0 : We prove the following invariant for the algorithm, assuming that we 
add a new set to M in every iteration:

For i = 0 this clearly holds. Otherwise, we have by induction

Then with a bit of calculus, we obtain the following upper bound on the elements 
that remain to be covered after adding the A(i):

(2)Dy(K
(i),C) ≤ Dy(K

(0),C) ≤ OPT

(3)Dy(A
(i),K(i−1)) > (1 + 𝜀) ⋅ OPT ,

(4)|C ⧵ K(i)| ≤ |C ⧵ K(0)|
(1 + y)i

−

i∑
k=1

OPT ⋅ � ⋅ y ⋅ d

(1 + y)k
.

�C ⧵ K(i)� = �(C ⧵ K(i−1)) ⧵ A(i)� = �C ⧵ K(i−1)� − �A(i) ∩ (C ⧵ K(i−1))�
Obs. 1

≤ �C ⧵ K(i−1)� − OPT ⋅ � ⋅ y ⋅ d − y ⋅ �(C ⧵ K(i−1)) ⧵ A(i)�
=

�C ⧵ K(i−1)� − OPT ⋅ � ⋅ y ⋅ d

1 + y

≤

��C⧵K(0)�
(1+y)i−1

−
∑i−1

k=1

OPT⋅�⋅y⋅d

(1+y)k

�
− OPT ⋅ � ⋅ y ⋅ d

1 + y

=
�C ⧵ K(0)�
(1 + y)i

−

i�
k=1

OPT ⋅ � ⋅ y ⋅ d

(1 + y)k
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Suppose the algorithm continues this process until all elements of C are covered, i.e. 
C ⧵ K(i) = � . This happens if

Using the Mercator series ln(1 + y) =
∑∞

i=1

y

i
⋅ (−1)i+1 , we can conclude that 

y∕2 ≤ ln(1 + y) ≤ y for y ∈ (0, 1] . Therefore, after log1+y
1+�

�

≤
ln

2

�

ln(1+y)
∈ O

(
ln

1

�

y

)
 

many iterations, we have either completely covered C, or the algorithm terminated 
earlier, meaning that the initial assumption from Eq. 3 no longer holds.

Case y = 0 : Let us assume an A(i) exists such that 1 ≥ D0(A,K
i−1) > (1 + 𝜀) ⋅ OPT  . 

In this case, Observation 1 gives us a different bound on |A(i) ∩ (C ⧵ K(i−1))| . We will 
show inductively

For i = 0 , this clearly holds. Otherwise, we have

�C ⧵ K(i)� Eq. 4

≤
�C ⧵ K0�
(1 + y)i

−

i�
k=1

OPT ⋅ � ⋅ y ⋅ d

(1 + y)k

Fact 1.2
=

Dy(C,K
(0)) ⋅ [�C ∪ K(0)� + y�C ∪ K(0)�] − �K(0) ⧵ C�

(1 + y)i

−

i�
k=1

OPT ⋅ � ⋅ y ⋅ d

(1 + y)k

Eq. 2

≤
OPT ⋅ d

(1 + y)i
−

i�
k=1

OPT ⋅ � ⋅ y ⋅ d

(1 + y)k
=

OPT ⋅ d

(1 + y)i

−

i�
k=0

OPT ⋅ � ⋅ y ⋅ d

(1 + y)k
+ OPT ⋅ � ⋅ y ⋅ d

= OPT ⋅ d

⎛
⎜⎜⎜⎝

�
1

1 + y

�i

− � ⋅ y ⋅
1 −

�
1

1+y

�i+1

1 −
1

1+y

+ � ⋅ y

⎞
⎟⎟⎟⎠

= OPT ⋅ d

��
1

1 + y

�i

− � ⋅

�
1 + y −

�
1

1 + y

�i
�

+ � ⋅ y

�

= OPT ⋅ d

��
1

1 + y

�i

(1 + �) − �

�

OPT ⋅ d

((
1

1 + y

)i

(1 + �) − �

)
≤ 0

⟹

(
1

1 + y

)i

≤
�

1 + �

|C ⧵ K(i)| = |C ⧵ K0| − i ⋅ OPT ⋅ � ⋅ |C|.
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Therefore, after at most ⌈ 1

�

⌉ many iterations, C will be completely covered.   ◻

To prove the bounds on the anchored core-cover, we first require the following 
observation.

Observation 2 For any three sets C,K,A ⊆ U and y ∈ [0, 1]

Proof 
  ◻

If X is an arbitrary input point, K is our possible solution, and C is an optimal center, 
this observation implies that it is sufficient to show that Dy(X,K ∩ C) is a good approx-
imation to Dy(X,C) and |K⧵C|−2|(X∩K)⧵C)||X∪K|+y⋅|X∪K|  is small or negative.

Lemma 3 For any collection of input subsets N  and any simple RSD  Dy, there 
exists an (�, y)-anchored-core-cover  M ⊆ N  of size 

|C ⧵ K(i)| = |(C ⧵ K(i−1)) ⧵ A(i)| = |C ⧵ K(i−1)| − |A(i) ∩ (C ⧵ K(i−1))|
Obs. 1

≤ |C ⧵ K(i−1)| − OPT ⋅ � ⋅ |C| ≤ |C ⧵ K(0)| − (i − 1)

⋅ OPT ⋅ � ⋅ |C| − OPT ⋅ � ⋅ |C|
= |C ⧵ K(0)| − i ⋅ OPT ⋅ � ⋅ |C|

Dy(A,K) ≤ Dy(A,K ∩ C) +
|K ⧵ C| − 2|(A ∩ K) ⧵ C|
|A ∪ K| + y ⋅ |A ∪ K|

Dy(A,K) =
|A△ K|

|A ∪ K| + y ⋅ |A ∪ K|
=

|A△ (K ∩ C)| + |(K ⧵ C) ⧵ A| − |A ∩ (K ⧵ C)|
|A ∪ K| + y ⋅ |A ∪ K|

=
|A△ (K ∩ C)|

(|A ∪ (K ∩ C)| + |(K ⧵ C) ⧵ A|) + y ⋅
(
|A ∪ (K ∩ C)| − |(K ⧵ C) ⧵ A|

)

+
|(K ⧵ C) ⧵ A| − |A ∩ (K ⧵ C)|

|A ∪ K| + y ⋅ |A ∪ K|
y≤1

≤
|A△ (K ∩ C)|

|A ∪ (K ∩ C)| + y ⋅ |A ∪ (K ∩ C)|
+

|(K ⧵ C) ⧵ A| − |A ∩ (K ⧵ C)|
|A ∪ K| + y ⋅ |A ∪ K|

= Dy(A,K ∩ C) +
|K ⧵ C| − 2|A ∩ (K ⧵ C)|
|A ∪ K| + y ⋅ |A ∪ K|
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Proof Let C be an optimal center. Lemma 2 gives a set M such that 
K� = C ∩

(
∪A∈MA

)
 is an (1 + �)-approximate solution. Now let K = IM ∪ (OM ∩ C) , 

which is well defined given M and the optimal C. Note that K� = K ∩ C . Using 
Observation 2, the distance between K and some arbitrary set A is:

If for every A ∈ N , we have 2 ⋅ |A ∩ (IM ⧵ C)| ≥ |IM ⧵ C| then the ratio is non-posi-
tive and D(A,K) ≤ D(A,K ∩ C) ≤ (1 + �) ⋅ OPT  . Otherwise, there exists an A such 
that |A ∩ (IM ⧵ C)| = |(A ∩ IM) ⧵ C| < |IM ⧵ C|∕2 . We iteratively augment the col-
lection M with additional sets A. In each iteration, |IM ⧵ C| is halved. We now bound 
|IM ⧵ C| in terms of OPT  . Again we distinguish between two cases.

Case y ≠ 0 : Let B ∈ M be arbitrary. Then

After adding log( 1

�⋅y
) sets such that |IM ⧵ C| is halved with each iteration, we have 

|IM ⧵ C| ≤ � ⋅ y ⋅ OPT ⋅ d . Therefore,

Case y = 0 : Let B ∈ M be arbitrary. We now have

�M� =
⎧
⎪⎨⎪⎩

O

�
log

1

y⋅𝜀

y

�
if y > 0

O
�

1

𝜀

�
if y = 0

.

D(A,K) ≤ D(A,K ∩ C) +
|K ⧵ C| − 2 ⋅ |A ∩ (K ⧵ C)|

|A ∪ K| + y ⋅ |A ∪ K|
= D(A,K ∩ C) +

|IM ⧵ C| − 2 ⋅ |A ∩ (IM ⧵ C)|
|A ∪ K| + y ⋅ |A ∪ K|

≤ (1 + �) ⋅ OPT +
|IM ⧵ C| − 2 ⋅ |A ∩ (IM ⧵ C)|

|X ∪ K| + y ⋅ |X ∪ K|

|IM ⧵ C| ≤ |B ⧵ C| Fact 1.2
= D(B,C) ⋅

(
|B ∪ K| + y ⋅ |B ∪ K|

)
− |C ⧵ B|

≤ D(B,C) ⋅
(
|B ∪ K| + y ⋅ |B ∪ K|

)

= D(B,C) ⋅
(
|B ∪ K| + |B ∪ K| − |B ∪ K| + y ⋅ |B ∪ K|

)

≤ OPT ⋅ [d − (1 − y) ⋅ |B ∪ K|] y≤1

≤ OPT ⋅ d.

|IM ⧵ C|
|A ∪ K| + y ⋅ |A ∪ K|

≤
� ⋅ y ⋅ OPT ⋅ d

|A ∪ K| + y ⋅ |A ∪ K|
≤

� ⋅ y ⋅ OPT ⋅ d

y ⋅ d
= � ⋅ OPT .

|IM ⧵ C| ≤ |B ⧵ C| Fact 1.3

≤ D(B,C) ⋅ |B| Fact 1.4

≤ OPT ⋅
|C|

1 − OPT

Fact 1.4

≤ OPT ⋅
|A|

(1 − OPT)2

OPT≤
1

1+�

≤ OPT ⋅
(1 + �)2 ⋅ |A|

�
2

≤ OPT ⋅
4

�
2
⋅ |A|,
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where the last inequality follows for � ≤ 1 . After adding log 4

�
3
 sets such that |IM ⧵ C| 

is halved with each iteration, we have

For both cases, our approximation factor is therefore (1 + 2�) ⋅ OPT  . Rescaling � by 
a factor of 2 completes the proof.   ◻

We conclude this section by showing that the bounds for (�, 0) core-covers are tight, 
which also implies that the bounds on (�, 0)-anchored-core-covers are asymptotically 
tight. Hence, the exponential increase cannot be avoided as y tends to 0.

Proposition 2 There exists a collection of subsets N such that for any  (�, 0)-core-
cover M ⊆ N, we have |M| ≥ 1∕�.

Proof For a given 𝜀 > 0 and assuming 1∕� to be an integer, we consider the set sys-
tem consisting of 1∕� singleton sets, i.e. each set consists of a single item and all sets 
are disjoint. The center consisting of all the singleton sets has a Jaccard distance of 
1∕�−1

1∕�
= 1 − � to each singleton set. If the core cover does not contain all singleton 

sets, the maximum distance of any subset of the core-cover to one of the singleton 
sets is 1. At the same time OPT ⋅ (1 + 𝜀) = (1 − 𝜀)(1 + 𝜀) = 1 − 𝜀

2
< 1 , hence the 

core-cover is required to contain all singleton sets.   ◻

Lastly, we briefly compare the bounds O(
log

1

�

y
) and O( 1

�

) for the core-covers with 
respect to Dy and y > 0 and D0 , respectively. For all rational set similarity defined in 
literature, the latter bound is better than the former. However, for a sufficiently small 
y (e.g. y ≤ �

2 ), the former bound may become larger. This might hint at a gap in our 
analysis. However, we believe that this may be unavoidable; if y is part of the input a 
PTAS for the 1-center problem with distance function Dy may not exist. Resolving 
this conjecture is an interesting open problem.

7  A PTAS for the 1‑Center Problem on Metric RSD

We now turn to our main result. Throughout this section, we consider the metric 
space (P(U),Dy) . Let N  be a collection of subsets of a base set U and let OPT  be 
the maximum distance of an optimal center to any subset in N .

Recall that Ci =

{
0 if i ∉ C,

1, if i ∈ C
 . Observe that, for each set A ∈ N  , we have 

�A△ C� = ∑d

i=1
Ai − 2Ai ⋅ Ci + Ci , �A ∪ C� = ∑d

i=1
Ai − Ai ⋅ Ci + Ci and 

�A ∪ C� = ∑d

i=1
1 − Ai ⋅ Ci.

Hence we obtain a set of linear inequalities of the form

|IM ⧵ C|
|A ∪ K| ≤

� ⋅ OPT ⋅ |A|
|A ∪ K| ≤ � ⋅ OPT .

(5)|A△ C| ≤ OPT ⋅ (|A ∪ C| + y ⋅ |A ∪ C|)
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which we can test for feasibility by relaxing the integrality constraints on C. Denote 
a fractional solution Ĉ . We apply randomized rounding to obtain an integer solution 
S, rounding each Ci to 1 with probability Ĉi . We will first characterize the instances 
where this approach already yields a good solution. To this end, let us first recall the 
multiplicative Chernoff bounds. 

Lemma 4 (Multiplicative Chernoff-Bounds [28]) Let B1,…Bd be independent 
binary random variables with  � = �[

∑d

i=1
Bi]. Then for any 0 < 𝛿 < 1

Lemma 5 Let S be a random binary vector obtained by rounding a feasible frac-
tional solution of the set of inequalities (5) and let 𝜖 > 0 be a constant. Assume OPT  
to satisfy OPT ⋅ (d ⋅ y + (1 − y) ⋅min

A∈N
|A|) > 27 ln(4n)

𝜀
2

. Then with probability at least 
1/2, the rounding procedure produces a binary solution S with 
max
A∈N

Dy(A, S) ≤ (1 + �) ⋅ OPT

Proof If the integral solution is feasible, the fractional solution will be feasible as 
well, which implies that there exists an estimate ÔPT  for which the LP 5 is feasible 
with ÔPT ≤ OPT  . Let us denote by cost(S) ∶= max

A∈N
Dy(A, S) the value of the 

rounded solution. A rounded vector is not a good center if OPT ⋅ (1 + �) ≤ cost(S) . 
We first derive concentration bounds on |A△ S| , and |A ∪ S| + y ⋅ |A ∪ S| . To keep 
the notation concise, we use Deny(A, S) = |A ∪ S| + y ⋅ |A ∪ S| to refer to the denom-
inator of each A ∈ N  . Observe that �[S] = Ĉ and

ℙ

[
d∑
i=1

Bi > (1 + 𝛿) ⋅ 𝜇

]
≤ exp

(
−
𝛿
2 ⋅ 𝜇

3

)
and

ℙ

[
d∑
i=1

Bi < (1 − 𝛿) ⋅ 𝜇

]
≤ exp

(
−
𝛿
2 ⋅ 𝜇

2

)
.
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We have, due to the assumption on OPT  and independently of the outcome of the 
rounding procedure,

Both |A△ S| and Deny(A, S) are sums of independent (though not identically dis-
tributed) Bernoulli random variables. Applying the multiplicative Chernoff bound 
(Lemma 4), we have for all A ∈ N :

and

Combining these two bounds, with probability at least 1 − 1∕2n , we have:

Applying the union bound we then obtain:

  ◻

(6)
�[|A△ S|]
�[Deny(A, S)]

=
|A△ Ĉ|
Deny(A, Ĉ)

≤ �OPT ≤ OPT .

(7)Deny(A, S) = d ⋅ y + (1 − y) ⋅ |A ∪ S| ≥ d ⋅ y + (1 − y)|A| > 27 ln 4n

𝜀
2 ⋅ OPT

.

ℙ

[
Deny(A, S) <

(
1 −

𝜖

3

)
⋅ 𝔼[Deny(A, S)]

]

≤ exp

(
−
𝜖
2 ⋅ 𝔼[Deny(A, S)]

18

)
Eq. 7

≤ exp

(
−
27 ln(4n)

18 ⋅ OPT

)
≤

1

4n

ℙ

[
|A△ S| > 𝔼[|A△ S|] + 𝜖

3
⋅ OPT ⋅ 𝔼[Deny(A, S)]

]

= ℙ

[
|A△ S| >

(
1 +

𝜖 ⋅ OPT ⋅ 𝔼[Deny(A, S)]

3 ⋅ 𝔼[|A△ S|]
)
⋅ 𝔼[|A△ S|]

]

≤ exp

(
−
𝜖
2 ⋅ OPT2 ⋅ 𝔼[Deny(A, S)]

2

27 ⋅ 𝔼[|X △ S|]2 ⋅ 𝔼[|X △ S|]
)

Eq. 6

≤ exp

(
−
𝜖
2 ⋅ OPT ⋅ 𝔼[Deny(A, S)]

27

)
Eq. 7

≤ exp (− ln 4n) ≤
1

4n

Dy(A, S) =
|A△ S|

|A ∪ S| + y ⋅ |A ∪ S|
≤

�[|A△ S|] + 𝜀

3
⋅ OPT ⋅ �[Deny(A, S)]

(1 −
𝜀

3
) ⋅ �[Deny(A, S)]

≤
OPT + 𝜀∕3 ⋅ OPT

1 − 𝜀∕3

𝜀<1

≤ (1 + 𝜀) ⋅ OPT .

ℙ[cost(S) ≤ (1 + 𝜖) ⋅ OPT] = 1 − ℙ
[
∃A ∈ N ∶ Dy(A, S) > (1 + 𝜖) ⋅ OPT

]

≥ 1 −
n

2n
=

1

2
.
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Our final algorithm (see also Algorithm 1) is now very simple. We try all possible 
values of OPT  . Notice that there exist at most d2 many distinct values of OPT  , as the 
numerator can only be a number i and the denominator a number y ⋅ d + (1 − y) ⋅ j , 
for i, j ∈ {1,… , d} . For each candidate value, we apply the rounding procedure, if 
the conditions of Lemma 5 are satisfied. Otherwise, we compute an (�, y)-anchored-
core-cover cover (Lemma 3) and enumerate all possible solutions. We prove correct-
ness in the following theorem.

Theorem 1 Given a collection N  of n subsets from a base set U of cardinality d and 
any constant 𝜀 > 0, there exists an algorithm computing a (1 + �)-approximation to 
the optimal center problem on Dy with constant probability. The algorithm runs in 

time d2 ⋅
(
nO(�

−6) + LP(n, d)
)
 for y = 0 and in time d2 ⋅

⎛
⎜⎜⎝
n
O

�
log2

1
y�

y3�2

�

+ LP(n, d)

⎞
⎟⎟⎠
 for 

y > 0, where LP(n, d) is the time required to solve a linear program with n constraints 
and d variables.

Proof If the conditions of Lemma  5 are satisfied, i.e. 
OPT ⋅ (d ⋅ y + (1 − y) ⋅min

A∈N
|A|) > 27 ln(4n)

𝜀
2

 , the rounding procedure will produce a 
good solution with constant probability.

Let us assume instead that the conditions are not satisfied.
We know that there exists at least one set A ∈ N with:

Our goal will be to bound the size of OM of an (�, y)-anchored-core-cover M. By 
proving that |OM| ∈ O(ln n ⋅ poly �−1) , a complete enumeration becomes feasible in 
polynomial time for any fixed � . As before, we distinguish between the case y = 0 
and y > 0.

Case y ≠ 0 : We first bound the size of |A△ B| , for any A,B ∈ N  . We have

Now let us consider an (�, y)-anchored core cover M. From Lemma  3, we have 

|M| ∈ O

(
log

1

y�

y

)
 . Finding one requires time O

((
n

|M|
))

∈ n
O

(
log

1
y�

y

)

 . Combining 

this with Eq. 9 yields

One of the solutions induced by the anchored core-cover is guaranteed to be a (1 + �)

-approximation. Trying all of these solutions requires time 

(8)OPT ⋅ (d ⋅ y + (1 − y)|A|) ≤ 27 ln(4n)

�
2

.

(9)|A△ B| = Dy(A,B) ⋅ (|A ∪ B| + y|A ∪ B|) ≤ 2 ⋅ OPT ⋅ d ≤
27 ln 4n

y�2
.

�OM� = 1

2

�
A∈M

�
B∈M

�A△ B� ∈ O

⎛⎜⎜⎝

log2
1

y�

y2�2
⋅ ln n

⎞⎟⎟⎠
.
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2OM ⋅ n
O

(
log

1
y�

y

)

∈ n
O

(
log2

1
y�

y3�2

)

 . Thus, the total running time is in 

O

⎛
⎜⎜⎝
d2 ⋅

⎛
⎜⎜⎝
n
O

�
log2

1
y�

y3�2

�

+ LP(n, d)

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.

Case y = 0 : We first sharpen the bound given by Eq. 8. We have for some A′

This allows us to bound the size of |A△ B| as follows

We now bound the size of OM from an (�, 0)-anchored core cover M. From Lemma 3, 
we have |M| ∈ O(�−1) , and we can find one in time O(nO(�−1)) . Combining this with 
Eq. 10 yields

One of the solutions induced by the anchored core-cover is guaranteed to be a (1 + �)

-approximation. Trying all of these solutions requires time 2OM ⋅ nO(�
−1) ∈ nO(�

−6) . 
Thus, the total running time is in O

(
d2 ⋅

(
nO(�

−6) + LP(n, d)
))

 .   ◻

Finally, combining Theorem 1 with Lemma 1 gives us our main result.

Theorem 2 Let N  be a collection of n subsets from a base set U  of cardinality d, 
let x, y, z, z′ be either positive constant integers or 0 and z ≥ max(x, y, z�) and let 
𝜀 > 0 be a constant. Then there exists an algorithm computing a  (1 + �)-approxima-
tion to the RSD-center problem with distance function Dx,y,z,z′ with constant proba-
bility. The algorithm runs in time d2 ⋅

(
nO(�

−6) + LP(n, d)
)
 for y = 0 and in time  

d2 ⋅

⎛⎜⎜⎝
n
O

�
x3 log2

1
y�

y3�2

�

+ LP(n, d)

⎞⎟⎟⎠
 for y > 0, where LP(n, d) is the time required to solve 

a linear program with n constraints and d variables.

8  A Note on Continuous Jaccard Center

We conclude by briefly describing how to find the continuous Jaccard center of set 
N  of n points in d-dimensional Euclidean space in polynomial time. We consider 
this fact to be notable as the continuous Jaccard median problem is NP-hard [10]. To 

OPT ⋅ |A′| ≤ 27 ln 4n

�
2

.

(10)
|A△ B| = Dy(A,B) ⋅ |A ∪ B| ≤ OPT ⋅ (|A| + |B|) Fact 1.4

≤ OPT
2|C|

1 − OPT

Fact 1.4

≤ OPT
2|A�|

(1 − OPT)2
≤

54 ln 4n

(1 − OPT)2�2

OPT≤
1

1+�

≤
54 ln 4n

�
4

.

|OM| =
∑
A∈M

∑
B∈M

|A△ B| ∈ O
(
ln n

�
6

)
.
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the best of our knowledge, this is the only distance measure we are aware of where 
the 1-median problem is hard while the 1-center problem is easy. For instance, 
both 1-center and 1-median problem for the �1 norm (the continuous variant of the 
Hamming norm on the hypercube) are solvable in polynomial time using convex 
optimization.

The Jaccard measure in d-dimensional Euclidean space with non-negative coordi-
nates is defined as

The corresponding distance Dcont(A,B) is again 1 − Jcont(A,B) . We will formu-
late the decision problem of finding a center with distance at most dist as an LP. 
The optimum center can thereafter be determined in polynomial time using binary 
search over the possible values of dist . In the following let Aj ∈ N  be the jth point 
of N w.r.t. some arbitrary ordering. We use the variable ci ≥ 0 to denote the ith 
entry of the Jaccard center C. We further use the variables maxi,j and mini,j for all 
i ∈ {1,… , d} and j ∈ {1,… n} to denote the maximum and minimum of Aj

i
 and ci . 

We then use the constraints

Note that the top most equation corresponds to ∑d

i=1
min(A

j

i
, ci) ≥ (1 − dist) ⋅

∑d

i=1
max(A

j

i
, ci) which is equal to 

Dcont(A,C) = 1 −
∑d

i=1
min(A

j

i
,ci)∑d

i=1
max(A

j

i
,ci)

≤ dist.

9  Conclusions and Open Problems

We have presented a polynomial time approximation scheme for the 1-center prob-
lem on metric rational set similarities, which are a large class similarity measures on 
sets. Except for the simple matching similarity, for which the corresponding distance 
is the Hamming distance [25] and the Jaccard distance, for which we had shown a 
PTAS in a preliminary version of this paper [5], our work is the first polynomial time 
approximation scheme for the center problem on these distances. Though we are not 
able to exactly match the running time of the state-of-the-art Hamming center PTAS 
[26], our algorithm is competitive up to polylog �−1 factors in the exponent.

For the Jaccard-center problem on n sets, our algorithm runs in time nO(�−6) . It 
seems unlikely that the running time can be reduced beyond nO(�−3) using our 
approach. Showing either a conditional lower bound or devising an altogether new 
approach that achieves nO(�−2) running time is a challenging open problem.

Jcont(A,B) ∶=

� ∑d

i=1
min(Ai,Bi)∑d

i=1
max(Ai,Bi)

if
∑d

i=1
max(Ai,Bi) ≠ 0

1 otherwise
.

d∑
i=1

min
i,j

≥ (1 − dist) ⋅

d∑
i=1

max
i,j

for all j ∈ {1,… n}

min
i,j

≤ ci,A
j

i
≤ max

i,j
for all j ∈ {1,… n}, i ∈ {1,… d}

ci ≥ 0i ∈ {1,… d}.



1391

1 3

Algorithmica (2021) 83:1371–1392 

Acknowledgements M. Gentili and C. Schwiegelshohn are partially supported by ERC Advanced Grant 
788893 AMDROMA.

References

 1. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, Cambridge (1973)
 2. Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality reduction method. In: 

47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21–24 October 
2006, Berkeley, California, USA, Proceedings, pp. 449–458 (2006)

 3. Badoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. 40(1), 14–22 (2008)
 4. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the web. Comput. 

Netw. 29(8–13), 1157–1166 (1997)
 5. Bury, M., Schwiegelshohn, C.: On Finding the Jaccard Center. In: 44th International Colloquium on 

Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pp. 23:1–23:14 (2017)

 6. Bury, M., Schwiegelshohn, C., Sorella, M. Sketch ’em all: fast approximate similarity search for 
dynamic data streams. In: Proceedings of the Eleventh ACM International Conference on Web 
Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5–9, 2018, pp. 72–80 
(2018)

 7. Chen, Z.-Z., Ma, B., Wang, L.: Randomized fixed-parameter algorithms for the closest string prob-
lem. Algorithmica 74(1), 466–484 (2016)

 8. Chierichetti, F., Kumar, R.: LSH-preserving functions and their applications. J. ACM 62(5), 33 
(2015)

 9. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Raghavan, P.: On com-
pressing social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, Paris, France, June 28–July 1, 2009, pp. 219–228 (2009)

 10. Chierichetti, F., Kumar, R., Pandey, S., Vassilvitskii, S.: Finding the Jaccard median. In: Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, 
Austin, Texas, USA, January 17–19, 2010, pp. 293–311 (2010)

 11. Chimani, M., Woste, M., Böcker, S.: A closer look at the closest string and closest substring prob-
lem. In: Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments, 
ALENEX 2011, Holiday Inn San Francisco Golden Gateway, San Francisco, California, USA, Janu-
ary 22, 2011, pp. 13–24 (2011)

 12. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM 
Trans. Algorithms 6(4) (2010)

 13. Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J.D., Yang, C.: Find-
ing interesting associations without support pruning. IEEE Trans. Knowl. Data Eng. 13(1), 64–78 
(2001)

 14. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Lower bounds for approxi-
mation schemes for closest string. In: 15th Scandinavian Symposium and Workshops on Algorithm 
Theory, SWAT 2016, June 22–24, 2016, Reykjavik, Iceland, pp. 12:1–12:10 (2016)

 15. Das, A., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collabora-
tive filtering. In: Proceedings of the 16th International Conference on World Wide Web, WWW 
2007, Banff, Alberta, Canada, May 8–12, 2007, pp. 271–280 (2007)

 16. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of CLOSEST sub-
stringsize and related problems. In: STACS 2002, 19th Annual Symposium on Theoretical Aspects 
of Computer Science, Antibes–Juan les Pins, France, March 14-16, 2002, Proceedings, pp. 262–273 
(2002)

 17. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–
871 (1971)

 18. Gower, J.C., Legendre, P.: Metric and Euclidean properties of dissimilarity coefficients. J. Classif. 
3(1), 5–48 (1986)

 19. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for CLOSEST STRING 
and related problems. Algorithmica 37(1), 25–42 (2003)



1392 Algorithmica (2021) 83:1371–1392

1 3

 20. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. Inf. 
Syst. 25(5), 345–366 (2000)

 21. Guo, J., Hermelin, D., Komusiewicz, C.: Local search for string problems: Brute-force is essentially 
optimal. Theor. Comput. Sci. 525, 30–41 (2014)

 22. Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions vois-
ines. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 241–272 (1901)

 23. Janssens, S.: Bell inequalities in cardinality-based similarity measurement. PhD thesis, Ghent Uni-
versity (2006)

 24. Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Approximate minimum enclosing balls in high dimen-
sions using core-sets. ACM J. Exp. Algorithmics 8 (2003)

 25. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–171 
(2002)

 26. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM J. Com-
put. 39(4), 1432–1443 (2009)

 27. Marx, D.: Closest substring problems with small distances. SIAM J. Comput. 38(4), 1382–1410 
(2008)

 28. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilis-
tic Analysis. Cambridge University Press, Cambridge (2005)

 29. Real, R., Vargas, J.M.: The probabilistic basis of jaccard’s index of similarity. Syst. Biol. 45(3), 
380–385 (1996)

 30. Rogers, D.J., Tanimoto, T.T.: A computer program for classifying plants. Science 132(3434), 1115–
1118 (1960)

 31. Späth, H.: The minisum location problem for the Jaccard metric. Oper. Res. Spektrum 3(2), 91–94 
(1981)

 32. Watson, G.A.: An algorithm for the single facility location problem using the Jaccard metric. SIAM 
J. Sci. Stat. Comput. 4(4), 748–756 (1983)

 33. Willett, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. J. Chem. Inf. Comput. Sci. 
38(6), 983–996 (1998)

 34. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J. Optim. 19(3), 
1368–1391 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Polynomial Time Approximation Schemes for All 1-Center Problems on Metric Rational Set Similarities
	Abstract
	1 Introduction
	2 Approach and Techniques
	3 Related Work
	4 Preliminaries
	5 Reduction from RSD Center to Simple RSD Center
	6 Core Covers
	7 A PTAS for the 1-Center Problem on Metric RSD
	8 A Note on Continuous Jaccard Center
	9 Conclusions and Open Problems
	Acknowledgements 
	References




