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Abstract

An odd perfect number N is a number whose sum of divisors is equal to 2N. Euler proved

that if an odd perfect number exists then it must have the form pxq2. Where p is a prime

number and p and x are of the form 1 mod 4. This paper proves than an odd perfect number

does not exist.

Introduction
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Nielsen(2003) improved the upper bound of an odd perfect number to

N < 24
k

Where N is an odd perfect number and k is the number of unique prime divisors of an odd

perfect number.

Nielsen[2007] further proved that an odd perfect number has at least 9 unique prime divisors.

Goto and Ohno[2008] proved that an odd perfect number has a prime divisor exceeding 108

I will write these three results as lemmas 1,2 and 3 respectively as follows:

Lemma 1

N < 24
k

(1)

Lemma 2

An odd perfect number has at least 9 unique prime divisors

Lemma 3

An odd perfect number has a prime divisor exceeding 108

Theorem 1

Odd perfect numbers do not exist

Proof

Using lemma 1, we can obtain the following:
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N < 24
k
= 16k (2)

N < 16k (3)

Suppose that N has exactly 9 unique prime divisors, then that means that:

N < 16× 16× 16× 16× 16× 16× 16× 16× 16 (4)

However, since we do not know the actual number of unique prime divisors of an odd perfect

number, we can rewrite equation 4 as follows:

N < 16× 16× 16× 16× 16× · · · × 16

Where the ellipsis represents 16t where t is the unknown number of unique prime divisors of

an odd perfect number in the inequality above. For example if an odd perfect number has

exactly 50 unique prime divisors then the ellipsis would represent 1644 because 1644 is the

unknown number of unique prime divisors of an odd perfect number in the inequality above.

3



Therefore we get 166 × 1644 = 1650.

Likewise if an odd perfect number has exactly 90 unique prime divisors then the ellipsis

would represent 1684 so that we get 166 × 1684 = 1690. It is very important that the reader

understands the definition of the ellipsis in this paper because it will be used multiple times

later in the proof.

Now let us look at the following comparison:

16× 16× 16× 16× 16× · · · × 16 (5)

3× 5× 7× 11× 13× · · · × 108 (6)

While the ellipsis for equation 5 has already been defined above, the ellipsis for equation 6

has not yet been defined and I will hereby proceed to define it. For equation 6 the ellipsis

represents:

t∏
i=1

pi

Where p is a prime number and p1 = 17, p2 = 19, p3 = 23 and so on. Where t is still the

unknown number of unique prime divisors of an odd perfect number in the expression in

equation 6. For example if an odd perfect number has exactly 9 unique prime divisors then

t = 3 and the ellipsis in equation 6 will represent 17× 19× 23 and equation 6 will becomes:
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3× 5× 7× 11× 13× 17× 19× 23× 108

Now let us look at equation 6. We can see that 3 × 5 × 7 × 11 × 13 is the product of the

5 smallest possible odd prime numbers. Notice that the next prime number which is 17 is

greater than 16. This fact will be useful in our analysis. Courtesy of Goto and Ohno, we

know that there is a unique prime divisor of N greater than 108. So 108 can act as a lower

bound of this unique prime divisor. In equation 6 we are assuming that 108 is the largest

unique prime divisor of N. However, if N has other unique prime divisors that are greater

than 108, that does not affect the logic of the argument. So it doesn’t matter whether the

largest unique prime divisor of N is of the size 108 or even greater than that because the

argument remains the same.

Notice that equation 5 and 6 must have t of the same value. For example if an odd

perfect nummber has exactly 9 unique prime divisors then the value t in the ellipses of both

equations 5 and 6 will have the value of 3. The ellipsis in equation 5 will be of the form 163

while the ellipsis in equation 6 will be of the form 17× 19× 23.

Equation 5 and 6 can be rearranged as follows

16× 16× 16× 16× 16× 16× · · · (7)

3× 5× 7× 11× 13× 108 × · · · (8)
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Where the definition of the ellipsis remains the same as defined previously.

16× 16× 16× 16× 16× 16× · · · = 16, 777, 216× · · · (9)

3× 5× 7× 11× 13× 108 × · · · = 1, 501, 500, 000, 000× · · · (10)

For equation 9 above, every new unique prime divisor will be represented by a new 16 that

will be multiplied by the number on the right hand side of equation 9.

For equation 10, every new unique prime divisor will be represented by a new prime which

will be bigger than 16 that will be multiplied by the number on the right hand side of

equation 10. If the new unique prime is 17 and if it is the Euler prime then it could be

represented as 171, 175 and so on. If 17 is a non-Euler prime then it can be represented as

172, 174 and so on. The main point is that 17x > 16 for all values of x greater than 0, where

x is an integer. However to simplify the argument, I will just assume that all unique prime

divisors of N are raised to the power of 1.

Therefore we can conclude that each unique prime divisor of N that we multiply by the figure

in equation 10 will only make the figure in equation 10 grow bigger than the one in equation

9. This is because we are multiplying equation 9 by 16 for every new unique prime divisor

while multiplying equation 10 by a prime number greater than 16 for every new unique prime

divisor. Therefore the more unique prime divisors an odd perfect number has, the bigger

the difference will be between the figures in equation 9 and equation 10.

Since 1, 501, 500, 000, 000 > 16, 777, 216 and since any new unique prime divisor will only

increase the difference between these two numbers, we can therefore conclude that the figure
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to the right of equation 10 will always be bigger than the figure to the right of equation

equation 9 regardless of how many unique prime divisors an odd perfect number has.

We therefore get the final equation as follows:

16, 777, 216× · · · < 1, 501, 500, 000, 000× · · · (11)

N < 16, 777, 216× · · · (12)

Therefore:

N < 1, 501, 500, 000, 000× · · · (13)

Therefore an odd perfect number N does not exist because an odd perfect number N

will always be smaller than the figure to the right of equation 9, regardless of the number

of unique prime divisors of N. However, the figure to the right of equation 9 will always be

smaller than the figure to the right of equation 10, regardless of the number of unique prime

divisors of N. Therefore N will always be smaller than the figure to the right of equation 10,
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regardless of the number of unique prime divisors of N. Notice that the figure to the right of

equation 10 is the Eulerian form an an odd perfect number. We can state this as, since N is

always smaller than the Eulerian form of an odd perfect number, regardless of the number

of unique prime divisors of N, therefore N does not exist. That is the end of the proof.

Q.E.D

Tables

The following 3 tables are used to reinforce the idea behind the proof. They are meant as

examples or visual aids for those who haven’t understood the proof.

Label Value

a1 16× 16× 16× 16× 16× 16× 16× 16× 16

a2 3× 5× 7× 11× 13× 17× 19× 23× 108

Table 1: The case where N has exactly 9 unique prime divisors

Label Value

b1 16× 16× 16× 16× 16× 16× 16× 16× 16× 16× 16

b2 3× 5× 7× 11× 13× 17× 19× 23× 29× 31× 108

Table 2: The case where N has exactly 11 unique prime divisors

Label Value

c1 16× 16× 16× 16× 16× 16× 16× 16× 16× 16× 16× 16× 16

c2 3× 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 108

Table 3: The case where N has exactly 13 unique prime divisors
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Analysis

Table 1: a2 > a1. Since a1 > N therefore a2 > N

Table 2: b2 > b1. Since b1 > N therefore b2 > N

Table 3: C2 > C1. Since C1 > N therefore C2 > N

This table can be replicated for any number of unique prime divisors of an odd perfect

number. The value in a2, b2 and c2 represent a simplified version of the Eulerian structure

of N where each unique prime divisor is raised to the power of 1. In reality all but 1 unique

primes divisors should be raised to the power of at least 2. However, I am trying to be as

conservative as possible in formulating the Eulerian structure of N to keep the argument as

simple as possible. Of course there is nothing stopping anyone from raising all the unique

prime divisors except one of them to the power of 2 or 4 or any other value. However, doing

so doesn’t change the logic of the argument and that is why I have decided to raise all the

unique prime divisors to the power of 1. Also note that Ianucci(1999) proved that the second

largest unique prime divisor of N is at least 104 and this fact could be added to the Eulerian

structures a2,b2 and c2 to strengthen the argument. However, whether we add it or not will

not change the conclusion. Therefore it is just extra work that leads to the same result and

that is why I have left it out in order to make the argument as simple as possible. This is

the end of the paper.
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