

MULTIPLE SHELL EJECTIONS TOWARDS THE FRIED EGG NEBULA

Evgenia KOUMPIA¹, R. D. Oudmaijer, V. Graham, G. Banyard, J. H. Black, C. Wichittanakom, K. M. Ababakr, W.-J. de Wit, F. Millour, E. Lagadec, S. Muller, N. L. J. Cox, A. Zijlstra, H. van Winckel, M. Hillen, R. Szczerba, J. S. Vink, S. H. J. Wallström

1. BACKGROUND

The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate and geometry.

3. REVEALING A THIRD HOT INNER SHELL

We perform radiative transfer modeling (2-Dust; Ueta & Meixner 2003) to simultaneously fit the **flux maps** (radial profiles) at 8.59 μ m, 11.85 μ m, and 12.81 μ m (upper plots) and the **SED** (bottom). Our models reveal a third hot inner shell for the first time.

VISIR/VLT image at 8.59 μ m

Observed (dashed) vs modeled (solid) radial profiles

HR diagram showing different classes of evolved objects including the transitional post-Red Supergiant (RSG) phase, the yellow hypergiants (YHGs).

- What is the mechanism that shapes the nebulae around evolved stars?
- What are the properties of the massloss episodes?

OUR STUDY

• We aim to provide insight into the nature (i.e. geometry, rates) of mass-loss episodes, by an in depth study of one of the very few known post-RSG yellow hypergiants, IRAS 17163-3907 and its associated Fried Egg Nebula (FEN).

Note: IRAS 17163-3907 was only recently classified as a massive yellow hypergiant by Lagadec et al. (2011). Mid-IR images (VISIR/VLT) revealed at least two ejections of massive amounts of gas and dust.

Intermediate shell ₽¢,` inner shell 10 100 0.1 10 Wavelength [micron]

4. MASS-LOSS: PROPERTIES

Physical parameters of the central star and the three shells of FEN.

	$\log(L\star/L_{\odot})$	T★	d		
IRAS 17163		(K)	(kpc)		
	5.7	8500	1.2		
Fried Egg Nebula	M _{gas}	T_d	\mathbf{r}_d	t _{kin}	М
	$(10^{-3} M_{\odot})$	(K)	('')	(yr)	(M_{\odot}/yr)
Hot inner shell	0.021	620-480	0.3-0.45	30.8	6×10^{-7}
Intermediate shell	0.90	460-320	0.6-1.1	102.7	9×10^{-4}
Outer shell	5.6	240-200	1.9-2.5	123.2	5×10^{-5}

Nal Bry

2. IMAGE RECONSTRUCTION

INTERFEROMETRIC OBSERVATIONS: GRAVITY/VLTI on ATs: K-band (2-2.4 μ m) We present the first image reconstruction of the continuum, Br γ , and Nal emission towards IRAS 17163 in NIR and at milli-arcsecond scales.

4

2

0

-2

offset (mas)

5. CONCLUSIONS

- We find a third inner, hot shell, which has a kinematic age of only 30 yr.
- The mass loss from this post-RSG is not steady; the 3 distinct mass-loss episodes indicate the object underwent **3 outbursts** in the past 130 years.
- The 2μ m imaging reveals a more extended and asymmetric $Br\gamma$ emission compared to Nal and continuum, which is consistent to our LTE line model.
- In the paper we discuss pulsational-

The Four Auxiliary Telescopes at Paranal ESO PR Photo 51c/06 (22 December 2006)

• The $\mathbf{Br}\gamma$ emission (ionised gas) appears to be more **extended** and **asymmetric** compared to the **continuum** and **Nal** emission.

driven and line-driven mass-loss. We are the first to introduce the **bi-stability** jump to explain mass-loss episodes towards a YHG.

6. PUBLICATION

Koumpia et al. 2020, A&A, 635, 183 contact: ekoumpia@eso.org **1st author affiliation:** ¹ESO, Chile