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The interaction of a propagating pulse of quantum radiation with a localized quantum system
can be described by a cascaded master equation with a distinct initially populated input and a
finally populated output field mode [Phys. Rev. Lett.123, 123604 (2019)]. By transformation to an
appropriate interaction picture, we identify the usual Jaynes-Cummings Hamiltonian between the
scatterer and a superposition of the initial and final mode, with a strength given by the travelling
pulse mode amplitude. The transformation also identifies a coupling of the scatterer with an or-
thogonal combination of the two modes. The transformed master equation offers important insights
into the system dynamics and it permits numerically efficient solutions.

I. INTRODUCTION

A full quantum analysis of the interaction of a discrete
quantum system with a cavity field may often assume
(near) resonance with only a single standing wave field
mode whose mode function is unaffected by the inter-
action. The interaction then only implies the joint evo-
lution of a single field oscillator and the discrete quan-
tum system, as described, e.g., in the Jaynes-Cummings
model.

Numerous proposals exist to employ interactions with
simple quantum systems with the purpose to manipulate
and prepare quantum states, such as number states, co-
herent states, squeezed states and Schrödinger cat states
of a single mode of radiation. The motivation is often
that such states can be propagated in space and thus be
used for probing, communication, and transfer of states
and operations in quantum networks [1]. But, how does
a localized quantum system, such as a single two-level
atom, interact with a travelling pulse that initially oc-
cupies only a single mode of radiation? If the temporal
profile of this pulse at the location of the atom is u(t),
do we obtain a time-dependent interaction of the same
form as for an atom flying through a cavity and explor-
ing the position dependent field strength of the resonant
eigenmode? That is, is the system correctly or to a good
approximation described by the Hamiltonian (~ = 1),

HJC(t) = i
√
γu(t)(â†σ− − âσ+), (1)
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where √γu(t) specifies the time dependent coupling
strength, and the raising and lowering operators of the
field and the two level system account for the coherent
exchange by absorption and emission of quanta of exci-
tation between the atom and the travelling pulse?

The answer to this question is complicated by the fact
that in the absence of a cavity, the propagating field ex-
plores a continuum of frequency modes and by dispersive
and absorptive effects, the interaction with a scatterer
may change the temporal shape of the field mode func-
tion in a manner that is entangled with its quantum state
of excitation. Multiple analyses have addressed different
aspects of this multi-photon, multi-mode problem [2–11].

As a simpler problem, we may enquire what is the
quantum state occupying a definite pulse mode after the
interaction. Applying the theory of cascaded quantum
system [12, 13], that problem was treated in Refs.[14, 15]
by incorporating the incident pulse of quantized radia-
tion as the output from an upstream virtual single mode
cavity that gradually releases its quantum state content
in the form of a pulse. The quantum state of any specific
output pulse mode may, in a similar manner, be asso-
ciated with the asymptotic final content of downstream
filter cavity. This experimentally inspired construction
of input and output wave packet modes leads to a simple
density matrix formalism with time dependent couplings
of the scatterer to two discrete cavity modes. The prob-
lem thus takes a quite different form than suggested by
Eq.(1).

The cascaded master equation describes dynamics
where the upstream cavity (representing the incident
pulse) leaks all its quanta, while the downstream cavity
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gradually acquires the entire fraction of the output field
that populates the specified output pulse mode function.
In this article we derive the master equation in the in-
teraction picture with respect to the undisturbed prop-
agation of the pulse, represented by a linear transfer of
quanta between the upstream and downstream cavities.
In this interaction picture, the coupling of the field to the
scatterer takes a simple form and numerical solutions are
much less demanding.

The article is structured as follows: In section II the
virtual cavitites and cascaded system formalism is pre-
sented. In section III we introduce the interaction pic-
ture and the corresponding master equation for the case
of identical input and output modes. In section IV we
extend the interaction picture to describe different input
and output pulses, which includes for example the effect
of dispersion caused by an empty cavity. As a numerical
example we analyze the creation of squeezed states and
Schrödinger cat states by the scattering of pulses on a
cavity with a Kerr non-linearity.

II. QUANTUM INTERACTIONS WITH A
LIGHT PULSE - A VIRTUAL CAVITY

APPROACH

Consider a local quantum system described by the
Hamiltonian Ĥs(t) and Lindblad dissipation terms L̂i,
with i = 1, ...n. Its interaction with an incident quantized
radiation field is governed by V = i

√
γ[ĉb̂in(t)†−ĉ†b̂in(t)],

where ĉ(†) is the lowering (raising) operator of the system
accompanying absorption (emission) of a quantum of ra-
diation. This interaction involves the input field contin-
uum operators b̂in(t) which can be viewed as the Fourier
transform of the frequency eigenmode annihiliation op-
erators. If the incident radiation is restricted to a single
pulse, described by a square integrable mode function
u(t), the interaction can be accounted for by an effective
cascaded system master equation [14]. Here the quantum

pulse is described as if it leaks from an upstream virtual
cavity with a coherent out-coupling strength gu(t), where

gu(t) =
u∗(t)√

1−
∫ t
0
dt′ |u(t′)|2

. (2)

Likewise the component of outgoing radiation that even-
tually occupies an arbitrary wave packet mode v(t), can
be picked up by a virtual downstream filter cavity with
a coherent in-coupling strength gv(t),

gv(t) = − v∗(t)√∫ t
0
dt′ |v(t′)|2

. (3)

All other output modes are reflected by the v-cavity,
and they are, in our formalism described as Markovian
loss. According to input-output theory [12], the output
field after reflection by the v-cavity is thus governed by
the annihilation operator

b̂out(t) = b̂in(t) + g∗u(t)âu +
√
γĉ+ g∗v(t)âv. (4)

which represents the interference between the amplitudes
of the incident vacuum field operator and fields emitted
by the scatterer and the two cavities. Detection of an
outgoing photon is thus accompanied by the action of a
single quantum jump operator, equivalent to the appear-
ance of a Lindblad damping term,

L̂0(t) =
√
γĉ+ g∗u(t)âu + g∗v(t)âv, (5)

in the master equation for the joint state of the quantum
scatterer and the two virtual cavities (~ = 1),

dρ

dt
=

1

i
[Ĥ(t), ρ] +

n∑
i=0

D[L̂i]ρ. (6)

Here, the Hamiltonian is formed both by the system part
Ĥs(t) and the interactions between the different compo-
nents,

Ĥ(t) = Ĥs(t) +
i

2

(√
γgu(t)â†uĉ+

√
γg∗v(t)ĉ†âv + gu(t)g∗v(t)â†uâv −H.c.

)
(7)

and the master equation terms D[L̂i]ρ = − 1
2 (L̂†i L̂iρ +

ρL̂†i L̂i) + L̂iρL̂
†
i apply both for the outgoing field loss,

represented by L̂0 in (5) and for the damping terms
{L̂i=1,..n} acting on the quantum scatterer. Note that
both the Hamiltonian and the L̂†0L̂0 product terms in the
master equation give rise to cross terms between the field
and scatterer operators â(†)u(v) and ĉ(†), and the Hamil-
tonian and the dissipative terms conspire to cancel all

contributions that cause excitation transfer towards the
upstream cavity. This is a key property of the cascaded
system master equation, built into its formal derivation
[12, 13].

Reflection by a one-sided cavity is treated in a similar
manner and it is also possible to treat multi-output sit-
uations where a scatterer causes both transmission and
reflection [15]. If retardation effects can be neglected,
more complex networks can also be treated [16], while
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non-Markovian effects of retardation and time delays en-
gages the multi-mode character of the field [17].

III. TIME DEPENDENT MODES - AN
INTERACTION PICTURE

The introduction of separate upstream and down-
stream cavity modes in our analysis enforces a two-mode
treatment of the interaction between a single light pulse
and a quantum system. Since the bare propagation of
the light pulse without a scatterer amounts to a perfect
release and recapture of the field by the input and out-
put cavity modes, this suggest addressing the dynamics
in an interaction picture where the transfer of the quan-
tum state between these modes is already taken care of.
The analysis of the problem gives exactly the same re-
sults, but the interaction picture should allow a much
more efficient numerical treatment.

By the above argument, we hence pass to the inter-
action picture with respect to the cavity-cavity coupling
component of (7),

Ĥ0(t) =
i

2
[gu(t)g∗v(t)â†uâv − gv(t)g∗u(t)â†vâu]. (8)

We thus define the unitary time evolution operator
Û0(t) as the solution to,

i
d

dt
Û0(t) = Ĥ0(t)Û0(t) (9)

with Û0(0) = Î, the identity operator. The Schrödinger
picture solution to the master equation can be written
ρ(t) = Û0(t)ρI(t)Û0(t)†, where ρI(t) solves the master
equation in the interaction picture. In the interaction
picture, Ĥ0(t) is absent from the Hamiltonian, while the
remaining terms and the Lindblad operators are trans-
formed, ÔI(t) = Û0(t)†ÔÛ0(t).

We recognize Ĥ0(t) as a time dependent beam splitter-
type coupling, and we make the ansatz

Û0(t) = exp(λ(t)â†uâv − λ∗(t)â†vâu), (10)

which upon insertion in Eq.(9) yields d
dtλ(t) =

1
2gu(t)g∗v(t). In the interaction picture, the cavity mode
annihilation operators thus read

âu,I(t) = cosλ(t)âu(0) + sinλ(t)âv(0)

âv,I(t) = cosλ(t)âv(0)− sinλ(t)âu(0),
(11)

where âu(v)(0) refer to the incident quantum field and
the vacuum output field at the initial time, where the
Schrödinger and the Interaction picture coincide. Note
that the bare system Hamiltonian Ĥs(t) and damping
terms L̂†i , L̂i with i > 0 are not affected by the transfor-
mation to the interaction picture, which only concerns
the pulse mode operators. We thus obtain

ĤI = ĤS +
i
√
γ

2
((gu(t) cosλ∗ + gv(t) sinλ∗)â†uĉ+ (g∗v(t) cosλ− g∗u(t) sinλ)ĉ†âv −H.c), (12)

and

L̂0,I =
√
γĉ+ g∗u(t)(cosλâu + sinλâv) + g∗v(t)(cosλâv − sinλâu) (13)

In the following we shall omit the index I with the un-
derstanding that all explicitly time dependent operators
refer to the interaction picture.

A. Identical incoming and outgoing modes

We examine first the case where the outgoing field
mode is equal to the incoming one, v(t) = u(t), which
suggests introducing

sin2 θ(t) ≡
∫ t

0

dt′|u(t′)|2, (14)

with |u(t)|2 = d sin2 θ/dt = 2 sin θ cos θdθ/dt, since this
allows us to rewrite

g∗u(t)gv(t) =
−u(t)2

sin θ(t) cos θ(t)
= −2

dθ

dt
. (15)

We thus obtain the simple relation, λ(t) = −θ(t). When
u(t) is real, we can rewrite the interaction picture Hamil-
tonian (12) as
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Ĥ(t) = ĤS(t) + i
√
γu(t)(â†uĉ− ĉ†âu) +

i

2

√
γu(t)(cot θ − tan θ)(â†v ĉ− ĉ†âv), (16)

and the Lindblad operator (13) of field loss as

L̂0(t) =
√
γĉ− (tan θ + cot θ)u(t)âv. (17)

Remarkably, the first interaction term in Eq. (16) is
exactly the Jaynes-Cummings Hamiltonian (1) that one
might have anticipated by simple arguments, but the in-
teraction with the travelling pulse is supplemented by the
coupling to a second mode of the field, and the dissipa-
tion of the system (17) includes also this ancillary mode.

A visual representation of the transformation to the in-
teraction picture is presented in Fig. 1, where panel (a)
shows the release and recapture of the pulse u(t) by the
virtual cavities with time dependent coupling strengths√
γgu(t) and √γgv(t) to the scatterer in the Schrödinger

picture. Panel (b) shows the coupling to the time evolved
modes in the interaction picture, where the left most
cavity represents the freely propagating pulse mode, cf.,
the coupling strength √γu(t), and the right most cavity
represents an orthogonal superposition of the two modes
shown in panel (a).

Figure 1. a) A pulse u(t) is emitted from a virtual cavity with
coupling gu(t) and interacts with a localized quantum system.
Another virtual cavity with coupling gv(t) absorbs the quan-
tum state contents of the outgoing pulse, chosen here of the
same form u(t). b) In the interaction picture, the scatterer
interacts with two time dependent modes au(t) and av(t) with
interaction strengths √γu(t) and

√
γ

2
u(t)(cot θ − tan θ). The

operators âu(v)(t) act on time dependent superpositions of the
incident and outgoing modes in panel (a), and they are graph-
ically represented here by the left and right cavities. âu(v)(t)
coincide initially with the Schrödinger picture mode operators
âu(v)(0) but with time they exchange character and become
âv(u)(0).

Figure 2. Decay of an excited two level system into a trav-
elling pulse u(t), treated here as an input vacuum pulse, and
output single photon pulse. The interaction is described by
a time dependent Jaynes-Cummings interaction and the cou-
pling and correlated decay with an ancillary mode.

In absence of the coupling to the central system (set-
ting γ = 0) the Hamiltonian vanishes in the interaction
picture, and nothing happens to the quantum content of
the time dependent left and right modes in the interac-
tion picture of Fig. 1(b). When γ 6= 0, during the finite
interaction time, there may be only a limited exchange
of quanta between the scatterer and the time dependent
modes which is in stark contrast with the complete emp-
tying and partial filling of the u- and v-cavity modes in
the Schrödinger picture represented by Fig. 1(a).

B. In what direction does the radiation propagate
in the interaction picture ?

In our cascaded open system approach [14, 15], it is
assumed, that the light only travels – and the central sys-
tem only emits – in the direction from the initially popu-
lated u-cavity towards the output mode v-cavity. In the
Schrödinger picture, terms in the Hamiltonian and the
Lindblad damping terms thus exactly cancel upstream
propagation of excitations from the scatterer and the v-
cavity. The same formal cancellation, however, is less
obvious in the interaction picture where an initial excita-
tion of the v-cavity seems to play a role in the dynamics
due to the ĉ†âv term in the Hamiltonian (16). A nu-
merical calculation, however, shows that the v-cavity is
instantly emptied, and to derive this result, we consider
the mean amplitude β in the v-cavity mode, which decays
by the rate

dβ

dt
= −|gv|

2

2
β. (18)
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Solving this equation by quadrature, we obtain

∫ β2

β1

dβ

β
= −1

2

∫ t

0

dt′|gv(t′)|2. (19)

Now, we note that |gv(t)|2 equals |v(t)|2 divided by
F (t) =

∫ t
0
dt′|v(t′)|2, and we define f(t) = |v(t)|2 =

dF/dt to obtain

∫ β2

β1

dβ

β
= ln

β2
β1

= −1

2

∫ t

0

dt′
f(t′)

F (t′)
. (20)

The last term is readily evaluated and yields

ln
β(t)

β(0)
= −1

2
ln

(
F (t)

F (0)

)
⇒ β(t) = β(0)

√
F (0)

F (t)
. (21)

Since F (t) vanishes for t = 0 and is finite for any t >
0, any initial excitation in the v-cavity, indeed, decays
instantly and there is no upstream propagation.

Figure 3. Simulation of Rabi oscillation dynamics due to exci-
tation of a two-level system by an n = 20 Fock state Gaussian
pulse. Panel (a) shows how the interaction picture u oscilla-
tor is subject to the exchange of only few quanta of excitation
with the scatterer and the v-oscillator. Panel (b) shows how
the two level atom undergoes partial Rabi oscillations, out of
phase with the mean excitation of the u-mode, confirming the
exhange of quanta with the travelling pulse. The ancillary v-
mode is temporarily excited while the net decrease of the total
number of excitations in the final state is due to incoherent
loss to other modes and a possible coherent modification of
the output pulse due to the interaction.

C. Rabi Oscillations with a quantum pulse

Atoms excited by coherent monochromatic light show
sinusoidal Rabi oscillations of their excited state pop-
ulation, ρ22(t) = sin2 (Ωt/2). In cavity QED, similar
oscillations occur for an atom interacting with a quan-
tized field [18], and we can now also investigate how an
atom behaves when exposed to a resonant pulse u(t) with
quantum light.

We want to address the excitation of both the atom
and of the travelling pulse, and we consider the output
field mode v(t) = u(t), described by the Hamiltonian (16)
and the Lindblad operator (17). We use a normalized
Gaussian pulse

u(t) =
1√
τπ1/4

exp
(
− (t− tp)2

2τ2

)
, (22)

with tp = 4γ−1 and τ = 1γ−1 in the numerical calcula-
tions. With this choice Eq.(14) yields

θ(t) = sin−1

(√
1

2

(
erf
(
t− tp
τ

)
+ erf

(
tp
τ

)))
, (23)

where erf denotes the error function.
Fig. 3 shows the time evolution, starting with the

ground state atoms and an incident pulse prepared in
a Fock state with n = 20 photons. It is clear from the
behavior of 〈ĉ†ĉ〉 in the lower panel that the two-level
system undergoes three Rabi oscillations before the in-
teraction is over and the system relaxes to the ground
state. In the Schrödinger picture calculation, the u-cavity
mode is completely emptied of its initial excitation which
is partially retrieved by the v-cavity mode, and the quan-
tum state of the field hence explores the tensor product
of two 21-dimensional Hilbert spaces, In the interaction
picture, the time evolving oscillator modes explore only a
few different Fock states. The upper panel in Fig.(3) thus
shows how the time dependent u-mode loses just 1-2 pho-
tons while the v-mode acquires less than unit excitation.
Truncation of the Hilbert space to the relevant number
state components thus easily yields a 20-fold reduction
in dimension, and a corresponding 400-fold reduction in
the number of density matrix elements. A factor that
would be even larger for larger incident photon numbers
and results in much shorter computing times.

IV. THREE-MODE INTERACTION PICTURE

In the previous section, we transformed to an interac-
tion picture with respect to the coupling term between
virtual u and v, input and output cavity modes. If the
scatterer is itself an optical cavity or a system contained
inside a cavity, it is possible to apply an interaction pic-
ture with respect to the coupling terms among all these
cavities. For a linear coupling of three cavities modes
described by the Hamiltonian Ĥ0
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Ĥ0(t) =
i

2
(
√
γgu(t)â†uĉ+

√
γg∗v(t)ĉ†âv + gu(t)g∗v(t)â†uâv −H.c.), (24)

we define Û0(t) as the solution to Eq. (9), and assume the ansatz

Û0(t) = exp(λ1(t)â†uĉ+ λ2(t)ĉ†âv + λ3(t)â†uâv −H.c.). (25)

From the Hamiltonian (24) and the Ansatz for the unitary evolution (25), follows the coupled differential equations,

λ̇1(t) =
1

2

√
γgu(t), λ̇2(t) =

1

2

√
γg∗v(t), λ̇3(t) =

1

2
gu(t)g∗v(t). (26)

We can expand the set of field operators in the inter-
action picture as a vector

φ(t) =

âu(t)
ĉ(t)
âv(t)

 = M(t)φ(0), (27)

where φ(0) is the vector of operators in the Schrödinger
picture.

The Ansatz for the interaction picture operators yields
the linear system of equations

d

dt
M(t) = F (t)M(t), (28)

where the coefficient matrix F (t) contains the derivatives
of the λ-functions according to (26)

F (t) =
1

2

 0
√
γgu(t) gu(t)g∗v(t)

−√γg∗u(t) 0
√
γg∗v(t)

−g∗u(t)gv(t) −
√
γgv(t) 0

 . (29)

This linear system of equation is readily solved and yields
the transformation of any further components of the
Hamiltonian to the interaction picture.

A. Three-mode interaction picture with an empty
cavity

We assume three cavities with the ladder operators
âu, ĉ and âv and a Gaussian u-pulse as specified in sec-
tion III C. In the absence of any further interactions, the
transformation to the interaction picture handles all the
dynamics, and no quanta ever leave the interaction pic-
ture âu-mode while the interaction picture ĉ and âv are
“dark” modes that never become populated during the
interaction.

Note that the output mode after scattering on a single
mode cavity with linewidth γ and no internal losses is
given in frequency space by v(ω) = r(ω)u(ω) [14] where

r(ω) =
i(ω − ωc) + γ

2

i(ω − ωc)− γ
2

. (30)

At late times, the interaction picture operator âu ac-
counts for all the incident photons which now populate
the pulse mode transformed according to (30).

B. Three-mode interaction picture with a Kerr
non-linear cavity: squeezing of a light pulse

As a non-trivial example of the application of the three-
mode interaction picture, we introduce a non-linear Kerr
effect in the c-cavity,

Hs(t) = K(ĉ†(t)ĉ(t))2, (31)

where K is a constant. The non-linear Kerr interaction
(ĉ†(t)ĉ(t))2 [19] acts on a coherent state by phase shifting
each Fock state by an amount proportional to n. This
effectively stretches the complex phase space distribu-
tion of the state and transforms the coherent state into a
squeezed state. This picture readily applies to an intra-
cavity field, but a long pulse incident on a cavity may at
no time have all its photons inside the cavity and may
thus not be subject to the full non-linear interaction,
while a short pulse is spectrally broad and may reflect
without even entering the cavity.

Our theory takes the spatial propagation properly into
account, and our interaction picture restricts the evo-
lution of the quantum states of the field to the num-
ber states initially occupied. We have found that us-
ing K = 0.02γ, this effect transforms a coherent state
with α = 4 and the pulse parameters defined in sec-
tion III C into a squeezed state at the end of the in-
teraction. States with larger coherent state amplitudes
become more squeezed while larger values of the Kerr-
interaction strength K may distort the mode shape and
cause deterioration of the single mode character and
hence loss of squeezing.

We quantify the degree of squeezing by minimizing the
variance of field quadratures rotated by the phase angle
φ,

Var(xφ) =
〈

[∆(cosφx̂− sinφp̂)]
2
〉
. (32)

For the case of an interaction with K = 0.02γ and α = 4,
the minimum uncertainty arises for the angle φ = 0.52
rad. where the variance is 〈[∆(cosφx̂−sinφp̂)]2〉 ≈ 0.245
which is squeezed compared to the coherent state value
of 0.5. Fig.4 shows the Wigner function indeed resembles
that of a squeezed state along an axis rotated clockwise
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Figure 4. The Wigner function of an incident coherent state
with α = 4 (〈x〉 = 4

√
2) (left panel) and the squeezed output

state after passage of the pulse through a resonator with a
Kerr-interaction with strength K = 0.02γ (right panel).

Figure 5. The variance of rotated field quadrature variables
of a light pulse after passage of a non-linear resonator with
different values of the Kerr non-linearity K. Values below the
dashed line at the value 0.5 meet the the “squeezing condi-
tion”.

by φ = 0.52 rad ≈ 30◦. In Fig. 5, the variance is shown as
a function of φ for different values of the Kerr interaction
strength, and we observe that the stronger Kerr effect
leads to a smaller degree of (single mode) squeezing.

C. Three-mode interaction picture with a Kerr
non-linear cavity: turning a coherent pulse into a

Schrödinger cat

The value of n2 can be written as 4m and 4m + 1 for
even and odd n respectively, where m is an integer. For
a sufficiently strong Kerr-interaction, the accumulated
different phase factors attain the values i on odd and 1
on even Fock states and hence transfer a coherent state
in a single mode cavity into a Schrödinger cat state [20].

In our set-up, only the component of the pulse which is
inside the non-linear c-mode cavity experiences the Kerr-
interaction, which must be strong enough to yield the
discrete phase differences to form the cat state, yet weak
enough that it does not ruin the single mode character
of the pulse. This poses a useful application of the in-
teraction picture calculation, which focuses on the field
content of the travelling pulse and takes the linear dis-
persion of the pulse shape by the passage of the middle
cavity into account. In the absence of the Kerr interac-
tion, the quantum state of the pulse is fully preserved
and unchanged. Assuming the time-dependent opera-

tors in the interaction picture with respect to (24) and
the expansion (27), for a weak Kerr interaction we may
estimate its effect on the quantum state, exploiting the
expression for the ĉ(t)-operator

ĉ(t) = M21(t)âu(0) +M22(t)ĉ(0) +M23(t)âv(0). (33)

If we approximate ĉ(t) by including only the contri-
bution from the initially populated âu-mode, we have
(ĉ†(t)ĉ(t))2 ≈ |M21(t)|4(â†uâu)2 = |M21(t)|4n̂2, where the
operator n̂2 is the square of the almost unchanged pho-
ton number in the pulse. The solution to Schrödinger’s
equation (in the interaction picture) for an initial coher-
ent state is then

|ψ(t)〉 = exp
(
−iKn̂2

∫ t

0

dt′|M21(t′)|4
)
|α〉 . (34)

To create the Yurke-Stoler state, the phase difference be-
tween even and odd n should be π/2, and hence K must
satisfy

K =
π

2

(∫ T

0

dt′|M21(t′)|4
)−1

, (35)

where T is the duration of the pulse. Assuming an inci-
dent Gaussian wave packet with the same parameters as
in section III C, the numerical evaluation of the integral
over M21(t) yields a required value of K ' 1.3 to form
the Schrödinger cat state. When we solve the three-mode
problem numerically in the interaction picture with a suf-
ficiently strong interaction, however, we find a significant
loss of population of the âu pulse modes, see Fig.6. Fig.
7 shows that the Wigner function of the quantum state
of the travelling pulse-mode at different times during the
interaction. It is evident that the loss of amplitude also
prevents the formation of the cat state.

It seems that the large value needed for K is not com-
patible with the preservation of the single mode charac-
ter of the quantum field. Instead of only looking at a
single interaction, we therefore propose to let the light
pulse pass the non-linear c-cavity several times (or pass
through a sequence of several such cavities), and thus ac-
cumulate the non-linear phase shift from repeated weak
Kerr-interactions with a small value ofK. To ensure that
the input pulse has the same initial Gaussian shape at
each interaction, one may need to reshape the pulse, e.g.,
by sum frequency generation [21]. The weak Kerr inter-
action at each passage, transforms the quantum state of
the field only slightly, while maintaining its single mode
character, and after sufficiently many passages, the light
pulse attains the Schrödinger cat quantum state.

To create the cat by N transmission steps, Eq. (35)
can now be relaxed to

N ·K
∫ T

0

dt′|M21(t′)|4 =
π

2
. (36)

Using an interaction strength K = 0.01γ, a Gaus-
sian wave packet with the same parameters as in sec-
tion III C and the numerical evaluation of the integral
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Figure 6. The upper panel shows the input u(t) and out-
put v(t) modes for the scattering on an empty cavity. The
lower panel shows the occupation of the output mode v(t),
represented asymptotically by âu in the interaction picture,
for different values of the non-linear interaction K. We as-
sume an incident coherent state with 〈n̂〉 = |α|2 = 4, and no
photons are lost in the process, but an increasing number of
photons explore the continuum of modes orthogonal to v(t).

Figure 7. The Wigner function of the travelling pulse-mode
at different times during the Kerr interaction, given by eq.
(35) for an initial coherent state with α = 2. It is clear that
the interaction does not lead to a Schrödinger cat state.

∫ T
0
dt′|M21(t′)| ≈ 1.180γ−1, we estimate the number of

interactions required to create a cat state from an input
coherent state as

N =
π

2 · 0.01γ · 1.180γ−1
≈ 133. (37)

This is in good agreement with the full numerical calcu-
lation, presented in Fig. 8, which shows the development
of different non–classical states in the process towards
the final Yurke-Stoler cat state.

V. CONCLUSION AND OUTLOOK

An effective cascaded open quantum system approach
can be used to describe the initial preparation, the inter-
action and the final analysis of how a pulse of quantum

Figure 8. The Wigner function of the quantum state of the
transmitted pulse after different numbers of cavity transmis-
sions. The simulations are carried out for K = 0.01γ and a
coherent state with α = 2, and they assume that the out-
put pulse of each cavity transmission is filtered and reshaped
before transmission through the next cavity.

radiation interacts with, e.g., an atom. The propagation
of quantum pulses in free space and among cavities can
be solved exactly in the Heisenberg picture by a linear
transformation of the mode operators. This constitutes
a good starting point for an interaction picture treatment
of the cascaded master equation theory. The interaction
between the propagating light and localized scatterers
thus takes the conventional Jaynes-Cummings form of a
time-dependent single mode interaction, while it also pro-
vides the interaction with an auxiliary oscillator. These
terms together ensure the exact analysis assuming only
the standard Born-Markov treatment of couplings to the
continuum of free space (or guided) modes.

Our theory is simple to implement directly with stan-
dard master equation solvers, and since the main part
of the dynamics is already taken care of by the transfor-
mation to the interaction picture, it considerably simpli-
fies the numerical calculations. We note that our analy-
sis may equally apply to other bosonic fields (light, mi-
crowaves, matter waves, sound and spin waves). For a
wide range of wave phenomena, (linear) dispersion plays
an important role and may be treated by a suitable in-
teraction picture along the same lines as our treatment
of the transmission through a single linear cavity. Our
method thus permits dealing separately with the effects
of propagation and of quantum interactions.
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