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Here we discuss aspects relevant to the experiment
which have not been addressed in the main text. First,
in Supplementary Note 1, we present more details of the
optical cavity and the optical setup. Then, in Supple-
mentary Note 2, we describe the technique we use to
localize the nanoparticles and to ensure maximal cou-
pling to the cavity electric field. We calculate the size
and estimate the number of erbium ions present in the
nanoparticle. In Supplementary Note 3 we introduce our
cavity stabilization mechanism and estimate the cavity
stability. Then, in Supplementary Note 4 we describe
the method we derived to switch the cavity resonance at
will, characterize the speed of the switch and finally dis-
cuss limitations and possible improvements to decrease
switching time.

In Supplementary Note 5 we estimate the effect of the
off-resonance cavity while measuring the natural lifetime
of the emitters. In Supplementary Note 6 we introduce
the model used to estimate the multi-exponential decay
in the cavity, following a dynamic and a static approach.
We compare the data with the model and show that the
data is consistent with having a strong Purcell enhance-
ment. Finally, in Supplementary Note 7 we specify the
efficiencies of our setup and discuss the feasibility of our
current apparatus to detect a single erbium ion and pos-
sible modifications to reach high fidelity detection.

SUPPLEMENTARY NOTE 1: CAVITY AND
OPTICAL SETUP

The microcavity is composed of a fiber with a con-
cave structure on the tip on which a reflective coating
is fabricated. The other side of the cavity is a planar
mirror with the same reflective coating as the fiber. To
ensure maximum coupling between the ions and the cav-
ity electric field, we add a SiO2 layer of 245 nm thickness.
The thickness of the layer is chosen such that the max-

imum of the electric field is 40 nm above the SiO2-air
interface, where nanoparticles are deposited. The trans-
mission of the fiber is Tf = 100 parts-per-million (ppm),
while for the mirrors Tm ≈ 2 × Tf due the presence of
the SiO2 spacer thus leading to a maximum finesse of
Fmax ≈ 20, 000. The radius of curvature of the concave
structure is roc ≈ 50 µm and the depth of the structure
is close to pd ≈ 1.5 µm

The optical setup is shown in Fig 1c. It allows us to
perform resonance excitation and detection both via the
optical fiber. The 1535 nm laser is used to excite the ions
and the 790 nm laser to stabilize the length of the cav-
ity. An acousto-optic modulator (AOM) in a double pass
configuration is used to ‘pulse’ the excitation laser. A sin-
gle pass AOM operates as excitation/detection ‘router’.
During excitation, the router AOM is off and the exci-
tation light is directed to the cavity while most of the
reflected light is directed back to the same channel. Dur-
ing detection, the router AOM is on and the spontaneous
emission from the ions is deflected towards an InGaAs
single photon counter (detection efficiency 10 %). A ‘fil-
ter’ double pass AOM after the router is used to add
additional protection (60 dB) to the single photon detec-
tor during excitation. A wavelength-division multiplex-
ing (WDM) and dichroic mirrors (DM) both for 780/1535
are used for merging the light directed onto the cavity
and to separate the transmitted light. The transmitted
light is then directed to continuous APDs (PD) for cavity
length stabilization and transmission monitor.

SUPPLEMENTARY NOTE 2: LOCALIZING
NANOPARTICLES

To localize a nanoparticle, we use scattering loss spec-
troscopy [1]. While scanning the fiber cavity, we monitor
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the cavity transmission which is given by

Tc =
4TfTm

(Tm + Tf + 2B)2
(SM.1)

where Tf and Tm are the transmission losses per pass
of the fiber and the mirror, B = 4σ/πw2

0 are the addi-
tional losses per pass due to scattering introduced by the
nanoparticle with w0 the cavity mode waist and σ the
scattering cross section. The latter can be calculated as

σ =

(
2π

λ

)4
α2

6π
(SM.2)

where the polarizability of the nanoparticle is given by [2]

α = 3ε0V
n2 − n2

air

n2 + 2n2
air

(SM.3)

with n and nair the refractive indices of the nanoparticle
and surrounding medium, ε0 the vacuum dielectric con-
stant, and V = 4/3πr3 the volume of the nanoparticle.

We look for nanoparticles which are big enough to in-
troduce a visible scattering signal, but small enough to
maintain the out-coupling efficiency

ηout =
Tout

(Tf + Tm + 2B)
(SM.4)

at a high level, where Tout is the out-coupling channel,
that is, Tf or Tm. Fig. 1b (main text) shows a map of the
losses that the studied nanoparticle introduces to the cav-
ity at 1535 nm. For Tf = Tm/2 = 100 ppm, a peak loss
B ≈ 43(2) ppm is measured when the nanoparticle is well
aligned to the cavity mode. For results presented here,
the effective cavity length is 6 µm, which includes the
field penetration depth of ∼ 3 µm inside the refractive
coating and the concave structure depth of ∼ 1.5 µm.
For a radius of curvature of the structure of the fiber
of 50 µm, we calculate the beam waist w0 = 2.9 µm.
With n = 1.9317 the refractive index of Y2O3, we in-
fer a nanoparticle radius of 90.5(1.0) nm. Finally, for
an erbium doping concentration of 200 ppm, the total
number of erbium ions in the crystallographic site of C2
symmetry is close to 11, 000.

SUPPLEMENTARY NOTE 3: CAVITY
STABILITY

The cavity is placed on a compact and passively stable
nano-positioning platform, which is based on the cryo-
genic cavity design currently commercialized as qlibri
cavity platform, and is robust against the high frequency
noise coming from the closed-cycle cryostat. In order
to stabilize the cavity length at 1535 nm, which is the
ion’s resonance, we make use of a second stop band at
790 nm. The coating is designed such that for every
1535 nm mode, there is a close by 790 mode for cavity

length stabilization for lengths in the 2 to 20 µm range.
Supplementary Figure 1a shows a transmission scan at
1535 nm and 790 nm while scanning the cavity length by
close to 1 µm.

To stabilize the length of the cavity, we fine tune the
wavelength of the 790 nm laser such that the maximum of
the 1535 nm transmission peak overlaps with the middle
of the 790 fringe (see Supplementary Figure 1b). Then,
the transmission of the red laser is used to monitor cavity
drifts and feedback is applied to the piezoelectric crystal
to keep this signal at a constant level (side of fringe lock).
Supplementary Figure 1c shows the transmission of both
lasers as function of the time while the feedback system
is on for the whole cryostat cycle, and Supplementary
Figure 1e shows a Fast Fourier Transform of the 790 nm
transmission signal when the cavity is locked. The domi-
nant noise resides in the 150−300 Hz frequency domain.
We note that this is a limiting factor for our cavity sta-
bility, as the first eigenfrequency of our setup is close to
1 kHz.

For this particular measurement, the finesse F of cav-
ity at 790 nm is 700 and at 1535 nm is 5, 000. We
estimate the cavity stability using both the 790 nm
and the 1535 nm transmissions and by modeling the
cavity displacement by a single-frequency sinusoidal as
δ(t) = A cos(t · 2πν) where ν is set to 200Hz, that is, the
main frequency component of the 790 nm transmission
signal, and A corresponds to the displacement amplitude.
Then, the cavity transmission T (t) as function of time
can be calculated as

T (t) = Tmax · L(t) = Tmax ·
(∆/2)2

(δ(t) + δ0)2 + (∆/2)2

(SM.5)
where L is the Lorentzian spectral line shape of the cav-
ity, δ0 is the detuning from the center of the line , Tmax

is maximum of the transmission and ∆ = λ/2
F is the full

width at half maximum (FWHM).
We then calculate A for both the 790 nm and 1535

nm fringes such that the calculated standard deviation
(STD) for long times matches the measured values. Fi-
nally, we assess the root mean square (RMS) cavity sta-
bility as A√

2
. For the 790 nm fringe, δ0 = ∆790/2, that

is, the cavity is stabilized on the side of the fringe at half
maximum, and the estimated RMS cavity stability is 31
pm. For the 1535 nm fringe, δ0 = 0, that is, the cavity is
stabilized at the center of the fringe, and the estimated
RMS cavity stability is 37 pm. We attribute the discrep-
ancy to a larger uncertainty in the finesse of the 1535 nm
mode. The 1535 nm fringes for the finesse measurement
were not recorded with high enough resolution, and the
obtained value of 5, 000 is therefore a lower bound.

In Supplementary Figure 1c, we can identify time in-
tervals which show significantly smaller signal dispersion,
this interval corresponds to the quietest part of the cryo-
stat cycle, which is close to 500 ms. Supplementary Fig-
ure 1d corresponds to a zoom in of 30 milliseconds over
which the cavity stability is the highest, for which we es-
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Supplementary Figure 1: Cavity stability measurements. a) 780 nm (red) and 1535 nm (blue) cavity transmission as
function of cavity length. For this measurement, the cavity finesse at 780 nm and 1535 nm was 700 and 5, 000

respectively. b) Zoom in of (a) on the fringe used to stabilize the cavity length. c) Transmission during 5 seconds
while the cryostat is on. The cavity length is actively stabilized to the side fringe of the 780 nm transmission while
it is on resonance at 1535 nm. By calculating the standard deviation of the 790 nm transmission, we infer a cavity

stability of 30 pm d) Zoom in of (c) on 30 milliseconds over which the cavity stability is the highest. e) Fast Fourier
transform of a typical 790 nm transmission signal when the cavity is lock. The dominant noise resides in the

150− 300 Hz frequency domain.

timated RMS cavity stability of 21 pm and 31 pm when
calculated using the 780 nm and the 1535 fringes respec-
tively.

As seen in this section, our positioner is stable enough
to keep the cavity on resonance with the ions during the
whole cycle. We note that the cavity stability for the
data shown in the main text and in the next sections was
slightly degraded, and typical values between 50 and 75
pm RMS were extracted based on the STD of the 1535
nm transmission signal. In the following sections and to
calculate the median Purcell factor, for the model and
for the cavity switching time we will assume a cavity
stability of 62.5 pm RMS, consistent with most of our
measurements. The reason for that is not a fundamental
limitation. The high stability reported in this section was
recorded in the first assembly of the positioner, while
for the data shown in the next sections the positioner
was re assembled several times. A possibility exists that
during the subsequent assemblies a component was not
optimally placed resulting in a degraded stability.

SUPPLEMENTARY NOTE 4: CAVITY
RESONANCE SWITCHING

As discussed in the main text, we switch the cav-
ity resonance by a fast change of a voltage offset on a
piezoelectric and by stabilizing the cavity to either side
of the 790 nm cavity fringe at will. Between the two
sides of the fringe, the total cavity length displacement
is ∆790 = FWHM790. The 1535 nm resonance with
linewidth ∆ overlaps with the middle of one side of the

790 nm fringe (see Fig. 3a and description from main
text), thus when the cavity is stabilized to the opposite
side, erbium ions are detuned from the cavity.

Now, we characterize the reduction of the Purcell fac-
tor and the spontaneous emission rate in the cavity mode
during the time the cavity resonance is switched. The
Purcell factor as function of the detuning δ from the cav-
ity resonance ∆ is then given by

C(δ) = L(δ) · C, (SM.6)

where

L(δ) =
(∆/2)2

δ2 + (∆/2)2
, (SM.7)

is the normalized Lorentzian spectral line of the cavity.
The detected countrate as function of the time is given

by [3]

r(t) =
C(t)

τn
· N (t) (SM.8)

where τn is the natural lifetime, N (t) is the number of
ions in the excited state and C(t) is the Purcell factor.
The number of ions in the excited state can be calculated
as

N (t) = N0e
− t
τn
−
∫ t
0
C(t′)
τn

dt′ (SM.9)

where N0 is the number of ions in the excited state before
the cavity frequency is shifted. The first term in the
exponent of Eq. SM.9 takes into account the decrease in
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Supplementary Figure 2: a) Reduction of the Purcell
factor (red) and the count-rate (blue) as function of
time during S790 = 300 µs. Solid lines is for the ideal

detuning of δ = ∆790

∆1535
∆ = 12∆ and dashed line for

δ = ∆790

∆1535,eff
∆ = 7.5∆ , the value obtained considering

the cavity stability. b) Residual noise as function of the
switching time S790

population due to emission in free space, while the second
term does it in the cavity mode. Eq. SM.9 only takes
into account the modification in the density of states and
neglects light-matter dynamics [3].

In order to minimize coupling of mechanical noise in
the cavity, the detuning as function of time, that is, the
voltage applied to the piezoelectric transducer, is given
by

δ(t) = ∆790 · sin2

(
πt

2S790

)
(SM.10)

where S790 is the switching time between the two locking
points.

For this experiment, we use S790 = 300 µs. Assum-
ing the cavity resonance at 1535 nm is ∆1535 = ∆790/12
and a Purcell factor 15, we expect a total reduction of
1/577 in the Purcell factor and 1/630 in the countrate
(see Supplementary Figure 2a). Depending on the prac-
tical purpose a faster decoupling time might be required,
which can be achieved at the expenses of a smaller reduc-
tion of the Purcell factor or the countrate. Here we define
the switching time S1535 as the time needed to decrease
the countrate by a factor of 10. For ideal parameters, we
therefore expect S1535 = 67 µs.

Now, we compare the expected reduction of the Pur-
cell factor and the countrate with the measured values.
Fig. 3e and 3f in the main text show the detected count-
rate as a function of time at the moment the cavity is

tuned off- and on-resonance. The solid line is the model
defined in Eq. SM.8. To take into account the cavity sta-
bility, we introduce an effective cavity linewidth defined
as

∆1535,eff =

√
∆2

1535 + Noise2
RMS (SM.11)

with NoiseRMS = 62.5 pm RMS as measured (see Sup-
plementary Note 3).

For these parameters, the maximum reduction of the
Purcell factor is 1/227 and for the countrate is 1/253.

In Fig. 3e, the first vertical line indicates the beginning
of the switching and the second is the time at which the
countrate is reduced by a factor of 10, giving a S1535 =
85(15) µs. In Fig. 3f, the second vertical line indicates
the end of the switching and the first is the time at which
the detected countrate is a factor of 10 smaller than the
maximum, for which the time interval is 87(16) µs. Here,
we see that by the time the cavity is back on resonance,
the maximum countrate cannot be reached as population
is lost during the switching process which occurs in a time
scale comparable to the Purcell enhanced decay time.

In order to reduce further the switching time (assum-
ing the cavity stability is not the limiting factor), one can
simply move the piezo faster thus reducing S790. How-
ever, a faster kick leads to increased residual mechanical
noise. Supplementary Figure 2b shows the residual noise
as function of the switching time S790. The residual noise
is calculated as the standard deviation of the locking sig-
nal in the first 1 ms after the cavity is set on resonance
at 1535 nm. As expected, the residual noise increases for
a faster switching time S790, that is, for faster switch-
ing frequency. We estimate the switching frequency as
1/(2 × S790) ≈ 1.6 kHz. The characteristic frequency of
the residual noise is between 7 − 10 kHz. We attribute
this residual motion to the fiber in the plane perpendic-
ular to the cavity axis. To first order, the cavity length
should be robust against the lateral displacement of the
fiber. However, a misalignment when placing the fiber
in the positioner could lead to strong coupling between
them, as confirmed in our experiment. We see that while
moving the fiber laterally, the cavity length is shifted, and
we estimate the coupling to be in the 20− 40% range.

In order to increase the switching time S1535, we can
follow several strategies:

� perform a proper alignment of the fiber in order
to minimize the coupling between the vibration
modes,

� increase the frequency of all mechanical eigen-
modes,

� increase the finesse of the 1535 nm resonance,
� use a faster growing function than sin2 or imple-

ment iterative learning algorithms to shape the sig-
nal sent to the piezo to minimize added noise

Altogether, we estimate that values of S1535 in the mi-
crosecond scale could be achievable by combing these im-
provements if the cavity stability issue is addressed.
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SUPPLEMENTARY NOTE 5: EMITTERS
COUPLED TO AN OFF-RESONANCE CAVITY

In Fig. 3c and the following text in the manuscript, we
show how the cavity resonance switching can be used to
extract the natural lifetime of a single or an ensemble of
emitters. For that, we set the cavity on resonance with
the ions and we excite them. Immediately after, we tune
the cavity off resonance. After a time td (see main text
for definition), we tune back the cavity on resonance and
a strong fluorescence is recorded (Fig. 3c main text). By
plotting the counts in a given time window as function
of td, one can extract the natural lifetime (Fig. 2a, green
crosses main text). However, one needs to consider the
influence of the off-resonance cavity, which under cer-
tain conditions could lead to an inhibited emission and
increased lifetime.

In earlier work [4] we have performed FDTD simula-
tions on the emission lifetime of a dipole placed on a
planar Bragg mirror and found that this reduces the ex-
cited state lifetime by up to a factor 1.3. This means
that already the presence of a single mirror leads to
some Purcell-enhanced emission rate. This prediction
is in agreement with fluorescence decay time measure-
ments performed on a bunch of nanoparticle in free space,
for which we extract a natural lifetime of 13.94(1) ms
(see Supplementary Figure 3). This value is exactly 1.3
times larger than the 10.8(3) ms measured for the stud-
ied nanoparticle which is placed on the Bragg mirror.
Notably, the effect remains smaller than the analytical
prediction for a perfect mirror, where a reduction by up
to a factor 2 is expected. This is related to the finite
angular range where the Bragg mirror is reflective, and
due to the coupling into Bloch modes.

For an off-resonant cavity, the same reasoning remains
valid, and emission suppression will be due to destruc-
tive interference of partial waves within a narrow solid
angle only. The specific geometry of the mirror defines
the quantitative value of the suppression, in particular
the geometry of the concave profile. In our case, this is a
very shallow profile (structure depth ∼ 1.5 µm, radii of
curvature of 50 µm), such that only modes within a small
angular range of α ≈ 6 deg will be suppressed. A com-
parable geometry of an open access microcavity, however
with larger aspect ratio and thus larger angular range
(α ≈ 22) was studied in [5], where a suppression of 32%
was calculated by FDTD. This fits reasonably well to the
fraction of the 4π-solid angle that the geometry covers,
where Ω = 2 × 2π(1 − cos(α)) is the estimated effec-
tive solid angle that is relevant for the suppression. For
α = 22 deg , this yields a 29% suppression, close to the
FDTD result. Translated to our geometry, for α = 6 deg ,
we obtain a negligible lifetime suppression of < 3%.

As a second indicator that the effect should be small in
our setup, we refer to our earlier work with NV centers
coupled to a planar Fabry-Perot mode (see [6]). Only
for very small mirror separations we were able to observe
notable lifetime increase for an off resonant cavity (Fig.
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Supplementary Figure 3: Excited state lifetime of
erbium doped nanoparticles measured in free space.

4a in [6]).
To summarize, in the data shown in Fig. 2a in the main

text in order to extract the natural lifetime, we estimate
that the effect of the off-resonance cavity is negligible,
but can be of relevance for different geometries. We note
that by performing measurements with dynamic switch-
ing at different mirror separations, it will be possible to
quantify the effect of emission suppression, such that the
measurement principle indeed allows one to obtain an ac-
curate value of the Purcell factor. We note however, that
the presence of the mirror carrying the sample comes in
addition, and needs to be quantified separately. Com-
paring to a crystal in free space would thus yield larger
values of the Purcell factor.

SUPPLEMENTARY NOTE 6: MODEL FOR
PURCELL ENHANCED DECAYS OF AN

ENSEMBLE OF SOLID-STATE EMITTERS IN A
CAVITY

As discussed in the main text, the recorded signal in
order to extract the Purcell enhanced lifetime shows a
strong indication of multi-exponential behavior. The rea-
son for that is that ions with different Purcell enhance-
ment contribute to the detected signal. In this section we
derive a model that considers a large ensemble of ions in a
nanoparticle that experience a maximum Purcell factor
Cmax which is then reduced due to three main factors.
The first factor is related to the orientation of the dipole
moments of the ions. To estimate this first contribution,
we consider a spherical nanoparticle of radius r, which is
composed from several crystalline structures. Each crys-
talline structure supports three orthogonal directions for
the orientation of the dipoles. Already for a small number
of structures, it is reasonable to assume that the dipole
orientations are random and homogeneously distributed.
For a cavity axis along ẑ and considering that both com-
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Supplementary Figure 4: Normalized distributions pd

and psw obtained after making histograms of Ri,d and
Ri,sw over a large number of randomly placed ions with

randomly oriented dipoles. The distribution pL is
calculated following a stroboscopic approach on the

values of RL(t,δ0) over a large sampling space. Finally,
the normalized distribution p is calculated from pd, psw

and pL as described in the text.

ponents of the cavity electric field Ē = Exx̂ + Ey ŷ have
the same resonance frequency, each ion i in the nanopar-
ticle experiences a reduced Purcell Cmax ·Ri,d with

Ri,d = (x̂ · n̂i)2 + (ŷ · n̂i)2 = n2
i,x + n2

i,y (SM.12)

where ni,{x,y} are the components of the dipole moment

d̄i = din̂i along the x and y axes.
Next, we consider the finite extension of the nanopar-

ticle with respect to the standing wave of the cavity field,
meaning that ions far from the center experience an ad-
ditional reduction of the Purcell factor. This reduction
is given by

Ri,sw = cos(
zi + zoffset

λ
· 2π)2 (SM.13)

where zi is the distance of the ion i in the z-axis from the
center of crystal, and zoffset is the distance of the center
of the crystal to the maximum of the standing wave.

Finally, we model the fluctuation of the cavity by a
single-frequency sinusoidal as δ(t) = A cos(t · 2πν) where
ν is the main frequency component of the 790 nm trans-
mission signal, and A corresponds to the cavity displace-
ment amplitude (see section ‘Cavity stability’). This af-
fects equally all ions, thus the Purcell factor is globally
reduced by

RL(t,φ) =
(∆/2)2

(δ(t) + δ0)2 + (∆/2)2
(SM.14)

where L is the Lorentzian spectral line shape of the cav-

ity, ∆ = λ/2
F is the FWHM and δ0 is detuning of the

cavity at the time a particular trial of the experiment
starts.

Now, we model the detected counts as function of time
following two different strategies: a dynamic one and a
static one. For the dynamic approach, we assume a large
number of ions and calculate the probability to detect
photons as function of time which is mainly determined
by the time-dependent Purcell factor. For the static one,
we reconstruct the detected counts by calculating the dis-
tribution of decays rates present in our system. The
main difference between these two methods is that the
frequency at which the cavity vibrates is relevant only
for the first method (see discussion below).

To model the counts per bin as function of the time
following the dynamic strategy, we consider a large en-
semble of ions which are excited and start to decay. The
probability that an ion i emits in the cavity as a function
of time is proportional to

e−
∫ t
0

C(t′,i,δ0)
τn

dt′ , (SM.15)

with a time-dependent Purcell factor given by

C(t, i, δ0) = Cmax ·Ri,d ·Ri,sw ·RL(t,δ0). (SM.16)

The total detected counts as function of the time is es-
timated by averaging over a large number of ions with
randomly chosen initial cavity detunings δ0, that is,

cts(t) ≈ η
#i∑
i

#δ0∑
δ0

e−
∫ t
0

C(t′,i,δ0)
τn

dt′

#i#δ0
(SM.17)

with #i and #δ0 the number of ions and detunings which
are considered, and η is a normalization factor that in-
cludes the detection efficiency and the number of ions
which are excited at the beginning of the experiment.

For the static approach, we model the detected counts
as linear superposition of exponential decaying curves,
that is,

cts(t) ≈
∫ 1

0

p(s)e−
s t Cmax
τn ds. (SM.18)

with s = C/Cmax and p(s) the normalized distribution
of Purcell factor present in the system. We start by dis-
cretizing eq. SM.18 such that

cts(t) ≈
n∑
j=1

p(sj)e
−
sj t Cmax

τn ∆s (SM.19)

with sj = [1/n, 2/n, ..., 1], n the number of discrete steps
and ∆s = 1/n is the step size. To estimate p(sj), we first
calculate the discrete distributions pd(sd), psw(ssw) and
pL(sL) corresponding to the distributions of the dipole
orientations of the ions, the position of the nanopar-
ticle with respect to the standing wave and the fluc-
tuations of the cavity respectively. Note sd, ssw, sL,=
[1/n, 2/n, ..., 1]. pd(sd) and psw(ssw) are calculated by
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making normalized histograms of Ri,d and Ri,sw by plac-
ing ions randomly and homogeneously distributed in the
nanoparticle with randomly oriented dipole moments.
Note that the bin size of the histogram is set to be the
same as the step size 1/n of the discrete distribution, such
that the bins correspond to [(0-1/n), (1/n-2/n), ..., -1)].

The distribution pL cannot be directly calculated be-
cause it is a time dependent function. We therefore es-
timate it following a stroboscopy approach. That is, pL
is given by the normalized histogram of RL(t,δ0) calcu-
lated at random times t in a time interval larger than the
chosen period of the cavity vibration.

We now have three lists, which correspond to the three
discrete distributions, of the form (s, p) with n elements
each. p(sj) is then calculated as follows: first, we make
a new list (s′, p′) containing n3 elements where

s′ = sd[k] · ssw[l] · sL[m], (SM.20)

p′ = pd(sd)[k] · psw(ssw)[l] · pL(sL)[m], (SM.21)

where k, l,m = [1, 2, ..., n] are indices for elements of the
corresponding lists. We then construct a new histogram
out of the list (s′, p′) with bin size set to 1/n. Finally, the
histogram is normalized to obtain p(si). The obtained
distributions pd, psw, pL and p are shown in Supplemen-
tary Figure 4.

The main difference between the static and the dy-
namic methods arises mainly in how pL is calculated. In
our calculation, the frequency of the cavity vibration ν
does not influence the value of pL. We now illustrate how
this small difference strongly affects the model. First, we
consider the case where the time scale of the cavity vi-
bration 1/ν is much slower than the slower lifetime τ ′

present in the system, that that is, 1/ν � τ ′. In this
case, in some trials of the experiment, we will record
very fast photons as the cavity is on resonance for a time
longer than τCmax

, while moments later, when the cavity
is slowly moving out of resonance, slower photons will be
recorded. After integrating counts for a very long time,
fast and slow contributions should be clearly visible in
the data. Now, we consider the opposite case in where
1/ν � τ ′, that is, very fast cavity vibration compared to
the slower decay rate present in the system. In this case,
on each trial, we can assume that the cavity will be on
average enough time on resonance such that all the ions
had already decayed at early times of the trial, thus no
photons will be recorded at later stages. In this case, for
long integration times, a slow component is not expected
in the signal, although the cavity displacement can be
assumed to be the same as in the opposite case. The
influence of the frequency of the vibrations of the cavity
on the ions can only be studied by the dynamic model
and not by the static one.

Fig. 2a-c in the main text shows both the dynamic and
the static model for the parameters of our system. The
radius of the particular is set to 90 nm consistent with
measurements. The finesse of the cavity is 16’000 for
which ∆ = 50 pm. The offset of the maximum of the
standing wave with respect of the crystal zoffset is 50 nm
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Supplementary Figure 5: Number of photons generated
in the cavity mode as a function of the excitation power

before the cavity. Excitation pulse length is 500 µs.
Error bars represent one standard deviation of photons
counts. The inset shows the detection window [0− τc],

with τc = 0.7 µs.

(see Supplementary Note 1). The amplitude of the cavity

fluctuations is set to A = NoiseRMS ·
√

2 = 88.4 pm where
NoiseRMS = 62.5 pm and the frequency of the cavity dis-
placement ν = 200 Hz (see Supplementary Note 3) . The
expected maximum Purcell factor of Cmax = 171 fails
to describe the data well, but an almost perfect overlap
is obtained by choosing Cmax = 150. Finally, the re-
maining parameter is the normalization factor. The nor-
malization factor is related to the number of ions that
are excited after the pulse and the detection efficiency.
This factor is difficult to assess as the number of excited
ions strongly depends on the power broadening which de-
pends on the homogeneous linewidth which is unknown.
The normalization is set by minimizing the RMSE be-
tween the model and the data set. Finally, on each bin
we add counts to account for the measured dark count
rate of 13.7 Hz. As seen in the Fig. 2a in the main text,
both models stay consistently below one standart devia-
tion from the data. The dynamic model fails to describe
the slower components, thus suggesting that slower com-
ponent in the cavity vibration are present. These slower
components can be explained by the 2 Hz cycle of the
cryostat.

In conclusion: we presented a model that accurately
describes the data. From the model we conclude that the
early fast decay seen in the data can only be explained if
a small ensemble of ions experience a large Purcell factor
which is then reduced. The main reduction is related to
the cavity stability. In case the cavity stability improves,
ions in the center of the nanoparticle and with the dipole
moment aligned to the cavity electric field could be in
principle isolated yielding to an up to five times higher
signal to noise ratio, a level at which single ion detection
would be feasible in our setup (see Supplementary Note
7).
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SUPPLEMENTARY NOTE 7: NUMBER OF
DETECTED IONS

The probability pdet to detect a photon generated in
the cavity mode is given by

pdet = ηout × ηmm × ηcol × ηdet × ηg (SM.22)

where ηout is the probability of the photon leaving
through the fiber as defined in Eq. SM.4, ηmm is the mode
matching between the fiber and the cavity mode [7], ηcol
is the collection path efficiency, ηdet is the detector effi-
ciency and ηg is the proportion of the single photon in
the detection time window.

For our cavity, ηout = 0.25 when detecting via fiber
and when the particle is aligned to the cavity mode,
ηmm is calculated to be 0.60, ηcol is measured to be 0.3,
ηdet = 0.1, and ηg = 0.63 for a detection time window
tdet = [0− τc] where τc is the lifetime of the emitter un-
der Purcell enhancement. All together then results in
pdet = 0.28%. Supplementary Figure 5 shows a measure-
ment of the number of photons generated in the cavity
as a function of the excitation input power at the input
of the cavity. For an input power of 7 nW as in Fig. 2
(main text), the detected signal corresponds to 40 intra
cavity photons generated by 80 ions (an ion is excited
with almost 50% probability, see Eq. SM.25). For the
first data point of Supplementary Figure 5 with input
power of 330 pW, the detected signal corresponds to 5
intra cavity photons generated by 10 ions.

In order to detect a single ion, we need to compare
the probability of detecting a photon pdet with the prob-
ability of detecting noise in the same time window tdet.
We define the signal to noise ratio as

S/N =
pdet
pn

, (SM.23)

where pn is the background probability in the detection
window tdet, in our case mostly due to the dark-count
rate of the single photon detector (10 Hz). We then cal-

culate

S/N =
pdet
τc
× 1

10 Hz
= 0.5. (SM.24)

This means that the number of photons that must be
generated in the cavity to achieve a S/N = 1 is equal 2.
The probability pgen for an ion to emit a single photon
in the cavity is indeed given by

pgen = pexc × χcav × β ≈ 0.47, (SM.25)

where pexc is the excitation probability (0.5 since we ex-
cite incoherently). We therefore need to detect the fluo-
rescence from four ions to achieve a S/N = 1, which is
currently not sufficient to reach high-fidelity detection of
a single ion.

Several solutions can be implemented to increase the
signal in order to detect a single ion. First, with the
use of a superconducting nanowire single photon detec-
tor, which are specified to have detection efficiencies of
close to 80% (efficiency of our current detector is 10%).
With this detector, the sensitivity could be increased by
at least a factor of 8, thus single photon detection would
be already possible with no extra modification to the
setup. In case the cavity stability is improved, ions that
emit photons at a rate which is up to five times faster
than the average can be in principle addressed, leading
to an additional factor of 5 in the signal to noise ratio.
In addition, in our current cavity most of the light is
emitted on the planar mirror side (Tm = 2Tf ). Future
cavities with higher reflective mirrors will significantly in-
crease the escape efficiency through the fiber. Even more,
new mirrors will also lead to significantly higher cavity
finesse and therefore increased Purcell enhancement. By
increasing the reflectivity of the mirror in order to have
a finesse of 40, 000, we expect that the cavity improve-
ments will lead to a detection sensitivity improved by a
factor 4. We can therefore expect an increase in detec-
tion sensitivity by a factor 120 compared to the current
sensitivity, which should allow us to reach high fidelity
single photon detection.

SUPPLEMENTARY REFERENCES

[1] M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger,
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