
MLPerf Design Space Exploration and Production Deployment
or how our reproducibility initiatives at ML & Systems conferences, CK framework and MLPerf

help to automate development and deployment of Pareto-efficient ML Systems

Grigori Fursin VP at OctoML.ai ; MLCommons member cKnowledge.io/@gfursin

Tasks

Models

Data sets

Software Hardware

Time

A
cc

u
ra

cy

Outline

• Personal motivation: how to make it easier to validate ML/AI-based research ideas
in the real world?

• Artifact evaluation and reproducibility initiatives at ML and system conferences

• Learning from reproducing 150+ research papers at ASPLOS, CGO, PPoPP, PACT and MLSys
and validating some of them in the real world

• Collective Knowledge concept (CK): bridging the growing gap between academic research
and industry with reusable artifacts and automation recipes

• Using CK to automate design space exploration of ML Systems
across diverse ML frameworks, models, data sets and platforms

• Automating the deployment of Pareto-efficient AI/ML systems in the real world

• Developing the new CK2 framework and discussing a new MLCommons WG on DSE –
provide your feedback and join our community effort!

From ML/AI-based ideas to production

From ML/AI-based ideas to production: research

Research / Data Science / MLOps

• Ad-hoc prototyping of ideas
• Iterative experimentation
• Validation on a few use cases

From ML/AI-based ideas to production: research + DevOps

Research / Data Science / MLOps

• Ad-hoc prototyping of ideas
• Iterative experimentation
• Validation on a few use cases

Engineering / DevOps

• Careful Planning
• Thorough testing
• Validation in the real world

The gap between ML and Systems research and production is growing …

Research / Data Science / MLOps

• Ad-hoc prototyping of ideas
• Iterative experimentation
• Validation on a few use cases

Months
Years

Engineering / DevOps

• Careful Planning
• Thorough testing
• Validation in the real world

Public outcry: ML and Systems papers are difficult to reproduce; MLOps is a mess

Team1 Team2

Team3

March 2022: www.mihaileric.com/posts/mlops-is-a-mess/
June 2020: arxiv.org/abs/2006.07161

http://www.mihaileric.com/posts/mlops-is-a-mess/
https://arxiv.org/abs/2006.07161

2010-2014: Reproducibility studies and initiatives

reproducibility.cs.arizona.edu (weak reproducibility)
A comprehensive study of ~600 papers to examine if related code was shared and can be built

evaluate.inf.usi.ch/artifacts and artifact-eval.org (strong reproducibility)
The original and successful introduction of the artifact evaluation process at ACM conferencesArtifacts are evaluated
after papers are accepted and before the camera-ready deadline.

Paper receive the reproducibility badge only if the related artifact is consistent, complete,
well documented and easy to reuse.

I’ve established cTuning.org/ae to learn why is it so difficult
to reproduce results and validate them in the real world

Cooperative process between authors and evaluators to help pass artifact evaluation.

Learn how to unify and automate this process particularly for very complex artifacts.

Learn how to make it easier to test research techniques in the real world with the latest software, hardware and data.

Encourage code and data sharing and test for artifact functionality, reproducibility and reusability separately.

Try new publication models with open reviewing: arxiv.org/pdf/1406.4020.pdf (adapt-workshop.org)

Bruce R. Childers, Grigori Fursin, Shriram Krishnamurthi, Andreas Zeller:
Artifact Evaluation for Publications (Dagstuhl Perspectives Workshop 15452). Dagstuhl Reports 5(11): 29-35 (2015)

https://arxiv.org/pdf/1406.4020.pdf
https://adapt-workshop.org/

2015-now: ACM, SC and NeurIPS/ICML initiatives

• The ACM Task Force on Data, Software, and Reproducibility in Publication
www.acm.org/publications/task-force-on-data-software-and-reproducibility

• Common Artifact Review and Badging policy
www.acm.org/publications/policies/artifact-review-and-badging-current

• Artifacts and reproducibility badges in the ACM Digital Library
dl.acm.org/doi/proceedings/10.1145/3229762

dl.acm.org/search/advanced

• ACM SIGARCH Checklist for empirical evaluation
bit.ly/sigarch-checklist

• ACM Emerging Interest Group on Reproducibility
reproducibility.acm.org

• Reproducibility initiative at NeurIPS’19
nips.cc/Conferences/2019/CallForPapers

• PapersWithCode tips for publishing research code
github.com/paperswithcode/releasing-research-code

• NISO artifact badges
www.niso.org/publications/rp-31-2021-badging

http://www.acm.org/publications/task-force-on-data-software-and-reproducibility
http://www.acm.org/publications/policies/artifact-review-and-badging-current
https://dl.acm.org/doi/proceedings/10.1145/3229762
https://dl.acm.org/search/advanced
https://bit.ly/sigarch-checklist
http://reproducibility.acm.org/
https://nips.cc/Conferences/2019/CallForPapers
https://github.com/paperswithcode/releasing-research-code
http://www.niso.org/publications/rp-31-2021-badging

2015-now: introduced unified appendix and reproducibility checklist

1. Abstract

2. Check-list

3. How to obtain?

4. Prepare software

5. Prepare hardware

6. Prepare data sets

7. Proprietary code and data

8. Installation

9. Experiment workflow

10. Evaluation and expected result

11. Notes

Algorithm
Program
Compilation
Transformations
Binary
Data set
Run-time environment
Hardware
Run-time state
Execution
Output
Experiment workflow
Publicly available?

My goal is was to learn how to automate artifact evaluation and make it easier to validate results in the real world

cTuning.org/ae/checklist.html

cKnowledge.io/reproduced-papers

dl.acm.org

Keywords, tags

https://ctuning.org/ae/submission_extra.html
https://cknowledge.io/reproduced-papers
https://dl.acm.org/

Learnings from reproducing 150+ research papers: cTuning.org/ae

The Real World

Rapidly evolving SW/HW stacks

Rapidly evolving algorithms,
models and datasets

• Sharing code, data, containers, PIP packages, Readme files and Jupyter
notebooks is not enough to reproduce results particularly when we have to
measure latency, throughput, power consumption, memory usage,
accuracy and other characteristics across continuously changing systems.

• Containers are useful to make stable snapshots but they hide the
dependency hell rather than solving it and become quickly outdated.

• Containers are often shared as a “black box” and we do not even know
what is inside and how to connect them with external data and other
MLOps and DevOps tools.

• Unlike physics, there is no standard experimental methodology and
evaluation criteria in computer engineering to ensure fair “apple-to-apple”
comparison of different research techniques for latency, throughput, power
consumption, accuracy, etc.

• It take months to reproduce results from 1 paper and years to adopt novel
techniques in production due to rapidly evolving software, hardware, APIs
and data formats – many projects halt or fail when key people leave …

ACM TechTalk’21: www.youtube.com/watch?v=7zpeIVwICa4

Containers
Notebooks

http://www.youtube.com/watch?v=7zpeIVwICa4

Learnings from reproducing 150+ research papers: cTuning.org/ae

The Real World

Rapidly evolving SW/HW stacks

Rapidly evolving algorithms,
models and datasets

Most of the time is spent on reading ad-hoc readme files and performing
the same, boring, repetitive and time-consuming tasks
across continuously changing software and hardware including:

• detecting target hardware properties
• downloading various software and data
• detecting and/or installing numerous dependencies for a given host and

target hardware
• substitute paths in numerous scripts, YAML/JSON files and code
• preparing or modifying numerous configuration files
• setting environment variables
• preprocessing datasets
• preparing command lines and running applications
• monitoring execution time, accuracy, energy, memory usage, etc
• post-processing results, recording them to a database, comparing with

some reference ones
• visualizing and comparing results
• connecting applications with existing DevOps and MLOps tools
• packing all those ad-hoc scripts and artifacts into containers

to give to other teams

ACM TechTalk’21: www.youtube.com/watch?v=7zpeIVwICa4

Containers
Notebooks

http://www.youtube.com/watch?v=7zpeIVwICa4

Learnings from reproducing 150+ research papers: cTuning.org/ae

The Real World

Rapidly evolving SW/HW stacks

Rapidly evolving algorithms,
models and datasets

Most of the time is spent on reading ad-hoc readme files and performing
the same, boring, repetitive and time-consuming tasks
across continuously changing software and hardware including:

• detecting target hardware properties
• downloading various software and data
• detecting and/or installing numerous dependencies for a given host and

target hardware
• substitute paths in numerous scripts, YAML/JSON files and code
• preparing or modifying numerous configuration files
• setting environment variables
• preprocessing datasets
• preparing command lines and running applications
• monitoring execution time, accuracy, energy, memory usage, etc
• post-processing results, recording them to a database, comparing with

some reference ones
• visualizing and comparing results
• connecting applications with existing DevOps and MLOps tools
• packing all those ad-hoc scripts and artifacts into containers

to give to other teams

ACM TechTalk’21: www.youtube.com/watch?v=7zpeIVwICa4

Containers
Notebooks

Quite challenging to read all ReadMe files and Jupyter notebooks
from 50K+ ML and Systems tech. reports and papers published every year
together with 100M+ GitHub repositories and 10M+ Docker containers !

Not practical and not scalable!

That’s why most research ideas do not make it to the real world!

http://www.youtube.com/watch?v=7zpeIVwICa4

2015: Artifact Appendix have helped me to notice common patterns across different R&D projects

Artifact Appendix from 150+ papers

1. Abstract

2. Check-list

3. How to obtain?

4. Prepare software

5. Prepare hardware

6. Prepare data sets

7. Proprietary code and data

8. Installation

9. Experiment workflow

10. Evaluation and expected result

11. Notes

image corner detection

matmul OpenCL

data compression

object detection CUDA

Ad-hoc scripts
to compile and
run a program

or a benchmark

Have some
common info:
which datasets
can use, how to

compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data
sets with some ad-hoc

scripts to find them,
extract features, etc

Have some
common info:
filename, size,
width, height,

colors, …

Ad-hoc scripts
to install packages

or set up environment
for code and data deps

on a given platform

Ad-hoc dirs and
scripts to record

and analyze
experiments

cvs speedups

txt hardware counters

xls table with graphs

Have some
common info:

features,
characteristics,
optimizations

GCC V9.3

LLVM V11.1

Intel Compilers 2021

Common automations Common objects Common descriptionCould be reused across projects

Have some
common info:
configuration,
compilation,
linking and

optimization flags

How can we automate generation and parsing of ReadMe files and Jupyter notebooks?

Person1

or Team1

produces
and shares

some artifacts
and knowledge

No idea
what is inside

and how to use it…

Some ad-hoc directory and file structure:

/ project root / program / mlperf-image-classification / scripts to run MLPerf IC benchmark

/ mlperf-bert / scripts to run MLPerf BERT benchmark

/ project root / package / mlperf-loadgen / scripts to download and install MLPerf benchmark

/ dataset-imagenet / scripts to download ImageNet

/ project root / script / imagenet-pre-post-processing / scripts to pre and postprocess ImageNet

/ project root / experiment / mlperf-inference-v1.1-octoml / some files with benchmark results

?

Person2

or Team2

needs to consume
others’ artifacts
and knowledge

2015 - cur: Collective Knowledge concept (CK)

Person1

or Team1

produces
and shares

some artifacts
and knowledge

Let’s treat all shared projects as a database of reusable artifacts and automations

/ project root / program / mlperf-image-classification / scripts to run MLPerf IC benchmark

/ mlperf-bert / scripts to run MLPerf BERT benchmark

/ project root / package / mlperf-loadgen / scripts to download and install MLPerf benchmark

/ dataset-imagenet / scripts to download ImageNet

/ project root / script / imagenet-pre-post-processing / scripts to pre and postprocess ImageNet

/ project root / experiment / mlperf-inference-v1.1-octoml / some files with benchmark results

CK framework: provides Python API, CLI and web service to manage and share
research projects as a database of reusable artifacts and automations arxiv.org/abs/2011.01149

Person2

or Team2

needs to consume
others’ artifacts
and knowledge

https://arxiv.org/abs/2011.01149

CK-compatible research project (all objects has Unique IDs)!

image corner detection

matmul OpenCL

object detection CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

cvs speedups

txt hardware counters

xls table with graphs

GCC V9.3

LLVM V11.1

Intel Compilers 2021

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

program

program

program

dataset

dataset

dataset

dataset

experiment

experiment

experiment

soft

soft

soft

/ 1st level dirs / 2nd level dirs / 3rd level dirs

Collective Knowledge Framework:
github.com/ctuning/ck

A simple Python library and CLI
with minimal dependencies
to manage research projects

as a database of reusable components

ck {action} {module}:{component} @input.json

pip install ck

ck pull repo:mlcommons@ck-mlops

ck add ck-mlops:dataset:imagenet –tags=2012

ck ls dataset:*imagenet*

ck search dataset --tags=2012

ck find package:imagenet-2012-train

ck find 1dc07ee0f4742028:b4f26f2ca41539d9
~CK/ck-ml/package/imagenet-2012-train

ck search package --tags=compiler,tvm

ck rm dataset:imagenet

2015 - 2021: CK proof-of-concept (2022: new CK2 framework in development)

https://github.com/ctuning/ck

Simple Python API with dict/JSON/YAML input/output

import ck.kernel as ck

input={'action':'detect', 'module_uoa':'platform‘, …}

output=ck.access(input)
if output['return']>0: ck.err(output)

print (json.dumps(output, indent=2))

{
"return": 0,
"os_uoa": "windows-64", "os_uid": "7a95e0754c37610a",
"host_os_uoa": "windows-64", "host_os_uid": "7a95e0754c37610a",
"features": {…}

}

1) Describe different operating systems

ck pull repo:ck-ml

ck ls os

ck load os:linux-64 --min

2) Detect and unify information about platforms

ck detect platform --help

ck detect platform --out=json

ck load os:android29-arm64 --min

3) Detect installed software (code, data, models, scripts)

ck search soft --tags=compiler,gcc

ck detect soft:compiler.llvm

ck show env --tags=compiler

4) Install missing packages (code, datasets, models, scripts)

ck search package --tags=dataset,imagenet

ck install package --tags=dataset,imagenet,2012,min

ck virtual env --tags=dataset,imagenet

5) Run portable program workflow

ck run program:mlperf-inference-image-classification

cKnowledge.io/modules cKnowlege.io/browse

Find module:

ck find module:platform

Add new module with an action:

ck add module:octomizer

ck add_action module:octomizer --func=run

ck run octomizer:model-mlperf-ssd-mobilenet

2015 – cur: started encoding repetitive tasks from ML and Systems papers as CK automation recipes and objects

https://cknowledge.io/modules
https://cknowlege.io/actions

FROM ubuntu:20.04

…

Install CK

RUN ck pip3 install ck

Clone private CK repo

RUN ck pull repo:mlcommons@ck-mlops

Install packages to CK env entries

RUN ck setup kernel --var.install_to_env=yes

RUN ck detect platform.os --platform_init_uoa=generic-linux-dummy

RUN ck detect soft:compiler.python --full_path=/usr/bin/python3

RUN ck detect soft:compiler.gcc --full_path=`which gcc`

RUN python3 -m pip install protobuf

RUN ck install package --tags=mlperf,inference,src,octoml.dev

RUN ck install package --tags=lib,python-package,mlperf,loadgen

RUN ck install package --tags=imagenet,2012,val,min,non-resized

RUN ck install package --tags=imagenet,2012,aux,from.berkeley

RUN ck install package --tags=lib,python-package,onnxruntime-cpu,1.7.0

RUN ck install package --tags=lib,python-package,onnx,1.9.0

RUN ck install package --tags=model,mlperf,onnx,resnet50,v1.5-opset-11

RUN ck install package --tags=lib,python-package,scipy

RUN ck install package --tags=tool,cmake,prebuilt,v3.18.2

RUN ck install package --tags=compiler,llvm,prebuilt,v12.0.0

RUN ck install package --tags=compiler,tvm,dev --

env.CK_HOST_CPU_NUMBER_OF_PROCESSORS=4

Install MLPerf task requirements

RUN ck run program:mlperf-inference-bench-image-classification-tvm-onnx-cpu --

cmd_key=install-python-requirements

Run TVM-based MLPerf inference benchmark (Offline;Accuracy)

CMD ck run program:mlperf-inference-bench-image-classification-tvm-onnx-cpu \

--cmd_key=accuracy-offline \

--env.EXTRA_OPS="--thread 1 --max-batchsize 1"

CK can be used to generate Docker containers and can be used inside containers to automate MLOps

github.com/mlcommons/ck-mlops/tree/main/docker

github.com/mlcommons/ck-mlops/blob/main/docker/ck-mlperf-inference-dev-image-classification-onnx-tvm/Dockerfile.ubuntu-20.04

https://github.com/mlcommons/ck-mlops/tree/main/docker
https://github.com/mlcommons/ck-mlops/blob/main/docker/ck-mlperf-inference-dev-image-classification-onnx-tvm/Dockerfile.ubuntu-20.04

Can we make it easier to reproduce research techniques and bring them to production?

Team1 Team2

Team3

March 2022: www.mihaileric.com/posts/mlops-is-a-mess/
June 2020: arxiv.org/abs/2006.07161

http://www.mihaileric.com/posts/mlops-is-a-mess/
https://arxiv.org/abs/2006.07161

Sharing artifacts and knowledge in a unified and reusable way automate and simplifies this process!

Team1 Team2

Team3

CK-compatible research project (all objects has Unique IDs)!

image corner detection

matmul OpenCL

object detection CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

cvs speedups

txt hardware counters

xls table with graphs

GCC V9.3

LLVM V11.1

Intel Compilers 2021

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

program

program

program

dataset

dataset

dataset

dataset

experiment

experiment

experiment

soft

soft

soft

/ 1st level dirs / 2nd level dirs / 3rd level dirs

CK-compatible research project (all objects has Unique IDs)!

image corner detection

matmul OpenCL

object detection CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

cvs speedups

txt hardware counters

xls table with graphs

GCC V9.3

LLVM V11.1

Intel Compilers 2021

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

program

program

program

dataset

dataset

dataset

dataset

experiment

experiment

experiment

soft

soft

soft

/ 1st level dirs / 2nd level dirs / 3rd level dirs

CK-compatible research project (all objects has Unique IDs)!

image corner detection

matmul OpenCL

object detection CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

cvs speedups

txt hardware counters

xls table with graphs

GCC V9.3

LLVM V11.1

Intel Compilers 2021

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

program

program

program

dataset

dataset

dataset

dataset

experiment

experiment

experiment

soft

soft

soft

/ 1st level dirs / 2nd level dirs / 3rd level dirs

CK
API / CLI

CK
API / CLI

CK
API / CLI

CK JSON API

Object detection

Object classification

Speech recognition
…

Algorithms

Training/inference
…

CK JSON API

MobileNets

ResNet

VGG
…

SqueezeDet
…

Models

CK JSON API

TVM

PyTorch

TensorFlow
…

TFLite
…

Software

CK JSON API

ImageNet

KITTI

VOC
…

Real data sets
…

Data sets

CK JSON API

CPU

GPU

TPU
…

NN accelerators
…

Hardware

Adaptive containers and portable workflows with plug&play components,
portable workflows, common APIs, and unified I/O

Algorithms

Models

Datasets

Software Hardware

Quickly prototype and test
ideas on any tech. stack

Initialize Build Run Validate

Enable “live” research papers that can be validated
and improved by the community across diverse models,

data sets, software and hardware:

cKnowledge.io/reproduced-results
Unified
input

Unified
output

ML/AI
papers

Systems
papers

Share portable workflows,
adaptive containers,

automation actions and
plug&play components

along with research papers:

Results shared
by volunteers

Original results
from the authors

GUI to https://github.com/mlcommons/ck-mlops

cKnowledge.io: aggregated 1000+ open-source CK components to automate ML & Systems R&D

https://cknowledge.io/reproduced-results
https://github.com/mlcommons/ck-mlops

CK-based Deep learning optimization tournament at ASPLOS’18

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard
and become available for public comparison and further customization, optimization and reuse!

cKnowledge.io/c/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018

cKnowledge.io/results

CK workflow1 with validated results

AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically

generated with a calibration process from FP32 model without the

need of fine-tuning or retraining. We show that the inference

throughput and latency with ResNet-50, Inception-v3 and SSD are

improved by 1.38X-2.9X and 1.35X-3X respectively with negligible

accuracy loss from IntelCaffe FP32 baseline and by 56X-75X and

26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

https://cknowledge.io/c/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018
https://cknowledge.io/results
https://github.com/ctuning/ck-request-asplos18-caffe-intel

dl.acm.org/doi/proceedings/10.1145/3229762

Published validated papers with reusable workflows in the ACM DL

https://dl.acm.org/doi/proceedings/10.1145/3229762

CK workflows + Docker containers made it easier to bring research ideas in production

CK can also automatically generate

a Docker image with CK workflow

CK assists

AWS market place

with collaboratively

optimized AI/ML stacks

CK workflows and live papers enable a community effort

to unify, automate, systematize and crowdsource

development, optimization and comparison of efficient

software/hardware stacks for emerging AI/ML workloads

Colleagues from Amazon tested and reused REQUEST workflows, ported them to the Amazon cloud
and used CK API and JSON meta to connect them with Amazon SageMaker

conferences.oreilly.com/artificial-intelligence/ai-eu-2018/public/schedule/detail/71549.html

https://conferences.oreilly.com/artificial-intelligence/ai-eu-2018/public/schedule/detail/71549.html

Very complex and time-consuming process to prepare, submit and reproduce results
across rapidly evolving Ml/SW/HW stacks – must be simplified to attract more submitters!

2019-cur: Using CK to modularize MLPerf inference benchmark

We’ve prototyped CK-based MLPerf workflows
demonstrating that it was possible to automate ML/SW/HW DSE and MLPerf inference benchmark submission

github.com/mlcommons/ck/tree/master/docs/mlperf-automation

Automation actions (tasks)

Unified CK API
CLI ; Python/C/C++/Java ; REST

CK module
(Python implementation

of a given action)

JSON input

Environment
Dependencies

Parameters

JSON output

Results
Characteristics

Features

JSON describing code,
data and dependencies

compatible with this action

Extensible metadata

…

Reusable CK components

CK dependencies describe compatible versions of code, data and models
for a given algorithm and a given target platform. CK actions can then automatically

detect or download & install all the necessary dependencies for a given target.

ck pull repo:ck-mlops

CK component

Unified API and JSON IO

ck detect soft
--tags=lib,tensorflow

ck install package
–tags=imagenet

ck run program:
object-detection-onnx-py

ck autotune
program

ck reproduce
experiment …

Portable &
customizable
CK workflows

2019-cur: Using CK to modularize MLPerf inference benchmark

https://github.com/mlcommons/ck/tree/master/docs/mlperf-automation

“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”
(Andrew G. Howard et al., 2017, https://arxiv.org/abs/1704.04861):

● Parameterised CNN family using depthwise separable convolutions.
● Channel multiplier: 1.00, 0.75, 0.50, 0.25 - marker shape (see below).
● Input image resolution: 224, 192, 160, 128 - marker size.

Qualcomm, Krai, Arm, DELL, cTuning foundation, OctoML and others
used CK to automate design space exploration of ML/SW/HW stacks

and submit MLPerf inference results

CK is successfully used to prepare MLPerf inference submissions from cloud to edge

https://arxiv.org/abs/1704.04861

Continue CK-related developments within MLCommons as a community effort

OctoML.ai and the cTuning foundation have joined MLCommons
to help modularize MLPerf inference benchmark and automate
submissions across diverse ML frameworks, models, datasets

and platforms from cloud to edge

OctoML.ai and the cTuning foundation have donated the CK framework
and CK-based MLPerf workflows to MLCommons

to help the community modularize MLPerf benchmark,
automate design space exploration, and share results in a reproducible and deployable format:

github.com/mlcommons/ck github.com/mlcommons/ck-mlops

https://github.com/mlcommons/ck
https://github.com/mlcommons/ck-mlops

CK2: a new community project to learn how to bridge the gap between ML research and production

Research / Data Science / MLOps

• Quick prototyping of ideas
• Quick experimentation
• Validation on a few use cases

Engineering / DevOps

• Careful Planning
• Thorough testing
• Validation in the real world

CK2 aka
Collective Mind

github.com/mlcommons/ck/tree/master/ck2

mailto:Grigori@octoml.ai

Short term goal

• Develop the 2nd version of the CK framework (CM) with the community to modularize AI and ML
based on 5 years of practical CK experience.

• Community prototype: https://github.com/mlcommons/ck/tree/master/ck2

• Use CM to modularize MLPerf inference and generate MLCube containers

• Develop CM-based version of MLPerf inference reference models, initially as proof of concept

Long term goals

• Make it easier to customize, run, test and reproduce MLPerf inference benchmarks
across continuously evolving software, hardware, models and datasets.

• Automate Design Space Exploration of ML/SW/HW stacks to trade off performance, accuracy, energy, size and costs

• Automate submission of Pareto-efficient ML Systems to MLPerf inference open division

• Develop an open database of allowed MLPerf benchmark configurations, benchmarking results
and provenance information with an UI for visualization and analysis.

Cross-org collaborations

• Promote MLCommons activities and technology in ACM/IEEE/NeurIPS reproducibility initiatives

We are considering creating a new MLPerf WG on DSE and production deployment:

Contact grigori@octoml.ai if you are interested to participate and co-lead…

Join our community effort to develop the CK2 framework and modularize AI and ML

https://github.com/mlcommons/ck/tree/master/ck2
mailto:Grigori@octoml.ai

Conclusions and the current stateAcknowledgments

Sam Ainsworth, Erik Altman, Lorena Barba, Victor Bittorf, Unmesh D. Bordoloi, Steve Brierley, Luis Ceze, Milind Chabbi,
Bruce Childers, Nikolay Chunosov, Marco Cianfriglia, Albert Cohen, Cody Coleman, Chris Cummins, Jack Davidson,

Alastair Donaldson, Achi Dosanjh, Thibaut Dumontet, Debojyoti Dutta, Daniil Efremov, Nicolas Essayan, Todd Gamblin,
Leo Gordon, Wayne Graves, Christophe Guillon, Herve Guillou, Stephen Herbein, Michael Heroux, Patrick Hesse,
James Hetherignton, Kenneth Hoste, Robert Hundt, Ivo Jimenez, Tom St. John, Timothy M. Jones, David Kanter,

Yuriy Kashnikov, Gaurav Kaul, Sergey Kolesnikov, Shriram Krishnamurthi, Dan Laney, Andrei Lascu, Hugh Leather, Wei Li,
Anton Lokhmotov, Peter Mattson, Nadine Mendelek, Thierry Moreau, Dewey Murdick, Mircea Namolaru, Luigi Nardi,

Cedric Nugteren, Michael O'Boyle, Ivan Ospiov, Bhavesh Patel, Gennady Pekhimenko, Massimiliano Picone, Ed Plowman,
Ramesh Radhakrishnan, Ilya Rahkovsky, Vijay Janapa Reddi, Vincent Rehm, Catherine Roderick, Alka Roy,

Shubhadeep Roychowdhury, Dmitry Savenko, Sergey Serebryakov, Aaron Smith, Jim Spohrer, Michel Steuwer, Victoria
Stodden, Robert Stojnic, Arjun Suresh, Michela Taufer, Stuart Taylor, Olivier Temam, Eben Upton, Nicolas Vasilache, Flavio

Vella, Davide Del Vento, Boris Veytsman, Alex Wade, Pete Warden, Dave Wilkinson, Matei Zaharia, Alex Zhigarev,
Thomas Zhu

Artifact evaluation committee: cTuning.org/ae/committee.html

ACM REQUEST committee and advisory board: cKnowledge.io/c/event/repro-request-asplos2018

ACM taskforce and EIG on reproducibility: www.acm.org/publications/task-force-on-data-software-and-reproducibility

CK collaborators: cKnowledge.io/partners

OctoML.ai for supporting MLCommons and the development of the CK2 framework

https://ctuning.org/ae/committee.html
https://cknowledge.io/c/event/repro-request-asplos2018/
http://www.acm.org/publications/task-force-on-data-software-and-reproducibility
https://cknowledge.io/partners

Let’s learn together how to bridge the growing gap between research and production

github.com/mlcommons/ck/tree/master/ck2

grigori@octoml.ai cKnowledge.io/@gfursin

Having a common optimization and deployment infrastructure
for ML Systems that unifies and interconnects existing

technologies rather than substituting or rewriting them
will help accelerate innovation and reduce the time to market

for intelligent and Pareto-efficient systems

Let’s learn how to share and reuse our knowledge,
experience and best practices about co-designing,

benchmarking, optimizing and deploying
Pareto-efficient ML Systems in production

mailto:Grigori@octoml.ai
mailto:Grigori@octoml.ai
mailto:cKnowledge.io/@gfursin

