
1

CBCAL 3
USER MANUAL

Carlos E. S. Bernardes

CENTRO DE QUÍMICA ESTRUTURAL
INSTITUTE OF MOLECULAR SCIENCES

DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA
FACULTY OF SCIENCES, UNIVERSITY OF LISBON

22/4/2022

2

CBCAL 3

Carlos E. S. Bernardes
cebernardes@ciencias.ulisboa.pt

ACKNOWLEDGMENTS

This work was supported by Fundação para a Ciência e a Tecnologia (FCT),
Portugal (projects PTDC/QUI-OUT/28401/2017, LISBOA-01-0145-FEDER-
028401, UIDB/00100/2020 and UIDP/00100/2020).

mailto:cebernardes@ciencias.ulisboa.pt

3

1. DESCRIPTION

CBCAL is a Visual Basic.NET open-source code designed for the
experimental collection of calorimetric data. In brief, it allows
the simultaneous collection of the differential signal from, up to,
four calorimetric cells, can perform electrical calibrations, and a
trigger can be set to perform actions, e.g., using an Arduino setup.
If you find this software useful for your research, please cite:

Carlos E.S. Bernardes; “CBCAL: Data Collection Program for
Calorimetry Experiments”, Zenodo, 2022,
https://doi.org/10.5281/zenodo.6475251

The version currently available is working, however, it is not free

from bugs. Any problems or questions do not hesitate to contact me.
CBCAL is free software, distributed in the hope that it will be

useful, but WITHOUT ANY WARRANTY, without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

In no event, the author will be liable to you for damages, including
any general, special, incidental, or consequential damages (including
but not limited to arising out of the use or inability to use the
program, to loss of data or data being rendered inaccurate, or losses
sustained by you or third parties, or a failure of the program to
operate with any other programs), even if the author has been advised
of the possibility of such damages.

https://doi.org/10.5281/zenodo.6475251

4

2. Hardware Setup

A schematic representation of the hardware required to use
the program is given in Figure 1. The program requires at
least one multimeter, preferentially a Keysight 34420A meter
to collect data. In this way, it is possible to connect each
channel of the multimeter to one calorimetric cell. This
enables the simultaneous collection of the data from two
cells per multimeter. To read data from four cells, two
Keysight 34420A meters are required.

The electric calibration system should be designed by
connecting an electric resistance (inside the calorimetric
cell) in a four-wire configuration (check scheme in Figure
1) to a power supply Agilent 6611C or Keysight E3642A and to
a Keysight 34401A multimeter (other 6½ digit meters may be
used). In this configuration, the power supply applies and
reads the current flowing through the calibration circuit,
while the multimeter measures the potential difference at
the terminals of the resistance. The program will
automatically compute the heat released by the resistance.
In the current version of the program, only one cell can be
calibrated at a time. Still, by using any commuter device to
change between different calibration circuits, it is
possible to calibrate several calorimetric cells under
control by the program.

Figure 1. Hardware setup recommended for use with the CBCAL 3
software.

https://www.keysight.com/zz/en/product/34420A/micro-ohm-meter.html
https://www.keysight.com/zz/en/product/34420A/micro-ohm-meter.html
https://www.keysight.com/zz/en/support/E3642A/50w-power-supply-8v-5a-20v-2-5a.html
https://www.keysight.com/zz/en/product/34401A/digital-multimeter-6-digit.html

5

All multimeters should be connected to the computer by
IEEE-488 GP-IB cables and the IO Libraries Suite must be
installed on the Windows PC (the program was tested on
Windows 7, 10, and 11).

Finally, the program contains a trigger that may be used
to execute functions at regular intervals of time (see
further details below).

https://www.keysight.com/main/software.jspx?ckey=2175637&lc=eng&cc=PT&nid=-33330.977662&id=2175637&pageMode=CV

6

3. Software

A snapshot of the program is given in Figure 2. As

mentioned above, the program can collect the signal of, up
to, four independent channels. The data acquisition process
is controlled from different tabs in the main window. In
each tab, 4 controls are used to collect data and control
the experiments: (1) File selector; (2) Experiment
start/stop; (3) Electric calibration control; and (4)
Trigger control system, which, in this case, is designed for
titration experiments. Additionally, during each experiment,
an event log (5) can be used to record important information
regarding the ongoing experiments. Records can be added by
writing messages in the textbox and pressing the “Append”
bottom (6).

All plots in the program are interactive. This means that,
e.g., by using the mouse, the user can select an area of the
plot to zoom in. Zoom out is activated by a double click
over the plot. Additionally, the coordinates of the mouse
when it is placed over the plot are given in the status bar
of the program.

The calibration setup, Figure 3a, allows setting multiple
sequential calibrations for a given channel. Note that, this

Figure 2. Snapshot of the CBCAL 3 software main window.

7

(a) (b)

Figure 3. Snapshot of (a) the calibration and (b) setup
windows.

option becomes disabled for the remaining channels once
calibration is started for one of them. In this menu, the
user sets the number of calibrations to be run, the range
of potential values to be scanned (a value is randomly
selected by the program within this range of values), and
the time to be used in the fore, main, and after periods of
the calibration run.

The program is configured from the Setup menu, Figure 3b.
From top to bottom:
• The first context menu requests the details about the
micro-ohm meters, namely, if one or two apparatus will be
used and the corresponding communication GP-IB ports.
• Next, the context menus contain the definition of each
channel: a check to set if the channel will be used, another
to set if it will be used in electric calibration
experiments, COM port and channel of multimeter to be used,
a label for ID in the program, and a check to set if an
endothermic correction is required (i.e., the signal of the
output is or is not multiplied by -1).
• It follows the settings of the GP-IB ports for the
calibration DC power supply and the multimeter, used in the
electric calibration.
• Finally, at the bottom of the window, it is possible to
set RS-232 communications related to the trigger system (see
details below).

8

It should be mentioned that the CBCAL program does not
perform data analysis. This needs to be executed using other
programs. For example, the freeware EASYGRAPH program is
designed to natively open the CBCAL files
(https://doi.org/10.5281/zenodo.4450358).

https://doi.org/10.5281/zenodo.4450358
https://doi.org/10.5281/zenodo.4450358

9

4. Trigger System

The current version of the program uses a trigger system
based on RS-232 communications with an Arduino board. An
example of the Arduino code is as follows:

In brief, CBCAL sends a trigger signal “A” to the board

(see Figure 4). Once this signal is received, the board makes
a 5V pulse during 500ms in terminal 13. As can be observed
in Figure 4, this channel is connected to a MOS MODULE-MH.
At this point, this event closes the circuit and/or passes
a DC current that can be used as an analog trigger, for
example, for a titration system.

const int ADD = 13; // ADD solvent channel
int incomingByte = 0;
String myString;

void setup() {
 pinMode (ADD, OUTPUT);
 pinMode (FILL, OUTPUT);
 Serial.begin(9600);
 Serial.println("ON");
}

void loop() {

 if (Serial.available() > 0) {
 // read buffer:
 incomingByte = Serial.read();
 myString = char(incomingByte);
 }

 // ADD SOLVENT
 if (myString == "A") {
 Serial.println("OK");
 digitalWrite(ADD, HIGH);
 delay(500);
 digitalWrite(ADD, LOW);
 }
 delay(500);
}

10

Figure 4. Schematic representation of the Arduino circuit
used for the control of a titration system.

	1. DESCRIPTION
	2. Hardware Setup
	3. Software
	4. Trigger System

