
Speeding Up Private Distributed Matrix
Multiplication via Bivariate Polynomial Codes

Burak Hasırcıoğlu∗, Jesús Gómez-Vilardebó†, and Deniz Gündüz∗
∗Imperial College London, UK, {b.hasircioglu18, d.gunduz}@imperial.ac.uk

†Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Barcelona, Spain, jesus.gomez@cttc.es

Abstract—We consider the problem of private distributed ma-
trix multiplication under limited resources. Coded computation
has been shown to be an effective solution in distributed matrix
multiplication, both providing privacy against the workers and
boosting the computation speed by efficiently mitigating strag-
glers. In this work, we propose the use of recently-introduced
bivariate polynomial codes to further speed up private distributed
matrix multiplication by exploiting the partial work done by
the stragglers rather than completely ignoring them. We show
that the proposed approach reduces the average computation
time of private distributed matrix multiplication compared to
its competitors in the literature while improving the upload
communication cost and the workers’ storage efficiency.

I. INTRODUCTION

Matrix multiplication is a fundamental building block of
many applications in signal processing and machine learning.
For some applications, especially those involving massive ma-
trices and stringent latency requirements, matrix multiplication
in a single computer is infeasible, and distributed solutions
need to be adopted. In such a scenario, the full multiplication
task is first partitioned into smaller sub-tasks, which are then
distributed across dedicated workers.

In this work, we address two main challenges in distributed
matrix multiplication. The first one is the stragglers, which
refers to unresponsive or very slow workers. If the completion
of the full task requires the computations from all the workers,
straggling workers become a significant bottleneck. To com-
pensate for the stragglers, additional redundant computations
can be assigned to workers. It has been recently shown that the
use of error-correcting codes, by treating the slowest workers
as erasures, instead of simply replicating tasks across workers,
significantly lowers the overall computation time [1].

In the context of straggler mitigation, polynomial-type codes
are studied in [2]–[5]. In these schemes, matrices are first
partitioned and encoded using polynomial codes at the master
server. Then, workers compute sub-products by multiplying
these coded partitions and send the results back to the master
for decoding. The minimum number of sub-tasks required to
decode the result is referred to as the recovery threshold, and
denoted by Rth. In these schemes, only one sub-product is
assigned to each worker, and therefore, any work done by the

This work was partially funded by the European Research Council (ERC)
through Starting Grant BEACON (no. 677854) and by the UK EPSRC
(grant no. EP/T023600/1) under the CHIST-ERA program. The work of J.
Gómez-Vilardebó was supported in part by the Catalan Government under
Grant SGR2017-1479, and by the Spanish Government under Grant RTI2018-
099722-B-100 (ARISTIDES).

workers beyond the fastest Rth is completely ignored. This is
sub-optimal since the workers may have similar computational
speeds, in which case most of the work done is lost.

In the multi-message approach [6]–[10], multiple sub-
products are assigned to each worker and the result of each
sub-product is communicated to the master as soon as it
is completed. This results in faster completion of the full-
computation as it allows to exploit partial computations com-
pleted by stragglers. Moreover, the multi-message approach
makes finishing the task possible even if there are not as many
available workers as the recovery threshold.

Another important parameter in distributed computation is
the upload cost, which is defined as the number of bits sent
from the master to each worker, or equivalently, the storage
required per worker. As discussed in [9], simply assigning
multiple sub-products to the workers using polynomial-type
codes is not efficient in terms of the upload cost, as one
matrix partition can only be used in the computation of one
sub-product. To combat this limitation, product codes are
considered in [6] for the multi-message distributed matrix
multiplication problem. However, with product codes, sub-
products are no longer fully one-to-any replaceable, which
reduces the scheme’s resource efficiency. To make the sub-
products one-to-any replaceable, bivariate polynomial codes
are introduced in [9], [10], which provides a better trade-off
between the upload cost and expected computation time, by
allowing a matrix partition to be used in the computation of
several sub-tasks.

The second challenge we tackle in this paper is privacy.
The multiplied matrices may contain sensitive information,
and sharing these matrices even partially with the workers
may cause a privacy breach. Moreover, in some settings,
a number of workers can exchange information with each
other to learn about the multiplied matrices. Such a collusion
may result in leakage even if no information is revealed to
individual workers. The first application of polynomial codes
to privacy-preserving distributed matrix multiplication is pre-
sented in [11]. To hide the matrices from the workers, random
matrix partitions are created, and linearly encoded together
with the true matrix partitions using polynomial codes. The
recovery threshold has been improved in subsequent works
[12], [13], by carefully choosing the degrees of the encoding
monomials so that the resultant decoding polynomial contains
the minimum number of additional coefficients. In [14]–[16],
lower recovery threshold values than [13] are obtained by

using different matrix partitioning techniques and different
choices of encoding polynomials, but this is achieved at the
expense of a considerable increase in the upload cost. In [17],
a novel coding approach for distributed matrix multiplication
is proposed based on polynomial evaluation at the roots of
unity in a finite field. It has constant time decoding com-
plexity and a low recovery threshold compared to traditional
polynomial-type coding approaches, but the sub-tasks are not
one-to-any replaceable and its straggler mitigation capability
is limited. In [18], a multi-message approach is proposed
for private distributed matrix multiplication by using rateless
codes. Computations are assigned adaptively in rounds, and in
each round, workers are classified into clusters depending on
their computation speeds. Results from a worker in a cluster
are useful for decoding only if the results of all the sub-
tasks assigned to that cluster and also to the fastest cluster are
collected, making computations not one-to-any replaceable.

In this work, we propose a multi-message, straggler-
resistant, private distributed matrix multiplication scheme
based on bivariate Hermitian polynomial codes. Our scheme
works effectively even with a small number of workers and
under a limited upload cost budget. We show that, especially
when the number of fast workers is limited, our proposed
method outperforms other schemes in the literature in terms
of the average computation time under a given upload cost
budget. We also show that our scheme retains its low expected
computation time under both homogeneous and heterogeneous
computation speeds across the workers.

II. PROBLEM SETTING

We study distributed matrix multiplication with strict pri-
vacy requirements. The elements of our matrices are in a finite
field Fq , where q is a prime number determining the size of
the finite field. There is a master node that can access to the
statistically independent matrices A ∈ Fr×sq and B ∈ Fs×cq ,
r, s, c ∈ Z+. The master offloads the multiplication of matrices
A and B to N workers, which possibly have heterogeneous
computation speeds and storage capacities. We do not assume
any statistics are known about the computation speeds of the
workers. To offload the computation to several workers, the
master divides the full multiplication task into smaller sub-
tasks and then collects the responses from the workers. To
define these sub-tasks, the master partitions A into K sub-
matrices as A =

[
AT1 AT2 · · · ATK

]T
, where Ai ∈ F

r
K×s
q ,

∀i ∈ [K] , {1, 2, . . . ,K}, and B into L sub-matrices as
B =

[
B1 B2 · · · BL

]
, where Bj ∈ Fs×

c
L

q , ∀j ∈ [L]. The
master sends coded versions, i.e., linear combinations, of these
partitions to the workers. Assuming worker i can store mA,i

partitions of A and mB,i partitions of B, the master sends
coded partitions Ãi,k and B̃i,l to worker i, where i ∈ [N],
k ∈ [mA,i] and l ∈ [mB,i]. For simplicity, we describe a
static setting, in which all the coded matrices are sent to the
workers before they start computations. However, in a more
dynamic setting, in which matrix partitions are sent when
they are needed, the required memory at workers could be
made smaller. The basic assumption is that mA,i partitions

of A and mB,i partitions of B are available for worker i
at some point, and thus they could exploit them to extract
information on the original matrices A and B. The workers
multiply the received coded partitions of A and B in a way
depending on the underlying coding scheme and send the
result of each computation to the master as soon as it is
finished. Once the master receives a number of computations
equal to the recovery threshold, Rth, it can decode the desired
multiplication AB.

In our threat model, all the workers are honest but curious.
That is, they follow the protocol but they can use the received
encoded matrices to gain information about the original ma-
trices, A and B. We also assume that any T workers can
collude, i.e., exchange information among themselves. Our
privacy requirement is such that no T workers are allowed
to gain any information about the content of the multiplied
matrices in the information-theoretic sense.

III. PROPOSED SCHEME

Our coding scheme is based on bivariate polynomial codes
[9], [10]. Thanks to their lower upload cost, bivariate polyno-
mial codes allow workers to complete more sub-tasks com-
pared to their univariate counterparts under the same upload
cost budget, which, in turn, improves the expected computation
time and helps to satisfy the privacy requirements.

A. Encoding

In the proposed coding scheme, coded matrices are gen-
erated by evaluating the following polynomials and their
derivatives:

A(x) =

K∑
i=1

Aix
i−1 +

T∑
i=1

Rix
K+i−1, (1)

B(x, y) =

L∑
i=1

Biy
i−1 +

T∑
i=1

m∑
j=1

Si,jx
K+i−1yj−1, (2)

where m ≤ L is the maximum number of sub-tasks any
worker can complete. Matrices Ri ∈ F

r
K×s
q and Si,j ∈ Fs×

c
L

q

are independent and uniform randomly generated from their
corresponding domain for i ∈ [T] and j ∈ [m]. For each
worker i, the master evaluates A(x) at xi and the deriva-
tives of B(x, y) with respect to y up to the order [m − 1]
at (xi, yi). We only require these evaluation points to be
distinct. Thus, the master sends to worker i, A(xi) and
Bi = {B(xi, yi), ∂1B(xi, yi), . . . , ∂m−1B(xi, yi)}, where ∂i
is the ith partial derivative with respect to y. Thus, we require
mA,i = 1 and mB,i = m.

In (1) and (2), the role of Ri’s and Si,j’s is to mask the
actual matrix partitions for privacy. The following theorem
states that the evaluations of A(x), B(x, y) and its derivatives
do not leak any information about A and B to any T colluding
workers.

Theorem 1. For the encoding scheme described above, we
have

I(A,B; {(A(xi),Bi) | i ∈ Ñ}) = 0, (3)

∀Ñ ⊂ [N] such that |Ñ | = T .

Proof. Since A and B are independent, we have

I(A,B; {(A(xi),Bi) | i ∈ Ñ}) =
I(A; {A(xi) | i ∈ Ñ}) + I(B; {Bi | i ∈ Ñ}).

Moreover, every worker receives only one A(xi). Thus, in
case of T colluding workers, the attackers can obtain at most
T evaluations of A(x). Since xi’s are distinct, only T − 1
of Ri’s can be eliminated. Thus, I(A; {A(xi) | i ∈ Ñ}) = 0
since Ri’s are generated uniform randomly from Fq . Similarly,
the attackers can obtain at most mT evaluations of B(x, y)
and its y-directional derivatives in total. Since (xi, yi)’s are
distinct for different i, and monomials xK+i−1yi−1 and their
derivatives with respect to y up to the mth order are linearly
independent, the attackers can eliminate at most mT − 1 of
Si,j’s. Thus, I(B; {Bi | i ∈ Ñ}) = 0 since Si,j’s are generated
uniform randomly from Fq .

B. Computation

Worker i multiplies A(xi) and ∂j−1B(xi, yi) with the in-
creasing order of j ∈ [m]. That is, jth completed computation
is A(xi)∂j−1B(xi, yi). As soon as each multiplication is
completed, its result is communicated back to the master.

C. Decoding

After collecting sufficiently many computations from the
workers, the master can interpolate A(x)B(x, y). Note that,
in our scheme, every computation is equally useful, i.e., the
sub-tasks are one-to-any replaceable. In the following theorem,
we give the recovery threshold expression, which specifies the
minimum number of required computations and characterizes
the probability of decoding failure, i.e., bivariate polynomial
interpolation, due to the use of finite field.

Theorem 2. Assume the evaluation points (xi, yi) are chosen
uniform randomly over the elements of Fq . If the number of
computations of sub-tasks received from the workers, which
obey the computation order specified in Subsection III-B is
greater than the recovery threshold Rth , (K+T)L+m(K+
T − 1), then with probability at least 1− d/q, the master can
interpolate the unique polynomial A(x)B(x, y), where

d ,
m

2

(
3(K + T)2 +m(K + T)− 8K − 6T −m+ 3

)
+

(K + T)L

2
(K + L+ T − 2) . (4)

We give the proof sketch of Theorem 2 in the Appendix.
Theorem 2 says that we can make the probability of failure
arbitrarily small by increasing the order q of the finite field.

IV. DISCUSSION

The recovery threshold of our scheme is comparable to
that of the multi-message extension of [13], in which each
worker is assigned m computations. In this case, the number of
evaluations of each encoding polynomial collectively obtained
by T colluding workers is mT . Thus, the recovery threshold of

2 4 6 8 10

1

2

3

4

5

Upload cost budget per
worker (matrix partitions)

m

Proposed
GASP [13]

2 4 6 8 10

50

60

70

80

Upload cost budget per
worker (matrix partitions)

R
th

Fig. 1: Change of m with upload cost budget and the compari-
son of the recovery thresholds of the proposed scheme and the
multi-message extension of [13], when K = L = 5, T = 3.

such an extension is obtained by substituting mT for T in the
recovery threshold expression of [13]. That yields RGASPth =

KL+K + L 1 = mT < L ≤ K
KL+K + L+ (mT)2 +mT − 3 1 < mT < L ≤ K
(K +mT) (L+ 1)− 1 L ≤ mT < K

2KL+ 2mT − 1 L ≤ K ≤ mT.
In multi-message schemes, using univariate polynomial

codes, including [18] and the multi-message extension of [13],
if a worker is assigned m sub-tasks, then m coded partitions of
both A and B are required. Thus, the total upload cost for the
univariate polynomial codes is Nm (rs/K + sc/L) log2(q)
bits. On the other hand, in the proposed scheme, we need
one coded partition of A and m coded partitions of B. Thus,
the upload cost of our scheme is N (rs/K +msc/L) log2(q)
bits, which is much less than that of univariate polynomial
codes.

Comparing RGASPth and Rth of the proposed scheme for
the same m value might be misleading since, under the same
upload cost budget, these schemes might have different m
values. Given an upload cost budget, we take the largest
possible m since it is the limiting factor for the maximum
number of computation a worker can provide. In Fig. 1, for
K = L = 5, T = 3 we show how m changes with the upload
cost budget, and we compare Rth and RGASPth under a fixed
upload cost budget, which is given in the number of matrix
partitions for simplicity, assuming the partitions of A and B
have the same size. Observe that in the proposed scheme, since
m cannot exceed L = 5, for the upload cost values greater
than 6, the values of m and Rth stays the same.

The upload cost could be further improved by employing
the schemes in [9], [10], in which for a worker to complete
m computations, as few as

√
m coded partitions of A and B

may be enough. However, the extensions of these schemes to
the private case have a large privacy overhead in the recovery
threshold. For example, [9] originally has Rth = KL, but for
its direct privacy extension, we have Rth ≈ (K+

√
mT)(L+√

mT), which requires much larger computation time.
V. SIMULATION RESULTS

In this section, we compare our work with the previous
works in the literature [13], [18] in terms of average computa-

2 3 4 5 6 7 8 9 10

101

102

103

Upload cost budget per worker (matrix partitions)

E
xp

ec
te

d
co

m
pu

ta
tio

n
tim

e
(s

)
Proposed
GASP [13]
Rateless [18]

Fig. 2: Comparison of expected computation time as a function
of the upload cost budget per worker when K = L = 5 with
heterogeneous workers.

tion time. We define the computation time as the time required
by the workers to complete the number of computations
specified by the recovery threshold. Our scenario consists of a
limited number of workers and limited upload resources from
the master to the workers.

Following the literature [1], [19], we assume that the time
for a worker to finish one sub-task is distributed as a shifted ex-
ponential random variable with the density λe−λ(t−ν), where
the scale parameter λ controls the speed of the worker and
the shift parameter ν is the minimum time duration for a task
to be completed. Smaller λ implies slower workers and thus
more straggling.

In our experiments, all the workers have a common shift
parameter of ν = 10/(KL) seconds. We assume T = 3. We
consider both matrices A and B are divided into K = L = 5
partitions and assume that the partitions of matrices A and B
have the same size, i.e., r

K = c
L .

We consider two scenarios, workers with heterogeneous
and homogeneous computational speeds, respectively. In the
heterogeneous case, we group the workers into three classes,
each consisting of 17 workers, and the computation speed of
the workers in each class is specified by λ1 = 10−1 × KL,
λ2 = 10−3 ×KL and λ3 = 10−4 ×KL, respectively. In the
homogeneous case, all the workers have λ = 10−2 × KL.
Note that the coding scheme is agnostic to these values in
both scenarios.

Since [13] was not originally proposed as a multi-message
solution, we use its multi-message extension as described in
Section IV. For [18], we do not limit the upload cost per
worker but we limit the total upload cost since it allocates the
computation load to workers adaptively in rounds. Moreover,
since there are three groups of workers with different scale
parameters, we use three clusters in the rounds after the
first round. In the first round, we assign every worker one
computation in accordance with the description in [18].

In Fig. 2 and Fig. 3, we plot the expected computation
time versus the upload cost per worker for heterogeneous and
homogeneous cases, respectively. For simplicity, the upload
cost is given in terms of the maximum number of total matrix

2 3 4 5 6 7 8 9 10

0

10

20

30

Upload cost budget per worker (matrix partitions)

E
xp

ec
te

d
co

m
pu

ta
tio

n
tim

e
(s

)

Proposed
GASP [13]
Rateless [18]

Fig. 3: Comparison of expected computation time as a function
of the upload cost budget per worker when K = L = 5 with
homogeneous workers.

partitions that can be sent to each worker, instead of the
number of bits. As observed in Fig. 2, in the heterogeneous
case, even if the recovery threshold of the proposed scheme
is close to that of GASP codes [13] (see Fig. 1), the proposed
scheme’s ability to generate more computations with the same
upload cost budget, i.e. number of encoded matrix partitions,
allows faster completion of the overall task. Rateless codes
[18], on the other hand, perform very close to the proposed
scheme when the upload cost budget is large, but for the
smaller values, either it could not complete, e.g., upload cost
budgets 2 and 3, or it took too long to complete the task.
This is because the scheme assigns new sub-tasks whenever a
cluster completes its assignment greedily. Thus, the upload
cost budget is mostly invested in the fastest cluster in the
heterogeneous setting. However, despite its speed, the fastest
cluster does not provide many useful computations compared
to the slower clusters.

On the other hand, for the homogeneous case, as observed
in Fig. 3, the improvement of our scheme over GASP codes
is limited. In this case, since workers’ computation speeds are
similar, faster workers do not compensate for slower ones.
Still, we observe that due to the one-to-any replaceability of
our scheme and GASP, both perform much better than rateless
codes [18].

VI. CONCLUSION

We have proposed storage- and upload-cost-efficient bivari-
ate Hermitian polynomial codes for straggler exploitation in
private distributed matrix multiplication. Previous works usu-
ally assume the availability of at least as many workers as the
recovery threshold, but if the number of workers is not suffi-
cient, the multi-message approach can allow the completion of
the task. Compared to prior work, the proposed coding scheme
has lower upload cost and less storage requirement, making the
assignment of several sub-tasks to each worker more practical.
Thanks to these properties, the proposed bivariate polynomial
codes improve the average computation time of the private
distributed matrix multiplication, especially when the number
of workers, the upload cost budget or the storage capacity is
limited.

APPENDIX: PROOF SKETCH OF THEOREM 2

In Fig. 4, we visualize the degrees of the monomials
of A(x)B(x, y). We see that the number of monomials of
A(x)B(x, y) is (K+T)L+m(K+T −1). We need to show
that every possible combination of so many responses from
the workers interpolates to a unique polynomial, implying
(K + T)L+m(K + T − 1) is the recovery threshold.

· · ·· · ·

· · ·

· · ·

0

0

K + T − 1

m− 1

L− 1

2K + 2T − 2

deg(x)

deg(y)

Fig. 4: The visualization of the degrees of the monomials of
A(x)B(x, y) in the deg(x)− deg(y) plane.

Definition 1. Bivariate polynomial interpolation problem can
be formulated as solving a linear system of equations, whose
unknowns are the coefficients of A(x)B(x, y) and whose
coefficient matrix consists of the monomials of A(x)B(x, y)
and their derivatives with respect to y, which are evaluated at
the evaluation points of responded workers. We refer to this
coefficient matrix as interpolation matrix and denote it by
M . For example, when K = L = 2,m = 2, T = 1, N = 4,
M would be as follows.

1 x1 x21 x31 x41 y1 x1y1 x21y1 x31y1 x41y1
0 0 0 0 0 1 x1 x21 x31 x41
...

...
...

...
...

...
...

...
...

...
1 x4 x24 x34 x44 y4 x4y4 x24y4 x34y4 x44y4
0 0 0 0 0 1 x4 x24 x34 x44

Observe that for worker 1, the first and the second rows
correspond to A(x)B(x, y) and A(x)∂1B(x, y), evaluated at
(x1, y1), respectively.

The problem of showing that any Rth responses from the
workers interpolates to a unique polynomial is equivalent to
showing that the corresponding interpolation matrix is non-
singular. The theorem claims that this is the case with high
probability. First, we need to show that there exist some
evaluation points for which the determinant of the interpolation
matrix is not zero. That is equivalent to showing that det(M)
is not the zero polynomial of the evaluation points.

In [20] and [10], such a result for the same type of
interpolation matrices is shown for the real field R. We omit
it here for space restrictions. The result in [20] and [10] is
based on Taylor series expansion, which is also applicable in
Fq , if the degree of the polynomial A(x)B(x, y) is smaller
than q. This can be guaranteed by choosing a large q. For
a discussion of the applicability of Taylor series expansion
in finite fields, see [21], and [22]. From these results, we
can conclude that det(M) is not the zero polynomial for

large enough q. Next, we need to find the upper bound on
the probability det(M) = 0, when the evaluation points are
sampled uniform randomly from Fq .

Lemma 1. [23, Lemma 1] Assume P is a non-zero, v-variate
polynomial of variables αi, i ∈ [v]. Let d1 be the degree of
α1 in P (α1, . . . , αv), and P2(α2, . . . , αv) be the coefficient of
αd11 in P (α1, . . . , αv). Inductively, let dj be the degree of αj in
Pj(αj , . . . , αv) and Pj+1(αj+1, . . . , αv) be the coefficient of
αj in Pj(αj , . . . , αv). Let Sj be a set of elements from a field
F, from which the coefficients of P are chosen. Then, in the
Cartesian product set S1×S2×· · ·×Sv , P (α1, . . . , αv) has at
most |S1 × S2 × · · · × Sv|

(
d1
|S1| +

d2
|S2| + · · ·+

dv
|Sv|

)
zeros.

In our case, since the elements of M are the monomials of
A(x)B(x, y) and their derivatives with respect to y, evaluated
at some (xi, yi), det(M) is a multivariate polynomial of the
evaluation points (xi, yi). Thus, v is the number of different
evaluation points in M . We choose the evaluation points from
the whole field Fq . Thus, Sj = Fq and |Sj | = q,∀j ∈ [v],
and |S1 × S2 × · · · × Sv| = qv . Then, the number of zeros of
det(M) is at most qv−1(d1+d2+ · · ·+dv). If we sample the
evaluation points uniform randomly, then the probability that
det(M) = 0 is (d1 + d2 + · · · + dv)/q, since we sample
a v-tuple of evaluation points from S1 × S2 × · · · × Sv .
To find d1 + d2 + · · · + dv , we resort to the definition of
determinant, that is det(M) =

∑Rth

i=1(−1)1+im1,iM1,i, where
m1,i is the element of M at row 1 and column i and M1,i is
the minor of M when row 1 and column i are removed [24,
Corollary 7.22]. Thus, to identify the coefficients in Lemma 1,
in the first row of M , we start with the monomial with the
largest degree. Assuming the monomials are placed in an
increasing order of their degrees, the largest degree monomial
is at column Rth. If that monomial is univariate, then d1
is the degree of the monomial and the coefficient of αd11 is
P2(x2, . . . , xv) = det(M1,1). If the monomial is bivariate,
then we take the degree of the corresponding evaluation of x,
i.e., α1, as d1, and the degree of the corresponding evaluation
of y, i.e., α2, as d2. In this case, the coefficient of αd2 is
P3(α3, . . . , αv) = det(M1,1). Next, we take M1,1, and repeat
the same procedure. We do so until we reach a monomial of
degree zero. In this procedure since we visit all the monomials
of A(x)B(x, y) evaluated at different evaluation points, i.e.,
αi’s, the sum d1 + d2 + · · ·+ dv becomes the sum of degrees
of all the monomials of A(x)B(x, y). The next lemma helps
us in computing this.
Lemma 2. Consider the polynomial P (x, y) =∑a
i=0

∑b
j=0 cijx

iyj , where ci,j’s are scalars. The sum
of degrees of all the monomials of P (x, y) is given by
ξ(a, b) , a(a+1)

2 (b+ 1) + b(b+1)
2 (a+ 1).

The proof of Lemma 2 is based on Gauss’s trick, and is
omitted due to space restrictions. By using Lemma 2, we can
find the sum of monomial degrees in the diagonally shaded
rectangle and the rectangle shaded by crosshatches in Fig. 4,
separately, and by summing them we find d1 + d2 + · · ·+ dv
to be equal to (4), which concludes the proof.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.

[2] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[3] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Transactions on Information Theory, vol. 66, no. 1,
pp. 278–301, 2019.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” in IEEE International Symposium on Information Theory, 2018.

[5] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded
distributed batch computation,” arXiv, pp. arXiv–1909, 2019.

[6] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in IEEE International Symposium on Information
Theory, 2018.

[7] M. M. Amiri and D. Gündüz, “Computation scheduling for distributed
machine learning with straggling workers,” IEEE Transactions on Signal
Processing, vol. 67, no. 24, pp. 6270–6284, 2019.

[8] E. Ozfatura, S. Ulukus, and D. Gündüz, “Straggler-aware dis-
tributed learning: Communication–computation latency trade-off,” En-
tropy, vol. 22, no. 5, p. 544, 2020.

[9] B. Hasircioglu, J. Gomez-Vilardebo, and D. Gunduz, “Bivariate poly-
nomial coding for straggler exploitation with heterogeneous workers,”
IEEE International Symposium on Information Theory, 2020.

[10] B. Hasircioglu, J. Gomez-Vilardebo, and D. Gunduz, “Bivariate hermi-
tian polynomial coding for efficient distributed matrix multiplication,”
in IEEE Global Communications Conference (GLOBECOM), 2020.

[11] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–6.

[12] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and straggler-
robustness through partition in distributed two-sided secure matrix
computation,” arXiv preprint arXiv:1810.13006, 2018.

[13] R. G. L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “GASP codes
for secure distributed matrix multiplication,” IEEE Transactions on
Information Theory, vol. 66, no. 7, pp. 4038–4050, 2020.

[14] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 2722–2734,
2020.

[15] Z. Jia and S. A. Jafar, “On the capacity of secure distributed matrix
multiplication,” arXiv preprint arXiv:1908.06957, 2019.

[16] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink-downlink
tradeoff in secure distributed matrix multiplication,” arXiv preprint
arXiv:1910.13849, 2019.

[17] N. Mital, C. Ling, and D. Gunduz, “Secure distributed matrix computa-
tion with discrete fourier transform,” arXiv preprint arXiv:2007.03972,
2020.

[18] R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Rateless codes
for private distributed matrix-matrix multiplication,” arXiv preprint
arXiv:2004.12925, 2020.

[19] G. Liang and U. C. Kozat, “Tofec: Achieving optimal throughput-delay
trade-off of cloud storage using erasure codes,” in IEEE INFOCOM
2014-IEEE Conference on Computer Communications. IEEE, 2014,
pp. 826–834.

[20] B. Hasircioglu, J. Gomez-Vilardebo, and D. Gunduz, “Bivariate polyno-
mial coding for exploiting stragglers in heterogeneous coded computing
systems,” arXiv preprint arXiv:2001.07227, 2020.

[21] K. Hoffman and R. Kunze, “Linear algebra,” Englewood Cliffs, New
Jersey, 1971.

[22] F. Fontein, “The hasse derivative,” Aug 2009. [Online]. Available:
https://math.fontein.de/2009/08/12/the-hasse-derivative/

[23] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” Journal of the ACM (JACM), vol. 27, no. 4, pp. 701–717,
1980.

[24] J. Liesen and V. Mehrmann, Linear algebra, ser. Springer undergraduate
mathematics series.

