
An automated data pipeline using

R and GitHub Actions

Anne Treasure
Talarify
anne@talarify.co.za

afrimapr Community Meetup
20 April 2022

Overview

● The requirement

● Overview of the data pipeline (input, processing, output)

● Data processing
○ data import and authorisations

○ data manipulation

○ automation using GitHub Actions

The requirement

SADiLaR and ESCALATOR

South African Centre for Digital Language Resources (SADiLaR) - a national centre supported by the

Department of Science and Innovation as part of the South African Research Infrastructure Roadmap.

● has an enabling function, with a focus on all official languages of South Africa, supporting research and

development in the domains of language technologies and language-related studies in the humanities

and social sciences

● has a mandate to develop digital humanities capacity in South Africa

● to bring large scale adoption of digital research methodologies and practices to the social sciences and

humanities, SADiLaR established the ESCALATOR project, which consists of a national digital champions

programme in combination with an orchestrated capacity development and awareness raising initiative

https://sadilar.org/index.php/en/
https://escalator.sadilar.org/

The requirement
● Stakeholder map project: aims to collect and share data on Digital Humanities, Computational Social Sciences,

and related activities and initiatives in South Africa (projects, people, publications, datasets, training courses,

learning materials, tools, archives, unclassified, etc)

○ aim: to provide deeper insight into the breadth of activities in this area, to facilitate enhanced networking and

collaboration, and support the optimal use of resources (e.g. researchers looking for collaborators, help potential

students to identify training programmes, and highlight gaps and opportunities to funders and institutions, etc.)

Data collected using Google Forms

Data visualisations using Shiny and Kumu

https://escalator.sadilar.org/stakeholder-map/

Required data visualisation tools

● Shiny is an R package that makes it
easy to build interactive web apps
straight from R

Source: https://shiny.rstudio.com/

Source: https://kumu.io/

● Kumu is a tool that makes it easy to
organise complex data into
relationship maps

Data pipeline: overview

Google form

Google
spreadsheet

Kumu
spreadsheet

Automatically linked

Hosted on G drive

Kumu
visualisation

Hosted on G drive

Shiny app

Automatically linked

Embed in website

Hosted on G drive

GitHub Actions Scheduled events to trigger
workflow (CRON)

Data import &
manipulation

R scripts

Run shiny
R script

GitHub

RData file for
Shiny

GitHub

Input /
Source

Data
processing

Output /
Destination

The input and the output

Google form

Google
spreadsheet

Kumu
spreadsheet

Automatically linked

Hosted on G drive

Kumu
visualisation

Hosted on G drive

Shiny app

Automatically linked

Embed in website

Hosted on G drive

GitHub Actions Scheduled events to trigger
workflow (CRON)

Data import &
manipulation

R scripts

Run shiny
R script

GitHub

RData file for
Shiny

GitHub

Input /
Source

Data
processing

Output /
Destination

Input

Google form

Google spreadsheet

● xxxxx

Output: data visualisations

Data processing

Input /
Source

Data
processing

Output /
Destination

Google form

Google
spreadsheet

Kumu
spreadsheet

Automatically linked

Hosted on G drive

Kumu
visualisation

Hosted on G drive

Shiny app

Automatically linked

Embed in website

Hosted on G drive

GitHub Actions Scheduled events to trigger
workflow (CRON)

Data import &
manipulation

R scripts

Run shiny
R script

GitHub

RData file for
Shiny

GitHub

Input /
Source

Data
processing

Output /
Destination

Google form

Google
spreadsheet

Kumu
spreadsheet

Automatically linked

Hosted on G drive

Kumu
visualisation

Hosted on G drive

Shiny app

Automatically linked

Embed in website

Hosted on G drive

GitHub Actions Scheduled events to trigger
workflow (CRON)

Data import &
manipulation

R scripts

Run shiny
R script

GitHub

RData file for
Shiny

GitHub

1

Input /
Source

Data
processing

Output /
Destination

2

Google form

Google
spreadsheet

Kumu
spreadsheet

Automatically linked

Hosted on G drive

Kumu
visualisation

Hosted on G drive

Shiny app

Automatically linked

Embed in website

Hosted on G drive

GitHub Actions Scheduled events to trigger
workflow (CRON)

Data import &
manipulation

R scripts

Run shiny
R script

GitHub

RData file for
Shiny

GitHub

1

Input /
Source

Data
processing

Output /
Destination

2

3

Google form

Google
spreadsheet

Kumu
spreadsheet

Automatically linked

Hosted on G drive

Kumu
visualisation

Hosted on G drive

Shiny app

Automatically linked

Embed in website

Hosted on G drive

GitHub Actions Scheduled events to trigger
workflow (CRON)

Data import &
manipulation

R scripts

Run shiny
R script

GitHub

RData file for
Shiny

GitHub

1

1) Data import and authorisations

● R package to read data from a Google Sheet

○ googlesheets4

● Authorisations for import

○ a. script runs locally, but needs interaction (demo)

○ b. script runs locally, non-interactive (demo)

○ c. automate the non-interactive process (see 3. GitHub Action; demo)

● Data manipulation using R

2) Write to sheet for Kumu; save RData file for Shiny

1) Data import and authorisations

● R package to read data from a Google Sheet

○ googlesheets4

● Authorisations

○ a. script runs locally, but needs interaction (demo)

○ b. script runs locally, non-interactive (see next slide; demo)

○ c. automate the non-interactive process (see 3. GitHub Action; demo)

● Data manipulation using R

2) Write to sheet for Kumu; save RData file for Shiny

1) Data import and authorisations

● R package to read data from a Google Sheet

○ googlesheets4

● Authorisations

○ a. script runs locally, but needs interaction (demo)

○ b. script runs locally, non-interactive (see next slide; demo)

○ c. automate the non-interactive process (see 3. GitHub Action; demo)

● Data manipulation using R

2) Write to sheet for Kumu; save RData file for Shiny

b. Non-interactive authorisations

● From this issue, Jenny Bryan’s advice about using a service account for

non-interactive authorisations: https://github.com/tidyverse/googledrive/issues/327

1. Create a Google Cloud Platform account

2. New project and create a service account

3. Create a key and download the .json file

4. Make the service account email address an editor to your google sheet

5. Point gs4_auth() to the .json from step 3

See Appendices for further information.

https://github.com/tidyverse/googledrive/issues/327

Demo:

● non-interactive authorisations

● data manipulation using R

● 2) Write to sheet for Kumu; save RData file for Shiny

b. Non-interactive authorisations

1) Data import and authorisations

● R package to read data from a Google Sheet
○ googlesheets4

● Authorisations

○ a. script runs locally, but needs interaction (demo)

○ b. script runs locally, non-interactive (see next slide; demo)

○ c. automate the non-interactive process (see 3. GitHub Action; demo)

● Data manipulation using R

● 2) Write to sheet for Kumu; save RData file for Shiny

3) Automation using a GitHub Action
● “GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform that

allows you to automate your build, test, and deployment pipeline”

(https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions)”
○ see references below for understanding GitHub Actions

● GitHub Action
○ where to put the .json file and how to keep it secret?

○ how to set up the non-interactive authorisations to read and write to Google Sheets using

googlesheets4 within a GitHub Action?

● Reached out using the R for Data Science Slack channel

● R package: tokencodr : demo

https://www.rfordatasci.com/

Join the Slack channel !

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://github.com/jdtrat/tokencodr

GitHub Action: demo

See: https://github.com/jdtrat/tokencodr-google-demo,
https://github.com/AnneMTreasure/stakeholder_map_project, https://github.com/DHCSSza/stakeholder_map

1) In your R Project - GitHub repo

a) Make sure you have functions/ and scripts/ directories

b) Add a DESCRIPTION file to your R Project (similar to an R package)

2) Encode .json file, and create a GitHub repository secret

3) R scripts

a) Add function for authorisation using tokencodr

b) Edit data import / manipulation scripts

4) Create your .yml file for your GitHub Action

https://github.com/jdtrat/tokencodr-google-demo
https://github.com/AnneMTreasure/stakeholder_map_project
https://github.com/DHCSSza/stakeholder_map
https://github.com/jdtrat/tokencodr

GitHub Action: demo

● Demo
○ GitHub repo: where and how to add repository secret

○ .github/workflows/ directory with .yml file

■ Add file -> create new file: type .github/workflows/ and [filename].yml

○ The .yml file

○ Viewing the workflow’s activity (actions tab)

■ In the left sidebar, click the workflow you want to see

■ Under "Workflow runs", click the name of the run you want to see

■ Under Jobs or in the visualization graph, click the job you want to see

■ View the results of each step

GitHub Action for Shiny: get token & secret from shinyapps.io

1
2

Add to GitHub secrets, and use in the
GitHub Action .yml - demo

GitHub Action for Shiny: add token & secret to GitHub repo secrets

1

2

3

GitHub Action for shiny: demo if time

● Demo if time
○ Secret & token

○ The .yml file

● xxxxx

Data visualisations updated daily

Resources

Resources

● Service account tokens, non-interactive, workflows for this
○ https://github.com/tidyverse/googledrive/issues/327 - used this for workflow

○ https://github.com/tidyverse/googlesheets4/issues/170

○ https://github.com/marketplace/actions/google-sheets-secrets-action - useful bit on workflow for service account,

token, etc

○ Creating a data pipeline with Github Actions & the {googledrive} package for the Canadian Premier League soccer data

initiative! - setting up GCP service account, etc

● Non-interactive authorisations
○ https://github.com/tidyverse/googledrive/issues/239

○ https://cran.r-project.org/web/packages/gargle/vignettes/non-interactive-auth.html - often recommended, especially

by Jenny Bryan

○ https://gargle.r-lib.org/articles/non-interactive-auth.html

https://github.com/tidyverse/googledrive/issues/327
https://github.com/tidyverse/googlesheets4/issues/170
https://github.com/marketplace/actions/google-sheets-secrets-action
https://www.r-bloggers.com/2021/09/creating-a-data-pipeline-with-github-actions-the-googledrive-package-for-the-canadian-premier-league-soccer-data-initiative/
https://www.r-bloggers.com/2021/09/creating-a-data-pipeline-with-github-actions-the-googledrive-package-for-the-canadian-premier-league-soccer-data-initiative/
https://github.com/tidyverse/googledrive/issues/239
https://cran.r-project.org/web/packages/gargle/vignettes/non-interactive-auth.html
https://gargle.r-lib.org/articles/non-interactive-auth.html

Resources
● Github Actions

○ Read this to understand GitHub Actions:

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

● GitHub Actions Yaml’s
○ Running R Scripts on a Schedule with GitHub Actions - really good blog post, very useful for understanding GitHub Actions

and YAMLs, for a package environment though

○ Events to trigger the workflow: GitHub documentation on this can be found here

○ https://github.com/simonpcouch/scheduled-commit-action/blob/master/.github/workflows/schedule-commit.yaml

○ Running an R Script on a Schedule: Gh-Actions - some useful info here

○ Creating a data pipeline with Github Actions & the {googledrive} package for the Canadian Premier League soccer data

initiative! - useful for GitHub Action workflow

○ https://www.rforseo.com/ressources/launch-an-r-script-using-github-actions - simple e.g. of R script and .yml

○ Automatic Rendering of a Plot with GitHub Actions - some useful info on setting up the .yml

○ GitHub Action with R book - good, got some pointers from here about how to set up GitHub Action for R, whats going on in

the .yml file

○ Look at the r-lib example YAMLs, e.g.:

https://github.com/r-lib/actions/blob/master/.github/workflows/check-standard.yaml

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://blog--simonpcouch.netlify.app/blog/r-github-actions-commit/
https://docs.github.com/en/actions/learn-github-actions/events-that-trigger-workflows#scheduled-events
https://github.com/simonpcouch/scheduled-commit-action/blob/master/.github/workflows/schedule-commit.yaml
https://www.r-bloggers.com/2020/09/running-an-r-script-on-a-schedule-gh-actions/
https://www.r-bloggers.com/2021/09/creating-a-data-pipeline-with-github-actions-the-googledrive-package-for-the-canadian-premier-league-soccer-data-initiative/
https://www.r-bloggers.com/2021/09/creating-a-data-pipeline-with-github-actions-the-googledrive-package-for-the-canadian-premier-league-soccer-data-initiative/
https://www.rforseo.com/ressources/launch-an-r-script-using-github-actions
https://www.r-bloggers.com/2021/01/automatic-rendering-of-a-plot-with-github-actions-2/
https://orchid00.github.io/actions_sandbox/
https://github.com/r-lib/actions/blob/master/.github/workflows/check-standard.yaml

Resources

● gargle documentation
○ Managing tokens securely - recommended by Jenny Bryan, applies to packages, but tokencodr works largely on the same principles for a

non-package environment

○ https://gargle.r-lib.org/articles/get-api-credentials.html#service-account-token-1

● Secrets
○ Managing Secrets vignette by Hadley Wickam

○ Packages to deal with secrets

○ https://github.com/gaborcsardi/secret

○ https://github.com/ropensci/cyphr

● GitHub Actions and Shiny
○ https://towardsdatascience.com/automating-a-covid19-report-update-and-publishing-with-github-actions-a3d64315e515#1dc4

○ https://github.com/lucharo/COVID19/blob/master/.github/workflows/automate.yml

○ https://stackoverflow.com/questions/67040654/r-shinyapps-deployment-error-when-doing-it-manually

○ https://github.com/MattCowgill/djprlabourdash/blob/main/.github/workflows/deploy-shiny.yaml

○ https://mirai-solutions.ch/techguides/cicd-pipelines-for-automatic-deployment-of-a-r-shiny-web-app.html

○ https://mirai-solutions.ch/techguides/github-actions.html

https://gargle.r-lib.org/articles/articles/managing-tokens-securely.html
https://gargle.r-lib.org/articles/get-api-credentials.html#service-account-token-1
https://httr.r-lib.org/articles/secrets.html
https://github.com/gaborcsardi/secret
https://github.com/ropensci/cyphr
https://towardsdatascience.com/automating-a-covid19-report-update-and-publishing-with-github-actions-a3d64315e515#1dc4
https://stackoverflow.com/questions/67040654/r-shinyapps-deployment-error-when-doing-it-manually
https://github.com/MattCowgill/djprlabourdash/blob/main/.github/workflows/deploy-shiny.yaml
https://mirai-solutions.ch/techguides/cicd-pipelines-for-automatic-deployment-of-a-r-shiny-web-app.html

Twitter: @DHCSSza

Website: https://escalator.sadilar.org/stakeholder-map/

Email: stakeholder-map@talarify.co.za

ESCALATOR: escalator@talarify.co.za

Contact information

Appendices

b. Non-interactive authorisations

1. Create a Google Cloud Platform account
2. Create a new project, and a service account for this project

2. Create a service account

b. Non-interactive authorisations

3. Create a key and download the .json file

b. Non-interactive authorisations

4. Make the service account email address an editor to your google sheet
● service account email address: find under ‘Details’ on GCP site, or in the .json file

b. Non-interactive authorisations

5. Point gs4_auth() to the .json from step 3

● gs4_auth(email = "[your email address]",

path = "~/[path to .json file]/[filename].json")

b. Non-interactive authorisations

GitHub Action & tokencodeR:
1) In your R project

Add a
DESCRIPTION
file; make sure
the this has a
valid package
name, e.g.
'stakeholder.ma
p.afrimapr'

Make sure you have functions/ and
scripts/ directories

Packages
needed

GitHub Action & tokencodeR:
2) Encode .json file, create a repository secret

● Install the tokencodr package

● To encrypt a file, you call tokencodr::create_env_pw(). For example:

○ create_env_pw("GSHEET_ACCESS_AFRIMAPR")

● Copy password to .Renviron:

○ usethis::edit_r_environ()

○ paste password, insert new line, close, restart R

● Then, to encrypt the .json file and put it in a secret directory (you specify the location):

○ encrypt_token(service = "MY_GOOGLE",

input = "[filename].json",

destination = "~/[path to where you want the file]/")

● Then, for using locally, in your R script, set the authorisations in the googlesheets4 package:

○ gs4_auth(email = "[your email address]", path = "~/[path to the

file]/.secret/GSHEET_ACCESS_AFRIMAPR")

GitHub Action & tokencodeR:
2) Encode .json file, create a repository secret

● For the GitHub Action: copy the password from create_env_pw() to your GitHub repository's

secrets (e.g. if you call create_env_pw("GSHEET_ACCESS_AFRIMAPR") , you should create a

repository secret with the name GSHEET_ACCESS_AFRIMAPR_PASSWORD)

○ GitHub repo:

-> Settings

-> Secrets

-> Actions

-> New repository secret

GitHub Action: 3) R scripts: add function for authorisation using tokencodr

● Function: copy func_auth_google.R into functions/ directory; edit as necessary

GitHub Action & tokencodeR:
3) R scripts: edit your scripts for authorisation (function)

Add authorisation function code to your scripts (adapted from https://github.com/jdtrat/tokencodr-google-demo)

load the function
source("functions/func_auth_google.R")

authenticate Google Service Account
auth_google(email = "*@talarify.co.za",
 service = "GSHEET_ACCESS_AFRIMAPR",
 token_path = ".secret/GSHEET_ACCESS_AFRIMAPR")

https://github.com/jdtrat/tokencodr-google-demo

GitHub Action: 4) Create your .yml file for your GitHub Action

● The GitHub Action workflow is defined by the YAML file (.yml) and is triggered by an event in

your repository, manually, or at a defined schedule

○ Events to trigger the workflow

■ GitHub documentation on this can be found here

■ I chose a scheduled event for my needs - you can schedule a workflow to run at specific UTC

times using POSIX cron syntax. You set this in the GitHub Action .yml file

● In your GitHub repo, create the .github/workflows/ directory to store your workflow files

● In the .github/workflows/ directory, create a new file [filename].yml

○ my .yml defines a workflow that runs my R script

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#scheduled-events

GitHub Action for Shiny: .yml

Add to jobs:

env:
 # set as environment variables
 SHINY_TOKEN: ${{ secrets.SHINY_TOKEN }}
 SHINY_SECRET: ${{ secrets.SHINY_SECRET }}

- name: Connect to Shiny
 run: |
 shiny_token = Sys.getenv("SHINY_TOKEN")
 shiny_secret = Sys.getenv("SHINY_SECRET")
 rsconnect::setAccountInfo(name='anne-treasure', token=shiny_token, secret=shiny_secret)
 shell: Rscript {0}

- name: Uploading to shinyapps.io
 run: rsconnect::deployApp(appDir = "shiny_stakeholder_map",

 appFiles=c('app.R', 'shiny_data.RData', 'my_map_activ.R'),
 account = 'anne-treasure', server = 'shinyapps.io',
 getOption("rsconnect.force.update.apps", TRUE))

 shell: Rscript {0}

Thank you!

