
A Artifact Appendix
A.1 Abstract
In this artifact, we provide datasets and software tools related
to our paper “Anycast Agility: Network Playbooks to Fight
DDoS” [9]. Our artifact contains several datasets generated
from our anycast experiments and analysis. Our datasets pro-
vide a snapshot of the results that we generated during our
experiments. Some of our experimental results are dependent
on the current state of the network interconnections and poli-
cies. However, due to the anycast stability, we expect to get
similar results if we redo the experiments now. Our published
datasets support our key results and are publicly available.
We also provide tools and scripts that can be useful for other
researchers.

A.2 Artifact check-list (meta-information)
• Algorithm: We provide an algorithm to select the best routing

option from a BGP playbook containing multiple routing op-
tions and their impacts over traffic distribution (Section 3.4.2
of the paper [9]). We provide a working Python script for this
selection algorithm. We include instructions about this tool in
our anygility tool page [10].

• Compilation: We use shell/python script and java program
for our tools. One needs to install Python and Java to run our
tools. We depend on Verfploeter software, and we mention a
series of other dependencies in the software READMEs [10].

• Binary: Some of our tools require extra binary files. We in-
clude those binary files with our software package, and provide
instructions.

• Data set: We provide several datasets generated from our
experiments and analysis [11]. Some software tools require
extra datasets to run (e.g. IP hitlist). We include a sample
dataset file with the software tool.
However, we do not include large data files with our software
tools. But these datasets can be downloaded separately (we
provide the instruction in §A.3.1).

• Run-time environment: We tested our tools in Linux oper-
ating system. Peering toolbox on Fedora 34, and Tangled on
Ubuntu 18.04 LTS and macOS 12. In some cases, our tools
require root access. Our tools notify the users when it needs
root access.

• Run-time state: Our key idea related to network playbook
(Section 3.1 and 6.4 of the paper [9]) is dependent on the
network interconnections and policies. We include the dates of
experiments in our datasets. Since anycast is stable, we expect
a similar outcome if we rerun the experiment.

• Execution: Some of our tools might need a long time to
run. For example, our automated playbook builder announces
different routing configurations, runs Verfploeter, and captures
traces after a fixed interval. If we consider the whole process
from measurement to playbook for 7 sites, it takes around 27-
35 hours. For 3 sites it was around 17-24 hours. If we have
more sites, or more routing policies, it would take even more
time.

• Security, privacy, and ethical concerns: In the required cases,
we anonymize IP addresses to prevent IP disclosure. As an ex-
ample, we anonymize IP addresses in the DDoS attack datasets.
For privacy reasons, we restrain ourselves from sharing certain
attack data from Dutch national scrubbing center, and from an
enterprise.

• Metrics: We provide datasets related to anycast catchments
and DDoS attacks. Each dataset reports different metrics. We
provide the details of these metrics in our README files. Our
README files are included with the dataset packages.

• Output: We provide experimental outputs from Tangled and
Peering testbeds. Tangled provides the measurement output in
csv format while Peering provides raw captured traces in pcap
format. These data files are parsed to generate output files in
human-readable formats or graphs. The graphs are built using
jupyter notebook and gnuplot scripts. We provide these scripts
in our dataset webpage [11].

• Experiments: We provide scripts to automatically announce
different routing configurations in both Peering and Tangled
testbeds. We provide our generated datasets from these experi-
ments. We provide some sample data to test our route selection
process independent from running the whole measurement
process.

• How much disk space required (approximately)?: Software
tarballs are about 500KB. Our datasets related to the anycast
experiments require around 100 GB disk space. Our attack
datasets are large since we provide the whole day traffic cap-
tures (around 500 GB each). As our datasets are large, a user
can download a portion of the datasets.

• How much time is needed to complete experiments (approx-
imately)?: Some of the experiments may take a whole day
(building a playbook with all routing options). Measurement
process can take days depending the chosen measurement. Our
decision maker can take decision within seconds. Parsing tools
may need different times depending on the data size.

• Publicly available (explicitly provide evolving version ref-
erence)?: Our datasets and software tools will be publicly
available. Our datasets will not evolve. Our webpages for the
tools will redirect to the current version of each software [10].

• Code licenses (if publicly available)?: Our tools are free; so
anyone can redistribute it and/or modify it under the terms of
the GNU General Public License, version 2, as published by
the Free Software Foundation. We include this license notice
with every tools that we make publicly available.

• Data licenses (if publicly available)?: We follow the data
sharing policy through the participation of the LACREND
project in the DHS IMPACT program [5].

• Archived (explicitly provide DOI or stable reference)?:

A.3 Description
We provide datasets and tools for measuring anycast agility against
DDoS. Our datasets are available upon request [5]. We provide
datasets about the traffic distribution after BGP changes in testbeds,
attack data from a DNS root server and from a national scrubbing
center, other data related to anycast catchment stability, and other
supporting data for our software tools. We provide codes for traffic

Software
tools

Software
dependencies

Software
source

Dataset
dependencies

Dataset
source

Traffic
Estimator

Java openjdk-11.0.13 pcap traces With dataset
tshark Wireshark RIPE IPs Included

playbook
builder

Access to
Peering

Required
Testbed
access

Hitlitst With dataset

Pinger
Provided +
open source

playbook
tuner Python Python 3.10.2

Playbook Included
Load Included

load_parser+
ParsingLoad

shell+Java openjdk-11.0.13
Dataset dir.
with pcaps

With dataset

pingextract
Provided +
open source

Load file With dataset

BGPTuner Python
bgptuner-requirements.txt

Python 3.8 Playbook with specific site list Included

measurement scripts
+ tangler-cli

Bash
Python

Verfploter
ExaBGP

Access to Tangled

Bash 4.4
Python 3.8

Verfploter 0.1.42
ExaBGP 4.1.2

— —

vp-cli Python Python 3.8 Verfploter 0.1.42 files Included
make-playbook Python Python 3.8 stats files Included

run-playbook
Python

ExaBGP
Access to Tangled

Python 3.8
ExaBGP 4.1.2

Routing Playbook Included

Table 1: Software tools dependencies.

estimation, for reproducing experiments, and for parsing the col-
lected data.

A.3.1 How to access
Our datasets are available from the institutional storage system [6].
We provide the datasets based on requests [5]. After getting a request,
we provide the download instructions. Our software tools will be
available to download from its own webpage [10].

A.3.2 Hardware dependencies
Our whole uncompressed datasets size is over 1 TB. However, a user
can download the partial datasets [6]. An interested user may want
to look over the meta data of each dataset (using the README files),
and keep the required amount of free storage.

A.3.3 Software dependencies
We provide several tools for different purposes [10]. We tested our
software tools in Linux operating system. Some of our tools are
dependent on external data sources and binaries. In most cases,
we provide a sample data source with the package, and for other
cases one can download the datasets with our released dataset. We
provide the required binaries with our tools. One might need to
install dependencies like Python or Java. We detail dependencies on
(Table 1).

A.3.4 Data sets
We provide a full list of datasets in our web page [11].

We release datasets related to catchment distribution after routing
configuration changes. We announce different BGP options, run Verf-
ploeter to ping millions of responsive targets, and then capture the
responses at every site. Our dataset includes raw pcap files captured
from these measurements, and parsed data files in human-readable
format.

We also provide DDoS attack data collected from B-root and
Dutch national scrubbing center from 2015 to 2021.

Within other datasets, we provide datasets for anycast stability,
and other supporting datasets to run our software tools.

The READMEs for these datasets are available with the dataset
package.

A.3.5 Models
N/A

A.3.6 Security, privacy, and ethical concerns
We see no privacy concerns with our shared datasets. In cases like
the DDoS attack data, we only share the /24 prefixes to hide the
exact IP.

A.4 Installation
Instructions for running the tools are available in the webpages [10].

A.5 Evaluation and expected results
We provide the key results of the paper by mentioning the figures and
tables, and list the corresponding datasets and tools in Table 2. Next,
we list the key results, then we describe how can one get these results,
and possible variations in the results. Please check the detailed steps
to regenerate the graphs from the provided datasets.

A.5.1 Results with traffic estimation:
We propose a new technique to estimate the true offered load when
we have loss in the upstreams (Section 3.3 and 4 [9]). We show our
traffic estimation technique works well with the real world-attack
events. For traffic estimation, we provide a tool named TrafficEsti-
mator [14]. Using our traffic estimation tool, we show that we can
correctly estimate the true offered load for real-world DDoS events.

To reproduce the same result, one needs to feed the attack traces
to our program (provided as attack data in peering dataset [12]). One
needs to have the pcap traces that we used, and needs to install tshark
(with Wireshark) to feed the traffic content to our program. We used
tracefiles for 2015-11-30 and 2016-06-25 events. A user needs to
know the attack start time to use the right pcap files to observe the
estimation outputs. The provided README tells the attack start
time. We also need to provide a list of RIPE IPs that our program
will use (already provided with the tool). We provide the instructions
for running this tool in our webpage [14].

If running correctly, one can regenerate the same results that we
showed in the paper. Depending on the start and end time of the
attack trace, we might get a slightly different estimation. But on
average we expect to get the same results.

Detailed steps:
We show the results generated for 2015 and 2016 events. This cov-

ers Figure 4, Figure 12, and Table 1. We use the following datasets:

1. Non-attack traffic 2015: B_Root_Anomaly-20151130/29/2015
1129-065024-00175689.pcap.xz,

2. Non-attack traffic 2016: B_Root_Anomaly-20160625/24/2016
0624-200008-00356777.pcap.xz,

3. Attack traffic 2015: B_Root_Anomaly-20151130/30/2015113
0-065209-00177422.pcap.xz,

4. Attack traffic 2016: B_Root_Anomaly-20160625/25/2016062
5-221823-00357641.pcap.xz,

5. RIPE IPs 2015: ripe-ips-2015-11-30.txt (provided with the
tool),

6. RIPE IPs 2016: ripe-ips-2016-06-25.txt (provided with the
tool).

The first step is to calculate the RIPE traffic rate during normal
period (known-good traffic - normal column of Table 1). To get this
value, we feed non-attack traffic to our estimator to get the RIPE
traffic rate during normal period. We use the following command to
get this:

For 2015 event: xzcat B_Root_Anomaly-20151130/29/2015
1129-065024-00175689.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4f0

For 2016 event: xzcat B_Root_Anomaly-20160625/24/2016
0624-200008-00356777.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590

Please wait for some time to see the generated output in
the command prompt. The given addresses (192.228.79.* and
2001:500:84::*) are the B root server addresses (different because
of the different anonymization keys). This command will generate
an output like:

2015: “Time diff: 5.01 Counter-packets: 193 Rate: 38.47” 2016:
“Time diff: 5.06 Counter-packets: 195 Rate: 38.52”

Key results [9, 11] Shared datasets Related tools

Figure 3
sample dataset

provided with the tool
tangled tools [15]

bgp-tuner

Figure 4, Table 1, Figure 12
peering and root DNS dataset [12]

B_Root_Anomaly-20151130
B_Root_Anomaly-20160625

TrafficEstimator and selection tools [14]
TrafficEstimator

Figure 5
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:
prepending (3 sites) 2020-02-24

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Figure 6
tangled dataset [13]

Usenix_anygility_5_sites_2022-03-24_NEW

tangled tools [15]
measurement scripts

tangler-cli, vp-cli
Anygility-Tangled-Catchment-load-distribution.ipynb

Figure 7
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224,
community (3 sites) 2020-02-25

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Figure 8
tangled dataset [13]

community dataset (3 sites)

tangled tools [15]
measurement scripts

tangler-cli, vp-cli

Table 5, Table 6

peering and root DNS dataset [12]
anycast_catchment_distribution-20200224:

prepending (3 sites) 2020-02-24,
community strings (3 sites) 2020-02-25,

poisoning (3 sites) 2021-04-09

peering tools [15]
load_parser
ParsingLoad

Figure 9
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:
prepending (3 sites) 2020-02-28

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Figure 10

peering and root DNS dataset [12]
anycast_catchment_distribution-20200224:

prepending (3,5,7 sites) 2020-02-24,
2020-04-07, 2020-04-08

Community (3, 5, 7 sites) 2020-02-25 and 2020-04-19

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Table 7

peering and root DNS dataset [12]
anycast_catchment_distribution-20200224:

baseline (3 sites) 2020-02,
2020-04, and 2020-06

peering tools [15]
load_parser
ParsingLoad

Figure 11
peering and root DNS dataset [12]

B_Root_Anomaly_message_question-20170306

peering tools [15]
ParsingLoad

TimeBasedPrefixLoad
AnycastSiteLoad

Figure 13
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:
poisoning (3 sites) 2021-04-09

peering tools [15]
load_parser
ParsingLoad

Figure 14
tangled dataset [13]

poisoning dataset (3 sites)

peering tools [16]
measurement scripts

tangler-cli, vp-cli

Figure 15
peering and root DNS dataset [12]

anycast_catchment_stability-20210701
-

Figure 16
peering and root DNS dataset [12]

B_Root_Anomaly_message_question-20200214
B_Root_Anomaly_message_question-20210528

peering tools [15]
ParsingLoad

TimeBasedPrefixLoad
AnycastSiteLoad

Table 2: Paper key results with datasets and tools. We provide the scripts to generate the graphs for our key results in our
webpage [11].

We waited until 5 s to fix the final rate of the RIPE IPs. This rate
is the cumulative rate measured from the start time. known-good
traffic - normal column from Table 1 has a similar value.

The second step is to run the same TrafficEstimation java utility
to find the estimated rate. We run the following commands for this:

2015 event: xzcat B_Root_Anomaly-20151130/30/201511
30-065209-00177422.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4f0 38.47

2016 event: xzcat B_Root_Anomaly-20160625/25/201606
25-221823-00357641.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590 38.52.

Please note that this command has an extra parameter (38.47
and 38.52) which we got from the previous command outputs. This
command will generate two types of output lines. For 2015 event,
we are showing a snapshot after 20 s, and for 2016 event we are
showing a snapshot after 42 s.

2015 event output:
Time diff: 19.99 Counter-packets: 37 Rate: 1.85 1448866349.106

Count-packets: 1604914 Observed rate: 320982.8 Estimated:
6674713.88

2016 event outptut:
Time diff: 41.98 Counter-packets: 14 Rate: 0.33
1466893148.1316 Count-packets: 451957 Observed rate:

90370.72 Estimated: 11186300
Our program shows the RIPE rate when it finds new RIPE IPs

in DNS traffic (starting after 1 minute). The observed rate line is
printed at every 5 s. So, the users normally observe more number of
first line.

The first line for 2015 event indicates that after 20 s during the
attack period, our program receives 37 RIPE packets at a rate of
1.85 RIPE packets/s. This value corresponds to the known good
traffic - observed column value from Table 1. Dividing by the prior
normal rate of 38.47, we get the access fraction value, α. The first
line for 2016 event indicates that the program gets 14 RIPE packets
within 41.98 s with a rate of 0.33 RIPE packets/s. This value indi-
cates the known good traffic - observed column value from Table
1. Dividing by the prior rate of 38.52 RIPE packets/s, we get the
value of access fraction, α in Table 1. Please note that, because of a
different RIPE IP list and measurement start time (using different
pcap files), we are getting a slightly different value than what we
have in the table.

Our program generates the second line at every 5 s. This line
indicates the timestamp at every 5 s, packet count within that 5 s, the
observed rate (packet count / 5.0), and the estimated traffic rate (ob-
served rate / α). This observed rate corresponds to the offered load
during attack - observed rate column of Table 1. For 2015 event, the
sample output value is close to 0.32M packets/s, and for 2016 event
this value is 0.09M packets/s. These two values are similar to what
we have in Table 1 (0.37 and 0.10). A user will observe variable rates
at different times. This observed rate is then divided by the calculated
access fraction (α) to get the estimated offered load—offered load
during attack - estimated column (∼6.6M queries/second for 2015
event and ∼11M queries/second for 2016 event), which is close the
reported rate of 5M queries/second and 10M queries/second, respec-
tively [7, 8]. We use the estimated values from our TrafficEstimation
program to generate the graphs—Figure 4 and Figure 12. Depending
on the attack start time and RIPE IPs, the estimated values may vary

slightly but we expect to get a similar trend. The offered load during
attack - normal column indicates the normal traffic rate at a given
time which we can measure from B root traffic (TrafficEstimator
tool can measure this; we just need to feed the normal traffic with the
known RIPE rate parameter) but we are skipping this detail since it is
not directly related to the key outcomes. α̂ is calculated by dividing
observed rate by the reported rate.

Our outcomes for known-traffic measurement, and estimated rate
measurement may vary depending on the RIPE IPs we used and the
traffic data we are using. We tried 5 s of traffic to find out the known
traffic rate. This choice is arbitrary, a user can wait for some more
time. Given the RIPE IPs that we provided, a user may expect to see
25-50 RIPE queries per second. Please note that, we used a subset
of RIPE IPs. A larger RIPE IP set along with their consistent signal
would ensure more stable RIPE query rate. We also provided some
snapshots for the estimated rate measurement. Please note that, they
are just snapshots. Estimated rates are dependent on the observed
traffic rates (always varying), and the access fraction.

A.5.2 Building BGP playbook:
We propose a BGP playbook to fight against DDoS attacks. We build
the BGP playbook with different routing options and their impacts
over traffic distribution (Section 6 and 7 [9]). We show that BGP
playbook can help the operators to select the right routing option
during an attack event, and a playbook can provide a granular control
over traffic distribution.

To reproduce the result, a user needs to announce different BGP
configurations, and then run Verfploeter/pinger [3] to learn the pre-
fixes to anycast site catchment. We provide scripts (playbook_builder
in Peering and tangler-cli in Tangled) for our testbeds to makes these
announcements automatically [15, 16]. One needs to have access
to the testbeds to run this experiment. We used Peering [17] and
Tangled [2] testbeds. These testbeds authorize an anycast prefix
for a specific time period. One needs to ask for permission with a
proposal to use these testbeds [1,18]. Our script is dependent on verf-
ploeter/pinger tool which is available online [3], and we provide a
binary. This tool needs a target hitlist of IPs which we provided with
our dataset (search for internet_address_history_it88w20191127 [6]).
We provide a tool named getting_hitlist_ips to parse this raw hitlist
file to get the list of responsive IPs. The instruction to run these tools
is available in our webpage [15, 16].

To validate our results, we also provide the datasets that we got
from our experiments. We include captured pcap files, and data
in human-readable format for Peering [12], and in csv format for
Tangled [13]. To reproduce results from the collected data, we also
provide tools called load_parser and ParsingLoad in Peering [15],
and measurement scripts in Tangled [16].

Our result is dependent on the stability of the network state. Since
anycast catchment is fairly stable, we expect to get a slight variation
but similar results if we rerun the experiment.

Detailed steps: We provide an example here to reproduce Fig-
ure 5 from our paper. Other similar graphs and tables like Figure
5—Figue 7, Figure 8, Table 5, Table 6, Figure 9, Figure 10, Table
7, Figure 13, Figure 14 can be generated using the similar process.
Please note that figures for community strings and path poisoning
(Figure 7, Figure 10, and Figure 13) for Peering utilizes only Pars-
ingLoad utility alone (we provide the details later in this subsection).

At first, one needs to run playbook_builder tool to make BGP
announcements for every prepending option. This step is dependent

on getting access from the Peering testbed. Also, Internet routing
changes, and we will not get the same outputs that we received while
doing the experiment. As a result, we provide the collected data in
pcap form to skip this step. Please find this dataset in peering and root
DNS dataset—prepending (3 sites) 2020-02-24. The other datasets
for other figures mentioned in prior paragraph are also provided.

To recreate Figure 5, we provide the following datasets:

1. The pcap files in peering and root DNS dataset: anycast_catch
ment_distribution-20200224/Path_Prepending_AMS,BOS,C
NF-20200224,

2. The IP hitlist internet_address_hitlist_it88w-20191127/interne
t_address_hitlist_it88w-20191127.fsdb.bz2,

3. Some "load" data, provided with the software tool (we consider
catchment in this figure so a full load data is not important).

After having these data, one needs to run anygility-
peering/src/getting_histlist_ips/getting_hitlist_ips on the hitlist:

bzcat /data/internet_address_hitlist_it88w-20191127/internet_a
ddress_hitlist_it88w-20191127.fsdb.bz2 | python3 ./getting_hitlist_i
ps/data/ip_list_20191127.txt.

This will create a text file, ip_list_20191127.txt, containing one
responsive IP address per line.

Then one needs to run anygility-peering/src/load_parser/load_par
ser.sh on the pcaps with the generated IP hitlist and sample load-file,
and its corresponding load-date (e.g. –load=. –ldate=2022-02-01 to
use the one provided with the tool):

bash load_parser.sh --numbers=3 --sites=AMS,BOS,CNF --date
=2020-02-24 --dir=/data/anycast_catchment_distribution-2020022
4/Path_Prepending_AMS,BOS,CNF-20200224/ --load=.--ldate=2
022-02-01 --hitlist=/data/ip_list_20191127.txt Please note that the
trailing / in the –dir argument is necessary.

This will run the ParsingLoad java utility for each announcement
configuration, which will

• generate .dat files with ping responses from the .pcap files
using pingextract utility.

• compute catchment data, both in terms of /24-blocks and “load”
and store these as .txt files inside the data directory. For each
announcement configuration, two files <DATE>-catchment-
percentage.txt and <DATE>-load-percentage.txt are created.
In addition, a combined all-<DATE>-load-<LOAD-DATE>.txt
file is created in the data root directory.

The content of all-<DATE>-load-<LOAD-DATE>.txt consists of
multiple blocks of this form:

<routing-configuration-path>
- <missing /24 count> <missing /24 relative>
site_1 <site_1 /24 count> <site_1 /24 relative> <site_1 /24 relative

received>
[...]
site_n <site_n /24 count> <site_n /24 relative> <site_n /24 relative

received>
multiple <multiple /24 count> <multiple /24 relative> <multiple

/24 relative received>
- <missing load count> <missing load relative>
site_1 <site_1 load count> <site_1 load relative> <site_1 load

relative received>
[...]

site_n <site_n load count> <site_n load relative> <site_n load
relative received>

multiple <multiple load count> <multiple load relative> <multiple
load relative received>

Figure 5 then shows bar-graphs created from the <site_x /24
relative received> values.

Using ParsingLoad alone: The script load_parser utilizes Pars-
ingLoad for each of the path prepending configurations. When we
are not parsing path prepending configurations, we can just utilize
ParsingLoad utility alone. We utilize ParsingLoad alone for commu-
nity strings and path poisoning (Figure 7 and Figure 13). We run
ParsingLoad for each of these routing configuration separately.

java -jar ParsingLoad.jar 3 AMS,BOS,CNF anycast_catchment_
distribution-20200224/Community_Strings_AMS,BOS,CNF-2020
0225/2020-02-25-AMS,BOS,CNF-AMS-ALL-PEERS/ /nfs/lander
/traces/verfploeter/broot_verfploeter/Peering/Peering_Mapping/20
20/community_strings/2020-02-25-AMS,BOS,CNF-AMS-ONLY-
PEERS/ 2020-02-25 loads/ 2020-02-22

The output has the same format like all-<DATE>-load-<LOA
D-DATE>.txt as we mentioned above. We combine these gener-
ated files to build Figure 7 and Figure 13. We use ParsingLoad
separately for each routing configuration with community strings
and path poisoning. But a script for all the community string and
path poisoning options is also possible. For path poisoning, we used
poisoning datasets (inside anycast_catchment_distribution-2020022
4) for AS174 (Tier-1), AS8283 (Transit-2), and AS12859 (Transit-1).

A.5.3 Selection from the playbook:
We provide a tool [14] to select the right routing configuration from
the BGP playbook (Section 3.4.2 [9]). Using this tool, we show
that an automated approach can be useful to select the right routing
approach.

Our selection tool provides output based on the current playbook,
and offered load. To show how the selection tool works, we provide
a sample playbook (based on Table 5 [9]), and a load file. When the
users run the tool with the given inputs, they can see the selection
output. We also include a tool named bgp-tuner for showing the
graphical interface [16].

Depending on the playbook and offered load, one can observe a
different output, which can be a complete different policy selection.

Detailed steps: We provided a sample playbook and offered load
file with the playbook_tuner tool. Please run the following command
to see the outputs from this program:

cat load.txt | ./playbook_tuner –setup "playbook.txt"
This will result the following output:
Overloaded site: AMS
Suggested config: 1AMS, Estimated load distribution: 41292.64

29494.75 41292.64
Other configs: Poison-Tier-1, Estimated load distribution:

41292.64 29494.75 41292.64
Other configs: Poison-Tier-2, Estimated load distribution:

41292.64 29494.75 41292.64
This tells that prepending AMS by 1 would provide the best

possible load distribution. Some other options are also possible.

A.5.4 Attack mitigation:
We show that BGP playbook is helpful to mitigate the real-world
DDoS events.

To reproduce the same result, we provide the B-root attack traces
in pcap and in message question formats [12]. Due to privacy reason,

we cannot share the attack data from the Enterprise and Dutch Na-
tional Scrubbing Center. We also provide the catchment distribution
for different BGP changes [12,13]. Matching the attack prefixes and
attack loads to the prefix-wise catchment gives us the traffic distri-
bution at different sites. If one wants to test the B-root event, they
need to run TimeBasedPrefixLoad tool to get the per prefix attack
load [15]. Then one needs to run AnycastSiteLoad program to get
the per anycast site load [15].

Since the attack and catchment mapping are fixed, we expect to
get the same results that we showed in the paper.

Detailed steps: We show the detailed steps to generate Figure
11(a) here. All other subfigures of Figure 11 and Figure 16 can be
generated using the similar process.

To generate Figure 11(a), we need the following datasets:

1. peering and root DNS dataset: B_Root_Anomaly_message_q
uestion-20170306/: Figure 11(a) shows 10000 s of traffic. To
make the data processing faster, we recommend to use a subset
of this whole timeframe. We recommend the user to download
the datasets from 06:40:00 AM to 06:50:00 AM to reproduce
a fraction of the whole timeframe combining both attack and
non-attack period. The file names represent the dates and times
(format: YYYYMMDD-HHMMSS-*).

2. peering and root DNS dataset: anycast_catchment_distribution
-20200224/Path_Prepending_AMS,BOS,CNF-20200224/202
0-02-24-AMS,BOS,CNF/

3. peering and root DNS dataset: /anycast_catchment_distrib
ution-20200224/Community_Strings_AMS,BOS,CNF-202
00225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2
/(update: this Trial-2 dataset is newly added. We also provided
Trial-1 dataset for 2020-02-25-AMS,BOS,CNF-AMS-Transit-
1 which will give a similar output, but we did not use that in
the paper).

At first, run the TimeBasedPrefixLoad java utility on the down-
loaded message_question format data. We only need time, source
IP and message length for our measurement. message_question for-
matted files have several attributes/columns. We used fsdb tool to
retrieve the times, source IPs, and message length [4]. Please follow
the instruction to install FSDB from here: https://www.isi.edu/
~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html. Next,
use the following command to run TimeBasedPrefixLoad jar to
generate the prefix-wise load for each 5 s:

xzcat B _ R o o t _ A n o m a l y _ m e s s a g e _ q u e s t i o n - 2 0 1 7
0306/06/20170306-044* | dbcol time srcip msglen |
java -jar TimeBasedPrefixLoad.java o u t p u t - 2 0 1 7 0 3 0 6 /
192.228.79.64,2001:500:84::bb26:87a2.

Here, dbcol is a utility from FSDB to select the right column
from the message_question format dataset. output-20170306 will
have multiple txt files named with a number indicating the time
segment. This command will generate prefix-wise load at every 5 s
in output-20170306 directory: <network_prefix> <number_load>
<bytes>.

Then we run AnycastSiteLoad java utility to find out the per site
load at every 5 s. We run this utility for two routing configurations—
one without any routing change and one with announcing only to
Transit-1.

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catchm
ent_distribution-20200224/Path_Prepending_AMS,BOS,CNF-202

00224/2020-02-24-AMS,BOS,CNF/ 2020-02-24 output-20170306/
2017-03-06,

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catch
ment_distribution-20200224/Community_Strings_AMS,BOS,CN
F-20200225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2/
2020-02-25 output-20170306/ 2017-03-06.

Please note that these two commands utilize output-20170306
that we generated in our previous step. These two commands gen-
erate two files in the corresponding catchment directory named
as <CATCHMENT-DATE>-load-<ATTCK-DATE>-ingress.txt. The
output format inside the file: <time> <site-1> <count-site-1> <bit-
site-1> <...> <site-n> <count-site-n> <bit-site-n>. The first file con-
tains load without any routing change, the second file contains load
after announcing only to Transit-1. We combine these two files to
show non-attack period (no policy deployed), and period when the
route propagation is done (when we deployed Transit-1).

To match the results with the Figure 11(a), the first output file will
contain (<count-site-n> column) traffic load during normal period
(before 0 s from the graph with around 20k packets/s). The first out-
put file also contains the attack traffic (AMS load over 60k packets/s
after 160 s of the first file). This is similar to the traffic from 0 s to
300 s of Figure 11(a). After that we announce only to Transit-1 (after
300 s of Figure 11(a)). The second output file contains this data (after
160 s from the file).

A.6 Notes
Considering the real datasets are big, and time expensive to run, we
include smaller datasets collected using a small hitlist fraction (0.1%
of original size) in experiments with Tangled. While the produced
playbook will differ from paper results, we believe it can help for
testing purpose. For Peering tools, we sometimes include smaller
sample supporting data files.

If desired, we can provide access to the Tangled testbed. Access to
Peering testbed is dependent on the approval from Peering admins.

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

References
[1] Tangled admins. Tangled anycast testbed. https://

anycast-testbed.nl/, 2019. [Online; accessed 15-Feb-
2022].

[2] Leandro M Bertholdo, Joao M Ceron, Wouter B de Vries, Ri-
cardo de Oliveira Schmidt, Lisandro Zambenedetti Granville,
Roland van Rijswijk-Deij, and Aiko Pras. Tangled: A co-
operative anycast testbed. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages
766–771. IEEE, 2021.

[3] Wouter De Vries. Verfploeter/pinger: Active measurement
of anycast catchements. https://ant.isi.edu/software/
verfploeter/pinger/index.html, 2019. [Online; accessed
15-Feb-2022].

[4] John Heidemann. John heidemann / software / fsdb. https:
//www.isi.edu/~johnh/SOFTWARE/FSDB//, 1991. [Online;
accessed 19-Mar-2022].

[5] Analysis of Network Traffic (ANT) group. Ant dataset re-
quests. https://ant.isi.edu/datasets/requests.html,
2022. [Online; accessed 15-Feb-2022].

https://www.isi.edu/~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html
https://www.isi.edu/~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html
https://anycast-testbed.nl/
https://anycast-testbed.nl/
https://ant.isi.edu/software/verfploeter/pinger/index.html
https://ant.isi.edu/software/verfploeter/pinger/index.html
https://www.isi.edu/~johnh/SOFTWARE/FSDB//
https://www.isi.edu/~johnh/SOFTWARE/FSDB//
https://ant.isi.edu/datasets/requests.html

[6] Analysis of Network Traffic (ANT) group. Ant datasets.
https://ant.isi.edu/datasets/index.html, 2022. [On-
line; accessed 15-Feb-2022].

[7] Root Server Operators. Events of 2015-11-
30. https://root-servers.org/media/news/
events-of-20151130.txt, 2015. [Online; accessed
12-Oct-2021].

[8] Root Server Operators. Events of 2016-06-
25. https://root-servers.org/media/news/
events-of-20160625.txt, 2016. [Online; accessed
12-Oct-2021].

[9] A S M Rizvi, Leandro Bertholdo, João Ceron, and John Heide-
mann. Anycast agility: Network playbooks to fight DDoS. In
Proceedings of the 31st USENIX Security Symposium, page to
appear. USENIX, August 2022.

[10] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. anygility - anycast agility tools: playbook builder
and decision maker. https://ant.isi.edu/software/
anygility/index.html, 2022. [Online; accessed 2-Mar-
2022].

[11] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John
Heidemann. Artifacts about anycast agility against ddos.
https://ant.isi.edu/datasets/anycast/anycast_
against_ddos/index.html, 2022. [Online; accessed
2-Mar-2022].

[12] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-
mann. Datasets about anycast agility against ddos in peer-
ing testbed. https://ant.isi.edu/datasets/anycast/
anycast_against_ddos/peering/index.html, 2022. [On-
line; accessed 2-Mar-2022].

[13] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. Datasets about anycast agility against ddos in tan-
gled testbed. https://ant.isi.edu/datasets/anycast/
anycast_against_ddos/tangled/index.html, 2022. [On-
line; accessed 15-Feb-2022].

[14] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and
John Heidemann. Tools about anycast agility against
ddos. https://ant.isi.edu/software/anygility/
system/index.html, 2022. [Online; accessed 2-Mar-2022].

[15] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. Tools about anycast agility against ddos in peer-
ing testbed. https://ant.isi.edu/software/anygility/
peering/index.html, 2022. [Online; accessed 2-Mar-2022].

[16] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-
mann. Tools about anycast agility against ddos in tangled
testbed. https://ant.isi.edu/software/anygility/
tangled/index.html, 2022. [Online; accessed 2-Mar-2022].

[17] Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-
Bassett. PEERING: Virtualizing BGP at the Edge for Research.
In Proc. ACM CoNEXT, Orlando, FL, December 2019.

[18] Peering The BGP Testbed. Peering the bgp testbed. https:
//peering.ee.columbia.edu/, 2019. [Online; accessed 15-
Feb-2022].

https://ant.isi.edu/datasets/index.html
https://root-servers.org/media/news/events-of-20151130.txt
https://root-servers.org/media/news/events-of-20151130.txt
https://root-servers.org/media/news/events-of-20160625.txt
https://root-servers.org/media/news/events-of-20160625.txt
https://ant.isi.edu/software/anygility/index.html
https://ant.isi.edu/software/anygility/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/peering/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/peering/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/tangled/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/tangled/index.html
https://ant.isi.edu/software/anygility/system/index.html
https://ant.isi.edu/software/anygility/system/index.html
https://ant.isi.edu/software/anygility/peering/index.html
https://ant.isi.edu/software/anygility/peering/index.html
https://ant.isi.edu/software/anygility/tangled/index.html
https://ant.isi.edu/software/anygility/tangled/index.html
https://peering.ee.columbia.edu/
https://peering.ee.columbia.edu/

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Results with traffic estimation:
	Building BGP playbook:
	Selection from the playbook:
	Attack mitigation:

	Notes
	Version

