
Comparing performance of IPv6 multicast and unicast for

software updates

Claudio Calvelli, Esther Payne and Brett Sheffield

May 9, 2022

Abstract

The librecast project states that “Multicast is,
by definition, the most efficient way for multi-
ple nodes to communicate”. This experiment is
designed to provide evidence of this efficiency
by comparing multicast and unicast methods
of sending the same data to a large number of
nodes, as would for example happen when a
software update is released.

We find that there is partial evidence to sup-
port this conclusion, and use the experience
gained here to design future experiments which
would provide a more definite answer.

1 Introduction

The first paragraph of RFC 3170 [1] states:

IP Multicast will play a prominent
role on the Internet in the coming
years. It is a requirement, not an op-
tion, if the Internet is going to scale.
Multicast allows application develop-
ers to add more functionality without
significantly impacting the network.

There is a need for some experimental data
to back these statements. We concentrate of
measuring the impact of software updates on
the network, because the proliferation of con-
nected devices will make software updates a
very important target for efficient use of the

network, and because software updates are
easy to simulate realistically by measuring the
impact of copying a large file to a large number
of nodes.

To provide evidence for the above state-
ments, we compare the following methods of
providing updates:

tcp: Traditional unicast using a TCP-based
service: a server listens to TCP requests
to send a copy of the software update, and
each client requests the update from the
server: this is the mechanism used by the
vast majority of current services.

scp: Simple copy of the file using “scp” fol-
lowed by a verification of the checksum;
this is included mostly to confirm that the
setup works correctly with standard, well-
tested tools.

multicast: Full multicast: a number of servers
provide the software update using multi-
cast, and clients will obtain the updates
by joining a multicast group and waiting
for the data to arrive.

udp: Unicast using a UDP-based service: this
is similar to the TCP case, but uses data-
grams instead of virtual circuits: this
mechanism is introduced because multi-
cast is by necessity based on datagrams:
there is no feedback from receiver to
sender, and we want to help determine

1

which differences may be caused by uni-
cast vs. multicast, and which ones by vir-
tual circuits vs. datagrams.

Apart from the “scp” runs, do not use en-
cryption in this experiment, all the three meth-
ods send the data unencrypted and verify that
it has arrived correctly using a secure hash:
this corresponds to the way some software up-
dates are distributed, with an HTTP mirror
providing the data and a secure hash provided
by some more secure mechanism; we do not
expect the results to be different when encryp-
tion is used for all transmissions, as used in
many other cases, but we might consider a fu-
ture experiment to test this.

Independently of the method selected, there
are three “client” scheduling strategies:

immediate: All clients request updates at ap-
proximately the same time.

random: Each client will first wait a random
time, up to the duration of the corre-
sponding experiment using the “immedi-
ate” strategy.

random2: Each client will first wait a random
time, up to twice the duration of the cor-
responding experiment using the “imme-
diate” strategy.

We run the simulated software updates in
a variety of network configurations and with
a variety of file sizes to simulate the impact
of different types of updates; in each case we
measure network use, server load, client load
and speed of update for each combination of
update mechanism and scheduling strategy.

The rest of this report is structured as fol-
lows:

Section 2 describes the simplest possible net-
work topology in which we can get useful mea-
surements, and provides details on how we run
the experiment.

Sections 3 and 4 describe two more network
topologies, incresing the complexity and study-
ing how different features affect the results.

Section 5 analyses the result of the ex-
periment and compares the efficiency of uni-
cast, multicast, and the transitional technol-
ogy. There are also notes about testbed is-
sues we identified, because anybody wishing
to repeat the experiment will need to make
sure they select an experiment testbed which
is properly configured for IPv6 multicast.

Section 6 explores the possibility of further
experiments, to make the simulation more re-
alistic and more complete.

Appendix A provides some more details
about the various programs which ran as part
of the experiment, and where to find the full
sources of all these programs.

Appendix B provides some important infor-
mation to anybody who wants to repeat this
experiment, and how to check if an experiment
setup is configured as required.

2 “LAN” experiment

A number of clients (denoted by C) request
software updates from a single server; the
server and all clients share a LAN so that up-
dates have the shortest possible network path.
This experiment will allow us to compare mul-
ticast and unicast in the simplest possible set-
ting, and one which is possible on any existing
local network in which IPv6 is enabled, and
could represent for example distributing up-
dates within an organisation.

A second experimental parameters indicates
the size of the software updates as the number
N of bytes contained in it. In the real world,
clients may be more or less up-to-date so that
each one may request a subset of all updates
available; for this experiment we assume that
all clients have all previous updates and are
just requesting the latest one; a future exper-

2

iment may consider some more complex “real
life” scenarios.

Figure 1 shows the network topology with
C = 8, i.e. there is a server sending data to 8
clients on a single LAN.

2.1 Experiment procedure

For a specified network topology (i.e. value
for C), and a list of update sizes (several dis-
tinct values forN), we implement that network
on an experiment testbed, then run a series
of tests on it using all possible combinations
of update size, update method and schedul-
ing strategy. For organisational reasons, the
testbed actually has 2 servers, the extra server
does not take part in the update but directs
the operations and collects results (we call this
extra server the “director”).

Each test starts with the director generating
a file of the specified size filled with random
data; this is copied to the server (a future ex-
periment will use multiple servers, so generat-
ing the file on the director and copying it to all
servers will make sure all send the same data,
and in preparation for that we have this extra
file copy instead of generating a random file
directly on the server).

After generating and copying the file the di-
rector waits 60 seconds to make sure that the
1-minute load average of each node in the sys-
tem is down to its baseline value; when we ran
experiments without this wait, we had each run

S

C C C C C C C C

S = server; C = client

Figure 1: Network with8 clients on a single
LAN

affecting the measurements of the next one, so
it did not produce useful results.

After the 60 seconds wait, the director asks
the server node to start: this means start-
ing two daemons, a resource monitoring tool
and the update provider appropriate for the se-
lected update method. These update providers
are described below.

After the server has started, the director
asks all client nodes to start as well; for the
“random” and “random2” scheduling strate-
gies each client will first wait a random time,
this step is skipped for the “immediate” strat-
egy; then each client starts a resource moni-
toring daemon identical to the one running on
the server, and a client program to obtain the
update.

When a client has successfully obtained the
update, the monitoring daemon will record the
time it has taken, finish another round of re-
source measurements, and sends all the data
back to the director.

The director waits for all clients to have sent
the data, then asks the server to stop, which
will also trigger a copy of the server’s resource
measurements back to the director: all the
measurements from all nodes are collected into
a single “tar” archive and copied to one of our
servers for later analysis.

The resource monitoring daemon records the
following data every second:

• 1-minute load average as provided by the
system

• user and system CPU time used by the
whole system in the last second

• memory and swap use

• bytes sent and received on the network in-
terface used to transfer the update data

Additionally, at the end of the experiment
it also records the following data about the

3

update program itself (update provider for
server, or the program obtaining the update
for clients):

• Time elapsed between start and termina-
tion of the program, in milliseconds

• CPU time used by the program itself, in
milliseconds

• CPU time used by the operating system
to run the program, in milliseconds (this
includes, for example, time used to obtain
data from disk)

• The termination status: whether the pro-
gram reported an error

The program running to provide the update
method will also log some data via the same
mechanism; unicast servers log the time of each
request received and the time the correspond-
ing reply has been sent completely: this allows
a very precise count of the number of clients
“active” (i.e. using server’s resources) at any
time, but it is not possible for multicast where
the server only knows whether at least one
client is active, or they are all inactive. The
information about number of active clients is
provided by the client logs in this case, and is
sligtly less accurate.

Since the experiment procedure is auto-
mated by running a single program on the di-
rector, where possible we ran it many times on
the same testbed, to have more experimental
data without the extra overhead of setting up
a new testbed.

We had several testbeds running this exper-
iment, with a number of of clients between 20
and 51 depending on available resources at the
time we started each run; these are the results
identified by names like “S1L20” or “S1L51G”
where the number following the “L” is the
number of clients. Some of the testbeds only
differed by a minor code change which resulted

in no measurable difference, and the letters
added as suffix helped us identify these. In all
cases, results collected under the same name
would have been running identical code on the
same hardware.

As there were never a very large number of
free nodes while we ran the experiment, we will
need to leave a detailed study of scale to a fu-
ture experiment.

2.2 Update methods

The “multicast” method uses the “IoT up-
dater” demonstration program [2] to copy a
file from server to clients: on the server side
“iotupd” calculates the file’s checksum, noti-
fies the director that it’s ready to send data,
then runs a loop in which it sends the whole
file and the checksum to a specified multicast
group, then repeats the sending until asked to
stop at the end of the experiment. Each client
runs “iotupc” which waits for the data to arrive
on the specified group and saves it to a local
file, stopping when the file checksum matches.
The only feedback from client to server is pro-
vided by MLD (Multicast Listener Discovery)
messages citerfc:3810, which allow the server
to know if there is at least one active client, or
if they are all inactive: in particular, there is
no mechanism for a client to request retrans-
mission of missing data: the client just waits
for the server to send it again. More details on
the IoT updater can be found in appendix A.3
or in the source code [4].

The unicast “scp” method just uses the
“scp” program (part of openssh) on each client
to connect to the server and ask for a copy of
the file; then it calculates the file digest and
compares it with the digest provided by the
director, repeating the whole thing in the un-
likely case there is a mismatch: this allows us
to show that the experiment setup is work-
ing with some well-known software; however
the presence of encryption means that the re-

4

sults are not directly comparable with other
experiments; a future experiment in which all
methods use encryption will of course benefit
from inclusion of this method. Instead of us-
ing the “ssh” daemon already running on each
node, we chose to start another one on a dif-
ferent TCP port, so we can monitor precisely
the server resource usage.

The unicast “tcp” experiment is similar in
concept to the “scp” one, but implemented
with code as similar as possible to the mul-
ticast case to make comparisons more mean-
ingful. On the server side, the “iotup” pro-
gram (in TCP server mode) calculates the file
checksum, notifies the director that it is ready,
then waits for connections; it replies to each
connection with the file checksum and the full
file data, sent as a single TCP stream. On
the client side, the “iotup” program (in TCP
client mode) connects to server, saves the file
data, calculates the checksum and compares it
with the one sent by the server; if the check-
sum match, the program exits with success,
otherwise it retries the whole download. Be-
cause TCP already does its own verification, it
is unlikely that the client will ever have to retry
in this experiment when everything runs in the
same building; however in a future larger and
more distributed experiment we can expect to
encounter network issues which will require re-
tries from the client. The “iotup” program is
described more fully in appendix A.4 and its
sources are available in [5].

The unicast “udp” method is very similar to
the “tcp” method, but uses UDP rather than
TCP and that implies that retransmissions
and duplicate detection need to be handled at
the application level. On the server side, the
“iotup” program (in UDP server mode) cal-
culates the file checksum, notifies the director
that it is ready for clients, then waits for re-
quests coming in via UDP; these request spec-
ify a range of bytes to send, and the server
replies with a sequence of UDP packets, each

S

R

C C C C C C C C

S = server; R = router; C = client

Figure 2: Two LANs network with 8 clients

of which contain the same information as the
packets sent using the “multicast” method.
Each client starts by requesting the whole file
(specifying both start and end offsets as 0,
which the server interprets as “from 0 to end
of file”) and waiting for data: if there is no re-
ply within a pre-determined time, it will retry
the request. Once at least one packet arrives
to the client, it will know the total data size
and the file checksum, and will have part of
the data. The client will wait until all the ex-
pected data has arrived, or a timeout occurs
in which no new packets have arrived for a
pre-defined time. The client will then decide
whether any part of the file needs retransmit-
ting and continue until it has received all the
data it expects, and the file checksum matches.
The “iotup” program is described more fully
in appendix A.4 and its sources are available
in [5].

3 “Two LANs” experiment

Similar to the previous experiment, but we in-
vestigate the effect of a multicast router in the
network: there are two LANs connected to-
gether by a single router; the server is on the
first LAN, and all the clients are on the second
LAN. Like the previous experiments, the pa-
rameters are the number of clients C, and the
update size in bytes N .

Figure 2 shows the network topology with

5

C = 8, i.e. the same setting as the previous ex-
ample (figure 1 on page 3) but with the clients
separated from the server by a single router.

The experimental procedure is very similar
to the previous experiment, we only describe
the differences between them here.

After copying the update data to the server
and waiting 60 seconds, the director will ask
the router to start its own resource moni-
toring, and, for the multicast experiment, to
start a multicast routing daemon. We used
“lcroute” [6], which will form part of our own
multicast routing platform. The director then
waits for the router to signal that it has started
and is ready to go.

After that, the experiment proceeds identi-
cally with the director starting the server and
all clients and waiting for results. There is
an extra step at the end: after the server has
stopped, the director will ask the router to stop
too, and waits for confirmation of this.

We only ran a 20 clients version of this ex-
periment, when there happened to be free re-
sources for this but not for anything larger.
However we also had a time when one of
the clients just failed to boot, so we ran it
as a 19 clients experiment. Using a similar
name scheme to the single LAN experiment,
the results are identified as “S1R1L19C”,
“S1R1L19D” and “S1R1L20A” (the “R1”
means that there was a single router in the
network).

4 “Generic” experiment

An extension of the previous (“Two LANs”)
experiment includes a longer network path be-
tween clients and server; for simplicity, and to
generate the networks automatically, we spec-
ify a number of clients per LAN (denoted by L)
and the length of the network path indicated
by the number of routers in the path, R. The
total number of clients will be C = L ∗ 2R−1,

and the routers form a tree structure.

A couple of examples will make this clearer:
figure 3 shows the network topology with R =
3 and L = 2, so that the 8 clients are organised
in 4 separate LANs, with 7 routers forming a
tree structure with the server connected to the
root of the tree. For comparison, figure 4 on
page 7 shows the same number of clients ar-
ranged on 2 separate LANs (L = 4) so that
there are only 2 routers between each client
and the server (R = 2).

This is still a simplified view of a real system,
but allows to extend the previous experiments
to different circumstances. A future experi-
ment might consider different networks.

The experiment proceeds almost identically
to the “Two LANs” experiment described
above: there are more routers, but they are
all set up in the same way as the single router
on that experiment.

We ran experiments corresponding to both
examples shown in the figures, using 20
clients rather than 8. We also ran a 40
clients version of the “3 router levels, 4 client
LANs” experiment. Since there are 3 lev-
els of routers, we called these experiments
“S1R3L5B”, “S1R3L5C” and “S1R3L10H”

S

R

R R

R R R R

C C C C C C C C

S = server; R = router; C = client

Figure 3: Network with 8 clients, 2 clients per
LAN

6

S

R

R R

C C C C C C C C

S = server; R = router; C = client

Figure 4: Network with 8 clients, 4 client per
LAN

(the “L” indicates the number of clients per
LAN, so in this case the total number of clients
in the network is four times the number follow-
ing the “L”).

5 Experiment results

All the raw data produced by this experiment,
as well as all the processed data referred to in
this section is available [7]. In this section we
show some results we can draw from the data.
The appendices and software they cite describe
how to convert the data to other formats, and
how we processed it.

5.1 Run time

The first result we consider is the total time
taken by each client to obtain the software up-
date, showing separate averages for each net-
work we ran and for each data size; also show-
ing averages over all networks with the same
number of clients, and over all experiments.

Table 1 on page 8 and the following tables
show three representative set of results for sin-
gle LAN experiments with 20, 40 and 50 clients
respectively. Because of the way the number
of clients has an effect on (unicast) servers,
we do not average over all experiments, but

only over experiments with the same number
of clients. The complete set of tables for all the
experiment sizes we have ran are available in
the online data [7], and the appendix describes
how to generate these and other tables from
the raw data, also available online.

We use this data to consider the effect of
scheduling on all update methods: multicast is
largely unaffected, an update takes about the
same time no matter when it’s requested; on
the other hand, all unicast method show quite
a difference due to scheduling, with “immedi-
ate” being extremely slow, “random2” consid-
erably faster, and “random” intermediate be-
tween the two. The conclusion we can draw
is that having everything happening at once is
bad for unicast, while multicast doesn’t even
notice the difference. We interpret this by re-
membering that unicast needs to send a sepa-
rate data stream to each client, with overlap-
ping requests competing for the available net-
work bandwidth, while multicast sends a single
stream; random scheduling reduces the overlap
between clients compared to immediate, and
so results in the client requiring less time to
obtain the update, and random2 reduces the
overlap even more with the corresponding re-
sult in terms of speed. We will return to this
point later when analysing server resource us-
age.

Extrapolating from this (and hoping to con-
firm this with a future much larger future ex-
periment), multicast would remain largely un-
affected by adding more clients, while unicast
would show an even more pronounced effect.
In particular, the strategy of randomising up-
dates to avoid overloading a server only works
up to a limit: when it becomes impossible to
schedule updates to avoid overlap, the only so-
lution would then be to add servers, with the
obvious environmental and economical costs;
multicast on the other hand would continue to
be considerate on resources, with any schedul-
ing strategy.

7

update schedule size AVG #DATA MIN MAX STD
multicast random 32 0.449 620 0.380 0.868 0.091
multicast immediate 32 0.453 620 0.381 0.888 0.100
multicast random2 32 0.459 620 0.381 0.879 0.111
tcp random2 32 0.471 620 0.369 1.150 0.146
tcp random 32 0.577 620 0.371 2.234 0.258
scp random2 32 0.740 620 0.594 1.494 0.144
scp random 32 0.855 620 0.593 1.946 0.232
udp random2 32 1.476 620 1.380 2.215 0.135
udp random 32 1.657 620 1.381 3.045 0.330
multicast random2 128 1.824 620 1.517 9.841 0.712
multicast random 128 1.881 620 1.517 12.862 1.047
multicast immediate 128 1.893 620 1.515 12.301 1.179
tcp random2 128 2.070 620 1.472 6.150 0.750
scp random2 128 2.538 620 1.718 6.966 0.851
udp random2 128 3.281 620 2.514 7.044 0.953
tcp random 128 3.286 620 1.472 11.423 1.874
scp random 128 3.684 620 1.721 12.421 1.690
tcp immediate 32 4.159 620 0.819 5.724 1.096
scp immediate 32 4.277 620 1.066 6.113 1.143
udp random 128 4.629 620 2.515 13.075 2.071
udp immediate 32 6.110 620 2.550 6.544 0.547
multicast immediate 512 7.572 620 6.074 34.581 2.815
multicast random 512 7.637 620 6.075 36.707 2.538
multicast random2 512 7.784 620 6.061 34.731 2.785
tcp random2 512 8.989 620 5.893 27.778 3.499
scp random2 512 10.209 620 6.187 36.945 4.242
udp random2 512 11.003 620 7.064 32.660 4.588
tcp random 512 17.189 620 5.907 55.716 8.819
scp random 512 17.998 620 6.194 54.247 9.278
scp immediate 128 18.416 620 7.474 23.654 4.653
tcp immediate 128 18.904 620 8.225 23.987 4.376
udp random 512 20.256 620 7.070 45.046 9.178
udp immediate 128 24.330 620 19.277 24.865 0.647
tcp random2 2048 44.222 620 23.709 1:42.849 15.310
scp random2 2048 45.096 620 24.122 1:58.827 17.116
udp random2 2048 50.109 620 25.337 2:33.474 21.936
multicast immediate 2048 51.380 620 24.510 3:44.979 35.377
multicast random 2048 56.222 620 24.422 3:48.916 39.239
multicast random2 2048 56.286 620 24.604 3:09.038 36.474
scp immediate 512 1:15.397 620 29.420 1:34.834 18.204
scp random 2048 1:16.874 620 24.173 5:04.713 40.983
tcp random 2048 1:16.883 620 23.850 3:21.011 33.303
tcp immediate 512 1:17.776 620 29.312 1:37.856 18.150
udp random 2048 1:30.083 620 25.603 3:34.679 42.979
udp immediate 512 1:37.484 620 1:33.639 1:38.341 0.629
scp immediate 2048 5:07.019 620 1:59.498 6:19.772 68.494
tcp immediate 2048 5:07.316 620 1:40.494 6:38.069 76.208
udp immediate 2048 6:29.622 620 6:24.751 6:34.512 1.319

Table 1: Run time averaged on all 20-clients single LAN experiments

8

update schedule size AVG #DATA MIN MAX STD
tcp random2 32 0.470 240 0.374 0.931 0.124
multicast random2 32 0.501 240 0.390 0.788 0.066
multicast immediate 32 0.516 240 0.391 0.788 0.084
multicast random 32 0.517 240 0.391 0.782 0.087
tcp random 32 0.599 240 0.375 1.407 0.268
scp random2 32 0.892 240 0.730 1.394 0.131
scp random 32 1.058 240 0.733 1.912 0.289
udp random2 32 1.503 240 1.381 2.263 0.147
udp random 32 1.638 240 1.382 2.693 0.292
multicast random 128 1.991 240 1.576 3.170 0.296
multicast random2 128 2.014 240 1.554 3.106 0.315
tcp random2 128 2.457 240 1.477 7.682 1.256
scp random2 128 2.744 240 2.125 4.797 0.493
multicast immediate 128 2.970 240 1.602 9.050 2.249
udp random2 128 3.411 240 2.518 6.849 0.864
scp random 128 3.894 240 2.156 9.817 1.578
tcp random 128 5.082 240 1.481 10.838 2.626
udp random 128 5.245 240 2.519 12.182 2.155
multicast immediate 512 9.728 240 6.166 23.921 3.419
tcp random2 512 10.016 240 5.919 24.420 4.170
multicast random 512 10.093 240 6.188 28.727 4.457
multicast random2 512 10.237 240 6.229 23.909 4.137
tcp immediate 32 10.380 240 0.441 11.378 0.905
scp random2 512 11.174 240 7.769 24.677 3.206
udp immediate 32 11.223 240 2.051 12.864 1.659
scp immediate 32 11.948 240 3.155 14.004 1.852
udp random2 512 12.913 240 7.091 39.998 6.948
scp random 512 19.013 240 7.956 46.576 10.244
udp random 512 24.379 240 7.229 57.849 13.038
tcp random 512 24.829 240 5.934 52.507 12.517
tcp immediate 128 44.933 240 38.600 46.676 1.090
udp immediate 128 46.032 240 29.891 49.387 3.376
tcp random2 2048 47.410 240 23.918 1:45.987 13.865
scp random2 2048 48.819 240 30.105 1:55.842 15.277
udp random2 2048 55.530 240 25.492 1:28.838 14.551
scp immediate 128 57.878 240 40.066 1:01.547 2.729
multicast random 2048 1:13.355 240 25.129 3:16.753 36.546
multicast immediate 2048 1:13.490 240 25.303 3:11.828 37.083
multicast random2 2048 1:15.799 240 24.757 3:14.033 40.015
scp random 2048 1:32.879 240 30.903 4:26.519 54.277
tcp random 2048 2:01.310 240 23.966 7:39.606 71.774
udp random 2048 2:28.537 240 25.470 4:59.266 77.265
tcp immediate 512 3:02.688 240 2:52.412 3:08.196 4.240
udp immediate 512 3:07.592 240 2:27.987 3:14.868 8.560
scp immediate 512 3:52.849 240 3:27.971 4:00.542 5.280
tcp immediate 2048 12:06.111 240 11:45.811 12:32.999 14.514
udp immediate 2048 12:29.976 240 9:40.448 12:57.216 29.157
scp immediate 2048 15:38.172 240 14:42.846 16:02.758 18.548

Table 2: Run time averaged on all 40-clients single LAN experiments

9

update schedule size AVG #DATA MIN MAX STD
tcp random2 32 0.495 100 0.372 1.017 0.152
multicast random2 32 0.505 100 0.400 0.766 0.071
multicast random 32 0.508 100 0.409 0.760 0.069
multicast immediate 32 0.530 100 0.438 0.719 0.078
tcp random 32 0.719 100 0.375 1.510 0.325
scp random2 32 0.883 100 0.706 1.353 0.121
scp random 32 1.034 100 0.735 1.804 0.246
udp random2 32 1.522 100 1.382 2.395 0.175
udp random 32 1.779 100 1.382 3.018 0.422
multicast immediate 128 1.970 100 1.657 2.696 0.220
multicast random2 128 1.999 100 1.618 2.777 0.234
multicast random 128 2.002 100 1.682 2.814 0.215
tcp random2 128 2.326 100 1.477 5.263 1.039
udp random2 128 3.158 100 2.515 5.037 0.695
scp random2 128 3.188 100 2.048 8.928 1.339
scp random 128 4.363 100 2.047 8.534 1.610
udp random 128 5.153 100 2.515 13.504 2.413
tcp random 128 8.473 100 1.493 17.334 5.820
tcp random2 512 9.075 100 5.915 19.407 3.381
multicast immediate 512 9.336 100 6.421 17.812 2.638
multicast random2 512 9.603 100 6.399 18.156 2.782
multicast random 512 9.635 100 6.565 28.847 3.522
scp random2 512 10.936 100 7.244 21.489 2.922
udp random2 512 12.938 100 7.078 34.530 7.268
tcp immediate 32 13.140 100 7.285 14.245 0.984
udp immediate 32 14.391 100 1.763 15.720 2.423
scp immediate 32 15.039 100 3.131 18.639 2.890
tcp random 512 31.582 100 6.408 51.433 14.288
scp random 512 39.688 100 8.419 1:55.657 21.096
tcp random2 2048 48.119 100 23.848 1:20.777 12.697
scp random2 2048 49.274 100 28.904 1:26.941 13.679
udp random2 2048 53.634 100 25.450 1:23.572 14.387
tcp immediate 128 55.297 100 48.837 57.866 1.241
scp immediate 128 59.759 100 47.493 1:03.236 2.802
udp immediate 128 1:03.299 100 6.841 1:21.072 16.380
multicast immediate 2048 1:11.081 100 26.521 2:40.855 33.152
multicast random 2048 1:13.406 100 25.710 3:34.842 37.505
multicast random2 2048 1:13.918 100 26.110 3:14.669 37.021
scp random 2048 1:19.381 100 28.874 2:09.298 22.424
udp random 512 1:43.345 100 7.213 5:18.907 104.896
tcp random 2048 2:01.977 100 26.221 3:28.729 47.149
scp immediate 512 3:44.612 100 3:14.349 3:58.030 7.651
tcp immediate 512 3:45.350 100 3:32.610 3:52.581 3.205
udp immediate 512 4:10.318 100 3:30.503 4:25.560 12.961
udp random 2048 12:32.300 100 33.267 23:18.408 495.582
scp immediate 2048 14:46.974 100 13:46.491 15:40.753 22.995
tcp immediate 2048 15:06.744 100 14:30.700 15:36.540 27.465
udp immediate 2048 16:20.192 100 15:47.950 16:44.259 19.124

Table 3: Run time averaged on all 50-clients single LAN experiments

10

Moving to a different network topology, ta-
bles 4 on page 12 and 5 on page 13 show the
same data collected from experiments with 3
levels of routers and with 20 and 40 nodes re-
spectively (arranged as 5 and 10 clients per
LAN, with 4 client LANs).

These tables show a different story, with
multicast seeming to have became slower com-
pared to the single LAN case, and in fact ran-
dom scheduling is now visibly worse than im-
mediate; while unicast seems to be unaffected
by the presence of routers. However, the over-
all effect of scheduling on multicast is still less
than on unicast.

There are two sources for the extra time
taken by the multicast update. MLDv2 works
on a LAN, so the routers need to forward this
information before the servers know they need
to start sending. And once the multicast data
starts flowing, the kernel will need to query
a routing daemon to know what to do with
it. Since this extra delay is introduced when a
client starts up, it is more visible with random
scheduling: with immediate, whichever client
happens to be fastest at starting up will see
the delay while the rest don’t need to. We will
return to the issue of routing later when look-
ing at router resource usage.

Extrapolating again from the data, we ex-
pect that increasing the number of clients will
show that unicast continues to become slower
when requests overlap, while multicast might
show the opposite effect: as more and more
clients send requests, there will be more over-
lap even in the case of random scheduling, and
this would reduce the overall delay introduced
by routing. A future experiment will need to
look into this.

5.2 Server resources

Table 6 on page 14 shows the data sent by the
server and the load level for each number of
active clients during the multicast update ex-

periment. The data is averaged over all exper-
iments which used multicast update, file size
2GB and schedule immediate. The network
data is measured in megabytes sent per sec-
ond, and the load data is the fraction of CPU
used.

By active client we mean a client which is in
the middle of obtaining the file: for the multi-
cast update, this is determined by comparing
the “client starting to receive” and “client re-
ceived the update” timestamps in each client’s
logs with the timestamps of each resource mon-
itoring data item logged by the server.

We observe how the server load is mostly
around 1 or just below, meaning that the server
is using one processor almost constantly, with
the rest being idle. The network data shows
that it is sending at essentially the full band-
width allowed by a gigabit network (i.e. 125
megabytes per second, or slightly less due to
encapsulation overheads). Only the “0 clients”
row show lower values. This corresponds to our
expectation that the multicast server is unaf-
fected by the number of clients receiving data,
with the exception that it can stop sending if
it knows that there are no listeners.

Table 7 on page 15 and the two following ta-
bles show similar data for the unicast update
mechanism: scp, tcp and udp respectively. In
these tables, the number of active clients is de-
termined using server timestamps only, as the
server logs the time it receives a request and
the time it finishes sending the data.

Note that the udp table has been truncated
to fit in the page: the full table is available
with the online data [7]. The reason the table
is longer than the others is due to the effect of
packet loss and retransmission requests, where
the client could request multiple retransmis-
sions at once, and these are seen as indepen-
dent requests by the server, so appear as mul-
tiple active clients. However, from the point
of view of the server it is the number of re-
quests being processed which determines re-

11

update schedule size AVG #DATA MIN MAX STD
tcp random2 32 0.486 160 0.413 0.857 0.092
tcp random 32 0.542 160 0.413 1.510 0.189
scp random2 32 0.768 160 0.645 1.379 0.130
scp random 32 0.845 160 0.645 2.404 0.265
udp random2 32 1.640 160 1.382 2.685 0.394
tcp random2 128 1.668 160 1.517 2.770 0.248
udp random 32 1.740 160 1.382 3.400 0.506
scp random2 128 2.215 160 1.767 4.531 0.534
scp random 128 2.326 160 1.771 4.594 0.649
tcp random 128 2.578 160 1.521 17.169 2.768
multicast random 32 2.956 160 0.441 11.703 3.039
udp random2 128 3.161 160 2.518 6.286 0.851
udp random 128 3.633 160 2.518 16.711 2.049
multicast random2 32 6.488 160 0.393 25.131 6.573
tcp random2 512 7.050 160 5.950 25.702 2.866
scp random2 512 7.855 160 6.253 17.925 1.997
tcp random 512 8.353 160 5.957 31.286 4.580
scp random 512 8.650 160 6.249 29.032 3.499
udp random2 512 9.221 160 7.144 20.484 2.426
multicast immediate 32 9.988 160 0.437 26.879 5.060
udp random 512 13.309 160 7.140 1:21.003 12.776
udp immediate 32 13.684 160 9.929 16.720 1.745
scp immediate 32 19.089 160 5.695 25.429 4.030
tcp immediate 32 19.778 160 9.382 24.546 3.710
multicast random 128 22.378 160 2.637 2:08.551 29.449
multicast random2 128 24.699 160 2.669 1:47.464 28.941
multicast immediate 128 26.194 160 2.714 2:37.730 31.942
tcp random2 2048 31.810 160 23.755 56.947 9.548
multicast random 512 32.992 160 10.865 1:11.537 13.079
scp random2 2048 33.270 160 24.203 2:10.262 14.753
tcp random 2048 35.501 160 23.770 1:11.214 12.898
scp random 2048 38.515 160 24.216 2:24.038 19.189
udp random2 2048 40.809 160 25.716 1:30.622 15.079
udp random 2048 43.804 160 25.754 1:28.552 15.946
udp immediate 128 53.284 160 40.613 1:03.909 4.391
multicast immediate 512 1:00.312 160 21.049 2:52.877 49.635
multicast random2 512 1:02.547 160 10.931 6:21.248 80.396
scp immediate 128 1:20.516 160 33.407 1:43.557 17.224
tcp immediate 128 1:26.070 160 39.478 1:44.015 14.855
multicast random2 2048 2:55.555 160 43.934 14:35.734 115.476
multicast random 2048 3:14.968 160 52.113 8:56.891 113.232
udp immediate 512 3:39.251 160 3:09.716 4:29.492 22.626
multicast immediate 2048 4:26.618 160 1:00.310 28:13.926 371.051
scp immediate 512 5:25.786 160 2:38.441 6:36.335 58.170
tcp immediate 512 5:48.382 160 2:31.774 7:02.183 52.129
udp immediate 2048 14:32.426 160 13:22.372 17:57.721 96.870
tcp immediate 2048 22:20.067 160 10:26.054 28:36.747 267.532
scp immediate 2048 23:43.940 160 10:25.981 27:54.636 248.291

Table 4: Run time averaged on all 20-clients multi-LAN experiments

12

update schedule size AVG #DATA MIN MAX STD
tcp random2 32 0.529 160 0.417 1.053 0.131
tcp random 32 0.625 160 0.415 1.458 0.226
scp random2 32 0.910 160 0.774 1.328 0.115
scp random 32 1.134 160 0.776 3.334 0.465
udp random2 32 1.648 160 1.384 2.703 0.336
udp random 32 1.721 160 1.383 2.810 0.320
tcp random2 128 2.052 160 1.528 4.750 0.734
tcp random 128 2.248 160 1.522 5.009 0.798
scp random2 128 2.797 160 2.204 6.048 0.653
scp random 128 3.399 160 2.224 11.074 1.444
udp random2 128 3.607 160 2.519 11.073 1.361
udp random 128 5.564 160 2.521 12.905 2.408
multicast random 32 6.101 160 0.566 24.720 6.823
tcp random2 512 7.762 160 5.965 15.036 2.174
multicast random2 32 8.111 160 0.488 30.969 8.136
scp random2 512 9.790 160 7.879 15.236 1.417
tcp random 512 10.979 160 6.028 34.501 6.644
udp random2 512 11.126 160 7.160 24.528 4.161
udp immediate 32 11.528 160 3.074 18.874 3.038
multicast immediate 32 12.011 160 1.360 32.142 7.767
scp random 512 14.551 160 7.841 1:02.594 9.782
tcp immediate 32 15.037 160 4.398 28.530 9.016
scp immediate 32 15.088 160 5.020 26.625 6.889
multicast random2 128 21.569 160 2.025 1:43.286 27.547
udp random 512 27.277 160 7.210 1:23.328 15.368
multicast random 128 33.158 160 6.106 2:39.887 43.681
multicast immediate 128 38.772 160 6.485 2:45.259 42.853
scp random2 2048 44.471 160 30.617 1:11.273 8.053
tcp random2 2048 44.721 160 23.951 1:17.464 10.409
udp immediate 128 46.402 160 20.692 1:07.467 8.137
tcp random 2048 46.485 160 24.500 1:38.500 11.869
scp random 2048 47.482 160 30.638 1:25.759 11.886
udp random2 2048 1:00.357 160 25.598 2:34.283 19.983
tcp immediate 128 1:01.996 160 26.066 1:54.735 34.578
scp immediate 128 1:06.825 160 37.021 1:50.726 26.815
multicast immediate 512 1:08.845 160 35.259 2:59.909 51.933
multicast random 512 1:22.918 160 7.913 6:24.232 101.206
udp random 2048 2:01.485 160 26.239 5:14.096 68.661
multicast random2 512 3:06.481 160 8.334 9:13.771 174.107
udp immediate 512 3:07.410 160 2:28.131 3:48.856 15.271
tcp immediate 512 4:08.877 160 1:53.864 7:53.519 134.009
multicast immediate 2048 4:11.318 160 38.832 13:16.754 176.408
scp immediate 512 4:41.463 160 2:39.828 7:33.659 124.255
multicast random 2048 7:05.852 160 2:17.409 27:13.674 394.802
multicast random2 2048 8:29.905 160 2:17.898 31:41.704 450.464
udp immediate 2048 12:51.869 160 10:33.090 15:53.358 57.179
tcp immediate 2048 18:07.755 160 7:30.619 33:59.081 668.873
scp immediate 2048 20:11.670 160 10:42.087 36:31.129 598.695

Table 5: Run time averaged on all 40-clients multi-LAN experiments

13

Network TX Server load
#clients avg #data min max std avg #data min max std

0 20.9 1683 0.0 180.0 43.3 0.8 2135 0.1 1.6 0.3
1 113.4 2782 0.0 223.9 25.0 0.9 3156 0.2 1.4 0.1
2 116.3 1674 0.0 226.4 22.2 1.0 2102 0.2 1.4 0.1
3 118.9 970 22.9 222.4 9.5 1.0 1477 0.2 1.4 0.1
4 120.1 1040 0.0 220.5 9.8 1.0 1586 0.3 1.4 0.1
5 118.9 489 24.1 218.2 12.0 1.0 1125 0.3 1.4 0.1
6 117.3 546 0.0 122.9 12.1 1.0 1198 0.2 1.4 0.1
7 115.5 460 0.0 225.1 11.0 1.0 1171 0.3 1.4 0.1
8 121.8 1319 41.1 122.9 3.9 1.0 2190 0.3 1.4 0.1
9 113.9 342 34.4 226.0 11.3 0.9 1123 0.3 1.4 0.1

10 112.9 1745 0.0 122.9 28.6 0.9 2588 0.2 1.4 0.1
11 119.2 719 0.0 211.3 9.0 0.9 1509 0.3 1.4 0.1
12 119.0 504 76.8 122.9 5.5 0.9 1337 0.3 1.4 0.1
13 117.0 294 96.6 223.0 10.3 0.9 1191 0.2 1.4 0.1
14 116.6 277 63.5 218.8 11.1 0.9 1287 0.2 1.4 0.1
15 115.5 199 32.0 217.2 10.7 0.9 1126 0.2 1.4 0.1
16 112.1 340 63.4 222.6 8.7 0.9 1237 0.3 1.4 0.1
17 115.5 147 66.0 217.2 11.1 0.9 1011 0.2 1.4 0.1
18 114.3 206 97.7 211.3 8.7 0.9 1196 0.3 1.4 0.1
19 112.1 8670 94.1 122.9 1.9 1.0 9689 0.2 1.4 0.1
20 122.4 2006 93.9 122.9 2.1 0.9 3234 0.2 1.4 0.2
21 116.0 135 74.4 122.9 6.5 0.9 957 0.3 1.0 0.1
22 115.2 98 0.0 225.4 17.7 0.8 885 0.3 1.0 0.1
23 115.0 99 65.2 122.9 7.7 0.8 988 0.3 1.0 0.1
24 113.7 116 94.5 122.9 7.2 0.8 1063 0.3 1.0 0.1
25 115.4 102 93.6 122.9 6.5 0.8 1036 0.3 1.0 0.1
26 115.8 80 76.9 217.2 13.7 0.8 954 0.4 1.0 0.1
27 115.0 75 93.8 122.9 6.1 0.8 1186 0.3 1.0 0.1
28 116.8 78 105.0 122.9 5.0 0.8 938 0.3 1.0 0.1
29 116.5 83 107.3 122.9 4.5 0.8 956 0.3 1.0 0.1
30 116.3 187 93.4 122.9 4.2 0.8 993 0.3 1.0 0.1
31 112.9 65 76.1 122.8 6.0 0.8 710 0.3 1.0 0.1
32 106.4 69 93.7 122.9 10.0 0.8 815 0.3 1.0 0.1
33 117.1 26 94.2 219.7 21.9 0.8 542 0.3 1.0 0.1
34 114.6 39 105.7 122.9 4.1 0.8 635 0.3 1.0 0.1
35 113.4 20 93.8 122.9 7.2 0.8 567 0.3 1.0 0.1
36 114.2 24 104.6 122.9 5.9 0.8 647 0.3 1.0 0.1
37 112.9 45 22.1 122.9 14.9 0.8 923 0.3 1.0 0.1
38 116.3 198 44.5 222.3 10.1 0.8 1248 0.3 1.0 0.1
39 115.6 298 101.5 227.0 18.3 0.7 1727 0.3 1.0 0.1
40 112.3 810 0.0 122.9 17.0 0.7 2257 0.3 1.0 0.1
41 119.1 65 23.8 122.9 13.0 0.7 1035 0.3 1.0 0.1
42 122.5 280 104.7 122.9 2.2 0.7 1356 0.3 1.0 0.1
43 119.3 25 107.2 122.9 5.8 0.7 670 0.3 1.0 0.1
44 117.8 15 105.4 122.9 6.8 0.7 610 0.3 1.0 0.1
45 103.5 9 23.5 122.8 30.6 0.7 435 0.3 1.0 0.1
46 102.9 10 18.9 122.9 34.0 0.6 424 0.3 1.0 0.1
47 108.8 7 83.5 122.8 17.2 0.6 482 0.3 1.0 0.1
48 114.2 162 107.5 122.9 2.7 0.6 685 0.3 1.0 0.1
49 113.0 289 102.9 223.8 18.9 0.6 764 0.3 0.9 0.1
50 111.9 55 108.2 122.8 3.2 0.6 278 0.3 0.8 0.1
51 122.8 331 122.7 122.9 0.0 0.5 625 0.3 0.8 0.1

Table 6: Server resource data: multicast

14

Network TX Server load
#clients avg #data min max std avg #data min max std

0 0.1 1647 0.0 57.8 1.8 1.3 1751 0.2 3.3 0.8
1 65.0 273 0.0 123.2 30.1 2.1 273 0.2 3.5 0.9
2 120.7 299 0.0 240.9 17.8 2.4 299 0.2 3.9 0.8
3 101.8 128 0.0 240.6 39.4 1.8 128 0.3 4.0 1.0
4 115.0 166 0.0 123.5 23.6 1.7 166 0.1 3.8 1.1
5 119.0 486 0.0 123.5 14.2 1.2 486 0.1 3.8 0.5
6 119.8 492 0.0 123.5 12.1 1.3 492 0.2 4.0 0.4
7 118.3 174 0.0 123.5 19.1 1.4 174 0.2 3.5 0.6
8 93.2 634 59.4 123.5 25.1 1.0 634 0.2 3.8 0.5
9 107.6 433 22.4 123.5 24.0 1.1 433 0.1 4.0 0.6

10 101.4 886 30.3 123.5 25.7 1.1 886 0.1 3.5 0.5
11 97.1 905 0.0 123.5 30.9 1.0 905 0.1 3.5 0.6
12 79.1 1072 30.9 123.5 39.3 0.9 1072 0.1 3.3 0.6
13 89.2 996 2.8 237.4 35.0 0.9 996 0.1 4.0 0.5
14 61.5 1654 21.4 123.5 33.1 0.7 1654 0.1 3.7 0.5
15 68.1 1564 24.1 123.5 44.4 0.7 1564 0.1 4.0 0.6
16 68.1 1322 21.3 123.5 45.7 0.7 1322 0.1 3.7 0.7
17 47.5 3420 22.4 123.5 37.6 0.7 3420 0.1 4.0 0.5
18 49.1 5399 20.8 123.5 35.4 0.6 5399 0.0 4.0 0.5
19 72.7 9051 20.3 123.5 47.7 1.2 9051 0.0 3.9 1.1
20 49.0 20734 19.4 123.5 40.1 0.5 20734 0.0 3.9 0.4
21 120.6 208 28.5 123.5 11.8 1.7 208 0.2 3.7 0.4
22 117.4 40 55.3 123.5 14.0 1.9 40 0.3 4.0 0.7
23 122.7 148 88.7 123.4 3.2 1.8 148 0.3 3.9 0.5
24 117.5 20 81.3 123.5 11.3 2.1 20 0.3 3.9 1.1
25 121.3 76 90.1 123.5 6.5 2.1 76 0.3 4.0 0.7
26 121.9 108 76.0 123.5 5.9 1.7 108 0.3 3.7 0.6
27 122.3 150 68.3 123.5 5.5 1.4 150 0.8 3.9 0.5
28 116.4 26 82.6 123.4 13.3 2.2 26 0.3 4.0 1.1
29 121.1 89 62.8 123.5 8.9 1.9 89 0.3 4.0 0.9
30 123.0 186 83.6 239.9 9.8 1.6 186 0.3 4.0 0.7
31 116.4 24 91.2 123.5 11.8 2.4 24 0.3 4.0 1.0
32 116.5 32 64.5 123.5 13.3 2.6 32 0.2 4.0 1.0
33 120.7 123 93.9 123.5 7.4 2.3 123 0.3 3.8 0.7
34 122.2 190 72.7 236.8 10.8 1.7 190 0.2 4.0 0.7
35 121.6 174 64.3 240.0 12.1 2.1 174 0.3 4.0 0.6
36 121.9 401 78.4 123.5 5.7 1.8 401 0.5 4.0 0.7
37 118.1 75 54.3 240.0 19.9 2.1 75 0.2 4.3 0.9
38 120.0 540 75.8 123.5 8.8 1.8 540 0.2 4.1 0.4
39 116.3 208 52.0 123.5 13.2 2.0 208 0.2 4.3 0.8
40 95.2 8300 26.4 123.5 7.2 2.5 8300 1.0 9.1 1.1
41 122.7 131 118.9 155.5 3.0 2.3 131 1.0 4.3 0.6
42 125.8 60 101.8 240.1 21.6 2.8 60 0.3 4.7 1.1
43 122.3 56 82.1 240.2 17.3 3.0 56 0.2 4.7 1.2
44 123.9 68 118.7 240.4 14.4 2.5 68 0.3 4.7 1.1
45 122.8 823 60.8 123.5 2.2 1.8 823 0.3 4.5 0.5
46 122.5 456 70.3 240.3 6.7 1.8 456 0.3 4.5 0.9
47 122.6 617 77.3 123.5 3.2 2.0 617 0.2 4.4 0.6
48 122.9 5497 18.0 240.3 5.8 3.4 5497 0.5 12.0 1.7
49 122.0 11019 14.6 240.7 19.8 3.8 11019 0.3 14.1 1.8
50 122.9 2258 35.9 123.5 4.0 3.2 2258 0.3 11.9 1.8
51 122.5 5350 120.6 123.3 0.6 1.5 5350 0.3 2.5 0.4

Table 7: Server resource data: scp

15

Network TX Server load
#clients avg #data min max std avg #data min max std

0 0.7 2552 0.0 121.8 7.6 0.2 2968 0.0 1.1 0.2
1 85.8 223 4.8 240.6 42.2 0.2 421 0.0 1.1 0.2
2 118.3 262 8.9 123.5 19.1 0.3 465 0.0 1.1 0.2
3 113.9 92 13.1 123.5 27.0 0.2 298 0.0 1.1 0.2
4 120.8 296 17.9 240.8 15.5 0.3 501 0.0 1.1 0.2
5 120.1 442 22.2 123.5 10.9 0.2 645 0.0 1.0 0.1
6 120.8 527 19.6 240.6 13.9 0.2 734 0.0 1.0 0.2
7 111.0 205 31.1 123.4 17.4 0.2 407 0.0 1.0 0.1
8 88.2 541 0.0 123.4 29.3 0.1 743 0.0 1.0 0.1
9 93.3 597 22.8 123.3 24.7 0.1 798 0.0 1.0 0.1

10 97.9 1081 21.7 123.4 32.1 0.1 1281 0.0 1.0 0.1
11 98.9 953 34.5 123.4 25.2 0.1 1154 0.0 1.0 0.1
12 89.2 1007 8.1 123.3 38.0 0.1 1209 0.0 1.0 0.1
13 84.7 1176 23.5 123.7 41.6 0.1 1379 0.0 1.0 0.1
14 64.3 2068 26.7 123.4 36.1 0.1 2273 0.0 1.0 0.1
15 66.0 1468 23.9 123.4 39.7 0.1 1665 0.0 1.0 0.1
16 71.8 2013 20.6 123.4 44.2 0.1 2214 0.0 1.0 0.1
17 66.2 2268 20.8 123.5 43.3 0.1 2470 0.0 1.0 0.1
18 41.7 7083 19.6 123.5 32.4 0.1 7286 0.0 1.0 0.1
19 78.7 7429 20.3 240.6 47.4 0.1 7622 0.0 1.0 0.1
20 47.2 20724 18.6 123.4 38.3 0.1 20857 0.0 1.0 0.1
21 122.1 262 4.6 123.2 9.4 0.1 344 0.0 1.0 0.1
22 123.0 158 119.8 123.3 0.5 0.1 239 0.0 1.0 0.2
23 121.4 13 107.2 123.2 4.4 0.3 93 0.0 1.0 0.2
24 122.5 36 112.4 123.5 2.1 0.3 118 0.0 0.7 0.1
25 123.0 73 122.2 123.2 0.2 0.2 155 0.0 0.7 0.1
26 123.1 118 121.9 123.4 0.1 0.2 201 0.0 0.7 0.1
27 123.0 125 111.9 123.2 1.0 0.2 203 0.0 0.7 0.1
28 121.8 20 112.2 123.1 3.3 0.3 101 0.0 0.6 0.1
29 122.5 191 32.1 123.2 6.6 0.2 275 0.0 0.7 0.1
30 114.9 10 79.2 123.5 17.2 0.3 94 0.1 0.7 0.1
31 123.0 46 121.6 123.2 0.3 0.2 125 0.1 0.6 0.1
32 122.7 241 53.9 123.2 4.5 0.2 321 0.1 0.7 0.1
33 122.9 313 120.4 123.2 0.4 0.2 397 0.0 0.7 0.1
34 122.2 95 118.5 123.5 0.6 0.2 177 0.0 0.7 0.1
35 122.8 31 119.9 123.2 0.7 0.2 113 0.0 0.7 0.1
36 122.7 56 116.1 123.2 1.1 0.2 139 0.0 0.7 0.1
37 122.8 54 119.9 123.4 0.6 0.2 137 0.0 0.6 0.1
38 122.4 248 117.4 123.2 1.0 0.2 330 0.0 0.7 0.1
39 121.9 641 115.3 123.5 0.8 0.2 725 0.0 0.7 0.1
40 121.9 6164 114.2 123.5 1.5 0.3 6236 0.0 0.7 0.1
41 122.6 372 114.9 240.8 8.7 0.2 438 0.0 0.7 0.1
42 118.4 215 111.4 123.2 4.0 0.2 277 0.0 0.7 0.1
43 120.2 330 109.3 123.5 3.3 0.1 395 0.0 0.7 0.1
44 120.5 416 104.7 123.5 1.9 0.2 479 0.0 0.7 0.1
45 120.5 163 105.3 240.6 10.2 0.2 225 0.1 0.7 0.1
46 116.8 234 109.0 123.5 4.8 0.2 295 0.1 0.7 0.1
47 120.0 485 104.8 123.5 4.0 0.3 550 0.1 0.7 0.1
48 122.5 6064 99.5 240.6 3.7 0.3 6124 0.0 0.7 0.1
49 123.1 9945 102.1 240.9 18.7 0.2 9988 0.0 0.7 0.1
50 121.0 2540 100.7 123.5 5.2 0.2 2570 0.0 0.6 0.1
51 118.6 5785 99.1 123.2 4.9 0.2 5799 0.0 0.6 0.1

Table 8: Server resource data: tcp

16

Network TX Server load
#clients avg #data min max std avg #data min max std

0 2.8 2493 0.0 122.3 14.6 8.4 43434 0.0 39.1 5.0
1 49.9 2264 0.0 123.2 37.3 8.6 7400 0.1 39.1 5.1
2 51.0 1755 0.2 240.1 36.4 8.6 8918 0.1 39.1 4.9
3 47.0 1207 0.3 123.2 37.1 8.6 9976 0.1 39.1 4.8
4 40.9 765 0.4 123.2 37.2 8.6 10865 0.1 39.1 4.8
5 41.9 462 0.5 123.2 39.2 8.7 11783 0.1 39.1 4.7
6 47.6 333 1.4 123.2 40.7 8.8 13204 0.1 39.1 4.8
7 57.5 300 1.4 123.2 41.1 8.7 14851 0.1 39.1 4.8
8 64.6 205 0.8 123.2 41.0 8.8 17162 0.1 39.1 4.7
9 69.1 203 4.0 240.3 39.9 8.8 20404 0.1 39.1 4.8

10 65.7 192 0.5 123.2 39.3 8.9 24192 0.1 39.1 4.8
11 66.2 259 5.1 123.2 35.0 9.0 28190 0.1 39.1 4.7
12 64.0 257 5.2 123.2 34.8 9.0 48106 0.1 39.1 4.7
13 97.5 108 9.3 123.2 28.9 9.2 10068 0.1 44.3 4.9
14 94.7 73 6.4 240.3 36.1 9.2 9896 0.1 44.3 4.9
15 86.9 79 5.4 123.2 35.9 9.3 9758 0.1 44.3 4.9
16 97.1 95 8.8 123.2 32.8 9.3 9784 0.1 44.3 4.9
17 93.1 128 7.1 123.3 34.6 9.3 10216 0.1 44.3 4.9
18 91.0 147 5.9 123.2 36.1 9.4 10631 0.1 44.3 4.9
19 106.9 281 0.5 123.2 31.2 9.3 11490 0.1 44.3 4.9
20 122.5 19842 2.5 123.2 4.3 8.5 31627 0.1 44.3 3.8
21 86.9 108 6.2 123.2 35.8 9.4 12824 0.1 44.3 4.9
22 83.9 137 4.9 123.2 36.0 9.4 13980 0.1 44.3 4.9
23 92.6 165 6.9 123.2 32.9 9.4 14908 0.1 44.3 4.9
24 80.3 137 5.4 123.2 40.2 9.2 17750 0.1 48.1 4.9
25 96.5 110 14.0 123.2 31.1 9.8 8510 0.1 48.1 4.9
26 97.3 90 1.6 123.2 34.4 9.7 8551 0.1 48.1 4.9
27 103.6 99 2.8 123.2 29.5 9.8 8449 0.1 48.1 4.9
28 101.1 84 25.1 240.6 37.1 9.8 8572 0.1 48.1 4.9
29 96.9 97 2.6 239.8 36.1 9.8 8757 0.1 48.1 4.9
30 90.2 112 3.5 123.2 38.2 9.9 9035 0.1 48.1 5.0
31 96.4 124 3.7 123.2 38.1 9.8 9388 0.1 48.1 5.0
32 98.0 134 5.0 123.2 34.6 9.9 9674 0.1 48.1 5.0
33 100.8 152 5.6 123.2 32.5 9.8 9877 0.1 52.2 5.0
34 100.2 135 3.5 240.3 37.0 9.8 10205 0.1 52.2 5.0
35 104.9 146 4.4 123.2 30.2 9.7 10455 0.1 52.2 5.0
36 107.5 176 2.2 123.2 27.0 9.5 11670 0.1 52.2 5.0
37 112.4 168 22.7 240.4 26.3 10.2 7569 0.1 52.2 5.0
38 117.0 219 35.3 123.2 15.6 10.2 7583 0.1 52.2 5.0
39 117.4 351 18.0 123.2 17.1 10.2 7822 0.1 52.2 5.0
40 122.1 6534 3.8 239.9 5.1 9.5 14127 0.1 52.2 4.7
41 97.1 92 4.0 123.2 29.8 10.3 7718 0.1 52.2 5.0
42 103.2 81 26.4 123.2 25.5 10.3 7806 0.1 52.2 5.0
43 104.0 95 36.1 240.1 29.4 10.4 7749 0.1 52.2 5.1
44 106.1 114 1.3 240.3 31.6 10.4 8001 0.1 52.2 5.2
45 101.9 90 12.1 123.2 27.1 10.3 8018 0.1 52.2 5.0
46 102.6 116 19.3 240.3 34.0 10.2 8166 0.1 52.2 5.1
47 107.7 104 28.4 240.3 28.5 10.3 8216 0.1 53.4 5.1
48 114.9 179 20.6 240.3 27.0 10.3 8701 0.1 53.4 5.2
49 123.0 9757 33.9 240.4 19.1 17.7 16402 0.1 53.4 8.1
50 121.7 1127 36.9 123.3 8.8 11.9 7869 0.1 53.4 6.5
51 122.7 13551 28.8 123.2 2.0 14.8 20244 0.1 53.4 5.8

.

Table 9: Server resource data: udp

17

source usage, rather than the number of dis-
tinct clients producing these requests, so we
decided to leave the data as it is. Some of the
more recent experiments have had the client
code modified to always serialise the retrans-
mission requests, but we did not re-run all ex-
periments as there appeared to be no reason to
do so.

The unicast tables surprised us a bit. We
expected to see the network constantly satu-
rated as all streams are competing for it, ex-
cept of course when there are no active clients,
in which case the server would not send any-
thing. Instead, it appears that the server isn’t
always saturating the network when sending to
multiple clients, and that explains how some
testbeds seemed to take even longer than ex-
pected to complete the file copy. We are not
sure how to explain this, unless there is some
hardware bottleneck for example obtaining the
data from disk: for multicast, which reads a
file sequentially from start to end in a single
thread, the kernel’s readahead may be help-
ing, while the unicast servers have multiple
threads all reading the same file at different
positions, and it may be able to defeat the ker-
nel’s caching. However we cannot say for sure
until we repeat these experiments measuring
other resources such as disk I/O bandwidth.

For server load, scp shows a drop in pro-
cessor utilisation which appears to match the
drop in network utilisation; however where
the network is fully saturated the load is nor-
mally above 1, and growing with the number
of clients: this would reflect the number of
processors busy encrypting data, and we note
that the corresponding tcp data shows very low
load, reflecting the fact that all the server is do-
ing is moving bytes from disk to network card.

Udp server load appears to be very high al-
though it follows a similar pattern to the scp
data. Since there is no encryption and the
server is just moving bytes from disk to net-
work card, this seems to be a higher processor

utilisation than one would expect. It is pos-
sible that the network stack is optimised for
TCP and doesn’t handle UDP very well; we
have also observed high levels of packet loss
at times which aren’t justified by the network
setup. Possibly running these experiments on
different hardware or using a different operat-
ing system may show a different result. All we
can do with these numbers is show them and
offer our guesses.

5.3 Routing

We are not specifically analysing multicast
routing in this experiment, however a glance
at some router network data will explain why
the various multicast updates appear to take
longer to start, and this will affect the ran-
dom update schedules more than immediate.
We consider just two examples with 3 levels
of routers and a path going from the server to
the “leftmost” client LAN (in the tree repre-
sentation used elsewhere in this document). In
the specific example this goes through routers
numbered 6, 4 and 0.

Table 10 on page 19 shows the network traf-
fic in and out of a router while a multicast im-
mediate experiment is running. Table 11 on
page 20 is the same but for a longer experi-
ment (larger file). The column headers refer to
the router number, the router’s interface (to-
wards clients or servers) and the data direction
as seen from the router: therefore “6:client:tx”
would show data sent by router 6 towards the
clients and “0:server:rx” shows data received
by router 0 from the direction of the server (it
receives it from router 4, not directly from the
server, but it is data arriving “from the direc-
tion of the server”; the interface names we have
used here do not imply direct network connec-
tion to server or clients).

This shows the delay introduced by
MLDv2 [3] and multicast routing. The server
starts transmitting data (as shown in the first

18

TIME 6:server:rx 6:client:tx 4:server:rx 4:client:tx 0:server:rx 0:client:tx
15 0.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000
17 31.821 31.481 0.000 0.000 0.000 0.000
18 102.929 102.925 96.945 0.000 0.000 0.000
19 102.943 102.938 102.661 0.000 0.000 0.000
20 91.908 92.244 96.470 0.000 0.000 0.000
21 91.200 91.192 90.498 0.000 0.000 0.000
22 91.540 91.554 91.267 0.000 0.000 0.000
23 91.677 91.668 91.407 0.000 0.000 0.000
24 91.718 91.723 91.389 0.000 0.000 0.000
25 91.786 91.767 91.275 0.000 0.000 0.000
26 92.054 92.076 91.807 0.000 0.000 0.000
27 92.087 92.084 91.696 0.000 0.000 0.000
28 92.125 92.108 91.886 79.955 54.679 54.503
29 92.482 92.496 92.227 92.249 92.436 92.122
30 92.506 92.509 91.929 91.965 92.375 92.109
31 92.567 92.572 92.371 92.334 92.386 92.070
32 91.928 91.919 92.065 92.062 92.609 92.324

. . .
121 97.112 96.773 93.653 93.621 93.968 93.680
122 103.307 103.308 102.290 102.329 100.069 99.610
123 103.110 103.111 102.908 102.877 103.113 102.948
124 103.296 103.296 102.949 102.970 103.169 102.679
125 103.425 103.417 103.073 103.047 103.094 102.815
126 103.550 103.554 103.209 103.227 103.383 103.026
127 103.205 103.207 102.923 102.920 103.426 103.103
128 103.215 103.220 102.844 102.893 103.218 103.027
129 103.321 103.313 103.047 102.992 103.252 7.776
130 103.474 103.476 103.029 103.039 103.355 0.000
131 103.344 103.346 103.107 103.094 103.353 0.000
132 103.275 103.274 103.014 103.012 103.399 0.000
133 103.249 103.244 103.002 103.066 103.278 0.000
134 103.220 103.223 102.864 102.824 103.193 0.000
135 103.194 103.189 102.934 102.896 103.241 0.000
136 103.557 103.560 103.059 103.080 103.340 0.000
137 103.292 103.292 103.159 103.168 103.477 0.000
138 103.287 103.292 102.954 102.942 103.294 0.000
139 103.281 103.281 102.983 102.995 103.273 0.000
140 103.599 103.601 103.044 103.052 103.354 0.000
141 103.517 103.515 103.257 103.251 103.710 0.000
142 103.401 103.403 103.136 103.134 103.353 0.000
143 103.563 103.561 103.301 103.288 103.634 0.000
144 103.742 103.369 103.027 103.073 103.285 0.000
145 103.430 103.414 103.102 103.089 103.428 0.000
146 103.351 103.354 103.047 103.029 103.420 0.000
147 103.446 103.446 103.036 103.052 103.337 0.000
148 53.905 54.235 91.459 91.378 103.464 0.000
149 0.000 0.000 0.000 0.000 16.790 0.000
150 0.000 0.000 0.000 0.000 0.000 0.000
151 0.000 0.000 0.000 0.000 0.000 0.000
152 0.000 0.000 0.000 0.000 0.000 0.000

Table 10: Example routing

19

TIME 6:server:rx 6:client:tx 4:server:rx 4:client:tx 0:server:rx 0:client:tx
0 0.000 0.000 0.000 0.000 0.001 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000
5 0.036 0.031 0.016 0.011 0.002 0.000
6 0.000 0.000 0.000 0.000 0.004 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000
13 66.604 66.594 26.243 25.867 0.000 0.000
14 122.845 122.863 103.362 103.362 66.075 66.074
15 122.741 122.743 102.924 102.969 103.100 103.132
16 122.757 122.753 103.973 103.973 102.937 102.958
17 122.753 122.745 102.971 102.971 103.281 103.286
18 122.773 122.758 102.589 102.591 102.615 102.581
19 122.730 122.745 102.634 102.633 102.223 102.231
20 122.719 122.739 102.580 102.584 102.201 102.185
21 122.765 122.753 102.915 102.912 102.587 102.589
22 122.740 122.747 102.735 102.736 102.439 102.456
23 122.774 122.745 102.968 102.967 102.585 102.600
24 122.727 122.747 102.791 102.789 102.517 102.503

. . .
536 122.757 122.728 103.281 103.281 102.987 0.000
537 122.749 122.745 103.131 103.130 102.741 0.000
538 122.738 122.749 103.585 103.586 103.073 0.000
539 122.715 122.741 103.480 103.483 103.184 0.000
540 122.739 122.734 103.409 103.409 103.267 0.000
541 122.731 122.741 103.340 103.341 102.992 0.000
542 122.879 122.854 103.256 103.252 103.014 0.000
543 122.707 122.749 103.418 103.419 102.915 0.000
544 122.775 122.745 121.826 6.456 69.119 0.000
545 122.753 122.718 123.076 0.000 0.000 0.000
546 122.735 122.762 123.201 0.000 0.000 0.000
547 122.731 122.732 123.081 0.000 0.000 0.000
548 122.782 122.756 123.193 0.000 0.000 0.000
549 122.743 122.749 123.080 0.000 0.000 0.000
550 122.737 122.762 123.190 0.000 0.000 0.000
551 122.723 122.765 123.076 0.000 0.000 0.000
552 122.790 122.706 123.194 0.000 0.000 0.000
553 122.722 122.745 123.080 0.000 0.000 0.000
554 122.762 122.751 123.198 0.000 0.000 0.000

Table 11: Example routing

20

data column, network data received by the
“top” router) but this data only starts being
forwarded with a small delay; and longer delay
are introduced by subsequent routers until it
eventually gets to the client(s).

Later in the experiment, the server is still
sending, because some clients is still listening.
However forwarding only goes part of the net-
work path we are following in this table, mean-
ing that all clients in the specific client LAN at
the end of this path have received all the data,
they are no longer listening, and the routers
are no longer forwarding there; however data
is still forwarded for part of the path because
other LANs served by a prefix of this path are
still requiring data.

6 Future work

Due to time limitations we have only measured
network performance for a small set of regular
network topologies, corresponding to the ex-
ample networks shown in sections 2 to 4, us-
ing more clients than shown in the figures; of
course the real world is made up of rather more
irregular topologies and it it would be interest-
ing to investigate more variations in this area
in a future set of experiments.

We also limited the experiments to about
50 clients, as we have been unable to allocate
larger networks: the testbed never had enough
free resources. To properly test how the vari-
ous method scale, we would need some experi-
ment setup where we can easily allocate 500 or
more nodes and have them running for days.

Alternatively, we would like to run the ex-
periment distributed across several sites to
have a much larger number of total nodes, and
also a more representative network structure.
However the unicast experiments are likely to
require massive amount of network bandwidth,
and the multicast experiments require proper
multicast configuration at all sites and multi-

cast routing between then, so these factors will
limit the choice of sites.

We also simplified the software update by
assuming that all clients request exactly the
same file, rather than a more complex situa-
tion in which every client requests a different
subset of all available updates, due to its own
unique update history; unicast of course will
need very little change: since each client re-
ceives its own separate stream, they don’t have
to contain the same data; for multicast, we al-
ready have (in the present experiment) servers
only sending data when somebody is listening,
so it would never need to send all possible up-
dates all the time, and we expect multicast to
handle this situation well; however without a
corresponding experiment, “expect” is all we
can say about this.

All the experiments we ran included a sin-
gle server. The main point of this experiment
was to show that a single server is sufficient to
provide updates for a large number of clients
using multicast, while unicast will require mul-
tiple servers in this case. However, there are
reasons other than server and network load
why one would want multiple servers, for ex-
ample reliability: if the single, extremely effi-
cient, server has a fault, the updates stop; ide-
ally, these multiple servers will be reachable by
completely different network paths as well. We
think that multicast will help with that too, for
example multiple servers can each send data at
a fraction of the bandwidth, and when they all
work clients will get the advantage of the com-
bined output from all servers, while a network
or server failure would automatically result in a
corresponding reduction of speed, and the sub-
sequent recovery or replacement of the faulty
parts would automatically result in the system
returning to full speed. This claim, of course,
needs a separate experiment to justify.

Another type of network activity which can
benefit from multicast is live streaming, where
the server will only need to send the stream

21

once; this case is similar to software updates
and probably does not need a separate experi-
ment; however if several choices of bandwidth
and quality are required the situation is differ-
ent. In the unicast case it’s obvious how the
sender can provide different quality streams to
different clients, for multicast the simplest an-
swer is to provide several streams with different
quality, with the client subscribing to the one
which best match its requirements: this would
save network and server resources but there
may be better way of achieving this result, for
example using layered codecs to send only one
copy of the lowest quality stream, then a sec-
ond stream with the difference between that
and the next highest quality. We don’t know
at present if these codecs would involve more
server resources than the re-encoding required
to provide multiple stream with different qual-
ity, but in any case we would find it useful to
run another experiment to measure these costs
and compare them with the expected savings
in terms of network usage.

For this experiment we transmitted all data
unencrypted between the nodes and used a se-
cure hash to determine whether it was received
correctly. This corresponds to a traditional
situation in which HTTP mirrors provide the
data, and a checksum is provided over a more
secure mechanism for verification. More re-
cently, most systems are moving to HTTPS
with the added overhead of encryption on every
communication: we expect that the benefits of
multicast shown in this experiment will con-
tinue to apply, but we have not tested this, and
will consider a future experiment in which we
extend the multicast update method to add en-
cryption of all communication, comparing this
with the normal stream encryption used for ex-
ample with HTTPS.

A Programs

To run each experiment we had to implement
a network topology on an experiment testbed,
set up each node in the testbed, run the experi-
ment itself and collect the results; additionally,
we had to analyse the results of groups of ex-
periments together. This appendix describes
the programs used for all various tasks, and in-
cludes references to where the full source code
can be found for the programs we developed.

A.1 Preparing a testbed and run-
ning an experiment

The programs described here and other useful
tools are in the experiment setup repository [8]
under the bin directory for the programs to run
on the local system and the objects directory
for the programs to run on the testbed.

Given the number of servers, clients and
routers (if appropriate to the experiment) we
developed a simple program to generate action
files for “jfed” [9] so that the process could
be automated; a single program “mknet” pro-
vided action files for all the experiment topolo-
gies described in this report by providing ap-
propriate options; for the networks shown as
examples in the figures we just ran:

local$ mknet L=8

local$ mknet R=1 L=8

local$ mknet R=3 L=2

local$ mknet R=2 L=4

As can be seen, omitting “R” results in
a single LAN network in which the number
of clients is specified by “L” for consistency
with the other networks (where it indicates the
number of clients on each client LAN).

By default, the program generates an ex-
periment name indicating the parameters pro-
vided: for the four examples above this
would be: “S1L8”, “S1R1L8”, “S1R3L2” and
“S1R2L4”; the data generated will be stored

22

in a directory inside /var/tmp named after the
experiment (the name of the experiment starts
with “S1” to indicate the number of servers,
in preparation for a future multi-server exper-
iment, and the directory can be changed with
other command-line options).

One of the files generated, action.yaml, is
suitable for using as argument to the -a (action
file) option to the “jfed-cli” tool and will pro-
vision the testbed; the program also generates
action.rspec which is suitable for using with
the “jfed-gui” tool. We do not describe these
tools here as they are provided by fed4fire, but
see [9].

Once the testbed is up and running, we need
to copy some things to it, for example the ac-
tual programs which will run on it and infor-
mation about the experiment to run. The list
of data sizes is also specified at this point, for
example to run with 32, 64 and 512 megabytes
on the first single LAN experiment defined
above (“S1L8”)

local$ setup-experiment 32,64,512 S1L8

This sets up the “director” node and copies
the objects directory of the repository to it.
To complete the setup, one needs to connect
to it and then run a program there:

local$ ssh-experiment S1L8 director0

director0$ /tmp/experiment/setup-all

The testbed is now ready to run the exper-
iment by running a program on director0 and
specifying a “rsync” destination where it will
copy the data it collects:

local$ ssh-experiment S1L8 director0

director0$ cd /tmp/experiment

director0$./run-experiment \

--rsync DESTINATION

The destination must be set up as appro-
priate to receive the data. Other options to
“run-experiment” are normally not required;

such options are documented in the script it-
self.

If required, the “run-experiment” program
can run many times to obtain more data with-
out additional setup overhead; no need to re-
peat any of the previous steps.

Internally, the “run-experiment” program
calls other programs running on the direc-
tor, but also on servers, routers and clients
as necessary to implement the procedure de-
scribed in sections 2 to 4. These pro-
grams have names like “start-tcp-server”
or “start-multicast-router” to start what
is required for a particular experiment on a
particular node (in this example, start the
TCP experiment on a server, and start the
multicast routing daemon on a router, respec-
tively). All these programs are found in the
repository cited.

One issue we found while developing pro-
grams to automate the experiment is that net-
work interface names may be different when
booting different testbeds; each node has two
interfaces, a control interface used by the
testbed administration, as well as to log in to
it from outside the experiment, and a second
interface connected as required by the exper-
iment’s network topology and used to trans-
fer the data files during the experiment; for
a router node, there are obviously more inter-
faces: therefore we needed to determine what
interface name was actually assigned to what.
The fed4fire documentation mentions a tool to
obtain the necessary information on each node,
however the tool did not work: it required a
version of Python which is no longer available,
and all it produced for us was a syntax error.
Instead of debugging that, it was easier for us
to have the “setup-all” script figure out what
interface is going to be used for what based on
the MAC address listed in the output from the
jfed program, and configure them as required:
this may be different for each node. It also
sets up the monitoring so that the interfaces

23

are reported in a consistent way, as is impor-
tant when looking at network usage data for
routers.

A.2 Resource monitoring

The program described here is in the lwmon
repository [10].

There are many monitoring tools for Unix
system, however in our experience they tend
to use more resources than programs which do
the actual work, or else they are designed to
sample information only once a minute, which
is not enough for this experiment.

Because of experience using other monitor-
ing tools and not finding one which we actually
want to use on a live system, we have developed
our own over the years, which we call “lwmon”,
for Light-Weight system MONitoring, which,
as the name suggests, is very considerate in its
use of resources and can safely run very fre-
quently without impact on the system. It can
also report on its own resource usage, so one
can confirm that it is, indeed, light-weight.

Without going into complete details, each
node sets up its own configuration for lw-
mon, which then measures memory, swap, cpu
and network usage and system load every sec-
ond, its own resource usage every 10 seconds.
The appropriate program (update provider for
servers, routing daemon for routers if requires
by the experiment, and the program which gets
the updates for clients) also runs as a child pro-
cess of lwmon, so the latter can report on the
resource used by this program.

A lwmon configuration for a client is shown
in figure 5 on page 25. This means that load
average, memory/swap usage and network us-
age are sampled every second, lwmon’s own re-
source usage every 2 seconds, will run the ap-
propriate program for a particular experiment
(in this case, update via multicast), and save
the information into a file in a compact binary
format. The second column of the lines spec-

ifying what to measure is the name used to
report it.

The program running does not depend on
the scheduling strategy selected, as that is han-
dled before: we do not want to measure the
time it takes to sleep for a random duration,
only the time it takes to download the up-
date. The file name for the results, on the
other hand, contain the scheduling strategy
(in this case, random) and the update size (64
megabytes), as we need to keep things distinct.

Another thing to note is that the “network”
line asks to monitor the interface using its sys-
temd name (enp6s0 in this example) because
that’s how it will be able to find it in the sys-
tem, but reports it using the name “if1” as this
is the interface name we have used in the action
file and rspec.

The configuration for a server is essentially
identical, with “client” replaced by “server”,
and for a router it is very similar, as shown
in figure 6 on page 25. The network interface
reported as “if1” has network traffic going to
or from clients, and “if2” has traffic going to
or from servers.

Once the “start-. . . ” program terminates,
lwmon automatically reports on its resource
usage and the wall clock time it has taken to
run, then runs one more round of measure-
ments and exits. For clients, the program nor-
mally terminates when it has obtained the up-
date successfully; for servers and routers the
program terminates when the director signals
the end of the experiment.

The program which generates the lwmon
configuration file and calls lwmon will wait for
it to terminate, then copies the file it produced
back to the director node. This allows the di-
rector to collect all the data about the experi-
ment in one place.

As mentioned, lwmon produces a file con-
taining data in a packed binary format. To
just look at the data, the tool has an option
to read that binary file back in and produce a

24

hostname client2

load lavg 1

cpu cpu 1

memory memswap 1

network if1 1 enp6s0

self self 2

program exp 5 /tmp/experiment/start-multicast-client enp6s0

print /tmp/results/client2.multicast.random.64 overwrite binary

Figure 5: lwmon client configuration

hostname router0

load lavg 1

cpu cpu 1

memory memswap 1

network if1 1 enp4s0

network if2 1 enp6s0

self self 2

program exp 5 /tmp/experiment/start-multicast-router enp4s0

print /tmp/results/router0.multicast.random.64 overwrite binary

Figure 6: lwmon router configuration

25

human-readable output:

$ lwmon -P - \

-R data/router0.multicast.random.64

There is a separate tool which reads one or
more data files and produces SQL statements
which can be used to import it into a database,
for example:

$ lwmon-to-sql [options] FILES | \

sqlite3 database.sqlite

As described below in A.5, for this exper-
iment we have developed a tool which reads
the lwmon data directly to create summaries,
and uses a sqlite database as cache to speed
up operation; this is not the full data as pro-
duced by lwmon-to-sql but instead just the
data needed to generate tables and graphs like
the ones shown in this report.

A.3 Multicast update method

The software for this experiment is from the
IoT Updater example described in [2], and
whose sources are in [4].

The multicast server uses MLD snooping to
decide whether there is at least one active
client, and starts sending as soon as one is
present, stopping when it knows no client is
still requiring data. While running, it sim-
ply sends the file to an IPv6 multicast group
continuously on a loop. The file is sent as a
sequence of datagrams each containing some
data from the file, as well as a checksum for the
whole file, the size of the whole file, and the size
and starting file offset for the data contained
in the datagram.

The client node joins the multicast group
and immediately begins receiving the file.
When the first datagram is received, the client
creates a memory-mapped file of the appro-
priate size and begins writing each datagram
at the appropriate offset in the file. When

enough data has been received, the client starts
a checksumming thread to verify the data on
disk matches the expected checksum. If it
does, the client parts the multicast groups and
exits. If the checksum does not match, the
client continues receiving and writing data un-
til it does. Data payloads received are com-
pared to the data on disk before copying and
only different data is written or counted to-
wards received data.

The IoT Updater can interleave data sent
across multiple multicast groups, and use the
sequence numbers in packets to detect packet
loss. If packet loss is due to congestion, the
client can join fewer groups to lower the re-
ceived data rate. This can function as a basic
form of flow control. This function was not
used during the experiments - the client and
server were set to use only a single multicast
group

A simple way to run the server manually to
send a file to multicast group ff1e::42 via in-
terface eth0 would be:

iotupd sourcefile ff1e::42 eth0 --mld

To receive the data one runs the client as:

iotupc destfile ff1e::42 eth0

Note that the client does not specify how
to find the server: this is not Single Source
Multicast and there is no need to provide this
information.

If there are routers between the server and
the client, these routers need to be able to for-
ward multicast traffic. We used lcroute [6] on
a Linux node, starting lcroute as:

lcroute eth0 eth1

Where eth0 is the interface where the mul-
ticast traffic will be sent to (i.e. where the uni-
cast routing towards the client goes) and eth1

is the interface where the multicast traffic will

26

arrive from (i.e. where the unicast routing to-
wards the server goes). The version of lcroute
we used needed to know this, however this re-
striction will be lifted in future.

Note that the kernel needs to be configured
for IPv6 multicast routing for this to work. A
simple way to check is to run:

sysctl net.ipv6.conf.all.mc_forwarding

This may reply 0 or 1 on a kernel with a
suitable configuration (it will only show 1 if
lcroute or another multicast routing daemon is
running). If the kernel is not configured appro-
priately, the command will produce an error.

A.4 Unicast update methods

The software used for this experiment (which
includes UDP and TCP) can be found in [5].

For both update methods, the server waits
for client requests, then forks and handles each
request in a separate process. Clients send a
request using the appropriate protocol, then
wait for a reply.

The programs for both server and client, and
for both UDP and TCP, are started with the
same command, with different parameters:

iotup server|client udp|tcp \

FILENAME SERVER_ADDRESS

The server will open the file specified and
binds a socket to the address specified; the
client will send a request to the server address
specified, and saves the file to the name indi-
cated.

For TCP, clients open a stream connection
to a predefined port on the server; the server
accepts connection and sends back a header
containing the file size and a checksum of the
whole file, then the file data from beginning to
end. The client simply reads all the data from
the server, saves it to a file, and checks that the

size and checksum are correct: if they aren’t,
it will repeat the whole request.

For UDP, clients send a datagram to a pre-
defined port on the server, containing a range
of file offsets to send: this initial request will
be for the “whole file”, specified by a start and
end offset both zero (for the end offset, zero
will be interpreted by the server as “until end
of file”). The server replies by sending a se-
quence of data packets to the source address
of the datagram, each packet containing the
total file size, file checksum, some file data as
well as the data size its offset within the file.
This means that the client can have all the re-
quired information even in case of packet loss.

The client waits for data from the server,
rememebring which data it has received and
which one has not arrived. If all the data ar-
rives, it calculates the checksum and decides
whether it has received the file correctly, retry-
ing if it has not.

A timeout makes sure that the client does
not wait forever in case of packet loss: if no
data arrives for a predefined period, and some
data is still missing, the client assumes that
the server has stopped sending and requests re-
transmission of the packets it knows it has not
received, then goes back to waiting for data.

Note that this behaviour from the client can
result in the server seeing more active clients
than real clients in case of packet loss: clients
may time out while the server is still sending,
request retransmission which will be seen by
the server as a new client: this is the reason
why the UDP results collected by number of
clients can show more active clients than real
clients.

If routers are present, they do not need any-
thing particular as long as unicast routing be-
tween server and clients is set up correctly; we
still ran our monitoring on routers to collect
network bandwidth and other information.

27

A.5 Summarising data

The programs described here are in the “exper-
iment scripts” repository [8].

The “lwmon” program (appendix A.2) pro-
duces a lot of data, as it measures several items
every second, and of course each node in the
experiment produces its own set of measure-
ments. The end result is that we have tens of
millions of data items divided into thousands
of “tar” archives, each one produced by a sin-
gle experiment run; inside these archives, files
are named after the node which produced them
(for example, client1 or router0) and the actual
experiment ran (for example, multicast or tcp)
but other information is only in the name of
the archive itself, so the first step is to extract
all these files renaming them so that the names
contain all the necessary information (this sit-
uation is because when we started running the
experiments, only the “director” node had all
the information, but the file names were gener-
ated by the nodes creating the files: in a future
experiment we are planning to change this).

These tar archives have names like:

S1L20C-vwall1-20220119101508-multicast-

random-2048-20220131154314.tar.gz

this example has been produced by the net-
work we named “S1L20C”, booted on virtual
wall 1 when the time on our local system
was 19/Jan/2022 at 10:15:08; this archive con-
tains the results for the “multicast” method
with “random” scheduling and a data size of
2048MB; the run ended on 31/Jan/2022 at
15:43:14 (local time of the testbed). The ac-
tual timestamp values are not important per
se, but together with the name we assign to
the network they generate unique names for
each run (the name has been folded into mul-
tiple lines to fit in the layout of the report, but
of course it is a single string).

The averages script reads the lwmon data
directly and produces summaries as described

below; however this can be slow so it uses a
database to cache intermediate results. This
database could also be useful for other process-
ing. There is a table indexing tarballs and two
other tables for different types of cached sum-
maries.

The table indexing tarballs, “tarballs” has
the following columns:

id int

filename varchar(256)

filesize int

mtime int

topology varchar(256)

suffix varchar(32)

testbed varchar(32)

boot_time int

update_method varchar(256)

schedule varchar(256)

file_size int

run_time int

n_servers int

router_levels int

n_clients int

The first group of columns are the file infor-
mation: “id” is the internal unique identifier
used in the cache database, “filename” is the
tarball’s filename, and “filesize” and “mtime”
are provided by the filesystem and are used by
the program to update the cached data if the
file appears to have changed (this can happen
if we run the program while results are still
arriving from the testbed).

The second group of columns are obtained
by splitting the file name into its components,
and interpreting the testbed name to deter-
mine the number of clients and routers.

The decoded lwmon data for a particular el-
ement is accumulated in one of two tables, de-
pending on whether the element depends on
the number of active clients or not. The “data”
table contains data which does not depend on
the number of clients and contains:

tar_id int

28

dataname varchar(256)

count int

min float

max float

total float

square float

The “count”, “total” and “square” contain
a summary of the data collected, which could
appear multiple times in the same tarball Each
data item can be present multiple times in the
same tarball (for example, each client could
contribute one element); these are all added to-
gether in the “total” column, and their squares
are added in the “square” column; when select-
ing a tarball for processing, we can use this in-
formation to calculate averages and standard
deviations. The “min” and “max” columns
record the minimum and maximum data item
found, respectively.

The other table, “summary”, contain infor-
mation grouped by number of active clients; it
has one extra column, “n clients”.

The “averages” script produces averages
from a specified subset of experiment runs, and
also maintains the cache database. The general
usage is:

$ averages [options] DATA_NAME \

CACHE_DATABASE \

TARBALL [TARBALL]... | less

This will probably produce a lot of data, so
it’s best to send the output to a file or pipe
into a pager.

Currently, “DATA NAME” can be one of
“run-time”, “server-tx” and “server-load” de-
scribed below, and a sample output is shown in
figures 7 and 8 on page 30. The program de-
termines the number of active clients by com-
bining information about client start and stop
times and adds that to the table.

We have currently defined three data types,
but the script allows adding more very easily:

run-time: Total time the client required from
sending the first request to server until it
received the complete file.

server-load: Server load by number of active
clients; this is sampled every second or
more often if there is a change in the num-
ber of active clients, and is the total num-
ber of CPU millisecond reported used di-
vided by the milliseconds since the previ-
ous sample.

server-tx: Data sent over the network per sec-
ond; this number is sampled every second
or more often if there is a change in the
number of active clients, and is the num-
ber of bytes sent divided by the number
of milliseconds since the previous sample,
and further divided to obtain a number of
megabytes per second.

A pre-filled cache database is available online
together with the raw data [7]

For routing data, we wanted to see the ef-
fect of multicast routing protocols by com-
paring the data going into a router with the
data leaving the router; it makes less sense
to average over multiple runs as each experi-
ment proceeded at a different pace, and aver-
aging only served to hide the changes in the
data streams. Accordingly we used a different
script, “router-data” to collect bandwidth
utilisation data from several routers (in a sin-
gle run) and produce a multi-column output
showing the utilisation against the time since
the start of the run. The usage is:

router-data SPEC [SPEC]... TARBALL

where each “SPEC” is an interface specifica-
tion of the form “router:interface:direction” in
which “router” is the number of the router
(counted from 0 for the leftmost client LAN
in the tree diagrams shown in this document,

29

$./bin/averages -p run-time ~/DB/summary.sqlite ~/results/S1L49F-

UPDATE SCHEDULE SIZE AVG #DATA MIN MAX STD

multicast random 32 0.502 539 0.403 0.767 0.069

multicast random2 32 0.507 539 0.406 0.793 0.077

multicast immediate 32 0.512 539 0.406 0.795 0.083

tcp random2 32 0.516 539 0.372 1.182 0.186

tcp random 32 0.733 539 0.372 1.970 0.381

scp random2 32 0.885 539 0.735 1.858 0.138

scp random 32 0.974 539 0.742 2.129 0.207

...

scp immediate 2048 15:01.874 539 14:01.121 15:31.685 12.585

udp immediate 2048 15:30.195 539 14:32.472 15:48.049 15.527

Figure 7: Example experiment result

$./bin/averages -p server-tx ~/DB/summary.sqlite ~/results/S1L49F-

UPDATE SCHEDULE SIZE #CLIENT AVG #DATA MIN MAX STD

scp immediate 128 24 0.0 1 0.0 0.0 -

tcp immediate 128 10 0.0 1 0.0 0.0 -

tcp immediate 512 21 0.0 1 0.0 0.0 -

tcp immediate 512 31 0.0 1 0.0 0.0 -

multicast immediate 32 2 0.0 2 0.0 0.0 0.0

multicast immediate 128 7 0.0 2 0.0 0.0 0.0

...

udp immediate 512 23 180.3 2 120.1 240.6 85.2

udp immediate 32 41 180.3 2 120.1 240.6 85.2

tcp immediate 2048 41 180.6 4 120.3 240.8 69.5

Figure 8: Example experiment result

30

and proceeding left to right in the diagram un-
til reaching the rightmost router, then contin-
uing one level up, etc. Therefore the 4 client
LANs in an experiment with 3 levels of routers
are connected to routers 0 to 3, then router 4
joins routers 0 and 1, and so on.

An example output for the command:

router-data 6:server:rx 6:client:tx \

4:server:rx 4:client:tx \

0:server:rx 0:client:tx \

S1R3L10H-vwall1-20220309204654-\

multicast-immediate-2048-\

20220311052100.tar.gz

is shown in figure 10 on page 19 (truncated
to fit in the page) and is available in the on-
line data [7] (look for run number S1R3L10H-
20220311052100).

The “make-online-summaries” script in [8]
contains many examples of analysing data, as
well as showing how the summaries included in
the online data [7] have been generated.

B Important notes on repeat-
ing this experiment

IPv6 requires multicast, however when prepar-
ing to run this experiment we found that some
testbeds did not actually support it.

It is very easy to check that multicast
packets are forwarded between nodes: build
“mcastsend” and “mcastread” from mcast-
tools [11], select two nodes in an experiment
which are connected to the same LAN, and
run code like the one shown in figure 9 on
page 32, where the interface names in the com-
mand must be changed to reflect the actual
network interface used on these nodes.

The expected result is that both examples
show a lot of data stored in /tmp/datafile,
as multicast packets are forwarded from the
sender to all nodes which request receiving

them. However on some testbeds we found
that this was not the case, and instead pro-
duced the result shown in the figure: some
multicast groups were forwarded, while others
were blocked, and this means that any part of
the experiment which uses groups which are
blocked will not be able to proceed. It is best
to repeat this test using a few other multicast
groups made up of random numbers to make
sure that they all forward data as expected.
We haven’t been able to determine which kind
of switch configuration produces this peculiar
effect so we had to exclude these testbeds from
our experiment.

While running the above code, it is also
useful to monitor the interface on both nodes
and a third node connected to the same LAN
but not running either “mcastread” or “mcast-
send”. Because of the absence of listeners on
the third node, the expected result is that mul-
ticast packets leave node1, arrive at node2, but
are not visible on node3: this is the effect of
MLD snooping on the switch, forwarding pack-
ets only to nodes which require them, and it is
the best condition to run the experiment, as it
produces the most useful results.

If the packets arrive at all nodes, the exper-
iment can still proceed, but the network usage
results for the multicast experiment will be less
accurate. If possible the experiment should be
moved to a different testbed.

In summary, we need to warn anybody wish-
ing to repeat this experiment to first make sure
that the system they are using is configured for
IPv6 multicast, to avoid wasting their time on
an experiment which will produce no results.

31

node1$ yes ’multicast testing’ | \

mcastsend -i $INTERFACE ff1e::42 4242

node2$ mcastread $INTERFACE ff1e::42 4242 > /tmp/datafile

node2$ (kill mcastread after a few seconds)

node2$ wc /tmp/datafile

1430130 2860261 25742336 /tmp/datafile

node1$ (kill mcastsend)

node1$ yes ’multicast testing’ | \

mcastsend -i $INTERFACE ff1e::42:1234 4242

node2$ mcastread $INTERFACE ff1e::42:1234 4242 > /tmp/datafile

node2$ (kill mcastread after some time)

node2$ wc /tmp/datafile

0 0 0 /tmp/datafile

node1$ (kill mcastsend)

Figure 9: Testing proper switch configuration (also see text)

32

References

[1] Quinn, B, and Almeroth, K. (2001). IP
Multicast Applications: Challenges and
Solutions. RFC 3170.
https://www.rfc-editor.org/

in-notes/rfc3170.txt

[2] Sheffield, B. (2020). IoT Updates with
IPv6 Multicast - Updating a Billion Nodes
from One Tiny Server.
https://archive.fosdem.org/

2020/schedule/event/iotmulticast

[3] Vida, R, and Costa L, eds. (2004).
Multicast Listener Discovery Version 2
(MLDv2) for IPv6. RFC 3810.
https://www.rfc-editor.org/

in-notes/rfc3810.txt

[4] Sheffield, B. Multicast IoT Update Client
and Server.
https://github.com/librestack/iotupd

[5] Calvelli, C, and Sheffield, B. Unicast
(TCP/UDP) file syncing test program.
https://github.com/librestack/unisync

[6] Sheffield, B. Librecast IPv6 Multicast
Router.
https://github.com/librestack/lcroute

[7] Calvelli, C, Payne, E, and Sheffield, B.
(2022). Librecast: IoT Software Updates
over IPv6 Multicast Archive of all experi-
mental data [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.6382741

[8] Calvelli, C, Payne, E, and Sheffield, B.
(2022). Fed4fire experiment setup scripts.
https://github.com/librestack/fed4fire

[9] jfed 5.9 documentation.
https://doc.ilabt.imec.be/

jfed-documentation-5.9/index.html

[10] Calvelli, C. lwmon: A light-weight system
monitoring tool.
https://github.com/librestack/lwmon

[11] F0rth/mcast-tools: package containing
IPv6-multicast routing daemons and tools.
https://github.com/F0rth/mcast-tools

33

https://www.rfc-editor.org/in-notes/rfc3170.txt
https://www.rfc-editor.org/in-notes/rfc3170.txt
https://archive.fosdem.org/2020/schedule/event/iotmulticast/
https://archive.fosdem.org/2020/schedule/event/iotmulticast/
https://www.rfc-editor.org/in-notes/rfc3810.txt
https://www.rfc-editor.org/in-notes/rfc3810.txt
https://github.com/librestack/iotupd
https://github.com/librestack/unisync
https://github.com/librestack/lcroute
https://doi.org/10.5281/zenodo.6382741
https://github.com/librestack/fed4fire
https://doc.ilabt.imec.be/jfed-documentation-5.9/index.html
https://doc.ilabt.imec.be/jfed-documentation-5.9/index.html
https://github.com/librestack/lwmon
https://github.com/F0rth/mcast-tools

