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Abstract. The increasing availability of time series datasets enabled by
the diffusion of IoT architectures and the progress in the analysis of tem-
poral data fostered by Deep Learning methods are boosting the interest
in anomaly detection and predictive maintenance applications. The anal-
ysis of performance for these tasks relies on standard metrics applied to
the entire dataset. Such indicators provide a global performance assess-
ment but might not help a deep understanding of the model weaknesses.
A complementary diagnostic approach exploits error categorization and
ad-hoc visualizations. In this paper we present ODIN, an open source di-
agnosis framework for time series analysis that lets developers compute
performance metrics, disaggregated by different criteria, and visualize
diagnosis reports. ODIN is agnostic to the training platform and can be
extended with application- and domain-specific meta-annotations and
metrics with almost no coding. We show ODIN at work through two
time series analytics examples.

Keywords: time-series · anomaly detection · predictive maintenance ·
model evaluation · error diagnosis

1 Introduction

Time series datasets collect observations sampled at different times. Recording
can be continuous, when data are collected continuously in a given interval, or
discrete, when data are recorded at set time intervals [5]. Based on the number
of observations at each timestamp, the time series can be univariate or multivari-
ate. Univariate time series log values generated by a single sensor, whereas mul-
tivariate time series record signals from multiple sensors simultaneously. Time
series are used to study time-varying phenomena in many fields: in economy [6]
(e.g., stock price trends), in medicine [23] (e.g., the progress of health variables)
or in the industry [22] (e.g. the status or energy consumption of a machine).
Given a time series dataset, different tasks can be performed to predict a spe-
cific attribute or event at a given timestamp or assign a label to a particular
observation. The most common tasks can be summarized as follows:
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– Classification: assigning a class label to a time series [11]. An example of
this task is the classification of the human heartbeat to detect deceases [18].

– Forecasting: predicting future event/s. An example is to predict the future
energy consumption of an appliance based on historical data [1].

– Anomaly Detection: identifying deviations from normal behavior [9, 4, 24].
An example is the identification of anomalies in HVAC systems [3].

– Predictive Maintenance: predicting when a piece of equipment is likely
to fail and deciding which maintenance activity to perform to obtain a good
trade-off between maintenance frequency and cost [24]. This objective could
be pursued with classification approaches (identify if the appliance will fail
within n days) or regression ones (predict the Remaining Useful Life, RUL,
of an appliance).

The different tasks are usually evaluated by means of standard metrics such
as Mean Absolute Error (MAE) or Precision and Recall. While these metrics are
useful global indicators of the model performances, they provide little insight into
the weaknesses of the models. For example, predicting a false positive close to
a real anomaly is a less severe error than predicting it at a very distant time.
Furthermore, information collected but not used during the model training phase
could help understand the model performances. For example, in an industrial
application it could be interesting to analyze if the performances vary across
appliance versions or install locations. Similar analysis could be performed on
any other attribute not exploited for training but available at diagnosis time.

This paper introduces ODIN TS, the extension for anomaly detection and
predictive maintenance of the ODIN machine learning diagnosis tool. ODIN is
an open-source, Python-based, black-box framework for error diagnosis initially
conceived for generic classification and computer vision tasks. ODIN TS adds
the implementation of the most widely adopted metrics for the anomaly detec-
tion and predictive maintenance tasks and proposes new analyses for anomaly
detection, such as false positive error categorization. ODIN TS also enables the
inspection of the time series dataset and of the related predictions by means of
a visualizer with different functionalities.

The contributions of the paper can be summarized as follows:

– We summarize the most widely used metrics for time-series analysis.

– We describe their implementation in ODIN TS, an extensible framework for
time series analytics error diagnosis.

– We introduce the novel analysis and visualizations supported by ODIN TS
and exemplify them in an anomaly detection and a predictive maintenance
task.

The paper is organized as follows: Section 2 summarizes the most common
metrics used for time-series analysis, Section 3 describes the proposed framework
and its functionalities, Section 4 presents some examples of how the tool can be
employed and finally Section 5 concludes and provides insight into the future
work.
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Table 1. Metrics and analysis found in the literature for Time Series based on the
different tasks. The value “yes” is used to indicate the metric applies to the specific
task, whereas “n/a” is used to indicate the contrary.

Classification Forecasting
Anomaly
Detection

Predictive Maintenance
Classification Regression

Accuracy[15] yes n/a yes yes n/a

Precision[15] yes n/a yes yes n/a

Recall[15] yes n/a yes yes n/a

F1 Score[15] yes n/a yes yes n/a

Miss Alarm Rate[2] yes n/a yes yes n/a

False Alarm Rate[21] yes n/a yes yes n/a

NAB Score[19] n/a n/a yes n/a n/a

Mean Absolute Error (MAE)[14] n/a yes n/a n/a yes

Mean Squared Error (MSE)[14] n/a yes n/a n/a yes

Root Mean Squared Error (RMSE)[14] n/a yes n/a n/a yes

Matthews Coefficient[8] yes n/a yes yes n/a

Mean Absolute Percentage Error (MAPE)[14] n/a yes n/a n/a yes

Precision-Recall Curve[20] yes n/a yes yes n/a

ROC Curve[15] yes n/a yes yes n/a

Gain & Lift Analysis[17] yes n/a yes yes n/a

Residuals Analysis[26] n/a yes n/a n/a yes

Coefficient of Variation[14] n/a yes n/a n/a yes

Mean Absolute Ranged Relative Error
(MARRE)[14]

n/a yes n/a n/a yes

Mean Absolute Scaled Error (MASE)[14] n/a yes n/a n/a yes

Overall Percentage Error (OPE)[14] n/a yes n/a n/a yes

Coefficient of Determination R2[14] n/a yes n/a n/a yes

Rho-risk[14] n/a yes n/a n/a yes

Root Mean Squared Log Error (RMSLE)[14] n/a yes n/a n/a yes

Symmetric Mean Absolute Percentage Error
(sMAPE)[14]

n/a yes n/a n/a yes

2 Related work

The evaluation of inference models applies standard metrics to compute per-
formance indicators based on a comparison between the ground truth (what is
expected) and the model predictions. Table 1 presents a by-task summary of the
metrics and performance indicators found in the literature for time series analyt-
ics and provides a reference to the definition of each index. Different works have
focused on the evaluation of time series tasks by proposing novel metrics and
assessment procedures or by providing efficient implementations of the classical
indicators. In [19] the authors present a new benchmarking metric, Numenta
Anomaly Benchmark (NAB) score, which augments traditional indices by in-
corporating time explicitly so as to reward early detection and introduces the
concept of anomaly window. The work in [12] illustrates the benefits of decom-
posing performance metrics based on the characteristics of the observations. As
a use case a model to detect illicit use of computational resources is created and
assessed. The evaluation considers how the performances of the predictor changes
in servers with a specific attributes (low or high profile). Other contributions pro-
pose novel time series evaluation frameworks. The work [14] introduces Darts, a
python framework for handling time series which implements some state-of-the-
art machine learning methods and provides off-the-shelf a subset of the standard
metrics reported in Table 1. Another example is the RELOAD tool proposed in
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[28] to identify the most informative features of a dataset, run anomaly detec-
tion algorithms, and apply a set of evaluation metrics on the results. While both
tools aim to support training and evaluation with standard metrics, ODIN TS
extends the support to time series analytics with a black-box error diagnosis ap-
proach focused on the anomaly detection and predictive maintenance tasks. It
enables error categorization, predictions decomposition and visualizations. The
decomposition and visualization functionalities exploit meta-annotations of the
data set, i.e., features not used during model training that can contribute to the
interpretation of the model results.

3 The ODIN TS framework

The ODIN TS framework supports the development of predictive maintenance
and anomaly detection tasks enabling designers to evaluate standard metrics
on inputs and outputs grouped by meta-annotation values, perform error cate-
gorization, evaluate the confidence calibration error, and visualize a variety of
diagnostic reports. ODIN TS also includes a Visualizer module for the inspection
of the dataset and of the model predictions. ODIN TS is supported by the ex-
tension of classes in the Python-based ODIN framework, and publicly released1.

3.1 Dataset input and output formats

ODIN TS supports the import of time series data, of ground truth (GT) an-
notations and the output of inference results. The artifacts should follow the
guidelines common to most publicly available datasets (summarized in Table 2):

– Anomaly Detection Task

• Time Series data: a CSV file with the column timestamp of the obser-
vation and one additional column for each signal.

• Ground Truth: a JSON file containing a list of the timestamp in which
the anomalies appear.

• Predictions: a CSV file where the first column specifies the timestamp
and the following column(s) the confidence value, or the reconstructed/
predicted signal values.

– Predictive Maintenance Task

• Time Series data: a CSV with the columns observation id for the unique
identifier of the observation, unit id for the machine or appliance iden-
tifier, and one additional column for each signal.

• Ground Truth: it is embedded in the previous CSV file as an additional
column (label) with a Boolean value denoting if the machine is going to
fail within n timestamps (for classification) or with the RUL value (for
regression).

1 https://github.com/rnt-pmi/odin
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Table 2. Dataset format for ODIN time series. The value “n/a” indicates that a field
is not used.

Anomaly Detection Predictive Maintenance
Format Row identifier Signals/Values Format Row identifier Signals/Values

Time Series CSV timestamp a column per signal CSV
observation id,

unit id
a column per signal

Ground Truth JSON n/a
list of timestamps
when the anomalies

occur

embedded
in TS CSV

n/a
label column (class)

or
RUL column (regr)

Properties CSV timestamp a column per property CSV
observation id,

unit id
a column per property

Predictions CSV timestamp
confidence column or
a column per signal

CSV observation id
confidence column (class)

or
RUL column (regr)

• Predictions: a CSV file (named unit id.csv) for each machine or appli-
ance mentioned in the ground truth. The file contains one column with
the identifier of the observation and one column with the confidence
score (for classification) or with the RUL value (for regression).

In both cases if additional meta-properties are associated to the time series,
these are input as a CSV where the first column is the identifier of the time
series observation (timestamp or observation id) and there is one column per
meta-property.

3.2 Supported types of dataset analysis

ODIN TS supports the following types of analysis of the observations and of the
ground truth annotations.

Distribution of classes. For classification, a plot displays the percentage of
samples for each category.

Distribution of properties. A plot displays the percentage of the observations
associated with each property value. For example, it visualizes if an observation
is associated with a certain period of the day (morning, evening, night) or with
a specific type of anomaly (point, contextual or collective).

Stationariety analysis. A stationary time series is one whose properties do
not depend on the time at which the series is observed. The implementation of
ODIN TS uses the Augmented Dickey-Fuller statistical test [7].

Seasonality, trend and residual decomposition. These analyses expose
the repeating short-term cycles (seasonal) and the general movement over time
(trend) of the series [16]. Residuals include everything not captured by the previ-
ous two types of decomposition. Decomposition can be realized with an additive
model (addition of the decomposed values restores the original times series) or
with a multiplicative one (the original series is obtained by multiplying the de-
composed values).
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Table 3. Types of analysis in ODIN TS for the different tasks. The value “n/a” specifies
the type is not relevant for the specific task.

Anomaly Detection
Predictive Maintenance
Classification Regression

Summary report yes yes yes

Performance per threshold value yes yes n/a

Per property analysis yes yes yes

FP anomaly categorization yes n/a n/a

Error distance distribution yes n/a n/a

RUL variation distribution n/a n/a yes

Calibration analysis yes yes n/a

3.3 Supported types of prediction analysis

ODIN TS implements all the metrics of Table 1. To the best of our knowledge,
there is no other framework that offers all of them off-the-shelf. Based on the
implemented metrics, ODIN TS implements multiple performance reports and
types of prediction analysis, summarized in Table 3.

Summary report. A report that tabulates the results of all the metrics. The
total shows both the micro- and macro-averaged values: the first computes the
value without distinguishing the categories; the latter computes the metrics for
each class and then performs an unweighted mean.

Performance per threshold value. The classification metrics of interest are
computed and shown in a graph for each value of the confidence threshold.

Per property analysis. The values of the metrics of interest are decomposed
by property value and contrasted with the average across all the property values.
For example, the RUL value prediction or probability of failure in the next N
timestamps could be distinguished per appliance brand or installation location.

FP anomaly categorization. The analysis of incorrectly predicted anomalies
is supported, including their categorization into the following cases:

– Affected : an FP anomaly prediction is assigned to this category if its times-
tamp lies within an anomaly window. The anomaly window, introduced in
[19], is an interval centered at the GT anomaly timestamp. The window ex-
tension (i.e.between, number of points) is a customizable parameter set by
default to 10% of the data points divided by the number of anomalies.

– Continuous: this category contains FP anomalies that occur at contiguous
timestamps outside the anomaly window.

– Generic: all the other FP anomalies.

FP error distance distribution. A distribution plot of the distance (measured
as a number of timestamps) between a FP and the closest GT anomaly, color-
coded with the FP anomaly category (affected, continuous or generic).

RUL variation distribution. Given that a machine or appliance degrades over
time, the predicted RUL should decrease by 1 at each timestamp. In a perfectly
consistent model the following formula should apply:
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ŷt − ŷt−1 = −1 (1)

where ŷt is the predicted RUL at time t and ŷt−1 is the predicted RUL at
time t-1. This type of analysis plots the distribution of the differences of the
predicted RUL between the current cycle and the previous one so as to assess
the consistency of the model predictions.

Calibration analysis. It exploits the confidence histogram and the reliability
diagram [10]. Both plots assign the confidence values to buckets (e.g., 0-0.1, 0.1-
0.2, ..., 0.90-1) on the abscissa. The confidence histogram shows the percentage
of positive predicted samples that fall into each confidence range. The reliability
diagram indicates, for each confidence range, the average accuracy of the pos-
itive samples in that range. When a classifier is well-calibrated, its probability
estimates can be interpreted as correctness likelihood, i.e., of all the samples
that are predicted with a probability estimate of 0.6, around 60% should belong
to the positive class [13]. ODIN reports the Expected Calibration Error (ECE)
(Eq. 2) and the Maximum Calibration Error (MCE) (Eq. 3)

ECE =

M∑
m=1

Bm

n
acc(Bm)− conf(Bm) (2)

MCE = maxmϵ(1..M)|acc(Bm)− conf(Bm)| (3)

where n is the number of samples in the data set, M is the number of buckets
(each of size 1/M), and Bm denotes the set of indices of observations whose
prediction confidence falls into the interval m.

3.4 Supported visualizations

ODIN TS allows one to visualize the dataset and the corresponding model predic-
tions, if provided. The dataset visualization offers the following functionalities:

– Feature filter: one can choose which features to visualize of a multi-variate
dataset.

– Aggregation: data can be aggregated by minute, hour, day, week, month or
year and visualized at different granularity.

– Pagination: some datasets span a large interval. A pagination function with
custom data points size and step can be used to browse the dataset.

– GT display toggle: the GT annotations can be shown or hidden. For anomaly
detection, it could be a single point or an anomaly window. For predictive
maintenance, the class labels or the RUL values.

If the predictions are available, the following functionalities can be used:

– Predictions visualization and model comparison: the predictions are visual-
ized along with the GT. If multiple models are selected, their predictions are
color-coded.

– FP errors visualization: the FP predictions are displayed and, in the case of
FP anomalies, color-coded by their type.
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Fig. 1. False Positive distribution plot
Fig. 2. False positive distribution of
the distance of each FP from the clos-
est anomaly.

4 ODIN TS in action

This section exemplifies ODIN TS at work on an anomaly detection and a pre-
dictive maintenance case. The first example from the NAB datasets [19] uses
the ambient temperature system failure data which contains ≈ 5000 hourly tem-
perature measurements in an office and features two anomalies. To detect the
anomalies, an LTSM model was trained as in [4]. It comprises two LSTM mod-
ules with 4 hidden layers and 0.2 dropout rate. The training set includes the first
30% of the data (of which the 10% was used for validation) while the remaining
70% was been used for testing. The model was trained for 100 epochs, with a
batch size of 32 and an input window length of 30. The scenario is relatively
small given the few anomalies but is still useful to highlight some of the ODIN
TS capabilities. Figure 1 shows the distribution of the FP error categories. For
the computation of “affected” errors, an anomaly window of length 34 is used.
Most FPs are within a short distance from the real anomalies (“affected”, in
orange), which suggests that the anomaly is perceived before its reported occur-
rence time and continues to be perceived shortly after. Also “continuous” FPs
are more numerous than generic ones, which shows that the model tends to iden-
tify prolonged anomalies rather than instantaneous exceptions. Figure 2 shows
the distance of each FP from the closest anomaly to confirm that the “affected”
FPs are the closest to a GT anomaly. These errors are better appreciated in
Figure 3 in which the Visualizer helps understand the findings of the analysis
more intuitively.

To illustrate a case of predictive maintenance we use a NASA dataset about
turbofan engine degradation [25]. The dataset comprises samples from 100 en-
gines whose state is represented by 24 variables. The GT consists of the RUL at
each inter-observation interval (called cycle). The authors provide the dataset
in two splits: training (with 20631 observations among 100 machines) and test-
ing (13096 observations among 100 machines). In the testing split the cycles for
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Fig. 3. The ODIN TS Visualizer showing the actual data and the model predictions
color-coded by error type.

each machine range from 31 to 303. To predict the RUL at each cycle, a 2-layers
LSTM was employed, with 128 and 64 hidden layers respectively and the same
dropout rate of 0.3. The LSTM was trained for 10 epochs with a batch size of
150 and a window input length of 60 cycles.

The model has a RUL estimation error of 20 cycles (provided by the MAE)
and an MAPE of ≈ 0.17, which denote good performance. Further analysis
helps understand where the model can be improved. Figure 4 shows the residual
analysis and enables a visual interpretation of the deviation of the predictions
from the GT. Two plots report the predicted RUL on the X-axis. The Y-axis
of the left plot reports the GT RUL value, while the Y-axis of the right plot
reports the standardized difference between the prediction and the GT. Each

Fig. 4. Residuals analysis. The colors indicate the different engines.
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Fig. 5. RUL variation distribution: green bar represents a perfect variation of the RUL
estimation, the yellow ones an acceptable variation and the red one an inconsistent
prediction.

color represents a different engine. From the analysis, it can be seen that most
errors occur when the component is still in good conditions (with a RUL value
greater than 100), which highlights the inability of the model to predict the
engine remaining life in the long term. In particular, the highest predicted RUL
is 160, while the corresponding GT value is 260. This suggests that the model
is not able to learn high RUL values properly. In scenarios where analysts are
more interested in correctly predicting the RUL when the engine is close to a
failure, it makes sense to set a maximum GT RUL value to reduce the relevance
of large values during training [27].

Figure 5 illustrates the RUL variation distribution analysis, which shows that
the model predictions are not very consistent. The model sometimes increases the
estimated RUL by 10 cycles instead of decreasing it by 1. This finding can help
improve the prediction; for example, if the variation among consecutive cycles
is high, one might interpolate or average the RUL values of previous cycles to
mitigate the noise.

5 Conclusions

This paper has described the addition of time series analysis functions into a
black-box error diagnosis framework originally conceived for CV tasks. The novel
version of ODIN includes an ODIN TS module which supports performance di-
agnosis for two analytics tasks on time series: anomaly detection and predictive
maintenance. ODIN TS implements all the most widely adopted metrics for the
addressed tasks and introduces new types of analysis for anomaly detection,
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such as FP error categorization. ODIN TS also enables the inspection of the
dataset and of the predictions by means of a Visualizer with rich functionali-
ties. ODIN TS is implemented in Python and released as an open-source project
which developers can easily extend with their own metrics, reports and visu-
alizations. To conclude we have illustrated the tool at work on two use cases,
so as to give a glimpse of its utility. Future work will focus on extending the
implemented metrics and on supporting more tasks (e.g., time series classifica-
tion and forecasting). We also plan to extend the visualizer with novel functions
and to integrate a time series annotator for enriching the GT or generating it
from scratch (e.g., by annotating the anomalies in a dataset). Finally, we plan
to create automatic property extractors (e.g., for assigning to each anomaly the
proper type [9]).
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