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Omics and meta-omics technologies are powerful approaches to explore microorganisms’ functions, but
the sheer size and complexity of omics datasets often turn the analysis into a challenging task. Software
developed for omics and meta-omics analyses, together with knowledgebases encompassing information
on genes, proteins, taxonomic and functional annotation, among other types of information, are valuable
resources for analyzing omics data. Although several bioinformatics resources are available for meta-
omics analyses, many require significant computational expertise. Web interfaces are more user-
friendly, but often struggle to handle large data files, such as those obtained in metagenomics, metatran-
scriptomics, or metaproteomics experiments.
In this work, we present three novel bioinformatics tools, which are available through user-friendly

command-line interfaces, can be run sequentially or stand-alone, and combine popular resources for
functional annotation. UPIMAPI performs sequence homology-based annotation and obtains data from
UniProtKB (e.g., protein names, EC numbers, Gene Ontology, Taxonomy, cross-references to external
databases). reCOGnizer performs multithreaded domain homology-based annotation of protein
sequences with several functional databases (i.e., CDD, NCBIfam, Pfam, Protein Clusters, SMART,
TIGRFAM, COG and KOG) and in addition, obtains information on domain names and descriptions and
EC numbers. KEGGCharter represents omics results, including differential gene expression, in KEGG
metabolic pathways. In addition, it shows the taxonomic assignment of the enzymes represented, which
is particularly useful in metagenomics studies in which several microorganisms are present.
reCOGnizer, UPIMAPI and KEGGCharter together provide a comprehensive and complete functional

characterization of large datasets, facilitating the interpretation of microbial activities in nature and in
biotechnological processes.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Current high-throughput sequencing technologies produce
valuable information to characterize microbial communities in
terms of taxonomic composition and functional behavior. The bio-
logical interpretation of such big datasets benefits from easy-to-
use tools, that automatically convert raw data into comprehensive
information, ideally with minor input from users and reduced time
of analysis.

Generally, bioinformatics tools used for metagenomics (MG)
and other meta-omics analyses (e.g., metatranscriptomics (MT)
and metaproteomics (MP)) perform taxonomic and functional
annotations, thus linking microbial identity to function in complex
microbial communities. The most popular methodology for gene/
protein annotation consists in inferring function based on
sequence homology, using sequence alignment tools such as
BLAST, DIAMOND, lastal, or MMSeq2, among others [1]. These tools
find similarities between gene or protein sequences present in bio-
logical samples, and those in reference databases. The most popu-
lar reference databases for homology-based annotation are
UniProtKB [2] and RefSeq [3]. An advantage of using the UniProtKB
as the reference database for protein annotation is the possibility
of obtaining complementary information from several other data-
bases (e.g., BioCyc, BRENDA, PDB, RefSeq, CDD, KEGG, InterPro,
PRIDE, eggNOG, Ensembl), by using the UniProt ID mapping service
(available at https://www.uniprot.org/uploadlists/).
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In meta-omics experiments, it is common that the majority of
genes and proteins are not annotated, as a significant number of
genomes are not sequenced, or are poorly annotated, which results
in a significant amount of proteins identified as ‘‘putative” or ‘‘un-
characterized” [4]. Using sequence homology annotation, proteins
with low sequence similarity, but with the same function, may not
be annotated [4]. Allying sequence homology-based annotation to,
for example, annotation based in protein conserved domains max-
imizes function assignment and better reflects microbial functions
in complex communities [4,5]. A well-known protein domain data-
base is the Conserved Domains Database (CDD), which includes the
Cluster of Orthologous Groups of proteins (COG), and is a manually
curated collection of protein profiles and domains, represented as
Hidden Markov Models (HMMs) [6]. COG is one of the most used
resources for protein functional characterization and is recom-
mended by the Genome Standards Consortium to characterize
newly published genomes [4].

Web-based applications performing functional annotation
using the COG database as reference include WebMGA and the
NCBI’s Batch CD-search [7]. WebMGA performs annotation with
HMMER3, and PFAM and TIGRFAM databases as reference, and
with RPS-BLAST using COG, KOG and Protein Clusters databases
as reference [8]. The Batch CD-search service performs annotation
with the models present in the CDD database, which include PFAM,
TIGRFAM, Protein Clusters, NCBIfam, SMART, COG and KOG. Web-
based applications depend on webservers that limit the number of
sequences that can be submitted simultaneously, turning the pro-
cess slower, and requiring that the datasets are split before analy-
sis. Thus, using command-line tools may be advantageous, as it is
the case of DFAST, which uses GHOSTX or BLASTP for protein align-
ment against a reference database containing 124 well-curated
prokaryotic genomes, and RPS-BLAST and HMMER for protein
functional annotation based on the COG and TIGRFAM databases
[9]. Prokka, another command-line tool, uses BLAST+ blastp and
HMMER for annotation based in sequence and domain homology,
respectively, using a series of databases as reference, which
includes user-set databases, good-quality protein sequences from
UniProt and RefSeq, Pfam and TIGRFAM [10]. eggNOG-mapper
[11] and Mantis [12] are also command-line tools that perform
functional annotation by using HMMER and DIAMOND. eggNOG-
mapper annotates protein sequences with reference to the eggNOG
database, while Mantis performs annotation with a larger set of
reference databases, i.e., eggNOG, Pfam, KOfam, TIGRfam, and
NCBIfam [12].

Even though these tools provide diverse methods for gene/pro-
tein annotation, there is no tool allowing complete retrieval of
information from UniProt’s ID mapping, preceded by sequence
homology annotation. Also, none of these tools include all the data-
bases available at CDD, while avoiding the use of web servers.

Several other tools have been developed to facilitate the inter-
pretation of functional annotation results and represent the identi-
fied genes or proteins in metabolic pathways. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database provides
many functionalities to explore metabolic and regulatory networks
through interactions between enzymes and metabolites [13]. Most
resources are accessed through the KEGG Orthology database,
where for each function a K number, or a KEGG Ortholog (KO), is
assigned [13]. KEGG Pathway provides hundreds of hand-drawn
maps that represent different metabolic pathways, and that can
be customized to represent functions of interest, with these func-
tions identified by their KOs. This visualization helps to understand
the intricate relations between different enzymes [14].

Some tools have been developed to represent functions of inter-
est in KEGG’s metabolic maps. For example, KEGG Mapper offers a
collection of tools that connect the databases of KEGG, e.g., ‘‘Recon-
struct Pathway”, which maps KOs to PATHWAY’s maps, and ‘‘Color
1799
Pathway” which expands the mapping of KOs with the option to
color differently the identified boxes [15]. iPath3.0 is a tool that
produces interactive plots, where detailed descriptions of the path-
way reactions can be accessed by hovering the corresponding ele-
ments in the metabolic maps [16]. The Pathway Projector tool
provides a Zoomable User Interface that allows the visualization
of the entire global metabolic map of KEGG [17]. PathCase is
another web service, which integrates information from several
different sources, including KEGG and BioCyc, to build custom
functional maps. These custom maps allow PathCase to provide
querying for different levels of detail (at the organisms, biochem-
istry, molecular or genetic level) directly on the maps [18].
SQMTools is an R package that analyzes results from SqueezeMeta,
a MG and MT data analysis pipeline, and can be used to represent
differential gene expression between two samples through a color
gradient [19]. KEGGprofile is an R package that represents expres-
sion profiles in KEGG maps [20]. MEGAN, a popular MG annotation
pipeline, also represents results in KEGG Pathways [21]. However,
there is no automated tool that, from a simple table of information,
represents the functional characterization of MG/MT/MP datasets
in metabolic pathways.

In this work, we present three command-line bioinformatics
tools, UPIMAPI, reCOGnizer and KEGGCharter, developed for func-
tional annotation with multiple databases, and representation of
meta-omics data in metabolic pathways. After performing
sequence-based annotation, UPIMAPI allows to obtain information
on UniProt IDs, and after performing domain-based annotation
with several databases, reCOGnizer obtains taxonomic classifica-
tions, EC numbers, and COG categories. Finally, KEGGCharter repre-
sents functional potential, taxonomy and differential gene
expression in KEGG metabolic maps. All these functionalities are
accessed through completely automated workflows.
2. Methods

2.1. Development of UPIMAPI tool for taxonomic and functional
annotation

UPIMAPI (UniProt’s Id Mapping through API) was developed
with Python 3 and combines automatic construction of reference
databases, sequence-based annotation with DIAMOND, and retrie-
val of information from UniProt (Fig. 1). UPIMAPI constructs refer-
ence databases in three different ways (Fig. 1, step 1), which should
be chosen by the user through the ‘‘--database” parameter: if ‘‘uni-
prot” is chosen, UPIMAPI will download the entire UniProt data-
base, and use it as the reference; similarly, if ‘‘swissprot” is
chosen, the SwissProt database will be downloaded and used;
finally, if ‘‘taxids” is chosen, a selection of tax IDs must be inputted
through the ‘‘--taxids” parameter, and UPIMAPI will download the
reference proteomes corresponding to those tax IDs through Uni-
Prot’s Taxonomy database and use it as the reference database. A
custom database can also be inputted directly to UPIMAPI in FASTA
or DMND (DIAMOND binary) format, but it must contain UniProt
IDs in the headers, in the right format (e.g., ‘‘sp|Q74FU6|SFRA_GE
OSL”). UPIMAPI also downloads the versions of the UniProt Knowl-
edgebase, the UniProtKB/SwissProt, and the UniProtKB/TrEMBL.

Annotation with DIAMOND takes as input the query protein
sequences (in FASTA format) and the reference database (Fig. 1,
step 2). An additional perk of UPIMAPI is the automatic determina-
tion of the optimal parameter values for running DIAMOND, i.e.,
the number of threads, block size, and index chunks – with the last
two increasing annotation speed at the cost of higher memory
usage. The automatic number of threads is the number of threads
available minus 2, the automatic block size is set as the amount of
memory available in Gb divided by 20, and the automatic number



Fig. 1. Workflow of UPIMAPI, which includes the first step of sequence-based annotation with DIAMOND and a second step where functional information is obtained from
the UniProtKB, including cross-references to other databases. Green icons represent input files (i.e., FASTA protein sequences, reference database, and UniProt IDs either
through a BLAST result file, a TXT file, or directly through the CLI), orange icons represent intermediate files (BLAST result file), and blue icons represent output files, i.e., TSV
files containing information from UniProtKB (including cross-references to several databases), and FASTA files containing the annotated protein sequences. Database logos
identify some databases from which information can be obtained through UPIMAPI. The pink box identifies the different possibilities to submit the IDs to the UniProt ID
mapping.
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of index chunks is set as 1, 2, 3, or 4 depending on if the block size
is over 3, between 2 and 3, between 1 and 2, or 1 or less, respec-
tively. The default E-value is 1e-3, determined as described in SI
(Section 1.6). If the user wants to manually alter these parameters,
this can be done directly through the CLI. UniProt IDs are obtained
after annotation with DIAMOND (Fig. 1, step 2) and are automati-
cally submitted to the UniProt ID mapping (Fig. 1, step 3).

Mapping of IDs follows two different implementations: (a)
mapping through UniProt’s API, using urllib to sequentially submit
batch requests, and parsing and storing the information obtained
in local storage; and (b) local mapping of SwissProt IDs (to use if
the input data have SwissProt IDs), that does the download of
the SwissProt’s DAT file from UniProt’s FTP site (Table S2), which
is then parsed and queried with BioPython [22]. The information
obtained with this last option is parsed to be as close as possible
to the information obtained through the API and then it is also
stored locally. UPIMAPI offers the possibility of submitting UniProt
IDs directly to the ID mapping, skipping the annotation step, i.e.,
outfmt6 files resulting from sequence alignment, either with DIA-
MOND (without using UPIMAPI) or BLASTp, TXT files with UniProt
IDs separated by commas, or UniProt IDs directly inputted through
the command line (Fig. 1, pink box). Requests to the Uniprot API
are performed by using the following default parameters: 10,000
IDs per request, and 3 s between requests. The user can also choose
the fields of information to be retrieved from the UniProtKB
through the command line. Otherwise, UPIMAPI will use a default
list of fields to be outputted (Table S1). UPIMAPI organizes the
information in ‘‘columns” and ‘‘databases”: ‘‘Columns” correspond
to functional, taxonomic, expression, structural, and additional
information stored at UniProt (e.g., ‘‘Gene names”, ‘‘Protein
names”, ‘‘EC number”, ‘‘Pathway”, ‘‘Gene ontology (GO)”, ‘‘Taxo-
nomic lineage”); ‘‘Databases” correspond to cross-references
between UniProt and external databases, such as BioCyc, BRENDA,
PDB, RefSeq, CDD, KEGG, InterPro, PRIDE, eggNOG, Ensembl, among
others. These parameters may be changed by the user if necessary,
through the command line. Examples and explanations of com-
mands to install and run UPIMAPI are given in SI (Section 1.4.1).

2.2. Development of reCOGnizer tool for domain-based functional
annotation

reCOGnizer combines HMM databases construction with
domain-based annotation and retrieves the information obtained
from the annotation with different databases (Fig. 2).
1800
For database construction, the Position Specific Scoring Matri-
ces (PSSMs) are first retrieved from CDD through NCBI’s FTP site,
and then two different workflows can be followed: (a) a taxonomic
workflow (Fig. 2, step 1a), which is applied to Pfam, NCBIfam, Pro-
tein Clusters, TIGRFAM, and COG databases, and which splits the
SMP files by the respective taxonomy assigned as detailed in the
hmm_PGAP and NOG.members relation tables (Table S2); and (b)
a more general workflow (Fig. 2, step 1b), applied to all databases,
which builds the databases in a similar structure as the one avail-
able in the ‘‘little_endian” directory (https://ftp.ncbi.nlm.nih.gov/
pub/mmdb/cdd/little_endian/), containing all the SMPs of each
database. These databases are built using the makeprofiledb tool
with default parameters. reCOGnizer also downloads the version
of the CDD database. Domain-based annotation is performed with
Reverse PSI-BLAST (RPS-BLAST), a variant of PSI-BLAST [23], and
may follow two different workflows, depending on the availability
of taxonomic information. A taxonomic file can be used to detail
the tax IDs for each protein and is specified with the parameter
‘‘--tax-file”, while the column with the proteins IDs (as they are
in the FASTA file) and corresponding tax IDs must be specified with
the ‘‘--protein-id-col” and ‘‘--tax-col” parameters, respectively. In
this case, reCOGnizer will apply the taxonomic workflow for anno-
tation with Pfam, NCBIfam, Protein Clusters, TIGRFAM, and COG
databases. For this purpose, reCOGnizer splits the FASTA file into
the different tax IDs and then, for each tax ID specified in the tax-
onomic file, reCOGnizer retrieves the tax IDs of the entire lineage
(from the taxonomy.rdf file, Table S2) and uses the partial data-
bases corresponding to those tax IDs together as reference
(Fig. 2, step 3a). A more general workflow, which annotates all
sequences against all HMMs present in the database, is applied
for annotation with CDD, KOG and SMART databases, and for the
remaining databases if taxonomic information is not provided by
the user. In this taxonomy-independent annotation workflow, the
entire databases are used as the reference for annotation (Fig. 2,
step 3b). Before the annotation step, reCOGnizer splits the FASTA
files into the number of threads to be used to achieve paralleliza-
tion, which increases the speed of the analysis (Fig. 2, step 2).
The default E-value for annotation is 1e-3, determined as described
in SI (Section 1.6), which can be changed through the CLI. There is
also the option of annotating only with a specified set of databases,
by using the ‘‘--databases” parameter (e.g., --databases COG,Pfam –
to annotate only with COG and Pfam databases).

The annotation results are obtained in ASN (outfmt11) reports,
which are inputted to the rpsbproc tool for multi-domain solving

https://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/little_endian/
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Fig. 2. Workflow of reGOGnizer: construction of databases (step 1); domain-based annotation of inputted protein sequences with the reference databases (step 3), after
splitting the input sequences into multiple FASTA files (step 2); post-processing of annotation results (steps 4 and 5); interconversion of CDD IDs to other databases IDs (step
6) and retrieval of information from several databases, by using relational tables (step 7); output the annotation information in TSV, Excel and HTML report files (step 8). Web
icons represent resources retrieved from the web, specifically the domain models from CDD and the relational tables from NCBI, COG, eggNOG, and SMART. The green icons
represent the input files (FASTA protein sequences and the file containing the taxonomic information), the orange icons represent intermediate files generated during the
analyses (input protein sequences split into multiple FASTA files and the annotation results in ASN and TSV formats), and the blue icons represent the output files.
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(Fig. 2, step 4). rpsbproc processes the annotation results providing
a non-redundant list of conserved domains that do not overlap in
the query sequences, which bypasses the problems of considering
only the first annotation for proteins with several domains for sev-
eral functions. ASN reports are converted into TSV (outfmt6)
reports, with the blast_formatter tool (Fig. 2, step 5), to facilitate
the visualization of the annotation results and respective metrics.
At the end of the workflow, CDD IDs, obtained from the annotation
in the previous steps, are converted to the IDs of the other data-
bases (i.e., Pfam, NCBIfam, Protein Clusters, TIGRFAM, SMART,
CDD, COG, and KOG databases) using the ‘‘cddid.tbl” relational
table (Fig. 2, step 6). From this relational table, a domain descrip-
tion from CDD is also obtained.

Once the protein IDs from the 8 databases are obtained, addi-
tional functional information is collected (Fig. 2, step 7), namely:
COG functional categories and protein descriptions, by ID mapping
of COG and KOG IDs with ‘‘cog-20.def.tab” and ‘‘kog” files, respec-
tively; COG general functional categories, by mapping the obtained
categories with ‘‘fun-20.tab”; EC numbers and KOs, by mapping
COG IDs with eggNOG’s (Huerta-cepas et al., 2019) files ‘‘NOG.
members.tsv” and ‘‘egg-nog4.protein_id_conversion.tsv”; domain
names, EC numbers and taxonomic classifications, obtained by
mapping NCBIfam, Pfam, Protein Clusters and TIGRFAM IDs with
the ‘‘hmm_PGAP.tsv” file; and SMART descriptions, by mapping
SMART IDs with the ‘‘descriptions.pl” file.

Web locations of relational tables used by reCOGnizer, and the
CDD tarball containing the HMM models of the databases, are
given in Table S2.

Regarding the assignment of EC numbers to COG IDs, these are
only assigned when at least 50 % of the EC numbers that match the
1801
COD ID are concordant. On the other hand, all the KOs assigned are
listed in the final output.

Examples and explanations of commands to install and run
reCOGnizer are given in SI (Section 1.4.2).

2.3. Development of KEGGCharter for visualization of functional
annotation results in metabolic maps

KEGGCharter is a command-line tool that accesses the follow-
ing KEGG Pathway’s functionalities: the interconversion of KEGG
IDs, KOs and EC numbers, and the representation of KOs in KEGG
metabolic maps, together with taxonomy and gene expression
information.

The input to KEGGCharter is a table, in either TSV or Excel for-
mat (Fig. 3), containing:

� a column with either KEGG IDs, KOs, or EC numbers;
� columns with either MG and/or MT quantification, i.e., abun-
dance of different taxa in MG datasets and gene expression
analysis, respectively. If no quantification is available, the ‘‘--i
nput-quantification” parameter may be used to input a place-
holder quantification, assigning a value of 1 to all rows;

� a column with taxonomic information, for the MG workflow. If
no taxonomic classification is available, the ‘‘--input-taxonomy”
parameter may be used to input a value directly from the com-
mand line.

KEGGCharter’s workflow begins with the interconversion of
input IDs (from KEGG IDs or EC numbers to KOs and from KOs to
EC numbers) (Fig. 3, step 1). These interconversions are performed

http://descriptions.pl


Fig. 3. Workflow of KEGGCharter, which begins with the interconversion between KEGG IDs, KOS, and EC numbers, followed by the retrieval of KGMLs and EC number to box
relation from the KEGG API, and finally by the generation of metabolic maps representing the genomic potential (MG analysis) or the gene expression (MT analysis)
information. The web icon represents the retrieval of KGMLs and EC number to box relations; the green file icon represents the input file containing KEEG IDs, KOs, or EC
numbers, together with quantification and taxonomic information; and the blue file icons represent the two outputs from KEGGCharter: TSV files with tables containing the
IDs obtained from the interconversion step, and the KEGG metabolic maps in PNG format, containing taxonomic and quantitative information. For each map, a KGML file is
obtained, which is the XML description of the metabolic map. A CSV file is also built by KEGGCharter, where the KOs of each box are stored.
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to obtain as much information as possible from the KEGG database.
The interconversions between IDs use the ‘‘KEGG.REST.kegg_link”
method of BioPython [22]. Results from these interconversions
are outputted in TSV format (Fig. 3, step 4a). The KOs obtained
are then mapped in KEGG metabolic maps.

The list of metabolic maps to be represented can be inputted
through the command line, otherwise, a default selection of maps
is used (Table S3). If the user wants to know which maps are avail-
able, the following command can be run: keggcharter.py --show-
available-maps.

For each metabolic map, KEGGCharter will obtain information
necessary for mapping function into maps and store it into two
files: a Kegg Markup Language (KGML) file with the detailed
description of the map pulled directly from KEGG, and a Comma-
Separated Values (CSV) file relating KOs to corresponding boxes
in the maps, built by extracting the information of EC numbers
to boxes from the KGML and converting those EC numbers to
KOs (Fig. 3, step 2). KGMLs are obtained with the ‘‘KEGG.REST.ke
gg_get” method of BioPython.

The main feature of KEGG metabolic maps is the presence of
boxes representing reactions. The maps and the corresponding
boxes are described in XML format on KGML files, obtained in step
2. In these KGMLs, each box contains a list of orthologs, which are
the corresponding KOs. KEGGCharter identifies the specific boxes
to manipulate, superimposes each box with a new box, and col-
orizes according to the information to be represented. The label
of these boxes is always an EC number, in the original version of
the maps, but when new boxes are superimposed, that information
is hidden. KEGGCharter retrieves these EC numbers by converting
the KOs of each box (obtained from the KGML) to EC numbers
and storing that information in CSV files. When generating new
1802
maps, for each box the most abundant EC number is set as the label
for the new boxes.

It is also important to note that a given KEGG ID can correspond
to more than one KO, which can lead to an overestimation of the
protein expression. To overcome this, KEGGCharter determines
howmany KOs are assigned to each protein and divides the protein
quantification by the number of KOs, before drawing the maps.

Representation of (meta)genomics and (meta)transcriptomics
data in KEGGCharter follows two distinct workflows depending
on the type of analysis, i.e., MG or MT analysis (Fig. 3, step 3). Rep-
resentation of MG results distinguishes between different taxa by
attributing a different color to each taxon. By default, KEGGCharter
represents the 10 most abundant microorganisms from the meta-
genome in the metabolic maps. Nevertheless, a different number
of microorganisms can be represented simultaneously by inputting
the desired number in the ‘‘--number-of-taxa” parameter. In addi-
tion, the user might select the specific taxa to be represented by
using the ‘‘--taxa-list” parameter. For example, if the user intends
to compare the genomic potential between two microorganisms
present in the metagenome, only their taxa names should be indi-
cated. Because this representation is made by changing the color of
the boxes in metabolic maps, if different taxa have KOs corre-
sponding to the same box, the new box will be split between the
colors of the different corresponding taxa. On the other hand, rep-
resentation of MT results describes the gene expression of the com-
munity as a whole. MT quantification is first summed by KO, and
for each box in each metabolic map, KEGGCharter will sum the
quantifications of the several KOs mapping to that box and repre-
sent that quantification with a colored gradient. The new boxes
will be divided by the number of samples represented, up to a
maximum of 10 samples.

http://keggcharter.py
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KEGGCharter obtains information from KEGG on the correspon-
dence of different taxa to specific functions and specific maps. This
avoids the representation of functions associated with organisms
that are not able to perform those functions, which can happen
when using KOs for mapping functions, since KOs are specific to
functions but not to taxa. Metabolic maps are outputted in PDF for-
mat with the ‘‘KEGG.KGML.KGML_pathway.to_pdf” method of
Biopython. The colors for both different taxa and different levels
of expression are obtained with matplotlib, which is also used to
export the legends explaining the color codes as PNG files.
pdftoppm (available at https://man.archlinux.org/man/pdftoppm)
is used to convert the colorized metabolic maps from PDF to PNG
format, and PIL is used to resize the images and join the metabolic
maps with the respective labels, outputting the joined information
in PNG format (Fig. 3, steps 4b and 4c).

KEGGCharter can be run using the outputs from UPIMAPI or
reCOGnizer (Fig. 4). The commands to automatically perform this
analysis are given in SI (Section 1.4.3).
2.4. Benchmarking methodology

UPIMAPI (version 1.6.4) and reCOGnizer (version 1.6.4) were
compared with state-of-the-art functional annotation tools,
namely Prokka (version 1.14.6), DFAST (version 1.2.15), Mantis
(version 1.4.5) and eggNOG-mapper (version 2.1.6). For that pur-
pose, different datasets were used, one real metagenomics dataset
(described in SI, Section 1.5.3), and five datasets each one consist-
ing of seven genomes, obtained from Ensembl Genomes database
(SI, Section 1.5.1), and hereafter named as artificial metagenomes
(artificial metagenome #1 to #5). The real dataset was used to
evaluate the performance regarding the analysis of real metage-
nomics data, while the artificial metagenomes were used to deter-
mine the accuracy of the annotation by calculating quality metrics.

Because all the functional annotation tools run for benchmark-
ing, i.e., Mantis, eggNOG-mapper, Prokka and DFAST, combine
sequence and domain homology annotation, the results of UPI-
MAPI (performing sequence homology annotation) and reCOGnizer
(performing domain homology annotation) were combined for
comparative purposes, i.e., the proteins without EC number or
orthologous groups (OGs) assigned by UPIMAPI received the anno-
tation obtained with reCOGnizer.
Fig. 4. Interconnection between UPIMAPI, reCOGnizer and KEGGCharter. UPIMAPI
and reCOGnizer annotate protein sequences inputted in FASTA format and obtain
functional information, i.e., KEGG IDs, KOs, and EC numbers, that can be used as
input for KEGGCharter, which represents proteins in KEGG metabolic maps. Blue
file icons represent the main output files obtained by the three tools.
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All tools were run with default parameters, with the following
exceptions that were necessary to run the tools in the most similar
conditions: (1) the UniProt database was added to the reference
databases used to run Mantis; (2) Prokka was run using the ‘‘--
metagenome‘‘ parameter; and (3) protein sequences from the
organisms in the artificial metagenomes were removed from the
UniProt database, to guarantee that the datasets were independent
of the reference database (SI, Section 1.5.1).

Prokka and DFAST used as input the reference genomes (in the
case of the artificial metagenomes) and the contigs (in the case of
the real metagenome) because these tools perform their gene call-
ing before functional annotation. On the other hand, UPIMAPI,
reCOGnizer, Mantis and eggNOG-mapper used protein FASTA files
as input, containing protein sequences obtained after gene calling
(with Prodigal, using default parameters) of the reference genomes
and the contigs, in the case of the artificial metagenomes and the
real metagenome, respectively.

The quality metrics precision, recall and F1 score, calculated as
described in SI (Section 1.6), were used to assess the performance
of the tools. The number of proteins with OGs and EC number
assigned with each one of the annotation tools was also taken into
account to perform the comparison.

All analyses were run on a #116-Ubuntu SMP kernel, with
126 Gb of memory and 16 threads.
3. Results

The source codes of UPIMAPI, reCOGnizer and KEGGCharter are
available at GitHub at https://github.com/iquasere/UPIMAPI,
https://github.com/iquasere/reCOGnizer, and https://github.com/
iquasere/KEGGCharter, respectively.
3.1. Functional annotation with UPIMAPI and reCOGnizer

UPIMAPI provides a Command Line Interface (CLI) to perform
protein sequence annotation and to retrieve functional information
from the UniProtKB, through UniProt’s ID mapping service [24].
The annotation step runs local sequence alignment with DIAMOND
(Fig. 1, step 2) against a reference database that can be automati-
cally downloaded (Fig. 1, step 1). In the UniProt ID mapping step,
UPIMAPI uses the UniProt API for obtaining diverse information
about the proteins/IDs analyzed (Fig. 1, step 3). This is an iterative
process, repeated until functional information is acquired for the
highest number of UniProt IDs. As a result, complete information
assigned to UniProt IDs, including those from cross-reference data-
bases linked to UniProtKB and taxonomic assignment, is obtained.

Two types of output can be obtained with UPIMAPI: the protein
sequences, in FASTA format, or the data available at the UniProt
knowledgebase, in a TSV table (Fig. 1). Besides these two main out-
puts, files resulting from annotation with DIAMOND are also gen-
erated, i.e., an outfmt6 file with the annotation result and
metrics of the sequence alignments, and a FASTA file containing
query sequences that were not annotated (because they did not
show significant homology to those in the reference database).

In addition to the ID mapping through the UniProt’s API, UPI-
MAPI performs the local ID mapping of SwissProt IDs. The informa-
tion outputted after local ID mapping is organized differently from
the output obtained through the UniProt’s API, and UPIMAPI
resolved this issue by parsing the information into the formats of
the API for almost all columns. However, ID mapping with UPIMAPI
is still largely dependent on UniProt’s API for mapping TrEMBL IDs,
and this information could potentially be obtained with a fully
local method. Nevertheless, we noticed that local TrEMBL ID map-
ping would require the storage of �1 Tb of data, which could be a
problem for the users who have no access to servers with enough

https://man.archlinux.org/man/pdftoppm
https://github.com/iquasere/UPIMAPI
https://github.com/iquasere/reCOGnizer
https://github.com/iquasere/KEGGCharter
https://github.com/iquasere/KEGGCharter
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space. UPIMAPI retrieves the same information as UniProt’s ID
mapping web service but can handle millions of IDs with a single
command, which is a major improvement for the analysis of meta-
omics datasets (containing typically hundreds of thousands of IDs).
Comparatively, through the UniProt’s API, a maximum of 50,000
protein IDs can be uploaded at a time (from https://www.uni-
prot.org/help/uploadlists).

While UPIMAPI performs sequence-based functional annota-
tion, reCOGnizer performs domain-based annotation of large data-
sets (protein FASTA files), using as reference the following
databases: CDD, COG, KOG, NCBIfam, Protein Clusters, Pfam,
SMART, and TIGRFAM. The general steps of reCOGnizer are the fol-
lowing: database construction for general and taxonomic work-
flows (Fig. 2, step 1), sequence alignment with RPS-BLAST (Fig. 2,
step 2), interconversion of CDD IDs to other database IDs (Fig. 2,
step 6), retrieval of information from databases (Fig. 2, step 7)
and generation of output reports (Fig. 2, step 8).

For each database, reCOGnizer generates a TSV report, contain-
ing the BLAST metrics and annotation results obtained with RPS-
BLAST, as well as extra information including functional sites and
motifs, protein superfamilies, domain names, and descriptions,
EC numbers, taxonomic classifications, and KOs (Fig. 2, step 8a).
All these reports are gathered into general reports in TSV and Excel
formats (Fig. 2, step 8b). For the results obtained from COG and
KOG databases, another report is generated, quantifying the occur-
rence of each COG/KOG and organizing the results by the respec-
tive COGs’ categories. This information is represented in
interactive pie charts (Krona plots) (Fig. 2, step 8c).

Some of the IDs attributed by reCOGnizer, i.e., those from NCBI-
fam, Pfam, Protein Clusters and TIGRFAM, have taxonomy
assigned, and this is the taxonomy that is reported by reCOGnizer.
Sequences of the proteins annotated are also included in the
reports, but to avoid considerably larger outputs when analyzing
big datasets, reCOGnizer provides an option ‘‘--no-output-sequen
ces” to exclude this information.

The analysis of the artificial metagenomics dataset #3 is given
as example. UPIMAPI annotated 26,634 proteins from a total of
26,920 proteins, i.e., 99 % of the total proteins (Table 1), fromwhich
14 % were assigned to a KEGG ID and 17 % were assigned to an EC
number (Table 1, Table S5). These results correspond to the infor-
mation present in the UniProtKB.

After the annotation with UPIMAPI, 15 to 21 % of the proteins
from the artificial metagenomes were identified as uncharacter-
ized (Table 1). The high number of uncharacterized proteins makes
it more difficult the evaluation of the overall functional potential of
Table 1
Results obtained from the analysis of the artificial metagenomes with UPIMAPI.

Number of proteins and respective percentage a

Artificial metagenome
#1

Artificial metagenome
#2

Genes identified after gene
calling

23,283 22,817

Annotated proteins 22,489
(96.59 %)

22,397
(98.16 %)

Unique UniProt IDs 21,485
(92.28 %)

22,118
(96.94 %)

Uncharacterized proteins 4333
(18.61 %)

3608
(15.81 %)

Proteins with assigned KEGG ID 2931
(12.59 %)

1654
(7.25 %)

Proteins with assigned EC
number

4205
(18.06 %)

4349
(19.06 %)

Proteins with assigned OG 493
(2.12 %)

1318
(5.78 %)

a The percentages were calculated relatively to the number of proteins identified by g
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microbial communities. In this study, domain-based annotation
with reCOGnizer increased significantly the functional information
retrieved from the artificial metagenome (Table 2, Table S9).
Table 2 contains the functional categories obtained by reCOGnizer
for proteins identified by UPIMAPI as ‘‘uncharacterized” in the arti-
ficial metagenomes. reCOGnizer could obtain information for
19.44 ± 0.97 % (excluding the ones annotated as ‘‘poorly character-
ized” and with ‘‘no COG ID”) of the proteins annotated as ‘‘unchar-
acterized proteins” by UPIMAPI.

In total, reCOGnizer retrieved functional information for
83.76 ± 2.00 % of the proteins inputted (Table 3, Table S9), and
EC numbers were obtained for 41.00 ± 1.57 % of the proteins, con-
sidering the analysis of all the artificial metagenomes. Our results
clearly show that these two methodologies (i.e., sequence- and
domain-based annotation) are complementary and useful to
extract the most information possible from the analyzed datasets.
Fig. 5 shows the default interactive Krona plot generated by
reCOGnizer, representing the functional characterization of the
artificial metagenome #3, which is organized by COG IDs and
respective COG categories.

3.2. Representation of metabolic functions in KEGG maps with
KEGGCharter

KEGGCharter provides an elegant view of (meta)genomics and
(meta)transcriptomics/ (meta)proteomics results, by showing the
functions each taxon can perform, and by showing the gene/pro-
tein expression of the collective community. This tool is useful to
visualize, in metabolic maps, the functions that microbial commu-
nities can perform (i.e., the genomic potential of microbial commu-
nities, obtained by metagenomics studies) and to identify the
microorganisms inside the communities that can perform that
function. In addition, KEGGCharter can represent gene expression,
the result of (meta)transcriptomics and (meta)proteomics studies,
by showing the metabolic functions expressed in heatmaps.

KEGGCharter accesses the following KEGG Pathway’s function-
alities: the interconversion of KEGG IDs, KOs, and EC numbers
and the representation of taxonomy and gene expression in KEGG
metabolic maps. To show the functionalities of KEGGCharter, MT
datasets were simulated as described in SI, Section 1.5.2, to simu-
late a gene expression experiment. The TSV report obtained with
UPIMAPI, together with gene expression quantification data
obtained from MT analysis, was used as the input for KEGGCharter
(Fig. 6). Comparative gene expression maps produced by
KEGGCharter show the quantification of each function for the
Artificial metagenome
#3

Artificial metagenome
#4

Artificial metagenome
#5

26,920 28,908 41,511

26,634
(98.94 %)

27,912
(96.55 %)

40,865
(98.44 %)

26,364
(97.93 %)

27,066
(93.63 %)

40,655
(97.94 %)

4073
(15.13 %)

6129
(21.2 %)

7681
(18.5 %)

3861
(14.34 %)

1102
(3.81 %)

1660
(4.0 %)

4602
(17.1 %)

4202
(14.54 %)

6434
(15.5 %)

5014
(18.63 %)

356
(1.23 %)

1185
(2.85 %)

ene calling.

https://www.uniprot.org/help/uploadlists
https://www.uniprot.org/help/uploadlists


Table 2
Number of proteins assigned to COG categories by reCOGnizer that were classified as ‘‘uncharacterized” by sequence-based annotation with UPIMAPI.

# of proteins

Artificial
metagenome #1

Artificial
metagenome #2

Artificial
metagenome #3

Artificial
metagenome #4

Artificial
metagenome #5

CELLULAR PROCESSES AND
SIGNALING

Cell cycle control, cell division,
chromosome partitioning

70 24 52 108 72

Cell motility 29 9 7 46 22
Cell wall/membrane/envelope
biogenesis

81 52 41 171 99

Cytoskeleton 9 0 0 5 14
Defense mechanisms 41 38 27 65 42
Extracellular structures 34 7 9 61 28
Intracellular trafficking, secretion, and
vesicular transport

20 13 14 40 22

Mobilome: prophages, transposons 16 12 11 6 18
Posttranslational modification, protein
turnover, chaperones

51 19 17 73 53

Signal transduction mechanisms 216 29 46 272 151
INFORMATION STORAGE

AND PROCESSING
RNA processing and modification 0 1 0 0 1
Replication, recombination and repair 23 9 11 23 31
Transcription 43 43 33 66 79
Translation, ribosomal structure and
biogenesis

22 16 14 12 24

METABOLISM Amino acid transport and metabolism 12 24 18 26 54
Carbohydrate transport and
metabolism

13 26 26 31 77

Coenzyme transport and metabolism 28 27 14 38 27
Energy production and conversion 26 21 10 41 40
Inorganic ion transport and metabolism 35 19 31 35 68
Lipid transport and metabolism 14 18 7 35 52
Nucleotide transport and metabolism 4 3 7 11 17
Secondary metabolites biosynthesis,
transport and catabolism

3 3 30 12 33

No COG ID – 3715 3192 3655 5303 6764
POORLY CHARACTERIZED Function unknown 84 86 67 59 175

General function prediction only 205 81 102 296 183

Table 3
Number of proteins annotated by reCOGnizer, with different reference databases, and respective percentages relatively to the total number of proteins in the artificial
metagenomes, for E-value = 0.001.

# of proteins annotated with reference to the databases included in reCOGnizer

CDD NCBIfam Protein
Clusters

TIGRFAM Pfam Smart COG

Artificial metagenome #1 Annotated proteins 11,119
(47.76 %)

4108
(17.64 %)

12,728
(54.67 %)

10,162
(43.65 %)

18,332
(78.74 %)

5362
(23.03 %)

17,292
(74.27 %)

Proteins with assigned EC number 0
(0.0 %)

73
(0.31 %)

3795
(16.3 %)

2743
(11.78 %)

30
(0.13 %)

0
(0 %)

8199
(35.21 %)

Artificial metagenome #2 Annotated proteins 11,119
(48.73 %)

4108
(18.0 %)

12,728
(55.78 %)

10,162
(44.54 %)

18,332
(80.34 %)

5362
(23.5 %)

17,292
(75.79 %)

Proteins with assigned EC number 0
(0.0 %)

73
(0.32 %)

3795
(16.63 %)

2743
(12.02 %)

30
(0.13 %)

0
(0 %)

8199
(35.93 %)

Artificial metagenome #3 Annotated proteins 11,119
(41.3 %)

4108
(15.26 %)

12,728
(47.28 %)

10,162
(37.75 %)

18,332
(68.1 %)

5362
(19.92 %)

17,292
(64.23 %)

Proteins with assigned EC number 0
(0.0 %)

73
(0.27 %)

3795
(14.1 %)

2743
(10.19 %)

30
(0.11 %)

0
(0 %)

8199
(30.46 %)

Artificial metagenome #4 Annotated proteins 11,119
(38.46 %)

4108
(14.21 %)

12,728
(44.03 %)

10,162
(35.15 %)

18,332
(63.41 %)

5362
(18.55 %)

17,292
(59.82 %)

Proteins with assigned EC number 0
(0.0 %)

73
(0.25 %)

3795
(13.13 %)

2743
(9.49 %)

30
(0.1 %)

0
(0 %)

8199
(28.36 %)

Artificial metagenome #5 Annotated proteins 11,119
(26.79 %)

4108
(9.9 %)

12,728
(30.66 %)

10,162
(24.48 %)

18,332
(44.16 %)

5362
(12.92 %)

17,292
(41.66 %)

Proteins with assigned EC number 0
(0.0 %)

73
(0.18 %)

3795
(9.14 %)

2743
(6.61 %)

30
(0.07 %)

0
(0 %)

8199
(19.75 %)
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entire community under different conditions. An example of
KEGGCharter output with differential gene expression is given in
SI (Fig. S1). Fig. 6 represents one of the maps obtained with
KEGGCharter from the analysis of the real metagenome, after func-
tional annotation with UPIMAPI.

In this metabolic map, it is possible to visualize which enzymes
present in the metagenome are related to the methane metabolism
1805
pathway. In this metagenomics dataset, microorganisms assigned
to Methanosaeta concilii and Methanobacterium subterranum, col-
ored in orange and purple, are the ones with the higher genomic
potential to produce methane, as several enzymes assigned to
these microorganisms could be mapped by KEGGCharter in this
metabolic map. Other microorganisms with less representation in
the dataset (identified as ‘‘other taxa”) also contain enzymes



Fig. 5. Visual representation of COG categories in a Krona plot, obtained from the
annotation of the artificial metagenome #3 with reCOGnizer. Percentages reflect
the abundance of each COG category in the dataset. Cell CC, CD, CP represents Cell
cycle control, cell division, chromosome partitioning; Cell W/M/E B represents Cell
wall/membrane/envelope biogenesis; Posttranslational M, PT, C represents Post-
translational modification, protein turnover, chaperones; Replication, R and R
represents Replication, recombination and repair; Signal TM represents Signal
transduction mechanisms; Translation, RSB represents Translation, ribosomal
structure and biogenesis; Amino acid T and M represents Amino acid transport
and metabolism; Inorganic ion T and M represents Inorganic ion transport and
metabolism; General function PO represents General function prediction only;
Secondary MB, T and C represents Secondary metabolites biosynthesis, transport
and catabolism.
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involved in the methane metabolism pathway. In addition, Syntro-
phobacter fumaroxidans, which is not a methanogen, has several
enzymes identified in this map, that are not involved in methane
production but participate in other reactions represented in the
methane metabolism map.
3.3. Qualitative and quantitative benchmark

Several functional annotation tools were run to analyze the arti-
ficial metagenomes and the real metagenome. Regarding the arti-
ficial metagenomes, the number of genes annotated after gene
calling by each one of the tools is presented in Table S11.
UPIMAPI + reCOGnizer obtained functional annotation for
97.83 ± 0.93 % of the proteins, while 96.49 ± 1.70 % of the proteins
were annotated with Mantis, 92.76 ± 2.21 % with eggNOG-mapper,
49.34 ± 3.65 % with Prokka and 40.63 ± 5.54 % with DFAST
(Table S11). Functional annotation tools were compared regarding
the assignment of EC numbers and OGs to the proteins present in
the artificial metagenomes. Table 4 shows the average number
(and standard deviation) of total EC numbers and OGs identified
by each one of the tools, and respective quality metrics. Detailed
results for the annotation of all datasets are given in Table S9.
The highest F1 score for EC numbers’ assignments was obtained
with UPIMAPI + reCOGnizer (93.81 ± 1.26 %). For OGs assignments
the highest F1 scores were obtained with eggNOG mapper and
Mantis (89.47 ± 3.73 and 88.62 ± 3.10, respectively). These results
show that the combination of UPIMAPI with reCOGnizer provides
precise identifications for both OGs and EC numbers (precisions
ranging between 89 % and 94 %, with the exception of OG assign-
ment in artificial metagenome #1, which obtained a precision of
72 %), and assigns EC numbers to almost all proteins (recall higher
than 95 %). On the other hand, assignment of OGs with UPIMAPI +
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reCOGnizer resulted in lower F1 scores (between 67 and 97 %)
when compared with the other tools. eggNOG-mapper could
assign more OG IDs than the remaining tools and presented a very
low number of false negatives. Generally, regarding OG assign-
ments, Mantis and eggNOG-mapper presented high F1 scores, but
DFAST and Prokka showed F1 scores lower than 70 %. On the other
hand, the F1 score obtained for the EC number assignment with
Prokka was above 80 %, which was similar to the F1 scores
obtained with Mantis and eggNOG-mapper (Table 4). Regarding
the percentage of proteins that received a functional annotation
beyond the information available at UniProt, UPIMAPI + reCOGni
zer could retrieve the highest number of EC numbers (more than
one third of the total number of proteins were assigned to an EC
number) and eggNOG mapper assigned the most OGs (for over
two-thirds of the total number of proteins). The concordance of
the results obtained by the different annotation tools is presented
in Table S10.

The performance of the annotation tools when analyzing the
real MG dataset was similar to what was obtained with the artifi-
cial metagenomes, in respects to the number of functional assign-
ments (Table 5). The highest number of proteins annotated was
obtained with UPIMAPI + reCOGnizer (89 %), followed by Mantis
(86 %), eggNOG-mapper (77 %), DFAST (38 %) and Prokka (27 %),
but on the other hand, eggNOG-mapper could assign much more
OGs (77 %), when compared with the other tools. Mantis assigned
OGs to over 50 % of the proteins, UPIMAPI + reCOGnizer to 38 %,
and DFAST and Prokka to lower percentages (28 % and 17 %, respec-
tively) (Table 5). The highest number of EC numbers assigned was
obtained by UPIMAPI + reCOGnizer (34 %), followed closely by
Mantis (25 %) and eggNOG-mapper (24 %), and then by Prokka
and DFAST with 17 % and 9 %, respectively.

All tools assigned more OG IDs than EC numbers, except Prokka
that assigned OGs and EC numbers to approximately the same
number of proteins (Tables 4 and 5). Generally, all tools could
annotate a higher percentage of proteins from the artificial meta-
genomes (ranging from 99 and 35 %, depending on the tool,
Table S11) than from the real metagenome (ranging from 89 and
27 %, depending on the tool, Tables 5).
4. Discussion

Functional annotation of meta-omics datasets is essential for
understanding microbial behavior, and linking microbial identity
to function in microbial communities. The combination of
sequence-based functional annotation with domain-based func-
tional annotation has been shown to provide a more complete pic-
ture of the data analyzed [25], and several tools have implemented
this approach [9–12]. This work contributed to the improvement of
the state of the art, by developing two novel command-line tools
performing sequence (UPIMAPI) and domain (reCOGnizer)
homology-based functional annotation of big datasets, and a tool
to visualize the annotation results in metabolic maps (KEGGChar-
ter). These tools offer several advantages for the end-users. For
instance, they are fully automated, as they are run by using a single
command. Also, they offer many options for customization, e.g., the
choice of different reference databases and the content of the out-
put information. In addition, functional annotation is obtained
from 9 databases (UniProt, CDD, COG, KOG, Pfam, SMART, Protein
Clusters, NCBIfam and TIGRFAM), providing a complete functional
characterization. Both UPIMAPI and reCOGnizer are run with the
most recent versions of these databases, providing up-to-date
information. The annotation results of both metagenomics and
gene expression analysis can be further visualized by using
KEGGCharter, thus facilitating the interpretation of meta-omics
results.



Fig. 6. Example of a KEGGCharter output map obtained from the analysis of the real metagenome. This map represents the genomic potential of the community for ‘‘Methane
metabolism” (map00680 of KEGG Pathway). Enzymes assigned to different taxa are represented in different colors in the enzyme boxes, with the legend under the map
identifying the taxa corresponding to each color. KEGGCharter was run from the results of UPIMAPI by setting the ‘‘input” parameter to the ‘‘UPIMAPI_results.tsv” table
outputted by UPIMAPI. KEGG IDs column was set to ‘‘Cross-reference (KEGG)”, taxa column set to ‘‘Taxonomic lineage (SPECIES)” and the input quantification parameter was
set to true.
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UPIMAPI and reCOGnizer offer some unique features for func-
tional annotation. UPIMAPI retrieves information from the UniProt
KB, which includes functional and taxonomic information from all
proteins present in the UniProt database. It automatically builds
customized databases for inputted tax IDs, which may be useful
for studies relying only on a limited number of taxonomic groups.
UPIMAPI could annotate a high percentage of proteins from the
artificial (98 ± 0.9 %) and real (89 %) metagenomes (Table 1, 5
and Table S9), presenting high recall and sensitivity. Nevertheless,
a significant percentage (18 ± 2.4 %) of the proteins annotated by
UPIMAPI were uncharacterized proteins, for which functional
information is not available in the UniProt database. The analysis
with reCOGnizer decreased the number of proteins without infor-
mation, thus increasing the functional characterization of the arti-
ficial metagenomes (Tables 2, 4 and 5 and Table S9). This happened
because reCOGnizer uses different methodologies for annotation,
i.e., sequence-based annotation with UPIMAPI is dependent on
the availability of information about homologous sequences, while
domain-based annotation with reCOGnizer tolerates less sequence
homology, focusing on small but biologically relevant similarities
[4]. These results reinforce the advantage of combining both meth-
ods for functional annotation.
1807
When comparing the annotation metrics obtained after analysis
of the artificial metagenomes and the real metagenome with dif-
ferent tools, UPIMAPI + reCOGnizer obtained the highest F1 score
and highest number of functional assignments regarding EC num-
bers (Tables 4 and 5). This better performance may be related to
the differences between UPIMAPI + reCOGnizer and the remaining
tools such as the nature and number of the reference databases.
UPIMAPI and reCOGnizer annotate with reference to the entire
UniProt database (including SwissProt and TrEMBL), CDD, COG,
KOG, Pfam, SMART, Protein Clusters, NCBIfam and TIGRFAM, while
eggNOG-mapper uses only the eggNOG database, Mantis uses the
eggNOG database, NCBIfam, KOfam, Pfam and offers the possibility
to add customized databases (in this comparison the UniProt data-
base was included), Prokka uses SwissProt, some reference gen-
omes from RefSeq, Pfam and TIGRFAM, and finally, DFAST uses a
database composed of 124 reference genomes, TIGRFAM and
COG. While some tools were better at obtaining EC numbers (UPI-
MAPI and Prokka), others were better suited for OG annotation
(eggNOG-mapper and Mantis). OG annotation with UPIMAPI was
particularly affected, since the sequences in the artificial metage-
nomics datasets were removed from the reference database, to
ensure that the benchmark data is independent from the reference



Table 4
Quality metrics of annotation of the artificial metagenomes, regarding the assignment of EC numbers and OGs, with UPIMAPI + reCOGnizer, Mantis, eggNOG-mapper, Prokka and
DFAST. Only the proteins with EC number/OG assigned in the UniProt database were considered for this comparison, except for the last column, where it is shown the total
number of proteins that were assigned OG/EC numbers. True positives (TP), false positives (FP), false negatives (FN), precision, recall, and F1 score were calculated as described in
SI, Section 1.6. Because multiple iterations were performed, TPs, FPs and FNs were normalized by dividing by the total number of proteins with functional information (the sum of
TPs. FPs and FNs).

Qualifier Tool TPs (%) FPs (%) FNs (%) Precision (%) Recall (%) F1 score (%) % of total identifications

EC number UPIMAPI + reCOGnizer 88.37
(±2.25)

7.9
(±1.63)

3.73
(±0.86)

91.78
(±1.73)

95.94
(±0.97)

93.81
(±1.26)

34.79
(±6.75)

Prokka 72.2
(±6.25)

14.79
(±2.99)

13.0
(±3.3)

82.84
(±4.24)

84.58
(±4.57)

83.7
(±4.39)

27.14
(±3.4)

Mantis 66.94
(±3.34)

22.25
(±1.66)

10.82
(±2.08)

75.02
(±2.26)

86.05
(±2.87)

80.15
(±2.4)

26.03
(±5.36)

eggNOG-mapper 65.96
(±2.86)

17.9
(±1.0)

16.13
(±2.0)

78.62
(±1.62)

80.32
(±2.62)

79.46
(±2.07)

20.22
(±4.18)

DFAST 59.18
(±8.72)

9.06
(±1.1)

31.76
(±9.55)

86.62
(±1.15)

65.16
(±10.03)

73.95
(±7.36)

14.75
(±3.03)

OG eggNOG-mapper 81.15
(±5.85)

18.84
(±5.84)

0.02
(±0.02)

81.16
(±5.85)

99.98
(±0.02)

89.47
(±3.73)

71.19
(±13.72)

Mantis 79.71
(±4.92)

11.35
(±5.67)

8.94
(±2.2)

87.61
(±5.97)

89.96
(±2.16)

88.62
(±3.1)

59.9
(±11.22)

UPIMAPI + reCOGnizer 66.32
(±15.11)

8.14
(±5.94)

25.54
(±12.19)

88.52
(±8.78)

71.79
(±13.57)

78.83
(±10.13)

48.8
(±9.17)

DFAST 53.37
(±6.28)

7.86
(±4.64)

38.77
(±3.64)

87.07
(±7.92)

57.77
(±4.87)

69.37
(±5.51)

48.92
(±6.51)

Prokka 36.33
(±4.55)

3.75
(±1.73)

59.93
(±2.92)

90.28
(±5.47)

37.67
(±4.17)

53.12
(±5.1)

30.09
(±5.39)

Table 5
Comparison of the results obtained with the functional annotation tools after analysis
of the real metagenomics dataset, regarding the number of proteins annotated and
the number of assigned EC numbers and OG IDs. Percentages were calculated with
reference to the total number of genes obtained after gene calling.

Tool # of
proteins
annotated

# of proteins with
EC number
assigned

# of proteins
with OG
assigned

UPIMAPI + reCOGnizer 434,310
(88.77 %)

165,602 (33.85 %) 184,633 (37.74
%)

Mantis 419,527
(85.75 %)

123,960 (25.34 %) 248,109 (50.71
%)

eggNOG mapper 375,654
(76.78 %)

117,355 (23.99 %) 375,654 (76.78
%)

DFAST 43,726
(37.99 %)

10,318 (8.96 %) 32,540 (28.27
%)

Prokka 70,302
(27.31 %)

44,202 (17.17 %) 43,435 (16.87
%)
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database. Therefore, the functional assignment was obtained from
the proteins of closely related species. Because artificial metagen-
omes # 1 to 5 contain different microorganisms, with different clo-
sely related species, this explains the different results obtained for
each one of the artificial metagenomes, i.e., the datasets containing
species closely related to well characterized microorganisms
obtained better annotation results with UPIMAPI. Since the
sequences of the organisms studied were removed from UniProt,
the results for OGs were mostly based on the results from reCOG-
nizer, which had consistently less recall than UPIMAPI (Table S9).

Generally, the tools with best performance in the functional
annotation of the artificial metagenomes, were also the ones iden-
tifying the highest number of proteins, and attributing the highest
number of EC numbers and OGs, in the real metagenome (Tables 4
and 5). Nevertheless, the results show that when analyzing real
metagenomes, containing several unknown and uncharacterized
proteins, it is important to use the broadest and most complete
databases, as it is the case of the UniProt KB and eggNOG. For
instance, UPIMAPI + reCOGnizer identified the highest number of
EC numbers while eggNOG-mapper retrieved the highest number
of OGs (Table 5). Thus, different tools may be the best choice
depending on the objective of the study. UPIMAPI + reCOGnizer
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may be the best choice if further analysis is necessary, such as
mapping metabolic functions or developing metabolic models, as
the combination of these tools resulted in the highest number of
proteins with EC numbers assigned, independently of the dataset
used (Tables 4 and 5). On the other hand, a deeper study on the
identification of OGs would benefit from the utilization of
eggNOG-mapper or Mantis. Note that the performance of the anno-
tation with Mantis was very close to the best performing tools, i.e.,
it presented high F1 scores for OGs and EC numbers assignments
(Table 4), and annotated a high number of proteins from the real
metagenome (Table 5). In addition, Mantis determines a consensus
identification by using text mining and a hierarchical organization
of the databases, which might be useful for certain studies [12].
The results obtained with UPIMAPI + reCOGnizer could have been
further improved if the reference database used for the annotation
contained only the proteins from the microorganisms present in
the dataset, instead of using the entire UniProt database. This can
be done by specifying the taxon IDs when constructing the refer-
ence database (by using the ‘‘--taxids” option), and may be useful
when the microbial composition of the communities is previously
known. However, from a practical viewpoint, metagenomics data
are usually annotated with the entire UniProt database, since typ-
ically the taxonomic composition is unknown, and thus these
results better reflect what can be obtained with real metagenomics
data analyses. Results with reCOGnizer could also be improved by
inputting taxonomic information with the ‘‘--tax-file” parameter
(this information can be obtained for example from UPIMAPI’s
output).

A major difficulty in meta-omics studies is the interpretation of
the data. To overcome this limitation, it is important that the out-
puts from the bioinformatics analysis are easily handled, organized
and that can be easily visualized. KEGGCharter represents an alter-
native to already existing mapping options, offering the possibility
to represent in metabolic maps both taxonomic assignment and
differential gene expression up to 10 samples. The representation
of differential expression for many samples can also be obtained
through KEGGprofile, but it requires extensive input through R
commands [20]. KEGG Mapper is another tool with similar pur-
poses to KEGGCharter, but requires much more input from the
users, and does not perform the automatic representation of
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different taxonomies and differential gene expression results in
metabolic maps. Still, KEGG Mapper provides extra information,
for instance, it indicates gene IDs next to the corresponding
enzyme boxes [15].

Visualization with KEGGCharter can still be improved by, for
example, producing more interactive maps or combining taxon-
omy and expression levels in the same plot. However, the main
limitation of applying KEGGCharter, and other mapping tools, to
datasets containing poorly characterized proteins, is the quality
of the input data, e.g., a protein without functional annotation in
knowledge bases will not be mapped. This results in an underesti-
mation of the functions that can be performed by a microbial com-
munity when visualizing the data in metabolic maps. Therefore, as
functional annotation evolves, more reliable pathway enrichment
results can be visualized. In this context, UPIMAPI + reCOGnizer
brought a very important contribution, as they retrieve a high
number of EC numbers and KEGG IDs (Tables 1, 3 and 4). But there
is room for further improvements. Annotation with reCOGnizer
could be expanded by parsing more information from the domain
descriptions, such as EC numbers being obtained from CDD and
SMART. Additionally, a methodology to reach a consensus annota-
tion could be implemented, as it was done in other tools [12]. How-
ever, obtaining as much information as possible might be
advantageous depending on the studies’ objectives and require-
ments. Some users may want to use only the COG database
because it is a known and trusted resource in bioinformatics and
other users may want to annotate with the UniProt database only.
For studies on single proteins, running a tool that obtains different
matches in different databases may provide a higher level of trust
in the results. ID mapping with UPIMAPI could also be improved,
since it is still largely dependent on UniProt’s API for mapping
TrEMBL IDs, and this information could potentially be explored
with a fully local method. Nevertheless, local TrEMBL ID mapping
would require the storage of �1 Tb of data, which could be a prob-
lem for the users who have no access to servers with enough space.
5. Conclusions

In this work, we present three new command-line tools, tai-
lored for retrieving the maximum amount of information from pro-
tein sequences. reCOGnizer and UPIMAPI together compose a
powerful approach for protein annotation by providing comple-
mentary functional information, which can then be represented
in metabolic pathways by using KEGGCharter. A great advantage
of these new tools is that they are fully automated, requiring min-
imum input from the user. The three tools can be easily installed
through Bioconda.
Data availability

All the scripts and commands used in this paper are available at
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ebi.ac.uk/ena/browser/view/PRJEB50269).
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