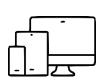

Theoretical study of anticancer activity of glycoside amides

second supplemented edition


THEORETICAL STUDY OF ANTICANCER ACTIVITY OF GLYCOSIDE AMIDES

Authors: Vasil Tsanov, Eng., Ph.D., Assoc. Professor in (D) & Hristo Tsanov, DM (H) (D) - publishers second supplemented edition, Sofia 2022 ISBN: 978-619-91534-3-7

Scientific Reviewers: Dimitar Kolev, Ph.D., Professor R⁶ & Peyko Angelov, Ph.D.

Genesis 1:29

"And God said, Behold, I have given you every herb bearing seed, which is upon the face of all the earth, and every tree, in the which is the fruit of a tree yielding seed; to you it shall be for meat"ⁱ

This book is a long-term study and analysis presented in a more scientifically popular form. It should not be cited in scientific publications. The matter is presented in a freer way in order to explain the matter. If you are interested, please quote the following three articles - they are entirely scientific and have passed all the rigor of the publisher:

Let the preferred version of reading this book be electronic. Print something really urgent on your recycled paper and printer toner!

This book is structured in a structure aimed at limiting animal testing in laboratory and preclinical settings.

Only refurbished computers, tablets and smart devices were used in the creation of this book. Good practices have also been applied to reduce energy consumption. The goal is to prevent additional carbon load in the world around us.

INTRODUCTION

The apricot is a fruit known to people for millennia (WHAT MAKES ARMENIA SPECIAL?, 2016) (Harutyunyan, 2014). Archaeological excavations in the ancient Armenian city of Shenchovit near Yerevan revealed overlaid apricot excavations dating back to 6,000 years BC. The first written mention of apricot was 4,000 years ago in a letter from a Chinese resident. The well-known apricot comes from a variety of the high-mountainous region of Hindu Kush - Central Asia, where the borders of China, Tajikistan, Afghanistan and Pakistan meet today. Natural forest and very old apricot trees can still be found in northeast China and the Caucasus.

It is a well-known fact by derontologists that the Hunzi people (Ahmed, 2016) that inhabited the highlands of northern Pakistan, not far from where the apricot originates, are the healthiest and longest-lived people in the world. According to researchers and medical scientists who studied the life of the Huns in their natural environment in the 1950s and 1960s, one hundred percent of them had perfect vision, and cancer, heart attack, high blood pressure, high cholesterol and even appendicitis and gout were unknown states for them.

Throughout the year, their diet was rich in dried fruits and nuts, with apricots and apricot kernels predominating, and their main source of fat was apricot seeds. Apricots were an important part of the Hunzi life.

The apricot kernels contain (Femenia, Rossello, Mulet, & Canellas, 1995) an average of 21% protein and 52% vegetable oil and are widely used as a substitute for almonds in the food, cosmetic and pharmaceutical industries. Due to its high content of amygdalin, apricot seeds are a source of *Vitamin B17* and are used in alternative medicine for cancer therapy.

The American Cancer Society notes that apricots, as well as other carotene-rich fruits, reduce the risk of cancer of the larynx, esophagus and lungs.

This scientific research concentrates on the processes occurring in the medium around the cancer cell and the transfer of glycoside amides through their cell membrane. They are obtained by modification of *natural glycoside-nitriles* (*cyano-glycosides*). Hydrolysis of starting materials in the blood medium and associated volume around physiologically active healthy and cancer cells, based on quantum-chemical semi-empirical methods, are considered.

Based on the fact that the cancer cell feeds primarily on carbohydrates, it is likely that organisms have adapted to take food containing nitrile glycosides and/or modified forms to counteract "external" bioactive activity. For their part, cancers have evolved to create conditions around their cells that eliminate their active apoptotic forms. This is far more appropriate for them than changing their entire enzyme regulation to counteract it. In this way, it protects itself and the gene sets and develops accordingly.

Derived pedestal that closely defines the processes of hydrolysis in the blood, the transfer of a specific molecular hydrolytic form to the cancer cell membrane and with the help of timedependent density-functional quantum-chemical methods, its passage and the processes of rehydrolysis within the cell itself, to bioactive forms causing chemical apoptosis of the cell independent of its non-genetic set, which seeks to counteract the process.

Used in oncology it could turn a cancer from a lethal to a chronic disease (such as diabetes). The causative agent and conditions for the development of the disease are not eliminated, but the amount of cancer cells could be kept low for a long time (even a lifetime).

CONTENT

INTRODUCTION	. 5
CONTENT	. 7
ABBREVIATIONS USED IN THE TEXT	. 8
I. GOALS AND OBJECTIVES OF THE STUDY	. 9
1. First goal: A study of what exactly is the reason for the long-term use of toxic amygda in the social group	
2. Second goal: Analysis of molecules forming activity in the environment around the cand cell and their ability to cross the cell membrane	
3. Third goal: Analysis of models for evaluation of the offered pharmaceutical forms	. 9
4. Fourth goal: Interpretable prediction for anticancer sensitivity of glycoside amides	10
II. BRIEF OVERVIEW OF THE PROBLEM STATUS	11
1. On the first goal:	11
2. On the second goal	14
3. On the third goal	15
4. On the fourth goal	18
III. METHODOLOGY	19
1. Information support	19
2. General foundations of the proposed methodological scheme	22
3. Methodological schemes for achieving the defined goals	22
IV. RESULTS AND INTERPRETATION	54
1. On the first goal	54
2. On second goal	63
3. On the third goal	79
4. On the four goal	62
V. CLINICAL CONTROL	05
1. Correlation of bio constants	05
2. Chemoprevention and Homeopathy	.09
VI. CONCLUSIONS	10
1. On the first goal	10
2. The second goal	10
3. On the third goal	10
4. On the four goal	11
AUTHOR'S NOTES	13
ETHICS APPROVAL AND CONSENT TO PARTICIPATE	-14

HUMAN AND ANIMAL RIGHTS	414
CONSENT FOR PUBLICATION	414
AVAILABILITY OF DATA AND MATERIALS	414
FUNDING	
CONFLICT OF INTEREST	414
REFERENCES	415
CONTENTS OF FIGURES AND TABLES	436

ABBREVIATIONS USED IN THE TEXT

AACF	Active Anticancer Cell molecules Forms
AAF	Active apoptotic forms
ACFSC	Atom Centered Fragments similarity check
APSM	Accuracy of prediction for similar molecules
COSMO	COnductor-like Screening Model
CPCM	conductor-like polarizable continuum model
CSM	Concordance for similar molecules
GADI	Global AD Index
MDRC	Model's Descriptors Range Check
MEPASM	Maximum Error of Prediction Among Similar Molecules
MM2	Molecular Mechanics force field were developed by Merck and are sometimes
	called the Merck
MMFF94	Molecular Force Field
NMNC	Neural map neurons concordance
QSAR	Quantitative structure-activity relationship
SMKEV	Similar molecules with known experimental value
[0.] t	he value is rounded to an integer
[0.0] t	he value is rounded to the nearest decimal place
[0.00] t	he value is rounded to the nearest hundred place
[0.000] t	he value is rounded to the nearest thousandth place

I. GOALS AND OBJECTIVES OF THE STUDY

1. First goal: A study of what exactly is the reason for the long-term use of toxic amygdalin in the social group

Annotation to the realization of the objective: By making a precise socio-anthropological analysis (Bernard, 1998) of the life of the ancient people of Botra (Hunza people, Burusho / Brusho people), we come to the hypothesis, which is confirmed by two proofs, through a number of modern quantum-mechanical, molecular-topological and bio-analytical checks. A convenient, harmless, form of amygdalin derivative is available that has the same biological and chemical activity and could be used in conservative clinical oncology. The article also presents a theoretical comparative analysis of biochemical reactivity in *in vivo* and *in vitro* media, by which we also determine the recommended dosage for patient administration. Based on a comparative analysis of the data, obtained in published clinical studies of amygdalin, is presented and summarized a scheme of the anti-tumor activity

Presentation and scientific popularization of the results: some of the conducted researches are published in the format of an article - *Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product* (Tsanov & Tsanov, 2020).

2. Second goal: Analysis of molecules forming activity in the environment around the cancer cell and their ability to cross the cell membrane

Annotation to the realization of the objective: This scientific analysis is a continuation of the first goal (§1.1.). The hypothesis that hydrolyzed to amine/carboxylic acid cyano/nitrile glycosides are a potential anticancer drug has been proposed and theoretically confirmed there. Their biological activity remains unchanged directly from the natural compounds of this group, but their toxicity is many times lower than unmodified native molecules. After defining the chemical formula and determining the pharmaceutical form and dosage, most active groups are also identified, which directly determines their biological activity.

Presentation and scientific popularization of the results some of the conducted researches are published in the format of an article - *Theoretical Study of the Process of Passage of Glycoside Amides through the Cell Membrane of Cancer Cell* (Tsanov, H. & Tsanov, 2021)

3. Third goal: Analysis of models for evaluation of the offered pharmaceutical forms

Annotation to the realization of the objective: The pharmaceutical form allows deviation from the chemically pure substance. This is a convenient and at the same time affordable (from a financial and / or technological point of view) form of admission by patients. It is not necessary to use an "ideal" pure active substance (including a specific isomeric form). Due to the wide variety of natural glucosamide nitriles (starting material for the production of amide / carboxylic acid), modern pharmacology allows their combined use by chemical nature and concentration of the active form passing through the cell membrane.

Methodology: A comparative analysis is performed based on stoichiometric calculations for the concentration of the active form and the prediction of bioactivity. For this purpose, the following methodology is used: Analysis of data on the active molecular form of anticancer cells and determination of the drug dose.

Presentation and scientific popularization of the results: some of the conducted researches are published in the format of an article - *Theoretical analysis of anticancer cellular effects of glycoside amides* (Tsanov & Tsanov, Theoretical analysis of anticancer cellular effects of glycoside amides, 2022).

4. Fourth goal: Interpretable prediction for anticancer sensitivity of glycoside amides

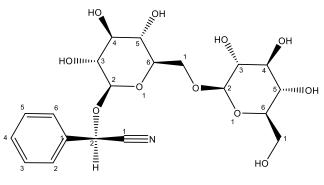
Annotation to the realization of the objective: This goal is a natural continuation of the hypothesis that the bioactive form of natural nitrile glycosides is due to a hydrolyzed to amide molecule. As a secondary hydrolysis, one proceeds to the carboxylic acid, which was subsequently specified to be necessary for subsequent biochemical processes. Her didactic proof defines, etc. active anti-cancer molecular forms. Subsequent calculations illustrate biochemically the passage of these active forms across the cell membrane of a cancer cell. For the transition from chemical to pharmaceutical form, dozens of indicators characterizing per oral drugs were analyzed.

The main research challenge is to create a sufficiently adapted methodological scheme and at the same time to maintain the general conservatism of good oncological medical practices.

Methodology: The current methodological program relies on a comparative analysis of nonidentical variables. In one case it values the IC50, and in the other pharmacokinetic and druglikeness indicators of potential oral dosage forms.

In order to minimize the dualism in the interpretation, conditionally postulate some of the allowable values that would be reflected in the processing of a sample of data from the general population.

- 🛇 -


II. BRIEF OVERVIEW OF THE PROBLEM STATUS

1. On the first goal:

1.1. Pharmacological activity of amygdalin.

Amygdalin is a nitrile containing a diglycoside compound of the general formula $C_{20}H_{27}NO_{11}$, molecular weight 457.42, with the structure *D-mandelonitrile-\beta-D-glucoside-6-\beta-glucoside (Vetter, 2000) and the structural formula <i>Fig.II.1.1*.

(R)-2-phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

Amygdalin

Fig.II.1. 1 Structural formula and full chemical name of Amygdalin

Amygdalin is non-toxic, but under the action of digestive juices and enzymes in the blood it releases HCN, which, even at relatively low concentrations, is even deadly.

Numerous studies have been performed to prove its antitussive (Chang, et al., 2005) and antiasthmatic (Do, Hwang, Seo, Woo, & Nam, 2008) effects, analgesic (Holland, 1982) (Zhu, Su, & Li, 1994) (Hwang, et al., 2008) (Hwang, Lee, Kim, Shim, & Hahm, 2008) (Yang, et al., 2013) (Paoletti, et al., 2013), gastro-enterologic (Wei, Xie, & Ito, 2009) (Shim & Kwon, 2010), promoting apoptosis of human renal fibroblast (Guo, Wu, Shen, Yang, & Tan, 2013), boosting immunity synthesis (Jiagang, et al., 2011) (Baroni, et al., 2005) (Perez, 2013) (including to increase polyhydroxyalkanoates in induced human peripheral blood T-lymphocyte proliferation), anti-diabetic properties (Mirmiranpour, et al., 2012) (Heikkila & Cabbat, 1980) (including inhibiting alloxan in hyperglycemia), potential in the treatment of Hansen's disease, atherosclerosis, immune suppression and most of all antitumor effect (Kwon, Hong, Hahn, & Kim, 2003) (Fukuda, et al., 2003) (Barwina, Wiergowski, & Anand, 2013) (Howard-Ruben & Miller, 1984) (Yang, et al., 2012) (Milazzo, Ernst, Lejeune, Boehm, & Horneber, 2011) (Fenselau, et al., 1977) (Davignon, Trissel, & Kleinman, 1978) (Karabulutlu, 2014) (Ellison, Byar, & Newell, 1978) (Bolarinwa, Orfila, & Morgan, 2014) (Newmark, et al., 1981) (Syrigos, Rowlinson-Busza, & Epenetos, 1998) (Chen, et al., 2013) (Bitting, 1978) (Moertel C. G., et al., 1982) (Miller, Anderson, & Stoewsand, 1981) (Park, et al., 2005) (ACS, 1991) (Shishkovsky, 1980) (Liao, Ling, Zhong, & Ping, 2005) (Shils & Hermann, 1982) (Chang, et al., 2006) (Greenberg, 1980) (Herbert, 1979) (Milazzo, Lejeune, & Ernst, Laetrile for cancer: a systematic review of the clinical evidence, 2007) (Curran, 1980) (Zhou, et al., 2012) (Carter, McLafferty, & Goldman, 1980) (Kousparou, Epenetos, & Deonarain, 2002) (Biaglow & Durand, 1978) and etc.

Vasil Tsanov & Hristo Tsanov

1.2. Clinical trial of amygdalin in the treatment of human cancer

1.2.1. Conducting research

In summary: A group of authors (Moertel C. G., et al., 1982) published a detailed clinical trial of *amygdalin* (and its *Laetrile* derivative). For the purposes of our research, the exact methodology of clinical trial must be studied in great detail.

After fully informing the patients about the type and manner of the study, the test begins (*Tabl.II.1.1*), constantly monitoring the concentration of total cyanide in the blood. The first analysis was performed 2 hours after the start of oral drug administration. If the cyanide level is higher than 2μ g/ml but less than 3μ g/ml, *amygdalin* is discontinued for up to 48 hours or until all symptoms suggesting toxicity are discontinued.

Therapy was continued in all patients at least until they had irrefutable evidence of progressive malignancy or until severe clinical deterioration allowed further treatment and follow-up.

AGENT	STANDARD DOSE	HIGH DOSE			
Amygdalin					
intravenous course	4.5 g/m ² of body-surface	7 g/m ² /day X 21 days			
oral maintenance	area/day x 21 days 0.5 g 3 times	0.5 g 4 times daily			
	daily				
Vitamins					
А	25,000 U/day	100,000 U/day			
С	2 g/day	10 g/day			
Е	400 U/day	1200 U/day			
B complex and minerals	1 capsule/day	1 capsule/day			
Pancreatic enzymes	12 tablets/day	12 tablets/day			
(Viokase)					
© Charles G. Moertel, M.D., Thomas R. Fleming, Ph.D., Joseph Rubin, M.D., Larry K. Kvols, M.D.,					
Gregory Sarna, M.D., Robert Koch, M.D., Violante E. Currie, M.D., Charles W. Young, M.D., Stephen					
E. Jones, M.D., And J. Paul Davignon, Ph.D.					

Tabl.II.1. 1 Amygdalin and "Metabolic Therapy" Regimens for 21 days

In short, the author's research team points out that the methods of this study are completely comparable to those used in the studies of every new agent being developed and tested for cancer treatment through more traditional channels. They are designed to maximize the ability of amygdalin to exhibit therapeutic activity, if such potential exists.

1.2.2. Clinical results

The characteristics of all patients undergoing experimental treatment are listed in *Tabl.II.1.2*. Types of tumors include predominance of colorectal, lung, and breast cancer with a standard dose regimen.

2

Characteristic	Standard-Dose Regimen	High-Dose Regimen No. Of pal lent s	All Patients
Sex			
Male	92	8	100
Female	72	6	78
Age (yr.)			
Median	57	60	57
Range	18-84	39-73	18-84
Primary tumor			
Colorectal *	44	14	58
Lung §	30		30
Breast *	21	—	21
Melanoma	15		15
Sarcoma,	10		10
Pancreas *	8	—	8
Stomach *	7	—	7
Kidney *	6	_	6
Lymphoma	5	_	5
Ovary *	4	_	4
Other (1 or 2 each)	14	_	14
Prior radiation therapy \$			
Yes	72	0	72
No	92	14	106(60)
Prior chemotherapy 🛞			
Yes	109	9	118
No	55	5	60(34)
Performance status 🖇 🜼	I		
0-1	116	11	127 (71)
2-3	48	3	51
Institution	I		
University of Arizona	19	_	19
UCLA	40		40
Mayo Clinic	82	14	96
New York Memorial	23	—	23
* Adenocarcinoma	1		
§ Non-small-cell carcinoma	L		
SFigures in parentheses de			
• Eastern Cooperative Once		0, fully active, to 4, tota	lly disabled.
© Charles G. Moertel, M.D., T	homas R. Fleming, Ph.	D., Joseph Rubin, M.D., L	arry K. Kvols, M.D.
Gregory Sarna, M.D., Robert			es W. Young, M.D.
Stephen E. Jones, M.D., and J.	Paul Davignon, Ph.D.		

Tabl.II.1. 2 Characteristics of	f eligible	patients sub	jected to clinical	testing with amygdalin

All patients selected for the high-dose regimen had colorectal cancer. Particularly remarkable is that over one third of all patients did not receive prior chemotherapy. In addition, 71% of the patients had a good working condition - that is, they were able to work full-time or part-time.

1.2.3. Toxic reactions and symptoms

Data on the possible toxicity of intravenous and oral amygdalin are shown in *Tabl.II.1.3*.

Toxic REACTION	ROUTE				
	INTRAVENOUS	ORAL			
	% of 178 patients	% of 132 patients			
Nausea	31	30			
Vomiting	25	17			
Headache	7	8			
Dizziness	7	10			
Mental obtundation	4	5			
Dermatitis	2	2			
© Charles G. Moertel, M.D., Thomas R. Fleming, Ph.D., Joseph Rubin, M.D., Larry					
K. Kvols, M.D., Gregory Sarna, M.D., Robert Koch, M.D., Violante E. Currie,					
M.D., Charles W. Young, M.D., Stephen E. Jones, M.D., And J. Paul Davignon,					
Ph.D.					

Tabl.II.1. 3 Toxicity of amygdalin therapy tested in a clinical setting

The authors point out that adverse reactions are rare and also inherent in the oncologic diseases involved. The side effects of increased cyanide concentration (greater than 3 μ g/ml) in the blood disappear after the amygdalin discontinuation.

Higher concentrations of amygdalin intake are also investigated, but then adverse reactions increase significantly

This is precisely the purpose of this section of the study: **To provide a dosage form that provides the necessary concentration of active molecules in vivo to patients in need of anti-tumor therapy**.

2. On the second goal

Here it focuses on the processes occurring in close proximity to the tumor cell and will present a model of the mechanism of passage through the cell membrane - to obtain an active molecular form for apoptosis.

Aromatically substituted glycosides: *Prunus spp.* (Karakas, et al., 2019), *Lucuma spp.* (Prabhu, Selvam, & Rajeswari, 2018), *Vicia spp.* (Salehi, et al., 2021), *Sambucus spp.* (Thole, et al., 2006), *Sorghum spp.* (Smolensky, et al., 2018), *Taxus spp.* (Durak, Büber, Devrim, Kocaoğlu, & Durak, 2014), *Zieria spp.* (Spalding, 1991), *Macadamia spp.* (Desegaulx, Sirdaarta, Rayan, Cock, & McDonnell, 2015). Glycosides with a free α-hydroxynitrile: *Nandina spp.* (Taha, Khalil, & Abubakr, 2020). Glycosides with aliphatic substituents: *Linum spp.* (Szewczyk, et al., 2014), *Trifolium spp.* (Sabudak & Guler, 2009), *Lotus spp.* (Tong, et al., 2020), *Maniholt spp.* (Veerapagu, Latha, Ramanathan, & Jeya, 2020), *Acacia spp.* (Sakthivel, Kannan, Angeline, & Guruvayoorappan, 2012), *Triglochin spp.* (Lellau & Liebezeit, 2003), *Deidamia spp.* и *Tetrapathaea spp.* (Yulvianti & Zidorn, 2021), *Gynocardia spp.* (Kalita, et al., 2018), *Pangium spp.* (Chye & Sim, 2009) and others.

The proposed pharmaceutical form of the amide/carboxyl derivative of amygdalin represents only one of the dozens of glycoside nitriles that have been analyzed and by which this claim is made. Some of them are listed (Vetter, 2000) (Barceloux, 2008) in *Tabl.II.2.1*.

second supplemented edition

Base Structure	Substituent R	Glycoside	Sugar	Occurrence	Modified Structure		
<u></u>							
Glycosides with	aromatic substituents						
	Phenyl	Prunasin	D-Glucose	Prunus spp.			
	Phenyl	Amygdalin	Gentiobiose	Prunus spp.	-		
Glycoside	Phenyl	Lucumin	Primeverose	Lucuma spp.	-		
	Phenyl	Vicianin	Vicianose	Vicia spp.	Glycoside		
Ó CN	Phenyl		D-Glucose	Sambucus spp.	(OH)		
V C /\	p - Hydroxyphenyl	Sambunigrin Dhurrin	D-Glucose D-Glucose		O ₁ (CO).NH ₂		
Ň	p - Hydroxyphenyl		D-Glucose D-Glucose	Sorghum spp.			
HR	m - Hydroxyphenyl	Taxiphyllin Zierin	D-Glucose D-Glucose	Taxus spp.	Ň		
				Zieria spp.	HR		
	p - Glucosyloxyphenyl	Proteacin	D-Glucose	Macadamia spp.	-		
Glycosides with a	free α - hydroxynitrile				-		
		p-Glucosyloxym	andelonitrile	Nandina spp.			
	1. 1						
Flycosides with A	liphatic substituents						
				Linum spp.			
Glycose	$R=R'=CH_3$	Linamarin	D-Glucose	Trifolium spp.	Glycose		
0 CN \/ C /\ R R'	R=CH ₃ R'=CH ₂ .CH ₃	Lotaustralin	D-Glucose	Loyus spp. Maniholt spp.	(OH) O (CO).NH ₂ \/ C /\ R R'		
Glycose	R=C(CH ₃) ₂	Acacipetalin	D-Glucose	Acacia spp.	-		
 O CN C R	R=C(CH ₂ .COOH).CH= CH-COOH	Triglochinin	D-Glucose	Triglochin spp.	Glycose (OH) O (CO).NH ₂ \/ C R		
Glucose	R=R'=H	Deidaclin	D-Glucose	Deidamia spp.	Glucose		
	N=N =11	Tetraphyllin A	D-Glucose	Tetrapathaea spp.	$ \begin{array}{c} $		
R'	R=OH; R'=H	Tetraphyllin B	D-Glucose	Tetrapathaea spp.	R'		
R	R=R'=OH	Gynocardin	D-Glucose	Gynocardia spp. Pangium spp.	R		

Tabl.II.2. 1 Natural nitrile glycosides and their modified amide and carboxylic acid forms

It is important to mention that the by-product of the modification process also produces their carboxyl derivatives in a ratio, the ratio for amygdalin being: -amide: -carboxyl = 4.87:1, and for other homologs and/or similar structural of compounds is in the order of $2.61\div5.13:1$. Chemical bond of the type: -N(H)-OC(O) - between the two derivatives of amygdalin is possible, but it is within statistical error.

3. On the third goal

The physiologically active cancer cell itself is quite inert to external influences. It is far more stable than any physiologically active structural and/or functional organismal cell. Its defenses

are discussed in detail in the article (Tsanov, H. & Tsanov, 2021), and its main weakness was defined, namely: the cancer cell feeds mainly on carbohydrates and/ or carbohydrate complexes. In an effort to preserve its gene set, it has evolved to counteract biologically active substances by maximally preventing its passage through its cell membrane.

It is this property that could be used to minimize its effect on the whole body. In the same article, based on theoretical calculations and literature references, a hypothesis is stated: cancers could turn from severe infectious to controlled chronic ones (similar to diabetes, chronic hepatitis, etc.)

Regardless of whether the cancer cell is active and/or already has suppressed physiological functions, it also has its corresponding cellular effect: proliferation (De Berardinis , Lum, Hatzivassiliou, & Thompson, 2008) /including in combination with Wartburg's effects (Sun, Chen, Cao, Liang, & Xu, 2019) /, invasion (Krakhmal, Zavyalova, Denisov, Vtorushin, & Perelmuter, 2015), migration (Yamaguchi, Wyckoff, & Condeelis, 2005), metastasis (Seyfried & Huysentruyt, 2013), adhesion (Janiszewska, Primi, & Izard , 2020), interruption of cell cycle (Otto & Sicinski, 2017), cytotoxicity (Ribeiro, et al., 2017) and apoptosis (Hu, Xu, Meng, Huang, & Sun, 2018) or a combination of two or more simultaneous actions.

Types	Cell lines	Dosage of amygdalin [mg/mL]	Treatment time	Cellular Effects	
Lung cancer	H1299 PA	2.5 ÷ 5	48 hours	proliferation, invasion, migration	
	$\begin{array}{l} grin\beta4 \downarrow \{ILK \downarrow p - FAH\\ \underline{AKT}\\ \overline{mTOR \downarrow} \end{array}$	$X \downarrow \Longrightarrow \beta - caten$	in ↓, E – cadherin ↑ } ⇒	AKT ↓, RICTOR	
Bladder cancer	UMUC-3 RT112 TCCSUP	10	24 hours or 2 weeks	proliferation, adhesion, invasion, migration, cell cycle, cytotoxicity	
$\{integrin \beta 1 \downarrow, integrin \beta 4 \downarrow \{ILK \downarrow p - FAK \downarrow \Rightarrow \beta - catenin \downarrow, E - cadherin \uparrow cdk 1 \downarrow, cdk 2 \downarrow, cdk 4 \downarrow cyclin A \downarrow, cyclin B \downarrow, cyclin D 1 \downarrow \} \Rightarrow \frac{G0}{G1} phase \uparrow p - AKT \downarrow, p - RICTOR \downarrow \Rightarrow \frac{AKT}{mTOR \downarrow}$					
Renal cell carcinoma	Caki-1 KTC-26 A498	10	24 hours or 2 weeks	proliferation, apoptosis, adhesion, cell cycle	

Tabl.II.3. 1 Specific antitumor	mechanisms of amygdalin in different tumors
---------------------------------	---

$ \{ cdk1 \downarrow, cdk2 \downarrow, cdk4 \downarrow, cyclin A \downarrow, cyclin B \downarrow \Longrightarrow \frac{G0}{1} phase \uparrow, \frac{G2}{M} phase \downarrow, S phase \uparrow E - cadherin \downarrow, N - cadherin \downarrow $							
Prostate cancer	LNCaP DU-145 PC3	0.1 ÷ 20	24 hours	proliferation, apoptosis, cell cycle			
	$PC3 \qquad \qquad$						
Cervical cancer	Hela cell	10÷20	24 hours	proliferation, apoptosis			
	Bcl-2	l, Bax ↑, caspase	- 3 ↑	I			
Colon cancer	SNU-C4	5	24 hours	proliferation, cell cycle, cytotoxicity			
	cell cycle-related gene:	EXO1↓,	ABCF2 ↓, MRE11A, TOP I ↓ ATP – binding ↓, sub – family I	g cassette			
Promyelocytic leukemia	HL-60	1÷20	48 hours	proliferation, apoptosis			
con	binate with β -glucosidase		$Bcl - 2 \downarrow, Bax \uparrow$	<u>I</u>			
Breast Cancer	Hs578T MDA-MB-231 ER-positive MCF7	10 ÷ 40	24 hours	cytotoxicity, apoptosis, adhesion			
The information is provided by (Shi, et al., 2019). They are summarized by studies of: (Qian, Xie, Wang, & Qian, 2015), (Makarević, et al., 2014), (Makarevic, et al., 2014), (Makarević, et al., 2016), (Syrigos, Rowlinson-Busza, & Epenetos, 1998), (Juengel, et al., 2016), (Chang, et al., 2006), (Chen, et al., 2013), (Park, et al., 2005), (Lee & Moon, 2016) & (Young, Pyo, Hoon, & Hee, 2003).							

Data in *Tabl.II.3.1* are applicable to the use of "pure" unmodified Amygdalin [§1.2 of article (Tsanov & Tsanov, Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product, 2020)] and concentrations consistent with its nitrile chemical nature.

Therefore, the possible chemical apoptosis (or other type of cellular reaction) will occur independently of all enzymes synthesized according to instructions from cancer DNA (for example, as - *linamarase gene* to *linamarase*).

4. On the fourth goal

Assuming that some AACFs (secreted inside the cancer cell) could be derived from several active pharmacological forms for oral administration (in combination and/or separately) and their already considered Druglikeness of the pharmaceutical form (GPCR ligand, Ion channel modulator, Kinase inhibitor, Nuclear receptor ligand, Protease inhibitor, Enzyme inhibitor, Pharmacological and biological activity of oral active drugs (Lipinski's Rule, Ghose Filter and CMC-50-Like Rule, Weber Filter, MDDR-Like Rule and BBB Likeness), QED uwQED, wQED), Non-laboratory and no clinical information on the chemical (Receptor activity, Mutagenicity, Carcinogenicity, Toxity), Lipophilicity, Water Solubility, Pharmacokinetics, Medical chemistry indicators, etc., it is still not possible to get an idea of the influence of the studied molecules on the real cancer lines.

The main research challenge is to create a sufficiently adapted methodological scheme and at the same time to maintain the general conservatism of good oncological medical practices.

The aim of the present study is to consider the possibility of enhancing the accuracy of predicting the efficacy of the studied pharmacological oral forms using models using several different sources of information, but based on empirical studies on cancer cell lines.

- 🛇 -

III. METHODOLOGY

1. Information support

The computer configurations used have an operating system installed *MSⁱⁱ* Windows 10 Pro and *MS Office 2016*.

Calculations are performed with computer programs that are provided for free use by academic institutionsⁱⁱⁱ and/or those with non-commercial use, incl. and those covered by the GNU License^{iv}.

Virtualizations from other operating systems (*openSUSE*^v \bowtie *MacOS*^{vi}) are performed with *Oracle VM VirtualBox*^{vii}.

Input and output data is stored and synchronized in *Google Drive^{viii}* with synchronization repositories^{ix}.

1.1. Software products

Graphical representation of chemical formulas was done with *MarvinSketch*^x and *ACD/ChemSketch*^{xi}. The main standard for working in 2D is: file extension - $.CDX^{xii}$ and media type: *chemical/x-cdx*.

1.1.1. Mathematical software

 $Sum Py^{xiii}$ – is a topological software that investigates linear connections between points, PL arcs and PL circles.

 \underline{Maxima}^{xiv} – this program is used for algebraic and stoichiometric calculations of chemical reactions.

<u>*GAP*</u>^{xv} – the software product is used for cross-checks and extrapolations of graph data.

1.1.2. Quantum Chemical Software

A. Chemical Informatics

<u>*Open Babel*</u>^{xvi} – through it the conversions from and to the various file standards required for the respective software product have been performed.

B. Chemical kinetics

 $\underline{Cantera}^{xvii}$ - it was used to analyze data regarding the relationship between molecular dynamics and enthalpy change.

<u>*KPP*</u>^{xviii} – it was used to cross-check the calculations received from Cantera (Damian, Sandu, Damian, Potra, & Carmichael, 2002).

C. Molecular modeling and visualization

 $\underline{Avogadro}^{xix}$ – this molecular editor and used to generate source code for quantum chemical software.

 \underline{Imol}^{xx} – through it are applied data entering from different databases and/or manually entered from performed calculations, etc. package type.

D. Molecular docking

<u>AutoDock Suite</u>^{xxi} – used to study the passage of substances across the cell membrane and the enzymatic effects of products.

E. Molecular dynamics

<u>*GROMACS*^{xxii}</u> – the resulting protein complexes are described and simulated by a molecular dynamics package.

F. Quantum calculations

 $\underline{MOPAC}^{xxiii}$ – it is used for molecular optimizations and calculations using semi-empirical quantum methods.

<u>GAMESS US</u>^{xxiv} - This program is used for optimizations of geometries-minimums and transients in the main one. It determines most thermodynamic quantities: *entropies*, *enthalpies*, *energies*, *dipole moments*, *Gibbs free energy* and others.

1.1.3. Drug design

<u> $DruLiTo^{xxv}$ </u> – is an open source virtual screening software tool. It contains a significant set of algorithms based on highly cited scientific articles for calculating drug similarity. It is built on the basis of CDK^{xxvi} (Chemistry Development Kit) in Java^{xxvii}.

<u>*T.E.S.T.*^{xxviii}</u> – A toxicity assessment software tool has been developed to allow users to easily assess the toxicity of chemical compounds using quantitative structural linkages (QSARs) methodologies.

20

<u>Molinspiration</u>^{xxix} – large set of algorithms for chemical informatics for generation, manipulation and processing of molecules, such as: normalization of molecules, generation of tautomers, fragmentation of molecules, calculation of various molecular properties required in QSAR, molecular modeling and drug design, high quality imaging of molecules, molecular database tools supporting substructure search and similarity.

<u>OSIRIS Property Explorer</u>^{xxx} – software package allowing evaluation of the drug/toxic properties of molecules, emphasizing those with high risk and/or difficult absorption in the intestine.

 \underline{VEGA}^{xxxi} – Java based set of models investigating toxicity, mutagenicity, carcinogenicity and more.¹

<u>SwissADME</u>^{xxxii} – web based platform to compute physicochemical descriptors as well as to predict ADME parameters, pharmacokinetic properties, druglike nature and medicinal chemistry friendliness of one or multiple small molecules to support drug discovery.

1.1.4. Processing of statistical information

 $\underline{SciDAVis}^{xxxiii}$ – open source software optimized for scientific information analysis and data virtualization.

<u>*GnuPlot*</u>^{xxxiv} – open source software using command-line data entry. It has a good set of statistical and mathematical algorithms optimized for scientific work.

1.2. Databases with empirical information

 $\underline{PubChem}^{xxxv}$ - database with information on chemical molecules, emphasizing their biological activity. Administered by NCBI^{xxxvi} and NIH^{xxxvii}.

<u>ChemSpider</u> - database of chemical compounds. Administered by RSC^{xxxix}.

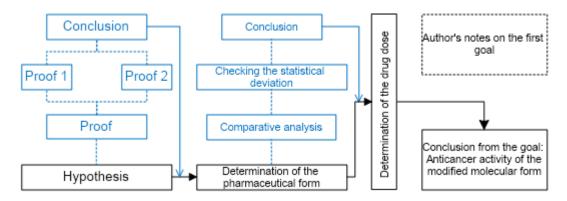
<u>ChEBI</u>^{xl} - database of so-called "Small molecules". Administered by EBI^{xli}, through OBO^{xlii}.

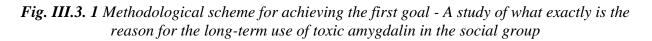
<u>*DrugBank*</u>^{xliii} - open access and editing database. It focuses on information about drugs and drug therapy.

¹ Istituto di ricerche farmacologiche Mario Negri – IRCS, emilio.benfenati@marionegri.it (Benfenati & Marzo, 2020)

second supplemented edition

<u>FoodData Central</u>^{xliv} - database with information on nutrients in foods. It also contains information arrays with statistical analyzes of food and can be modeled according to various criteria.


2. General foundations of the proposed methodological scheme


- Semi-empirical methods are used in conducting comparative analyzes in terms of physicochemical parameters. Their genesis does not "claim" accuracy and/or maximum approximation to the real structural, and hence reactive properties of substances. Semiempirical methods have three key advantages (apart from the speed of implementation) over other methods in computational chemistry:
 - The set of parameters included in their algorithms is constantly consistent with experimental data. This significantly reduces the moments of "abstractness" and dualistic interpretation;
 - They have good repeatability of the results, and hence the statistical processing of the data is relatively reliable;
 - Based on the latter, the results of the semi-empirical methods are amenable to comparison in absolute value, or in the present case we use the approximation that they are equally NOT accurate, i.e. the change of any physicochemical and/or structural indicator will reflect their properties in a way that coincides with this dependence in another compound.
- 2) Emphasis on pre-laboratory research in order to limit animal testing.

3. Methodological schemes for achieving the defined goals

3.1. On the first goal

The first goal is defined in detail in §*I.1* and §*II.1*.

The present study is conducted on the basis of a hypothesis, which is subjected to theoretical and logical analysis in order to confirm and/or reject it. The methodological scheme (Fig. III.3. *1*) is:

- 1) Determining the optimal chemical formula after definition, the hypothesis is subjected to two logical proofs depending on the environment:
 - in vivo this evidence is based on a unique chemical property of the nitrile group to catalytically convert to an amide in a hydrochloric acid medium. The conditions are close to those of the digestive juices in the stomach, and the catalyst is an ion that is available under certain conditions;
 - *in vitro* undergoes an enzymatic reaction analysis, which achieves the same result, i.e. modification of the amygdalin molecule to a form overlapping with the input hypothesis.

It comes out with a conclusion from the part.

2) Determination of the pharmaceutical molecular form

After confirming the defined hypothesis, it is necessary to compare the physical and chemical ratios of the modified molecule with those of the parent amygdalin. With the help of mathematical chemical methods a number of comparative methodologies are carried out, which aim to compare each individual studied parameter between the obtained molecular forms. For this purpose, the indicators are analyzed:

- molecular topology Balaban index (Babić, Klein, Lukovits, Nikolić, & Trinajstić, 2001), (Balaban, 1982), (Devillers & Balaban, 1999), (Mercader, Castro, & Toropov, 2001) & (Randic, 1975), Cluster Count (Mingos & Wales, 1990), Molecular Topological Index² (Mueller, Szymanski, Knop, & Trinajstic, 1990), Num. Rotatable Bonds (Khanna & Ranganathan, 2009), Polar Surface Area [0.] (Palm, Stenberg, & Luthman, 1997), Shape Coefficient³ (Langmuir, 1917), Topological Diameter (Petitjean, 1992), Total Connectivity [0.00] (Kier & Hall, 2002), Total Valence Connectivity [0.00] (Unger, 1987), Wiener Index (Rouvray, 2002) (Todeschini R., Consonni, Mannhold, Kubinyi, & Timmerman, 2008), Shape Attribute [0.00], Sum Of Degrees & Valence Degrees (Mezey, 1993);
- molecular networks^{xlv} distribution coefficients: LogP [0.0] (Leo, Hansch, & Elkins, 1971), LogS [0.00] (Wang & Hou, 2011), Dissociation Constant: PKa [0.00] (Perrin, Dempsey, & Serjeant, 1981);
- electronic treatment in atomic-molecular system (Baue, Schneider, & Göller, 2019), (Clayden, 2001), (Bodor, Buchwald, & Huang, 1999) - Number of HBond Donors, Number of HBond Acceptors, Formal Charge⁴ (Welsh & Allison, 2019), Principal

² MTI – defined in the form: $MTI = \sum_{i=1}^{n} E_i$, where E_i are the components of a vector: E = (A + D)d, and A is the neighborhood matrix, D is the distance matrix of the column and d is the vector of degrees of the graph. Only adjacent non-hydrogen atoms are taken.

³ The coefficient of the form *I* is given as: $=\frac{D-R}{R}$, where the diameter D represents the distance between the two farthest atoms in the molecule, and the radius R is the distance between the central atom(s) and the farthest.

⁴ Formal charge is the charge assigned to an atom in a molecule, assuming that the electrons in the chemical bond are equally divided between the atoms, regardless of the relative electronegativity.

Moment [0.] (Sims, Abbott, Cowling, Goodby, & Moore, 2017), *Henry's Law Constant* [0.00] (Sander, 2015), *Mol Refraction* [0.00] (Born & Wolf, 1999);

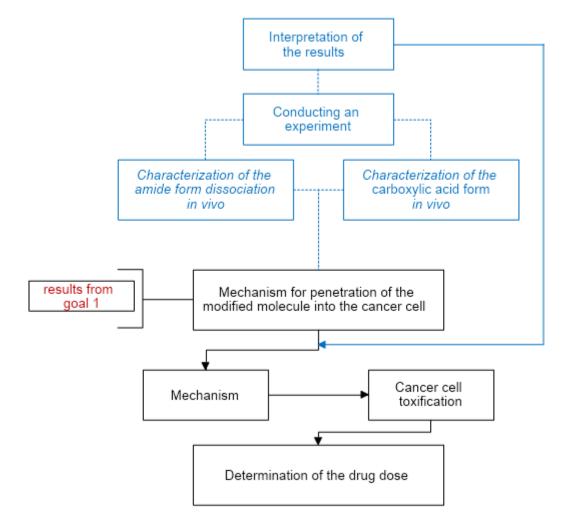
molecular properties (at 310.15 K and 1.02 bar) obtained by semi-empirical methods (Wagnière, 1976) (Kříž & Řezáč, 2019), as: *Core-Core Repulsion* [0.]; *COSMO Area* [0.0]; *COSMO Volume* [0.0]; *Dipole* [0.00], *Ionization Potential* [0.00], *Total Energy* [0.]; *Heat Capacity* [0.0], *Thermodynamic Energy* [0.0] on CPCM (Takano & Houk, 2005).

Immediately after determining the average deviation between the parameters of the starting and modified molecules, a check is performed by comparison with an already well-studied, close to the experimental, modification obtained by the same methods and conditions.

It comes out with a conclusion from the part.

3) Determination of the drug dose;

In order to determine the drug dose, it is necessary to consider the most probable active forms of the amide already present *in vivo* medium. Knowing the conditions (pH, temperature, etc.) in the human body and comparing them with concentrations of similar molecular structure and possible chemical transfer of already passed clinical trials of medicinal products. Stoichiometric calculations are applied and a relatively accurate dose is obtained for administration of the new pharmaceutical form in order to achieve their maximum anti-cancer action.


- 4) The antitumor activity of the modified molecular form should be inferred. A collection scheme with clearly defined and interpreted molecular transitions is prepared;
- 5) Author's notes on the set goal.

3.2. On the second goal

The present study is based on the scientific fact that the relatively conditioned associated volume around the tumor cell (Swietach, Vaughan-Jones, Harris, & Hulikova, 2014) has reduced acidity (Raghunand, et al., 1999) (pH = 6.5, at normal for a physiologically healthy cell pH = 7.4). This circumstance from the point of view of quantum chemical and molecular topological methods (Brown, 2009) allows to conduct a sufficiently reliable comparative analysis (Martone, Fulginei, & Salvini, 2007) of substances that are in close proximity to cells and to differentiate their chemical behavior in the respective media.

Semi-empirical methods (Stewart J. J., Optimization of parameters for semiempirical methods I. Method, 1989) (Stewart J. J., Optimization of parameters for semiempirical methods, 2013) are extremely suitable for comparing individual parameters directly related to the chemical and bio-active properties of individual molecules. They do not claim to be accurate, but give a fairly clear picture when comparing individual calculated and/or measured values, and are sufficiently reliable, especially the identification in the individual structural relationships.

second supplemented edition

Fig. III.3. 2 Methodological scheme for realization of the second goal - Analysis of molecules forming activity in the environment around the cancer cell and their ability to cross the cell membrane

The conditions selected to be maximally covered by *in vivo*: temperature 308K, in a blood environment (reported by the dielectric constant, failure to introduce this indicator in the equations leads to a deviation of 5 to 8% - which is not physiologically justified).

The dialectic constant of human blood has a different value in different blood groups (Salahuddin, Farrugia, Sammut, O'Halloran, & Porter, 2017) (Rauf, 2013), so we take its average arithmetic as a starting point – 68.15×10^3 at 308K and at frequency of 1KHz.

The electrostatic potential, created in the space around a molecule (Ren, et al., 2012) of its nuclei and electrons (treated as static charge distributions), is a well-applied property for analyzing and predicting molecularly reactive behavior. Hence the approximation that the molecular electrostatic potential is the potential energy of a proton at a specific location near a molecule. In this case, it is particularly useful as an indicator of the sites or zones of a molecule, initially attracted by an approaching electrophile, and has also been successfully applied to investigate interactions, that involve a certain optimal relative orientation of the reagents, in our case as an active pharmaceutical form cell to pass a specific cell membrane (cancer). This, however, prevents the recording of charges originating from the local electron density (charges density), which could be achieved with *Mulliken Changes*. The use of both variables from different methodologies more objectively illustrates the charges in the molecule and facilitate

subsequent interpretation. When comparing the outputs, it is necessary to use the same functional and basic set to make an accurate comparison, since the electron density is sensitive precisely to the likelihood of the process (whether at the electrostatic level).

With the introduction of *Ionization potential*, as a corrective for the interpretation of individual factors in the construction of the overall picture, more dualistic interpretation values (including variables) are eliminated.

All other investigated indicators are introduced into the analysis in order to better characterize the processes and their approximation to the actual *patho & sanus* physiological environment in the body.

The whole presentation is based on the amide and carboxyl acid form of *amygdalin* as the best studied, but they are only one representative of the homologous order. The conclusions are absolutely comparable to all its representatives (in their respective relation – amine/amide to carboxylic acid *§I.1* & *§II.1*).

Each source molecule is pre-exposed to *MM2 minimized energy* (Allinger, Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms, 1977), followed by molecular dynamics simulation at 308K (with 100 iterations) in order to generate an input to the subsequent *Z-matrix* calculations (Gidopoulos & Wilson, 2003). All values obtained by semi-empirical methods were performed in MOPAC (Maia, et al., 2012) environment with type *PM7* (Dral, Wu, Spörkel, Koslowski, & Thiel, 2016) and those of time-dependent density-functional theory (TD-DFT) in a GAMESS US (Gordon & Schmidt, 2005) environment. Each value is calculated five times with five different computer configurations and OS (Linux - UbuntuTM & OpenSUSETM; WindowsTM - 7 Pro & 10 Workstation). The results were statistically analyzed by the mean squared error (Hughes & Hase, 2010) and the hypotheses with the *Student's T-test* (Spiegel, 1992) for independent samples. The final numeric value is the one closest to its neighbor (also represented).

3.2.1. Characterization of amide dissociation in vivo

Analyzes the non-hydrolyzed amide / Basic Form A - BF(A) / both hydrolytic forms / conditionally accepted on Hydrolytic Form A - HF(A) and Hydrolytic Form B - HF(B) / in steps according to the indicators:

- Electrostatic Potential (Politzer & Laurence, 1985) (of reactive atoms), Mulliken Changes (Ohlinger, Klunzinger, Deppmeier, & Hehre, 2009), Core-Core Repulsion (Stewart J., 2021), COSMO (Klamt A., 2018) (Schürmann & Klamt, 1993) Area (Klamt, 2005) & Volume (Moya, Klamt, & Palomar, 2015), Dipoles (Tro, 2008) (vector Debye), Electronic & Total Energy and Ionization Potential (Lang & Smith, 2003);
- Polar Surface Area (Ertl, Rohde, & Selzer, 2000), Radius (Oxtoby, Gillis, & Campion, 2007) and Topological Diameter (Petitjean, 1992);
- LogP, LogS and Partition Coefficient (Kwon Y., 2002) (Sangster, 1997);
- calculation and structural representation of *pKa* (Rossotti & Rossotti, 1961) (BHAGAVAN, 2002) of each atom and/or group of the whole molecule.

26

second supplemented edition

To carry out the check is applied and *Principal Moment* (Foote & Raman, 2000) and *Lipinski Rule* (Lipinski, Feeney, Lombardo, & Dominy, 2001) /etc. *Lipinski's rule of five*/.

3.2.2. Characterization of the carboxylic acid obtained as a by-product of nitrile hydrolysis

It shall be performed identically according to *§III.3.2.1*.

3.2.3. Schematic presentation of the data from *§III.3.2.1* and *§III.3.2.2* with the necessary interpretations and conclusions - with the title: *Mechanism of penetration of the modified molecule into the cancer cell.*

TD-DFT is applied with respect to potential energy (Paul & Guchhait, 2011) and average enthalpy (Fifen, Nsangou, Dhaouadi, Motapon, & Jaidane, 2011).

3.2.4. Toxication of the cancer cell

Compounds that could be obtained immediately after the penetration of the active molecules into the cancer cell are considered. Their possible natural precursors are also presented. The results are interpreted.

3.2.5. Determination of the drug dose

3.3. On the third goal

It is mandatory to follow the tree structure of presentation, because it is also a function of the subsequent interpretation of the results.

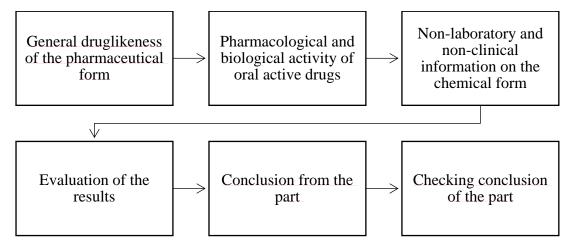


Fig. III.3. 3 Methodological scheme for realization of the third goal - Analysis of models for evaluation of the offered pharmaceutical forms

Amide/carboxylic acid hydrolyzed natural nitrile glycosides can be conditionally divided into 16 groups according (*Tabl.IV.2. 6* - prepared on the basis *§III.3.2.3, -4*) to the *Active Anticancer Cell molecules Forms* (AACF) secreted inside the cancer cell. Some of the groups have more than one homologous representative and it is necessary to find the optimal one for application (in terms of toxicity, working concentration, time of administration, etc.). Methods for non-laboratory and non-clinical assessment are applied, which are as close as possible to the real conditions and minimize as much as possible the errors in the theoretical research.

A comparative analysis is performed on the basis of stoichiometric calculations for the concentration of the active form and the prediction of the bioactivity. For this purpose, the following methodology is applied:

3.3.1. Data analysis for active anticancer cell molecular form

The derived chemicals obtained immediately after the passage of glucosamide across the cancer cell membrane [§6 of article (Tsanov & Tsanov, Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product, 2020) are: (R)-2-hydroxy-2-phenylacetamide, (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide, (*R*)-2-hydroxy-2-(3-hydroxyphenyl)acetamide, 2-hydroxy-2methylpropanamide, (S)-2-hydroxy-2-methylbutanamide, 2-hydroxy-3-methylbut-2-enamide, (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid, (S)-1-hydroxycyclopent-2ene-1-carboxamide, (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide, (1R, 4R) - 1, 4, 5trihydroxycyclopent-2-ene-1-carboxamide, (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-(R)-2-hydroxy-3-methylbutanamide, *ylidene*)*acetamide*, (E)-2-((4S,5R,6R)-4,5,6trihydroxycyclohex-2-en-1-ylidene)acetamide, (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4methoxycyclohex-2-en-1-ylidene)acetamide, (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1ylidene)acetamide и (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide.

The analysis is conducted in several phases:

3.3.2. Determining the exact molecular shape

Here is considered the geometry of the molecule (Ouyang, et al., 2013) on the basis of literature data (National Center for Biotechnology Information, 2020) and *MM2* (National Center for Biotechnology Information, 2020), and as a corrective is taken into account and *MMFF94* (Halgren T. A., 1996).

3.3.3. Druglikeness of the pharmaceutical form

Amides/carboxylic acids obtained by hydrolysis of natural nitrile glycosides are analyzed. Their concentrations and quantitative ratios are not considered here, but only the nature of the substances. Chemical ratios affecting biological activity were compared by *Molinspiration Drug Property* (Molinspiration:, 2020): *GPCR ligand* (Kristiansen, 2004), *Ion channel modulator* (Kaczorowski, McManus, Priest, & Garcia, 2008), *Kinase inhibitor* (Bhullar, et al., 2018), *Nuclear receptor ligand* (Zhao, Zhou, & Gustafsson, 2019), *Protease inhibitor* (Srikanth & Chen, 2016), (Eatemadi, et al., 2017) and *Enzyme inhibitor* (Aoyagi, shizuka, Takeuchi, & Umezawa, 1977), (Scatena, Bottoni, Pontoglio, Mastrototaro, & Giardina, 2008), (Song, Wu, & Wu, 2016) in order to characterize the overall *Druglikeness* (Li, et al., 2019).

second supplemented edition

Fig. III.3. 4 Methodological scheme for conducting analysis of General Druglikeness of the pharmaceutical form

The data are presented in tabular form and the values that cover the minimum requirements for the respective indicator are marked in light green, and in more saturated green - those covering the optimal requirements. In order to consider that a substance has the bio-activity of a medicinal product, it needs to have at least two of the sets of minimum values.

The results are extremely insufficient and too dualistic. They are relatively comparative and not give information about possible deviations in the direction of toxicity. Other (mutually exclusive) methodologies for drug evaluation are also considered.

3.3.3.1. Pharmacological and biological activity of oral active drugs

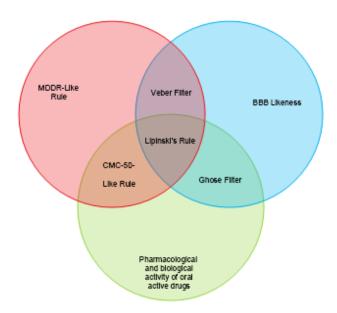


Fig. III.3. 5 Methodological scheme for research on the indicators Lipinski's Rule, Ghose Filter and CMC-50-Like Rule and their interrelations

7

The proposed pharmaceutical molecular form is recommended to be administered in the body in a solid state by mouth [*§*5 of (Tsanov & Tsanov, Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product, 2020)].

The main goal here is not to precisely define the drug "strength", but to compare, empirically, indicators for the evaluation of molecules and the interchangeability of the starting precursors. Therefore, it is not the absolute accuracy that matters, but only the extremely strict repeatability of the assessment methodologies. No deviation in rounding of values affecting the precise statistical processing of the results is allowed. Calculations: (Lipinski, Lombardo, Dominy, & Feeney, 1997), (Ghose, Viswanadhan, & Wendoloski, 1999), (Oprea, 2000), (Veber, et al., 2002), (Steinbeck, et al., 2003), (Brenk, et al., 2008), (Di & Kerns, 2008), (Bickerton, Paolini, Besnard, Muresan, & Hopkins, 2012), (Yusof & Segall, 2013), are performed with the drug-likeness tool *DruLiTo 2018* (DruLiTo, 2020) /NIPER S.A.S., Nagar, India/.

The analysis is divided into three main groups of methods:

3.3.3.1.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

Lipinski's rule of five (Doak, Over, Giordanetto, & Kihlberg, 2014) (also known as *Pfizer's rule*) as a basic rule for the evaluation of chemical compounds having pharmacological and/or biological activity for use as a drug for oral use. This rule is conditional because there are over time drugs that do not cover some of its postulates.

Data from *Lipinski's rule* are compared with those of the adapted *Ghose Filter* (Azad, Nasibullah, Khan, Hassan, & Akhter, 2018) and *CMC-50-Like Rule* (Kadam & Roy, 2007). The data are presented in tabular form, with the corresponding color identification, showing covering and / or exceeding requirements for each individual evaluation parameter: *molecular weight* (MW), partition coefficient (*LogP*), *H-bond acceptor* (HBA), *H-bond donor* (HBD), *Atom Molar Refractivity* (AMR) and *number of atoms in the molecule* (nAtom). This is necessary to more precisely clarify the genesis of the deviations, for each indicator.

It is expected that *LogP* values in *Ghose Filter* and *CMC-50-Like Rule* and the molecular weight in *CMC-50-Like Rule* directly reflect more on the time of penetration through the stomach wall. In cancer patients, there is often a deviation from the normal physiology of the stomach, so it is assumed that the deviations are not drastic and reflect more on the individual anamnesis of the patient.

3.3.3.1.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Regardless of the analysis in *§3.3.3.1.1* an analytically differentiable is conducted with regard to methodologies for evaluation of medicinal products (Ani, Anand, Sreenath, & Deepa, 2020), based on *total polar surface area* (TPSA), *number of rotatable bonds* (nRB), *rotatable bond count* (RC), *number of rigid bonds* (nRingidB), *MW*, *nAcidGroup* and *number of hydrogen bonds* (nHB), via Weber Filter, MDDR-Like Rule and BBB Likeness.

Here, the goal is to evaluate chemical molecules by a set of variables not affected by the partition coefficient (*LogP*), but at the same time taking into account the influence of *molecular* weight (part of *BBB Likeness*).

The color identification of the results specified in *§3.3.3.1.1*, shall be applied again in a tabular form.

The information obtained from this set of empirical rules cannot be interpreted unambiguously. These are molecules have a larger *associated volume* and a *total number of bonds* (and hence axes and points of rotation). Much of the molecule is occupied by a carbohydrate residue, which in most cases does not slow down the action of the drug in the blood, simply prolongs the time spent in the stomach. Suffice it to say that no drastic differences (in orders of magnitude) of deviations are expected.

3.3.3.1.3. QED

The methods used in §3.3.3.1.1 and §3.3.3.1.2 are based on physicochemical parameters which are considered separately. Using the *Quantitative Estimate of Druglikeness* (QED) methodology, an approximation of the interchangeability of individual indicators is applied.

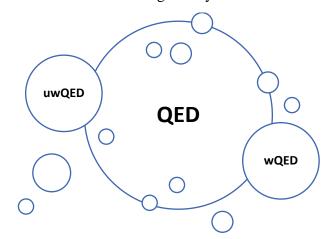


Fig. III.3. 6 Dependence between QED with uwQED and wQED

They enter into a general linear relationship (*Fig. III.3. 6*) and give a solution in the form of a scalar coefficient. This greatly facilitates the comparison of druglikeness properties of individual molecules of a homologous order. For this purpose, other empirical and/or calculated variables are added: *octanol-water* partition coefficient (AlogP), *numbers of Structural alerts* (sAlerts) and *numbers of Aromatic bond count* (nAromaRing).

They are two separate forms of evaluation that appear next (Jablonsky, Haz, Burcova, Kreps, & Jablonsky, 2019):

A. Unweighted Quantitative Estimate of Druglikeness Unweighted Quantitative Estimate of Druglikeness (UwQED):

UwQED is defined as (*Equat.III. 1*):

Equat.III. 1

$$UwQED = exp(\frac{1}{n}\sum_{i=1}^{n}ln \ ln \ d_i)$$

where: d is the individual desirability function, and n is the number of descriptors.

B. Weighted Quantitative Estimate of Druglikeness

Weighted Quantitative Estimate of Druglikeness (wQED) represents the functional dependence (Equat.III. 2):

Equat.III. 2

$$wQED = exp(\frac{\sum_{i=1}^{n} w_i ln d_i}{\sum_{i=1}^{n} w_i})$$

where: d is the individual desirability function, w is the weight applied to each function and n is the number of descriptors.

3.3.4. Non-laboratory and non-clinical information on the chemical form

Activities as a factor in conducting analysis, we could divide it into two main groups (*Fig.III.3. 7*): those that require time for the process (carcinogenicity and mutagenicity) and those that must be considered in real-time (drug absorption, toxicity and receptor activity).

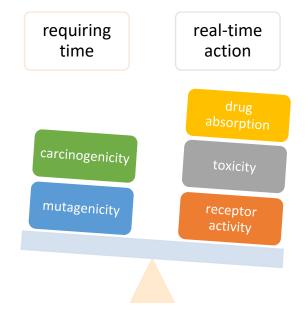


Fig.III.3. 7 Factors influencing the overall assessment when conducting analysis for data obtained in non-laboratory and non-clinical methods

This is an important circumstance, which is also valid in the case of real conservative treatment of a patient with the studied pharmaceutical forms.

3.3.4.1. Receptor activity

To achieve this goal, a model of qualitative prognosis of 12 classical endocrine abnormalities associated with the so-called receptor-mediated endocrine disruptions. They include: receptor-mediated endocrine disruptions. They include: *Androgen Receptor* (AR) (Davey & Grossmann, 2016), *Estrogen Receptor a* (ERa) & *Estrogen Receptor b* (ERb) (Paterni, Granchi, Katzenellenbogen, & Minutolo, 2014), *Glucocorticoid Receptor* (GR) (Nicolaides, Chrousos, &

Kino, updated 2020 Nov 21), *Mineralocorticoid Receptor* (MR)⁵ (Gomez-Sanchez & Gomez-Sanchez, 2014), *Progesterone Receptor* (PR) (Scarpin, Graham, Mote, & Clarke, 2009) (Jacobsen & Horwitz, 2012), *Retinoic Acid Receptor a* (RARa) (Wang, et al., 2017), *Retinoic Acid Receptor b* (RARb) (Busby & Burris, 2012) (Doan, et al., 2020), *Retinoic Acid Receptor r* (RARr) (le Maire, et al., 2012) (le Maire, Teyssier, Balaguer, Bourguet, & Germain, 2019), *Thyroid Hormone Receptor a* (TRa) (Moran & Chatterjee, 2015) (Keijzer, et al., 2007), *Thyroid Hormone Receptor b* (TRb) (Cömert, et al., 2010) and *Vitamin D Receptor* (VDR) (Kato, 2000) (Pike & Meyer, 2010).

Each of them is directly related to the normal physiology of the body. The change of any hormonal regulation can lead to complications during treatment, and in case of larger deviations to permanent damage to the organism (including death).

After the analysis of literature data from scientific articles and reports (Hall & Greco, 2019) (Evans & Mangelsdorf, 2014), for the needs of the analysis the so-called *Nuclear Receptor-mediated Endocrine Activity* (NRMEA) Model^{xlvi}, part of the VEGA software package (*§III.1.1.3*).

The data are presented in tabular form, applying a color estimate of the result obtained. Exact values are not displayed due to incompatibility of dimensions and minimization of mathematization. The color scheme is: green - meets the requirements for inertia to the respective receptor, orange - is active and colorless - there is not enough data and/or the data cannot be unambiguously interpreted.

3.3.4.2. Mutagenicity

The study for possible mutagenic activity includes QSAR methodologies based on empirical information on already reported molecules and/or their fragments and some topological, physical and physicochemical molecular dependencies.

They are conditionally divided (*Fig.III.3. 8*) into two groups: Stand-alone models (CAESAR, SarPy / IRFMN, ISS and KNN / Read-Across) and the unifying Consensus model.

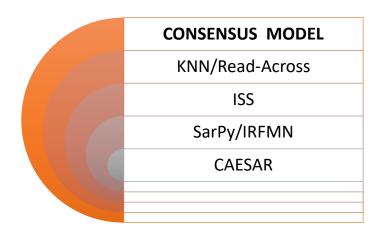


Fig. III.3. 8 Relationship between Stand-alone models and Consensus model in the assessment of a molecular form for mutagenicity

⁵ Not every compound can be subjected to this analysis. The training set is not adapted to glycosidic derivatives.

A. Stand-alone models

It is also important to eliminate the possibility that the tested pharmaceutical forms, especially in the case of a continuous example, may lead to mutagenic abnormalities. For the purposes of the present study, *Ames*^{xlvii} mutagenicity (Ames, Durston, Yamasaki, & Lee, 1973) (Mortelmans & Zeiger, 2000) gives a sufficiently reliable result, in a form convenient for interpretation. Due to the relative freedom of application of the method, sub-methods have been created, which insert into the conclusions and additional knowledge that we have accumulated after its creation.

Data on the structural signals (for the respective sub-methods) for mutagenicity and carcinogenicity are derived from the article: (Benigni, Bossa, Jeliazkova, Netzeva, & Worth, 2008).

a) CAESAR

The model (Ferrari & Gini, An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts, 2010) provides a qualitative prediction⁶ for mutagenicity. The area of applicability of the forecasts is assessed using *a domain applicability index* (ADI), which gives values from 0 (for an indicator that is as close as possible to a negative answer) and to 1 (for a maximum approach to a positive one). The ADI is calculated by grouping several other indices, each of which takes into account a specific "applicability problem". Most of the indices are based on the calculation of the most similar compounds found in the database to the respective model, i.e. relies on the available set of empirical data in it.

For each index, including the final ADI, three intervals are defined for its values, so that the first interval corresponds to a positive assessment, the second to a presumed assessment, and the last to a negative one.

The subsequent process in the method algorithm takes into account all components of the applicability domain, along with their values and intervals between them. For the purposes of estimating the accuracy and compliance index, the prediction of a 'presumed mutagenic' is considered a 'mutagenic'.

The individual indices are:

- Similar molecules with known experimental value (SMKEV): this index takes into account how similar the first three most similar compounds found are. Values close to 1 mean that the predicted compound is well represented in the data set used to build the model, otherwise the prediction may be extrapolation. The defined intervals are: at $1 \ge index > 0.85$ - strongly similar compounds with known experimental value were found in the database set; $0.85 \ge index > 0.7$ - "moderately similar" compounds with known experimental value were found and at index ≤ 0.7 - no similar compounds with known experimental value were found in the set of molecules;

4

⁶ **CAESAR model statistics:** The following statistics are obtained, applying the model to its initial data set: • Training set: n = 3253; Accuracy = 0.92; Specificity = 0.86; Sensitivity = 0.97 • Test set: n = 798; Accuracy = 0.83; Specificity = 0.74; Sensitivity = 0.90. Compounds intended as a suspicious mutagen have been omitted from this statistic. Structural signals for putative mutagenicity were identified as follows: • In the training set: n = 114 (18 mutagenic compounds, 96 non-mutagenic compounds) • In the test set: n = 39 (19 mutagenic compounds, 20 non-mutagenic compounds)

- Accuracy of prediction for similar molecules (APSM) (Zubatyuk, Smith, Leszczynski, & Isayev, 2019): This index takes into account the accuracy of classification in predicting the three most similar compounds found. Values close to 1 mean that the analyzed compounds fall into an area of the model space where reliable predictions are given (i.e. without erroneous classifications), otherwise the lower the value, the greater the deviation from the model. The defined intervals are: $1 \ge index > 0.9$ the accuracy in predicting such molecules is good; $0.9 \ge index > 0.5$ the accuracy in predicting such molecules is average and index ≤ 0.5 here it is low;
- Concordance for similar molecules (CSM): This index takes into account the difference between the predicted and experimental values of the three most similar compounds. Values close to 0 mean that the forecast made does not correlate with the values found in the model space, which is why the forecast is considered unreliable. The defined intervals are: $1 \ge index > 0.9$ - experimental data of similar molecules are available, which agree with the calculated value; $0.9 \ge Index > 0.5$ - similar molecules were found whose experimental data partially covered the calculated values and index ≤ 0.5 - similar molecules were found whose experimental data did not overlap with the calculated value;
- Atom Centered Fragments similarity check (ACFSC) (Kühne, Eber, & Schürmann, 2009) (Batista, Tan, & Bajorath, 2010): This index detects the presence of one or more fragments that are not found in the training kit and/or are rare. Fragments from the center of the active atom of the first order of all molecules in the set of experimental data are calculated, after which similar fragments in the analyzed molecule are calculated; then the index is calculated as follows: the first index (conditionally written as "RARE") takes into account rare fragments (those that occur less than three times in the set of molecules). It acquires a value of 1 if no such fragments are found, 0.85 if up to two fragments are found, 0.7 if more than two fragments are found; the second index (conditionally written as "NOTFOUND") takes into account fragments not found. Respectively, the value is 1 if no such fragments are found, 0.6 if such a fragment is found and 0.4 if more than one fragment is found. The operation ends with the generation of the final index, with answers: "rare" and "non-core". The definition intervals are: index = 1 - all atomically centered fragments are found in the database; $1 > index \ge 0.7$ - any of the atom-centered fragments of the compound were not found in the available set of molecules and index = 0.7 - no atom-centered fragments were found in the test molecule and / or rare fragments;
- Model's descriptors range check (MDRC) (Votano, et al., 2004): This index checks whether the descriptors calculated for the predicted compound are in the range of the descriptors of the molecules in the database (training set). The index takes a value of 1 if all descriptors are within range and 0 if at least one descriptor is out of range. The defined intervals are respectively: index = true and index = false;
- Global AD Index (GADI) (Votano, et al., 2004): The final index takes into account all the previous ones in order to summarize the assessment of the applicability of the analyzed compound. The determination intervals are: 1 ≥ index > 0.9 the analyzed molecule is in the applicability of the model; 0.9 ≥ index> 0.7 the result is not eloquent and index ≤ 0.7
 the analyzed molecule is outside the applicable area of the model. Since GADI is not related to the standard set and goes a little out of the model, it will be presented first in the scoreboard.

Data are presented in tabular form with the corresponding color indexation of the values: green - the compound is classified as non-mutagenic, red - the compound is classified as mutagenic and yellow - impossibility of unambiguous interpretation.

b) SarPy/IRFMN

The model is built with a set of instructions from CAESAR (see \$a) (Ferrari, et al., 2013). The initial model has been further developed, leading to a set of instructions for mutagenicity (up to 112) and non-mutagenicity (up to 93). If at least one mutagenicity rule matches the test compound, a "mutagen" prediction is given; if only one or more non-mutagenicity rules match, a "non-mutagenic" prediction is given; "Possible non-mutagenic".

The definition of the indices is identical to that for CAESAR, but with new intervals:

- SMKEV: 1 ≥ index > 0.8 the accuracy in predicting such molecules is good; 0.8 ≥ index
 > 0.6 the accuracy in predicting such molecules is average and index ≤ 0.6 here it is low;
- APSM, CSM, ACFFSC: are identical to those of CAESAR;
- GADI: is identical to that of CAESAR, only the lower limit is reduced from 0.7 to 0.65.

IMPORTANT: MDRC - absent from the method!

The data are presented in the form of the main method.

c) ISS

The ISS model was developed as a set of rules similar to those of SarPy / IRFMN (Benigni & Bossa, Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for, 2011) (Benigni, Bossa, & Tcheremenskaia, In vitro cell transformation assays for an integrated, alternative assessment of carcinogenicity: a databased, 2013).

ISS applies all SarPy / IRFMN mutagenicity rules. If at least one rule coincides with a test compound, a prognosis is "mutagenic", otherwise "non-mutagenic".

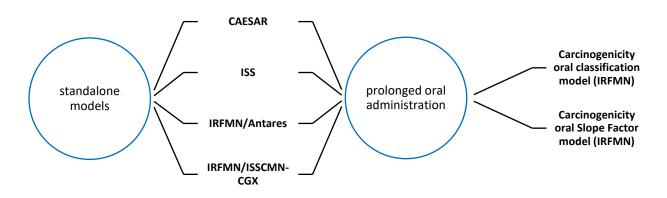
All indexes and color identifications are identical to those of SarPy / IRFMN.

d) KNN/Read-Across

The model re-examines a data set⁷ (Hansen, et al., 2009). It is very close to ISS and SarPy/IRFMN. Uses identical definition of intervals and their color representation.

⁷ **KNN/Read-Across model statistics**: Statistics obtained then, applying the reading forecast through the initial data set, with an initial approach (re-reading for each compound was performed on the whole data set without the compound itself) • n = 5764; Accuracy = 0.80; Specificity = 0.76; Sensitivity = 0.83 • Unpredictable compounds: n = 6

second supplemented edition


Then obtained statistics applying the reading forecast through the initial data set, with a baseline approach (re-reading for each compound was performed on the whole data set without the compound itself).

B. Consensus model

For the performance of a complex assessment (according to Ames) of the data from the available methods (CAESAR, SarPy, ISS and KNN) the so-called consensus model of mutagenicity (Votano, et al., 2004). The algorithms in this model compare the solutions of each model, find their repetitive results and the severity of the final answer is determined not so much by the number of matches as by the "accumulated" in mathematical expression deviations from the general provisions of each method.

The assessment of the applicability of the result is converted into a numerical value in the range [0, .., 1], in the following scheme: experimental value - [1]; high reliability - [0.9]; moderate reliability - [0.6] and low reliability - [0.2]. For each prediction class (i.e. mutagenic or non-mutagenic), the result is calculated as the sum of the values for each model that created this prediction. For the purposes of the consensus approach, "putative mutagenic/non-mutagenic" predictions are considered as "mutagenic/non-mutagenic" predictions. The calculated result is normalized to the number of models used so that there is a theoretical range [0,..,1], followed by the class of predictions with the highest score is considered consensus forecasting. However, if a model has found an experimental value, it is considered final. In each case, the model always generates a response with a lower value, i.e. closer to mutagenicity

Data are presented in tabular form with the corresponding color indexation of the values: *green* - the compound is classified as non-mutagenic, *red* - the compound is classified as mutagenic and *yellow* - impossibility of unambiguous interpretation.

3.3.4.3. Carcinogenicity

Fig. III.3. 9 Relationship between Stand-alone models and Prolonged oral administration in the assessment of a molecular form for carcinogenicity

The study for the manifestation of possible carcinogenicity of the studied molecules in nonlaboratory and non-clinical conditions (*Fig.III.3. 9*) is carried out in two directions: Stand-alone models (CAESAR, ISS, IRFMN/Antares and IRFMN/ISSCMN-CGX) and prolonged oral

second supplemented edition

administration (Carcinogenicity oral classification model (IRFMN) and Carcinogenicity oral Slope Factor model (IRFMN)).

A. stand-alone models

a) CAESAR

The model (Fjodorova, Vračko, Novič, Roncaglioni, & Benfenati, 2010) (Fjodorova & Novič, Comparison of criteria used to access carcinogenicity in CPANN QSAR models versus the knowledge-based expert system Toxtree , 2014) is built as an artificial neural network for counteraction of distribution (CP ANN)⁸. The output of the neural network consists of two values, denoted as "positive" and "non-positive", which are in the range [0,..., 1] and their sum is equal to one. They represent the extent to which the neuron into which the test compound belongs to the class of "carcinogenic" or "non-carcinogenic" compounds. The higher between the two values leads to the forecast. Descriptors are calculated from values presented in (Todeschini & Consonni, 2009).

The definition of the individual indices is identical to that of CAESAR for mutagenicity, but at certain intervals:

- SMKEV: at 1 ≥ index > 0.8 strongly similar compounds with known experimental value were found in the database set; 0.8 ≥ index > 0.6 "moderately similar" compounds with known experimental value were found and at index ≤ 0.6 no similar compounds with known experimental value were found in the set of molecules;
- APSM: 1 ≥ index > 0.9 the accuracy in predicting such molecules is good; 0.9 ≥ index
 > 0.5 the accuracy in predicting such molecules is average and index ≤ 0.5 here it is low;
- CSM: $1 \ge index > 0.9$ experimental data of similar molecules are available, which agree with the calculated value; $0.9 \ge index > 0.5$ similar molecules were found, whose experimental data partially overlap with the calculated values, and index ≤ 0.5 similar molecules were found, whose experimental data did not overlap with the calculated value;
- ACFSC: $1 > index \ge 0.7$ any of the atom-centered fragments of the compound, not found in the available set of molecules and index = 0.7 - no atom-centered fragments found in the test molecule and/or rare fragments;
- MDRC: 1 if all descriptors are within range and 0 if at least one descriptor is out of range. The defined intervals are respectively: index = true and index = false;

⁸ *CAESAR Ccarcinogenicity Model statistics:* The following statistics are obtained, applying the model to its initial data set: • Training set: n = 645; Accuracy = 0.87; Specificity = 0.86; Sensitivity = 0.89 • Test set: n = 161; Accuracy = 0.67; Specificity = 0.61; Sensitivity = 0.72

GADI: $1 \ge \text{index} > 0.8$ - the analyzed molecule is in the applicability of the model; $0.8 \ge \text{index} > 0.6$ - the result is not eloquent and index ≤ 0.6 - the analyzed molecule is outside the applicable area of the model.

Two new indices are also introduced here:

- MCAR: This index checks whether the two neural network outputs (positive and nonpositive) lead to an unreliable prediction; when the difference between these two values is less than 0.1, the neuron where the test compound falls cannot provide a good classification, so the index is set to 0. Otherwise, the index is set to 1, i.e. index = 1 - the task of the model class is well defined and for index = 0 - here it is uncertain;
- Neural map neurons concordance (NMNC): This index checks the compliance of the analyzed compound with the experimental values of the compounds from the database that fall into the same neuron. The index is constructed taking into account two sub-indices: population and concordance. Low values mean that the predicted compound falls within a neural network area that has no experimental compounds and / or that has those but with heterogeneous ones, leading to low reliability. The defined intervals are: index = 1 the predicted value agrees with the experimental ones of the compounds from the database, applied in the same neuron; index = 0.75 the predicted value does not agree with the experimental ones from the database placed in the same neuron and index = 0.50 the analyzed substance falls into a neuron in which there are no similar compounds in the database.

Data are presented in tabular form with the corresponding color indexation of the values: green - the compound is classified as non-carcinogenic, red - the compound is classified as carcinogenic and yellow - impossibility of unambiguous interpretation.

b) ISS

In essence, the model is identical to that of the ISS in mutagenicity (Benigni, Bossa, & Tcheremenskaia, Nongenotoxic carcinogenicity of chemicals: mechanisms of action and early recognition through a new set of structural alerts, 2013).

The model applies⁹ all rules related to carcinogenicity, but not the full decision tree. If at least one carcinogenic rule coincides with the test compound, a prognosis for 'carcinogenic' is given, otherwise the expression 'non-carcinogenic' is generated.

The SMKEV, APSM, CSM and ACFFSC indices assume the same defined intervals and color identifications as for CAESAR for carcinogenicity. In GADI alone, the internal response limits are 0.90 and 0.65.

c) IRFMN/Antares

The model is made up of a set of rules¹⁰ and a database from the Antares^{xlviii} project and its like. It includes data from the chemical carcinogenesis of rats with 127 structural warnings. If at

⁹ *ISS Carcinogenicity Training set:* n = 797; Accuracy = 0.76; Specificity = 0.58; Sensitivity = 0.81

¹⁰ *IRFMN/AntaresTraining carcinogenicity set:* n = 1543; Accuracy = 0.66; Specificity = 0.48; Sensitivity = 0.82

second supplemented edition

least one rule coincides with the studied molecule, a "carcinogenic" prognosis is given. Otherwise, the prognosis is "possible non-carcinogenic".

The SMKEV, ACFFSC and GADI indices assume the same defining intervals and color identifications as for CAESAR for carcinogenicity. Only the internal limits for APSM and CSM are 0.80 and 0.60.

d) IRFMN/ISSCMN-CGX

The model¹¹ is built as a set of rules obtained from the union of the ISS database and the CGX^{xlix} data set. A cross-validated procedure is applied, ending with the extraction of a set of 43 rules (structural warnings) related to carcinogenic activity, representing molecular fragments.

If at least one rule matches the test compound, a "carcinogenic" prediction is given, otherwise a "possible non-carcinogenic" prediction is given.

The SMKEV, ACFSC, APSM, CSM and GADI indices assume the same definition intervals and color identifications as for IRFMN / Antares for carcinogenicity.

B. Prolonged oral administration

a) Carcinogenicity oral classification model (IRFMN)

The model¹² was developed using the RAIS risk information system toxicity database. The data cover different categories of different categories of substances, including organic and inorganic.

An internal tool (Manganaro, 2020), developed in the statistical platform R, was used to select the best set of descriptors and size to be used for the final model. The approach is based on pre-selection technology: starting from the descriptor most correlated with the experimental data, a descriptor leading to the best model (among all available descriptors) is added to each iteration, up to the size of 25 descriptors. The models were constructed using linear discriminant analysis (LDA) modeling and were applied with a starting band cross-checking approach (n = 100 iterations). The fitness function was calculated for each model as a linear combination of the average values of accuracy, sensitivity and specificity obtained from the models built into each iteration of the bootstrap. This function is used to select the best descriptor to add to move to the next iteration.

The GADI, SMKEV, APSM, and CSM indices assume the same definition intervals and color identifications as for IRFMN / Antares for carcinogenicity, and the MDRC and ACFSC as for CAESAR.

¹¹ *IRFMN/ISSCMN-CGX carcinogenicity Model statistics:* The following statistics are obtained, applying the model to its initial data set: • Training set: n = 986; Accuracy = 0.73; Specificity = 0.60; Sensitivity = 0.785

¹² *IRFMN statistics:* training kit (593 chemicals) Accuracy = 0.81 Sensitivity Specificity = 0.82 = 0.79

b) Carcinogenicity oral Slope Factor model (IRFMN)

The model¹³ is close to the Carcinogenicity oral classification model (IRFMN) and is described in detail (Benfenati, Roncaglioni, Lombardo, & Manganaro, 2019).

The selection of characteristics was performed with the package "gaselect" R, which implements a partial algorithm with the least square (PLS-GA) and re-double cross-checking for statistical evaluation of a subset of descriptors. The following settings were applied to PLS-GA: initial population 2000; number of iterations 5000; minimum number of variable 5; maximum number of variables 12. Optimal subsets of descriptors returned by the final iteration of the execution were used to derive a model using r^2 as a fitness function.

Here the forecast assumes a numerical value.

3.3.4.4. Toxicity

Assessing the toxicity of the studied molecules and their fragments requires a comprehensive examination of models that are as far apart as possible when conducting methodologies. In *Fig.III.3. 10* shows the methodological scheme followed in the analysis.

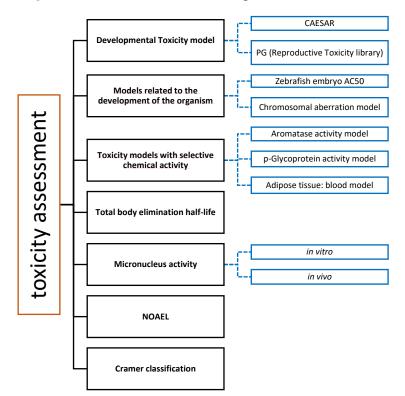


Fig. III.3. 10 Methodological scheme for assessing the toxicity of the studied molecular form

1

¹³ *Predictability Carcinogenicity oral Slope Factor model*- Statistics: obtained by external validation: Test set (32 chemicals) R2 = 0.573; RMSE = 1.28

A. Developmental Toxicity model

a) CAESAR

The model (Cassano, et al., 2010) is a QSAR classification model based on a Random Forest method, implemented using WEKA open-source libraries.

The analyzed variables¹⁴ are classified in the order:

- SMKEV: Values close to or equal to one indicate that the test compound is well represented in the data set used in the construction of the model. When moving away from one the resulting slenderness is extrapolated on the basis of overlapping molecular fragments. The defined intervals are: 1≥index> 0.8 molecules and / or their fragments with strong similarity to the test substance were found; 0.8≥index> 0.7 moderately similar molecular similarities were found; index≤0.7 no similarities with the molecules from the training set;
- APSM: this index takes into account the classification accuracy when predicting two most similar compounds found in a training set. Values close to 1 mean that the predicted compounds fall within an area of the model space. The determination intervals are similar to those of SMKEV but are defined as: 1≥index> 0.8 | 0.8≥index> 0.6 | 0.6≥index;
- CSM: this index is a function between the predicted and experimental value of the two closest compounds in the training set data set. The closer the value is to zero, the more unreliable it is. The determination intervals are the same as for APSM;
- ACFSC: This index takes into account the presence of one or more fragments that are not found in the training set or are reported as very rare. Higher values obtained show better predictive overlap and more accurate end result. The algorithm is mathematical and is well described in the cited article. The defining intervals for it are: 1 = index | 1> index≥0.7 | index <0.7;
- MDRC: This expression checks whether the descriptors calculated for the test compound are in the range of the descriptors of the training set and test set. The index takes the value 1 (displayed as: true) if the descriptors are in the range and 0 (displayed as: false) if at least one descriptor is out of range;
- GADI: This index summarizes all the information from each index. Values closer to one indicate that the test substance is within the scope of the model. The determination intervals are: 1≥index> 0.8 | 0.8> index≥0.7 | index <0.7.

b) PG (Reproductive Toxicity library)

The attached Developmental / Reproductive Toxicity library (PG) model is part of the Vega QSAR package (§III.1.1.3). It is based on the study of Shengde Wu's team (Wu, et al., 2013).

The model is close to CAESAR toxicity and uses the same indices (GADI, SMKEV, APSM, CSM & ACFSC). The defining intervals for it are described in (Benfenati & Marzo, QMRF Title:Developmental/Reproductive Toxicity library (PG) (version 1.1.0), 2020).

¹⁴ Training set: n = 234; Accuracy = 1.00; Specificity = 1.00; Sensitivity = 1.00 | Test set: n = 58; Accuracy = 0.84; Specificity = 0.59; Sensitivity = 0.95

B. Models related to the development of the organism

a) Zebrafish embryo AC50

This model was developed by a team of scientists (Toropova, et al., 2017), based on (Padilla, et al., 2012) and implemented by the QSAR package VEGA (§III.1.1.3.)

Due to the much more complex evaluation of the intermediate / working results (well described in the already presented articles), a color scheme for evaluation of the individual indicators is applied: GADI, SMKEV, APSM, CSM, MEPASM, MDRC and ACFSC. The final result is a baseline numerical value indicating at what concentration of the test substance there is a real risk of harm to the fetus. The higher concentration, in mg/l, illustrates higher inertness relative to the embryo.

b) Chromosomal aberration model (CORAL)

The Chromosomal aberration model analyzes the high level of chromosomal aberrations in peripheral blood lymphocytes, which is also an early marker of cancer risk, but data on the risk of specific cancers and types of chromosomal aberrations are limited. This study was conducted by a group of scientists (Toropov, Toropova, Ritano, & Benfenati, 2019), and the analysis of the putative anti-cancer molecular forms was performed in VEGA medium.

Each indicator (GADI, SMKEV, APSM, CSM, MEPASM, MDRC and ACFSC) is analyzed, a color scheme is used for evaluation and a conclusion is drawn about the activity.

C. Toxity models with selective chemical activity

a) Aromatase activity model

Aromatase (Shoombuatong, Schaduangrat, & Nantasenamat, 2018) is a rate-limiting enzyme for estrogen biosynthesis that is overproduced in breast cancer tissue. The VEGA software package (§III.1.1.3) is used to analyze active anti-cancer molecular forms.

When presenting the results in tabular form, a color evaluation of the values for each individual indicator (GADI, SMKEV, APSM, CSM and ACFSC) is applied, followed by an evaluation of the activity (Active Agonist, Active Antagonist and Inactive). The study ends with a prediction of the activity (according to the numerical values of the individual assessments).

b) P-Glycoprotein activity model

P-Glycoprotein (Lagares, Minovski, & Novič, 2019) is a transmembrane protein that actively transports a wide variety of chemically different compounds from the cell. It is strongly associated with ADMET (absorption, distribution, metabolism, excretion and toxicity) properties

second supplemented edition

of drugs / drug candidates and contributes to the reduction of toxicity by eliminating compounds from cells, thus preventing intracellular accumulation.

The model applied (Lagares L., et al., 2020) in a VegaHub environment (*§III.1.1.3*) includes evaluation by indicators: GADI, SMKEV, APSM, CSM, MDRC and ACFSC. It is taken into account, etc. Euclidean Distance from the central neuron (Prajapati, et al., 2013), data¹⁵ in training and test sets and is assumed.

c) Adipose tissue: blood model (INERIS)

Adipose tissue: blood model (INERIS): blood distribution is a key endpoint for predicting the pharmacokinetics of chemicals in humans and animals, as the affinities of other organs: blood can be assessed as a function of this parameter (Cappelli, Manganelli, Toma, Benfenati, & Mombelli, 2021).

The analysis (Benfenati E., Adipose tissue:blood model (INERIS) - v. 1.0.0, 2020) is performed by calculation of parameter departments (GADI, SMKEV, APSM, CSM, MEPASM, MDRC and ACFSC), using color evaluation. LogK (in log units) is calculated, and hence K (in numerical units).

D. Total body elimination half-life (QSARINS)

This study was performed with the VEGA software package on the indicators: GADI, SMKEV, APSM, CSM, MEPASM, MDRC and ACFSC. LogHLt (in log units) is also predicted, and hence the Total half-life indicator (in min).

E. Micronucleus activity

Genotoxicity is the ability of an agent to cause DNA damage as an alteration in the structure or information content of genetic material in cells, including those that are permanently transmissible.

Micronucleus activity (IRFMN/VERMEER) QSAR test is based on (Ferrari, et al., 2013) and is performed through the VEGA software package. You study the indicators GADI, SMKEV, APSM, CSM and ACFS and come up with Prediction in terms of activity.

The assay is performed in vitro and in vivo.

¹⁵ Considering only the "Inhibitor" class vs the remaining "Substrate" and "Non active": Training set: n=1777 (+ 8 non predicted compounds); Accuracy=0.95; Specificity=0.95; Sensitivity=0.95, Test set: n=717 (+ 9 non predicted compounds); Accuracy=0.85; Specificity=0.86; Sensitivity = 0.84 | Considering only the "Substrate" class vs the remaining "Inhibitor" and "Non active": Training set: n=1777 (+ 8 non predicted compounds); Accuracy=0.97; Specificity=0.98; Sensitivity=0.92, Test set: n=717 (+ 9 non predicted compounds); Accuracy=0.93; Sensitivity=0.94 | Considering 0.93; Sensitivity=0.96

second supplemented edition

- a) In vitro (Baderna & Benfenati, 2019)
- b) In vivo

F. NOAEL

This method (Toropov, Toropova, & Benfenati, NOAEL (IRFMN/CORAL) - v. 1.0.0, 2020) involves testing drugs for oral administration to rats for 90 days. The 28-day tests are also methodologically compliant. The indicators GADI, SMKEV, APSM, CSM, MEPASM, MDRC and ACFSC are analyzed. The final result for Prediction is in -log(mg/kg), and from there in mg/kg.

G. Cramer classification (Jeliazkova & Benfenati, 2020)

3.3.5. Evaluation of the results

In the case of more than one homologous and/or isomeric representative of the test dosage form, it is necessary to differentiate, by correlation analysis (Mirkin, 2019) of the data used all the tested methods, the most optimal molecules.

3.3.6. Conclusion from the part

The selected pharmaceutical form is analyzed according to the indicators: Oral rat LD50 and Bioaccumulation factor. The aim is that the methods used to evaluate the molecules do not differ from the statistical processing. It concludes with lethal and cumulative doses.

Using statistical methods (Божанов & Вучков, 1973), (Devore, 2011) for optimization i.e. statement of the task is created. It involves finding such factor values (in this case, they overlap with the empirical results of each set of rules) in which to isolate the most optimal dosage form suitable for conservative treatment. For this purpose, we assume that the optimum of the objective function coincides with its extremum - minimum or maximum (by definition of the respective rule). Here we will deliberately eliminate the statistical disturbances of the analysis - it is not necessary to maintain chemical purity close to p.a. or higher. To avoid this difficulty, we will apply a "step-by-step" procedure: they will be analyzed in packages according to three rules (corresponding only in terms of their molecular weight, i.e. whether they swell or not) of the two molecular structures: amide or carboxyl. Here we do not take into account factors such as concentration, share relations, etc. quantitative variables.

In order to isolate one or at most two molecular forms, the components of the gradient are also determined by *Box & Wilson method* (Box & Wilson, 1951).

These results are obtained for the optimal molecular package (amide/carboxylic acid). A conclusion should be made about druglikeness for the proposed pharmaceutical forms. It is based on a comparison of each individual group of assays and optimally applicable molecules are derived. The final molecules were also compared for toxicity by *Hierarchical clustering method*

second supplemented edition

Equat.III. 4

(Böcker, Derksen, Schmidt, Teckentrup, & Schneider, 2005) (HCM) in a T.E.S.T. (Martin, Harten, Venkatapathy, & Young, 2008), (EPA, 2020) for *Oral rat LD50* in the form (*equations III.3 & 4*).

Model ellipsoid:

Rmax:

Equat.III. 3

$$h_{00} = X_0^T (X^T X)^{-1} X_0$$

distance
$$_{i} = \sum_{j=1}^{d} (x_{ij} - C_{j})^{2}$$

Test molecule must be within ellipsoid of descriptor values for model chemicals. The model ellipsoid constaint is satisfied if the leverage of the test compound (h_{00}) is less than the maximum leverage value for compounds.

Distance to the centroid of the cluster must be less than the maximum distance for any cluster molecule

where: Fragment constraints - Compounds in the cluster must have at least one example of each of the fragments contained in the test molecule. Not used for binary endpoints (i.e. mutagenicity)!

T.pyriformis IGC50 (48hr), Daphnia magna LC50 (48hr) and *Fathead minnow LC50 (96hr)* (Martin & Young, Prediction of the Acute Toxicity (96-h LC50) of Organic Compounds in the Fathead Minnow (Pimephales Promelas) Using a Group Contribution Method, 2001) are relatively more accurate in terms of *Coefficient of determination (R2). Oral rat LD50* and *Bioaccumulation factor* are chosen because they give more general (not so profiled) results for clinical reactions, taking into account: Predicted value and Prediction interval. *Nearest neighbor (Nn)* in the form: is considered as a control sample confirming the dependence:

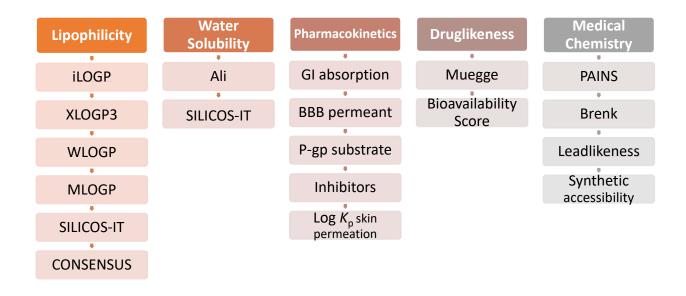
Three most similar molecules must exceed a minimum cosine (*equat.III.5*) similarity coefficient of 0.5:

$$SC_{i,k} = \frac{\sum_{j=1}^{\#descriptors} . x_{ij} x_{kj}}{\sqrt{\sum_{j=1}^{\#descriptors} . x_{ij}^2 . \sum_{j=1}^{\#descriptors} . x_{kj}^2}} Equat.III. 5$$

The neighbors are those with highest similarity coefficient. All neighbors must exceed a minimum cosine similarity coefficient.

All coefficients, constants and other variables using a database (Martin, Lilavois, & Barron, Prediction of pesticide acute toxicity using two dimensional chemical descriptors and target species classification, 2017) of U.S. Pat. Environmental Protection Agency. HCM are accepted as the final result for analysis and subsequent interpretation of the results (Young, Martin, Venkatapathy, & Harten, 2008) (Benfenati, et al., 2009), (Zhu, Martin, Young, & Tropsha, 2009), (Sushko, et al., 2010), (Cassano, et al., 2010).

All values in the part are rounded to: integer for values over 10; up to a decimal value for results of $10\div1$; up to hundreds of answers under 1.


Once we have determined the working concentrations in the event of treatment with the studied chemical molecules, it is necessary to more fully evaluate the active substances in order

second supplemented edition

to analyze and relate to other pathological influences. They can be studied through treatment models in the so-called no laboratory and no clinical testing.

3.3.7. Checking conclusion of the part

This part of the scientific evidence is based (Daina, Michielin, & Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, 2017) (Daina, Michielin, & Zoete, iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach, 2014) on the calculation of physico-chemical descriptors, as well as to predict the ADME parameters: Lipophilicity, water solubility, pharmacokinetics, drugliness and medical chemistry indicators.

In *Tabl.III.3. 11* shows the research structure of the conducted analysis.

Fig. III.3. 11 Structure for conducting an analysis to verify the conclusion of the part in the evaluation of modified molecular forms

The ultimate goal of this operation is, through methods not applied in the methodology introduced so far, to check for significant deviations and/or to confirm the working conclusions. As a final answer, we get the exact molecular modified form, which already needs to be determined its dosage.

3.3.8. Determination of the drug dose

To determine the drug dose, we need to consider all possible substances obtained by the final hydrolysis of the glycosidic bond inside the cancer cell. For this purpose, it is necessary to calculate the concentration of active antitumor cell forms [§6 of Article 2]. Stoichiometric calculations based on data from [§5 of Article 1] shall be applied, using also the data on the mass

second supplemented edition

ratios of amide and carboxylic acid in the preparation of a natural precursor (in this case nitrile glycoside).

3.4. Interpretable prediction for anticancer sensitivity of glycoside amides

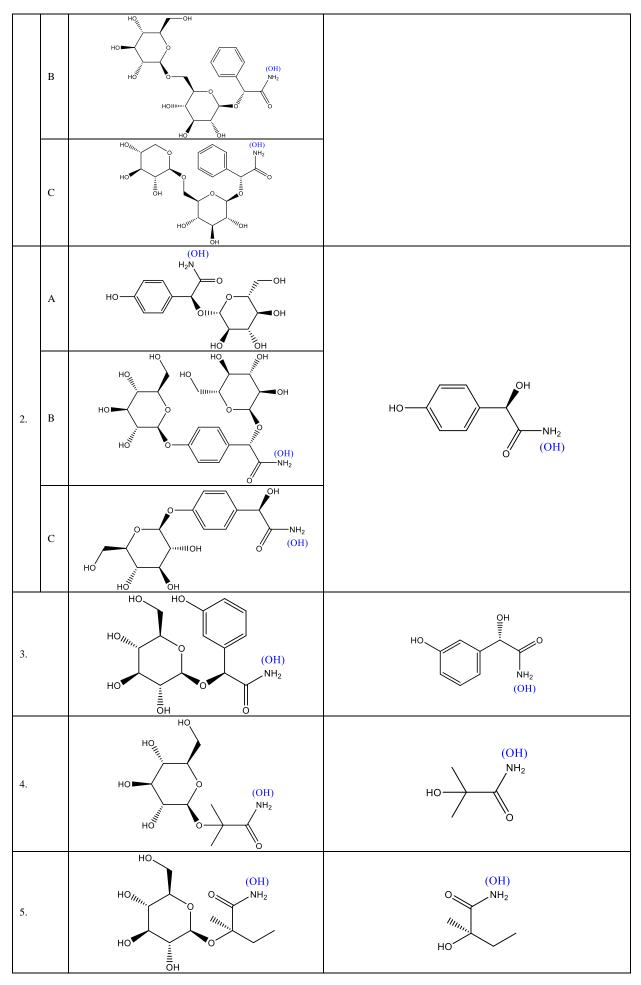
The current methodological program relies on a comparative analysis of non-identical variables. In one case it values the IC50, and in the other pharmacokinetic and druglikeness indicators of potential oral dosage forms.

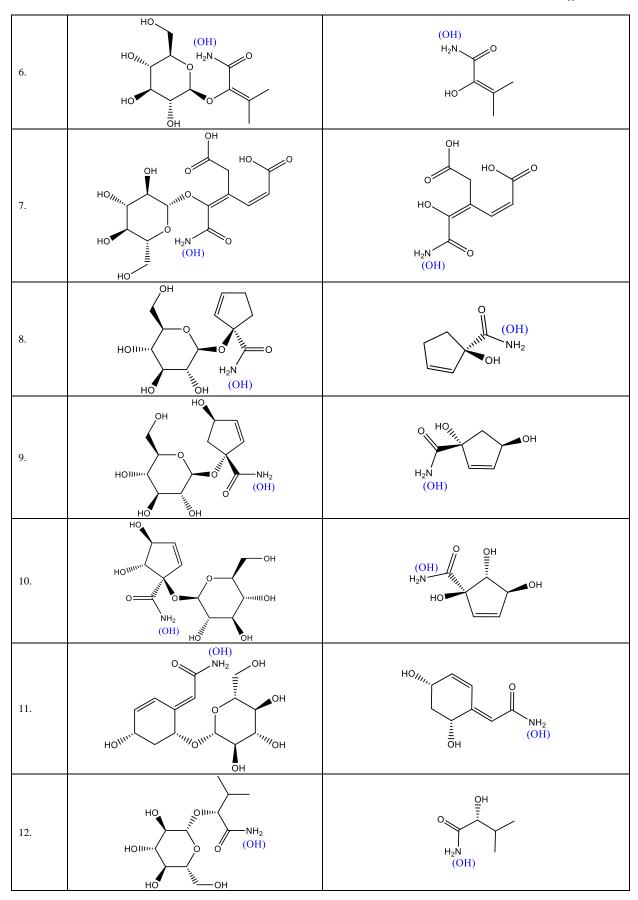
In order to minimize the dualism in the interpretation, conditionally postulate some of the allowable values that would be reflected in the processing of a sample of data from the general population. They are:

- a) Work is carried out with a statistical accuracy of 5% (thus aiming to equate the correlation of some of the indicators due to stereoisomerism). In cases where there is a functional dependence of values with different statistical accuracy, the one with the highest deviation is considered final;
- b) To check the repeatability of the analysis (for each individual indicator), a minimum of 5 calculations are performed according to absolutely identical methodologies. If necessary, the tests are performed until a mean deviation of not more than 1.10^{-2} is obtained;
- c) Some methodologies also require the definition of physical conditions, therefore the following are accepted as inputs: temperature (T) = 310K, pH_{oral cavity}> $6.5 \div 7.5$; pH_{stomach}= $0.9 \div 3.1$. Time is not a factor that is analyzed separately.

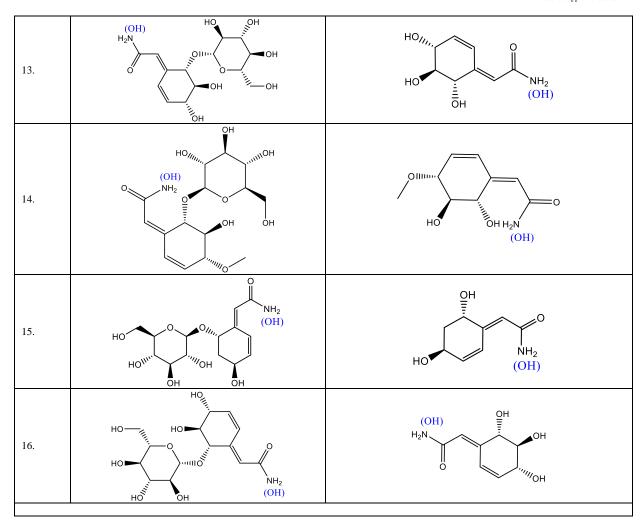
3.4.1. Conducting the experiment

3.4.1.1. Input data


Let us divide the amide/carboxyl derivatives of natural nitrile glycosides conditionally (*Tabl.III.4. 1*) into 16 groups, coinciding with the active anti-cancer molecular forms (AACF).


 Tabl.III.4. 1 Active pharmaceutical forms for oral use and their corresponding active anticancer molecules obtained after passage through the cell membrane

logir num		active pharmaceutical forms for oral use	active anti-cancer molecular form obtained after passage through the cell membrane
1.	А		OH NH ₂ (OH)


second supplemented edition

second supplemented edition

second supplemented edition

The input data represent the molecular structural properties themselves. With the exception of 3 molecules, the test substances do not have CAS numbers (Dimitrov, et al., 2016) (Yordanova, et al., 2019). In order to achieve maximum repeatability of the results, all analyzes are performed from virtually created images.

The working file formats (*§III.1*) used are *.cdx and .c3xml. Standard SMILE script generation followed. Each molecular record is of the "Canonical SMILES" type. Some of the isomeric forms are excluded here. Therefore, for each molecule is generated, etc. "Isomeric SMILES". The data from the latter will be corrective for causes in the interpretation of the results.

3.4.1.2. Selection of testing algorithms

This part of the methodology is implemented through the web-based PaccMannTM (Cadow, Born, Manica, Oskooei, & Martínez, 2020) service. The training set uses data from the Genomics of Drug Sensitivity in Cancer (Soares, et al., 2013) (GDSC) and the Cancer Cell Line Encyclopedia (Ghandi, Huang, & Jané-Valbuena, 2019) (CCLE). The value reported here is IC50 in log(µmol). The algorithm proposed by the researchers of the PaccMann project gives for epistemic and aleatoric confidences (in absolute value) in the range of $0.85\div0.985$. This is a good framework for bioactive substances and it is not necessary to anti-logarithm the value, but to analyze it directly within the limits: at IC50 [log(µmol)] <1.02 might be accepted that the studied molecule has medicinal properties. The correction of 0.2 over the integer 1 comes from the

second supplemented edition

statistical error of such calculations. Some of the values are negative numbers, i.e. it could be assumed that the studied molecules will also have restorative clinical properties (Sebaugh, 2011) (Gary, Zhengyin, Wensheng, & Masucci, 2012).

3.4.1.3. Applicability of results

The structure of the analysis for an interpretable prognosis of susceptibility to active anticancer molecular forms by transcriptome cell lines inherent in tumors considers only the described structural relationships between the molecule and the corresponding cellular effect. PaccMann outputs individual topological (and / or structural) fragments as active. The latter, in turn, can be in the amide and carboxyl oral form and in the amide and carboxyl active form. On the other hand, only a part of the molecule that is not functionally significant for the process can be described. Last but not least, it should be taken into account that the concentration of the amide pharmaceutical form is 4.87 times higher than the carboxyl form, and even after the passage of the cell membrane of the cancer cell (only the amide form) carboxyl is obtained, which may be it with anti-cancer activity.

After several mathematical¹⁶ and stoichiometric operations of the case, the values subjected to comparative analysis acquire the following functional dependence:

$$A_{IC50} = 4.87 x A F_{IC50} + C F_{IC50} + A A F_{IC50} + 0.25 x A C F_{IC50}$$

where: A_{IC50} is the IC50 activity to be analyzed; AF_{IC50} - value of the IC50 analysis for the amide pharmacological form; CF_{IC50} - value of the carboxyl pharmacological form; AAF_{IC50} - value from the IC50 analysis for the active amide form and ACF_{IC50} - value from the IC50 analysis for the active carboxyl form.

Applying the permissible values (*§III.3.4*) it follows that the maximum value for IC50 must be less than 7.35 (with statistical accuracy included).

3.4.1.4. Presentation of results

All final values are presented in tabular form, using a heat map - without placing the numerical values themselves. The color identification is as follows: dark green - negative values, light green - values from 0 to 2, dark blue - $2.01 \div 4.00$, light blue - $4.01 \div 6.00$ and orange - $6.01 \div 7.35$. Unstained cells do not necessarily mean that there is no activity. The values of some of them could be in a similar order to those accepted in the analysis. However, further research and individual assessments of each individual variable in the comparison process are needed.

The two different input information flows (*§III.3.4*) and their differences in the analysis of data collection and packaging, determines the fact that some pairs of cell lines will get different results. That is why both possibilities are presented. They are interpreted together.

¹⁶ No logarithmic conversion is performed, only the baseline numerical values of the IC50 analysis.

3.4.2. Results analysis

Data contained in each table are analyzed in the presentation section. Strictly follow the arrangement of cell lines for the respective physiological tract. Each interpretation is independent of the others and requires full spelling. The indicators are evaluated: main potential drugs, duplicate treatment and / or substitute for medical indicators and personalized therapies. For the purposes of comprehensive expression, the invariable tautology is neglected.

Descriptive statistics (Christopher, 2017) are applied and the results of *§1* are presented graphically in the form of so-called box chart (Marmolejo-Ramos & Tian, 2010) (Hubert & Vandervieren, 2008). The data obtained from this analysis are taken as a final summary.

- 🛇 -

IV. RESULTS AND INTERPRETATION

1. On the first goal

1.1. Hypothesis:

The bioactive form of amygdalin is it's hydrolyzed to amide nitrile group.

1.1.1. Evidences

1.1.1.1. Proof 1

Based on the chemical deposition of nitriles (Fig.IV.1.1) (Петров, 1996/2019):

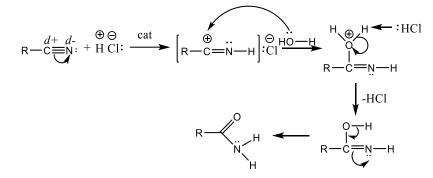
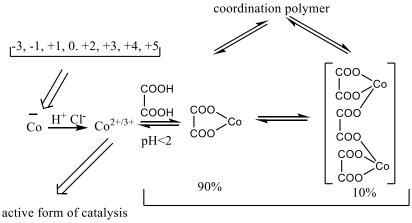


Fig.IV.1. 1 Catalytic chemical hydrolysis of nitrile to amide in an acidic environment


The catalyst for this reaction can only be non-coordinatively bonded *Co*. Cobalt in the human body is in the order of 22-59 nmol/l (in the age group 30-56 years for men and women) (Бошев, м др., 1986). Its daily requirement is 0.08 mg/day (for 1-2 year olds) and reaches 0.30 mg/day (for over 60 year olds). Let us clarify that cobalamin (known as *vitamin B12*) is made up of a corin ring that associates cobalt in its complexing form - therefore cobalt in cobalamin may NOT be a catalyst for the reaction.

Based on the fact that the total content of cobalt in urine is from 3.9 to 30 nmol/d, and that of cobalamin is 23.3 to 44.5 pmol/d, therefore there is a constant exchange of non-coordinated cobalt in the body.

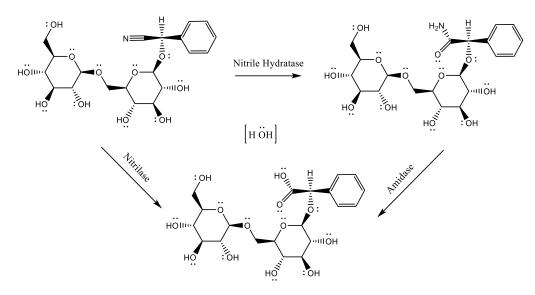
After analyzing the foods consumed by *Hunza people*, those containing cobalt were clearly identified, but there were no traces of *vitamin B12*: spinach (0.07-1.20 mg/kg); beet leaves (0.39-0.41 mg/kg); onions (0.13 mg/kg); carrots (0.02 mg/kg) (FoodData, 1984/2004), etc.

Entered into the stomach uncoordinated cobalt (regardless of its form) will quickly dissolve under the action of hydrochloric acid and thus enter the blood, therefore, the times of admission of amygdalin and cobalt will not coincide. The amygdalin will enter the blood with its nitrile group from which it will release cyanide ion. The spinach also contains significant amounts of oxalic acid (320 mg/kg). Oxalic acid forms insoluble cobalt oxalate (3.15×10^{-9} gr/100ml at 308K) with cobalt ions and therefore will not pass through the gastric walls to the blood.

After analysis and simulations (based on average enthalpy and potential energy of the molecule) by TD-DFT (Petersilka, Gossmann, & Gross, 1996), an extremely stable retention cycle of the non-coordinated cobalt in the stomach is shown in GAMESS US (Young D. C., 2001), shown in *Fig.IV.1.2*.

conditioned zone for deposition of cobalt

Fig.IV.1. 2 Schematic depicting the physiological retention of cobalt in the stomach


However, at pH <2, the oxalic salts are partially hydrolyzed and metal anionic (in this case cobalt) separated. The reaction is reversible and displaced in the direction of the starting material (cobalt oxalate). Thus, the residence time of cobalt in the stomach increases significantly. In addition to spinach, other cultivated plants typical of the area contain oxalic acid: tea (370 mg/kg), sorrel (360 mg/kg), rhubarb (240 mg/kg), fig (100 mg/kg), beet (40 mg/kg), plums (12 mg/kg), grapes (7 mg/kg), etc.

Under these conditions, the constantly consuming amygdalin has the conditions (concentration of reagents, catalyst, pH, temperature, etc.) to react to catalytic hydrolysis to its corresponding amide.

1.1.1.2. Proof 2

In addition to cobalt ions, the catalyst may also be cobalt linked to a covalent bond. For example, *nitrile hydratases (NHases; EC 4.2.1.84)*. They are metal-containing enzymes that convert the nitrile and / or cyano group to amides, including *amygdalin*.

second supplemented editior

Fig.IV.1. 3 Schematic diagram of the enzymatic hydrolysis of the amygdalin-nitrile group to its amides and carboxylic acid

The optimum action of nitrile hydratase, for example from *Rhodococcus rhodochrous*, is from 5.5 to 8.5 pH. Their activity is highest in the range of 10-80 degrees, and their effect is from 20 minutes to 8 hours. The acidity in the stomach is much higher and from there these enzymes will be inhibited and even agglutinated.

The peoples studied have consumed large quantities of apricot and other fruit oils. Much of the prokaryotes and eukaryotes that produce nitrile hydratases live in lakes or in the moist environment around them. There is a possibility, due to technological processes, to enter and live for a long time in these oils. Thus, these insecurities may have lived in unprotected vessels and catalytically hydrolyze the amygdalin nitrile group to amide and/or carboxylic acid.

1.1.2. Conclusion of the part

Regardless of the manner of preparation of the hydrolyzed nitrile group of amygdalin to amide and / or carboxylic acid, its already modified form has a much safer chemical structure to the body. The absence of the nitrile group, which readily converts to the cyano ion, makes it possible to increase its constant concentration many times in the *in vivo* environment.

1.2. Determination of pharmaceutical form by mathematical chemical indicators

All further calculations were made after optimization with respect to the minimum energy of the molecules via *MM2* (Leach, 2001) and *MMFF94* (Halgren T. A., 1996) and followed by molecular dynamics responsible for 310 K, 1.02 bar in a medium of 0.9% solution of NaCl in water using CPCM (Liton, Ali, & Hossain, 2012) methodology.

1.2.1. Comparative analysis

For a more complete characterization of the hypothetical molecules, they were compared with the starting one (*amygdalin*). Comparisons were made with respect to: *Molecular Topology* (*Tabl.IV.1. 1.*), *Molecular Networks* (*Tabl.IV.1. 2*), electronic reference in the atomic-molecular system (*Tabl.IV.1. 3*) and physical and thermodynamic parameters (*Tabl.IV.1. 4*).

Tabl.IV.1. 1 Comparative analysis of the molecular topology of pure amygdalin, its amide and carboxyl acid derivatives, resulting from the hydrolysis of its nitrile group

indicator	-CN	-C(O)NH ₂	-COOH
Balaban Index	1660564	1893740	1893740
Cluster Count	32	33	33
Molecular Topological Index	20391	21571	21342
Num Rotatable Bonds, [No. of bonds]	8	8	8
Polar Surface Area, [A ²]	202	221	216
Radius, atoms	8	8	8
Shape Attribute	30.03	31.03	31.03
Shape Coefficient	0	0	0
Sum Of Degrees	68	70	70
Sum Of Valence Degrees	124	128	130
Topological Diameter	15	15	15
Total Connectivity	2.14E-05	1.75E-05	1.75E-05
Total Valence Connectivity	8.47E-10	4.46E-10	3.46E-10
Wiener Index	3080	3308	3308

 Tabl.IV.1. 2 Partition coefficients of amygdalin and its hydrolysates of the nitrile group to amide and carboxylic acid in the 0.9% NaCl phase in water

indicator	-CN	$-C(O)NH_2$	-COOH
LogP	-2.8	-3.7	-2.9
LogS	-0.05	0.22	-0.04
РКа			
O-1	16.64	16.74	18.80
O-2	17.41	17.41	17.59
O-3	12.89	12.96	13.07
O-4	13.03	13.03	13.03
O-5	18.99	19.01	16.98
O-6	20.67	20.67	20.67
O-7	14.94	14.94	14.94
OH(COOH)			3.03
Molar Refractivity	10.53	10.92	10.70

second supplemented edition

indicator	-CN	-C(O)NH ₂	-COOH
Formal Charge	0	0	0
Number of HBond Acceptors	12	12	12
Number of HBond Donors	7	8	8
	1902	2042	2101
Principal Moment	6153	6108	6066
	6969	7033	7046
Henry's Law Constant	24.51	27.95	26.26

Tabl.IV.1. 3 Electron Assignment in the Atomolecular System of amygdalin and its hydrolysates of the nitrile group to amide and carboxylic acid

Tabl.IV.1. 4 Molecular and electron-configuration properties of amygdalin and its hydrolysates of the nitrile group to amide and carboxylic acid obtained by semi-empirical methods

indicator	method*	-CN	-C(O)NH ₂	-COOH
Core-Core Repulsion		51868	56375	56412
[eV]				
COSMO Area		378.8	385.9	387.5
[Å ²]				
COSMO Volume		489.3	508.8	507.2
[Å ³]	PM7			
Dipole	1 1/17	4.99	5.84	5.71
[Debye]				
Ionization Potential		9.93	9.87	9.90
[eV]				
Total Energy		-6255	-6578	-6674
[eV]				
Heat Capacity		96.3	100.2	97.0
[Cal/Mol-Kelvin]	PM6			
Thermodynamic Energy		283.9	297.8	289.4
[Kcal/Mol]				
*- by 310.15K , 1.02 bar				

Data in *Tabl.IV.1. 1:4* show that values (including their equated statistical error) over 23% of the indicators are the same. No drastic topological and molecular network deviations and electron-configuration anomalies are observed. The differences represent up to 12% mean deviation of the amygdalin index with its hydrolyzed derivatives.

1.2.2. Checking the statistical deviation

To test the tolerance of 12%^{-th} still not jeopardize the normal physiology of the body, let us consider a well-studied enzyme hydrolytic industrial process (*Fig.IV.1. 4*) of a passage of *3-Cyanopyridine* to *Nicotinamide* (Nagasawa, Mathew, Mauger, & Yamada, 1988) (*vitamin B3*) by means of nitrile hydratase. The thermodynamic quantities are compared: *total energy, thermal capacity, thermodynamic energy*, since these physical functions are the consequence of most morphological, and electron-configuration relationships of each molecule in *Tabl.IV.1. 4*.

second supplemented edition

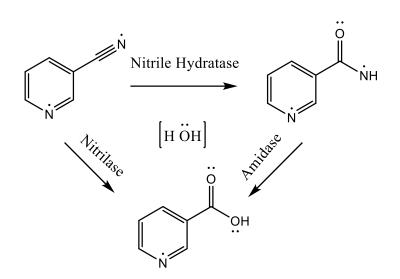


Fig.IV.1. 4 Enzyme hydrolysis of 3-Cyanopyridine to Nicotinamide and nicotinic acid

It is important to note that all three enzymes are almost always together, whether of microbacterial or bio-physicochemical origin.

Tabl.IV.1. 5 Total Energy, Heat Capacity and Thermodynamic Energy on 3-Cyanopyridine, Nicotinamide and Nicotinic Acid by 310K, 1.02 bar in medium of 0.9% NaCl solution in water using CPCM methodology

3-Cyanopyridine	Nicotinamide	Nicotinic acid
-1162	-1486	-1581
16.7	19.8	20.4
55.8	70.8	63.6
	-1162 16.7	-1162 -1486 16.7 19.8

By comparing the data in *Tabl.IV.1. 5* with the conclusions of *Tabl.IV.1.1*:4, the average standard deviation is confirmed when comparing the molecular nature of the nitriles, the amide and their corresponding carboxylic acid.

1.2.3. Conclusion of the part

Due to the theoretical molecular modification, namely the transition from condensed and / or polymerized nitrile to a carbohydrate in its amide and as a by-product and its acid, it does not change the total activity of the starting compound and its active groups not involved in hydrolysis. The chemical stability and predictability of hydrolysis products are the basis for obtaining a pharmaceutical form covering all international requirements for a conservative medicinal product.

1.3. Determine drug dose

In order to determine the dosage, it is necessary to consider the most likely active forms of amide already *in vivo*.

In oral use (which is also recommended), the connection between the two glycosidic nuclei will be attacked by the salivary gland (mainly from α -amylase). Due to the relatively short time for complete contact between the substance and the enzyme, the probability of a reaction being below 3% and the probability of reading the reaction itself being less than 1%, it is assumed that amygdalin is unchanged in the stomach.

The amino derivative of *amygdalin* is relatively stable in a highly acidic environment and so over 87% will pass into the blood. Due to my poorly studied biochemical activity, let's look at the possible chemical relations of its active forms in those already described *in vitro* (Fig.IV.1. 5).

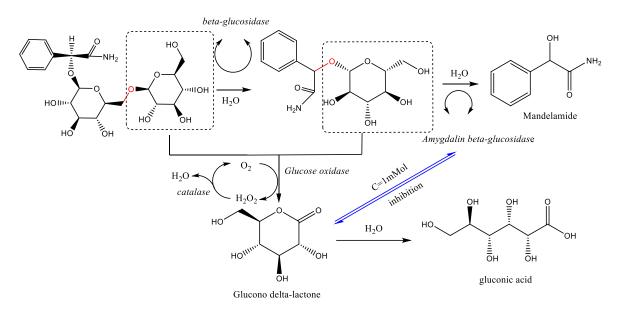


Fig.IV.1. 5 Enzyme hydrolysis of hydrolyzed amygdalin to amide

Each of the enzyme reactions has an analogue also in the *in vivo* medium, and thus the following hypothetical active forms stand out (*Fig.IV.1. 6*).

Chemical bond of type: -N(H)-OC(O)- between the two derivatives of amygdalin is possible, but it's a statistical error. Under standard physiological conditions in the body, the presence of the carboxyl derivative is not a hindrance factor, but on the contrary, it would stabilize the reactions of the amine derivative of amygdalin to some extent due to its well-expressed proton activity.

50

second supplemented edition

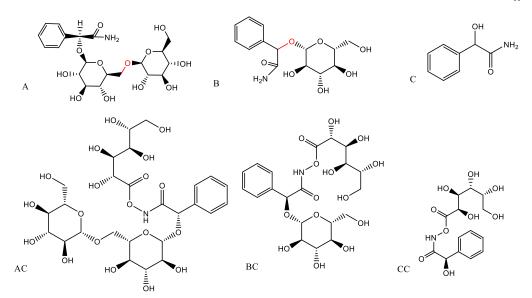
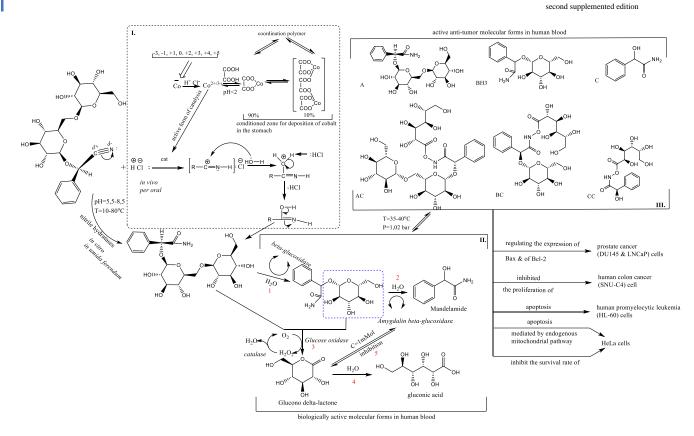


Fig.IV.1. 6 Calculated active forms of hydrolyzed to the amine amygdalin by TD-DFT in an environment of GAMESS US

As a by-product, their carboxyl derivatives are also obtained in the ratio:

-amide: -carboxyl = 4.87: 1.

After exposure of the above and adopting the approximation that the amide group will identify all of the activity of the active forms of the substance, it can be referred concentrations for the treatment of *pellagra* with nicotinamide to dose ranging and for the test substance. It is important to note that the approximation for nicotinamide is only made in terms of the mass of its amide group to the mass of the whole molecule (not evaluating the reactions of the nitrogen atom in the pyridine ring, as in the case of *Nicotinamide riboside*, etc.).


Stoichiometric calculations with respect to the fat of the active groups to the total mass of the molecule should indicate that the dosages should be:

150-375 mg PO q6-8hr; not to exceed 1.8 g/day.

1.4. Conclusion from the goal: Antitumor activity of the modified molecular form

The hydrolyzed to amide / carboxylic acid cyano / nitrile glycosides are potential drugs. Their biological activity remains unchanged, but their toxicity is many times lower than unmodified native molecules. The amygdalin/dhurrin-derived amide is only one of the dozens of studies we have conducted and we make this claim.

In Fig.IV.1. 7 depicts a summary scheme of theoretical derivation of reactions.

Fig.IV.1. 7 Summary scheme of the theoretically calculated antitumor activity of the biologically modified amygdalin and the site of the dosage form throughout the biochemical cycle

We conditionally divide the bio-activity into three conditional sub-schemes:

Molecular Transition I: In the stomach under the action of hydrochloric acid and coordination-unrelated cobalt (I.), i.e. in the form of an ion, hydrolysis occurs by acid catalysis. For the retention of cobalt ions in the stomach long enough and with the necessary concentration during the diet, we have theoretically derived the most probable and physiologically justified reaction, namely in the form of cobalt oxalates. The corresponding amide is obtained. The same end product can also be obtained in an *in-vitro* environment using enzymes. Regardless of the method and place of production, an already modified molecule of amygdalin enters the bloodstream;

Molecular Transition II: In the blood under the action of *beta-glucosidases*¹⁷ and water (reaction #1), begins to break down glycosidic bonds and secrete free glycosides and linamarine amide derivative. It undergoes amygdalin *beta-glucosidase* in *mandelamide* (reaction #2). The remaining free glycosides and a small fraction of the amide derivative of amygdalin are also attacked by Glucose oxidases (reaction #3). Glaucoma delta-lactone is obtained which under the action of water is converted to gluconic acid (reaction #4). It is important to note that with an increase in the concentration of *glucono delta-lactone* above 1mMol / ml, inhibition of the activity of amygdalin beta-glucosidase also occurs (reaction #5). The presence of such active molecules at this stage also results in increased biological activity and by-products of the reaction.

¹⁷ To take into account the possible presence of a concomitant disease of the patient - such as diabetes, impaired renal function, etc., which would decrease the concentration in the human blood.

Molecular Transition III: Based on an author's study (Song & Xu, 2014) on the achievements in the anti-tumor <u>mechanism of amygdalin</u> and when standard living organisms are set, six molecular forms (III. A, BH3, C, AC, BC, CC) are clearly distinguished, and they are thought to exhibit anti-tumor activity. Based on the paragraph four that it will be at least the same as in the clinical trials of pure *amygdalin*.

1.5. Author's notes on first goal

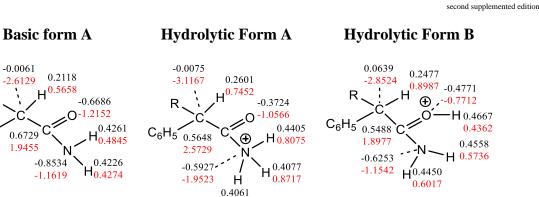
Our legacy of the *Hunza people* and the contribution from tens-of-thousands of scientists who created modern synthesis and biochemistry make the production of nitrile amide into a routine (especially with nitrile hydratase). Thus, humanity holds in its hands a huge medicinal resource that can provide treatment for diseases of all parts of conservative medicine.

The hydrolyzed to amide / carboxylic acid nitrile / cyanide carbohydrates will occupy one of the fundamental steps of countless future clinical practices. This is the purpose of our modest research!

Other substances in these groups with pronounced biological activity (including anti-tumor) are the hydrolyzed nitrile groups of *Linamarin*, (R) -*Lotaustralin*, *S*-*Sambunigrin*, etc., to their amide / carboxylic acid.

2. On second goal

2.1. Characterization of amide dissociation in vivo


2.1.1. Conducting the experiment

For the reaction-determining atoms, the following were calculated: *Mulliken Changes*, *Electrostatical Potential*, *Core-Core Repulsion*, *COSMO Area* & *Volume*, *Dipoles* (vector Debye), *Electronic* & *Total Energy* and *Ionization Potential*.

Mulliken Changes and *Electrostatical Potential* of the reactive atoms in amide derivative of amygdalin and its two hydrolytic forms in vivo are shown in (**Fig.IV.2.1**).

The negative electrostatic potential corresponds to the attraction of the proton from the electron density concentrated in the geometric space in the molecules (from single pairs, π -bonds, etc.). The positive electrostatic potential corresponds to the repulsion of the proton from the atomic nuclei in regions with low electron density and the nuclear charge is incompletely shielded.

The data of *Fig.IV.2. 1* clearly illustrates that during hydrolysis of glycoside amide, obtained by hydrolytic modification of nitrile glycoside (in this case *amygdalin*) *in vivo*, the electrostatic equilibrium shifts to the ammonia-saturated form (assumed conditionally for **Hydrolytic Form A**). This is confirmed by *Mulliken Changes* (Murray & Sen, 1996) of the three molecular forms.

black – Mulliken Changes **red** – Electrostatical Potential

R

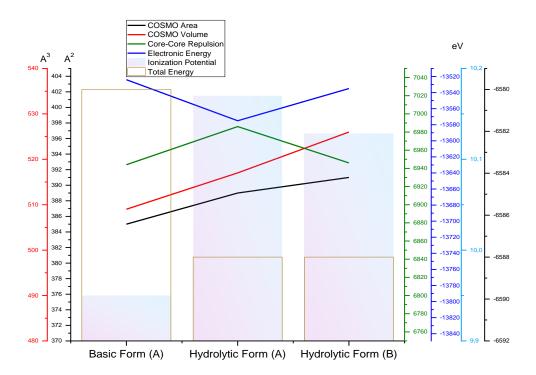

C₆H₅

Fig.IV.2. 1 Mulliken Changes and Electrostatical Potential of the amide derivative of amygdalin and its two hydrolytic forms in vivo

0.8075

Therefore, in terms of Electrostatical Potential and Mulliken Changes, the medium around the cancer cell tends to shift the hydrolytic equilibrium to HF(A). This is provided that the molecule is relatively static and already reoriented in a closed volume around the cancer cell.

The Core-Core Repulsion, COSMO Area & Volume, Electronic Energy, Ionization Potential and Total Energy of the reactive atoms in amide derivative of amygdalin and its two hydrolytic forms in vivo are depicted in **Fig.IV.2.2**.

Fig.IV.2. 2 Core-Core Repulsion, COSMO Area and Volume, Electronic Energy, Ionization Potential and Total Energy of amygdalin amide derivative and its two hydrolytic forms in vivo

Core-Core Repulsion has the highest value at HF(A). This is an indicator of a slight reorientation of the proton centers, which is confirmed by the slight geometric deformation observed in this form. *COSMO Area & Volume* grow in the direction from the ammonia-saturated

to the hydroxy-saturated hydrolytic molecular form. These circumstances indicate that HF(B) occupies a larger geometric volume (along with associated blood / water / intercellular fluid / CSF), which minimizes the shielding of externally charged molecules (including dipoles, ions, domains, etc.). This is confirmed by the lower ionization energy compared to HF(A). This effect is not decisive in the expression of total energy (i.e. total energy affects *ionization potential*, not the other way around). It is apparently lower than BF(A), and is relatively the same in HF(A) and HF(B).

Therefore, in terms of Core-Core Repulsion, COSMO Area and Volume, Electronic Energy, Ionization Potential and Total Energy, the environment around the cancer cell tends to support hydrolysis to HF(B).

There is a certain dualism in this summary: Provided that the reorientation in space is due to the elimination of energy and/or partial charges, and they in turn increase the polar hydration volume (an integral part of the total volume of the molecule), non-uniform polarization inside the basic structure of the molecule under relatively constant conditions. The latter is an indisputable fact, since the in vivo medium is buffered to both pH and temperature.

The polarizations within the molecular forms can be compared by so-called *Debye vectors* on the molecular spatial axes along the X, Y, Z and total dipole moment of the amide derivative of amygdalin and its two hydrolytic forms in vivo are shown in *Fig.IV.2. 3*.

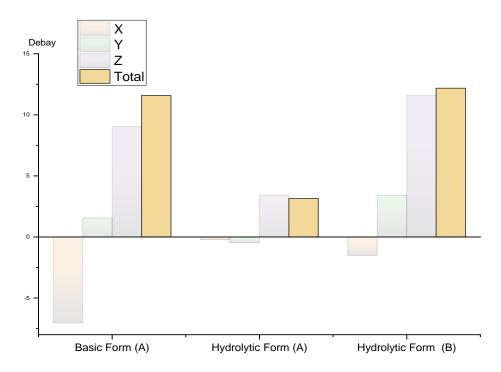
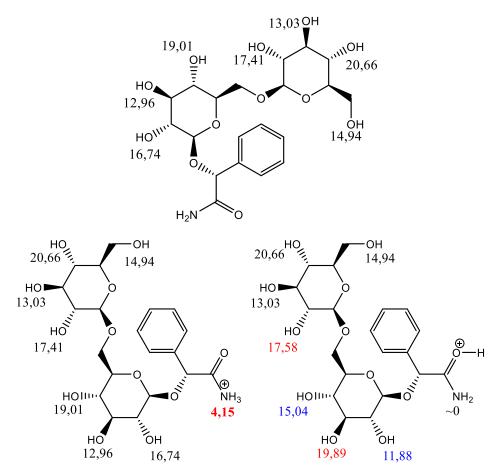


Fig.IV.2. 3 Dipole moment of amygdalin amide derivative molecule and its two hydrolytic forms in vivo


HF(**A**) has a lower dipole moment, with the same molecular radius, topological diameter, and polar surface area (*Tabl.IV.2. 1*). The analysis thus performed does not take into account the change of the dipole moment under the dynamic action of the active molecules.

 Tabl.IV.2. 1 Polar Surface Area, Molecular Radius and Topological Diameter of amygdalin amide derivative molecule and its two hydrolytic forms in vivo

indicators	Basic Form A	Hydrolytic Form A	Hydrolytic Form B	
Molecular Topology				
Polar Surface Area	Å	221±4	223±4	226±4
Radius	Atom(s)	8	8	8
Topological Diameter	Bond(s)	15	15	15

This circumstance does not allow us to assume the common belief that the lower dipole moment has lower molecular activity in a polar environment. Therefore, we need to analyze the partition coefficients *pKa* (*Fig.IV.2. 4*) *LogP*, *LogS* and *Partition Coefficient* (*Tabl.IV.2. 2*) in the starting conditions and conditions (*§III.1.1.2.*).

Fig.IV.2. 4 pKa per atom and/or group of the whole molecule in amide of both its hydrolytic forms of amygdalin

The calculation and structural representation of pKa of each atom <u>and/or group</u> of the entire molecule in all three forms is presented in *Fig.IV.2.* 4. Black values are unchanged during hydrolysis, red those that increase and blue are those that decrease.

second supplemented edition

Based on the definition of *pKa*, namely that it is inversely proportional to the "strength" of the acid (or acid residue) and the degree of more complete dissociation, it follows that **HF(A)** is more alkaline than **HF(B)**, relative to the major hydrolytically active groups (-[C=O]-NH₃⁺ μ – [C=O⁺H]-NH₂).

HF(B) has a change in the hydrolytically active hydroxyl groups of the glucosidal nuclei. From thence, the internal polarization of the molecule also grows, which is also confirmed by the higher dipole moment (*Fig.IV.2. 3*) with respect to **HF(A)**. It is important to note that this does not compare the dipole moments in the molecule itself with that of the molecule and the solvated volume around it. These are two different dimensions in which external factors are crucial. In our case, even with constant temperature and acidity, the molecule is also affected by other ions and molecules, and in some cases by mechanical effects (including movement of blood, cerebrospinal fluid, lymph, tissue and intercellular fluids).

In terms of distribution coefficients, both hydration forms are equally likely to occur. On the one hand, the more acidic medium will shift the equilibrium to ammonia-saturated HF(A), and on the other hand, the speed and stability of hydrolysis will be faster on HF(B) - probably due to incomplete protonation by the more acidic medium around the cancer cell. The data from *Principal Moment* (*Tabl.IV.2. 2*) cannot be interpreted uniquely.

indicators	dimension	Basic	Hydrolytic	Hydrolytic
indicators		Form A	Form A	Form B
Principal Moment	·		•	·
		2743	2711	2824
		4688	4606	4484
		5994	5876	5910
Lipins	ki's rule of five			
molecular weight		475	476	476
number of HBond	units	12	12	11
acceptors				
number of HBond	units	8	8	9
donors				
number of rotatable	units	8	8	8
bonds				
LogP	Log Units	-2.98	-2.67	-2.67
LogS	Log Units	0.22	0.20	0.93
Partition Coefficient	conditional units	-2.98	-2.67	-2.67

 Tabl.IV.2. 2 Principal Moment, Lipinski's rule of five, LogP, LogS, Partition Coefficient of amygdalin amide derivative

There is a deviation from the *Lipinski's rule of five* application indicator. This is due to the molecular topology of the three forms - **BF**(**A**) and **HF**(**A**; **B**). The molecules are divided into four major parts – two substituent (or H), sugar¹⁸ (*Fig.IV.1.11*) and an amide group. They have different electron density (and/or protons) transported in different directions, with different

¹⁸ During the enzymatic reaction, a carbohydrate residue and/or condensate between two or more carbohydrates may also be observed. Precision is required when changing the concentration, medium or introducing other reagents into the reaction.

second supplemented edition

capacities and intensities. The very algorithm for deriving the *Lipinski's rule of five* is quite subjective and with a few variables that we eliminate through analysis. Behind each statement is at least three counter-analyzes and the necessary statistical processing (according to the methodology – *§III*.).

2.1.2. Conclusion from the part

Based on the aforementioned theoretical-analytical considerations, it can be concluded that the cancer cell seeks to maintain hydrolysis to HF(B). Following the same analysis using a completely identical methodology, but at pH=7.4, it is concluded that a physiologically sound cell tends to undergo more alkaline hydrolysis, namely HF(A).

As mentioned in *§IV.1*, in addition to the amide derivative, there are invariably significant amounts of the corresponding carboxylic acid / BF(C) / with it. This compound (even at low concentrations) plays a significant role in the ionic activity of the medium and hence the chemical activity of the hydrolyzed amide / BF(A) /.

2.2. Characterization of carboxylic acid dissociation in vivo

2.2.1. Conducting the experiment

For the reaction-determining atoms, the following were calculated: *Mulliken Changes*, *Electrostatical Potential*, *Core-Core Repulsion*, *COSMO Area & Volume*, *Dipoles* (vector Debye), *Electronic & Total Energy* and *Ionization Potential*.

Mulliken Changes and *Electrostatical Potential* of the reactive atom's amide derivative of *amygdalin* and its two hydrolytic forms *in vivo* are shown in *Fig.IV.2. 5*.

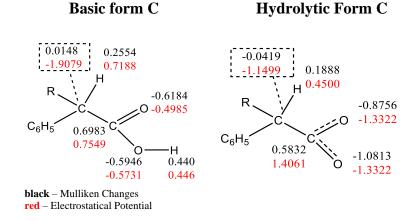
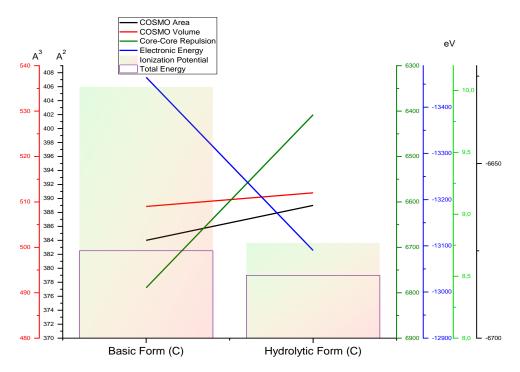


Fig.IV.2. 5 Mulliken Charges and Electrostatic Potential of the carboxyl derivative of amygdalin and its hydrolytic forms in vivo


According to the analytical wording in methodology concludes that the hydrolytic equilibrium of the reaction is shifted from BF(C) to HF(C). The difference in ionic activity at

60

second supplemented edition

pH=6.5 and 7.4 is within less than 1% deviation (due to the presence of only one hydrolytic form), it is evident that the values are in the statistical error of the methods.

Therefore, from the perspective of Electrostatical Potential and Mulliken Changes, the medium around the cancer cell tends to shift the hydrolytic equilibrium to HF(C). The influence of the dynamic relationships of the molecule is not essential for hydrolysis around healthy and cancer cells.

Fig.IV.2. 6 Core-Core Repulsion, COSMO Area and Volume, Electronic Energy, Ionization Potential and Total Energy of amygdalin carboxyl derivative and its hydrolytic forms in vivo

Tabl.IV.2. 3 Polar Surface Area, Molecular Radius and Topological Diameter of carboxyl
derivative of amygdalin and its hydrolytic forms in vivo

216.4	
216.4	
216±4	225±4
8	8
15	15
-	8

Data of *Fig.IV.2. 6*, *Fig.IV.2. 7* and *Tabl.IV.2. 4* shall be interpreted in proportion to what the data of *§ III. 2.1*.

The pKa of the starting material BF(C) and the reaction product HF(C) in this case are not significant when considering the reaction.

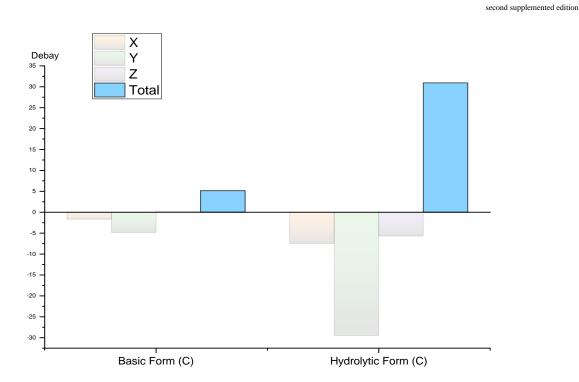


Fig.IV.2. 7 Dipole moment of the carboxyl derivative of amygdalin and its hydrolytic forms in vivo

This is confirmed by the same *Polar Surface Area* (*Tabl.IV.2. 3*) for the molecular forms in the two acidic states. The activity of the hydroxyl groups in the non-structural position will assume a value close to that of the natural nitrile. In order not to get an active chemical form that is completely different in bio-reactivity, the starting carboxylic molecule is also compared with respect to *Principal Moment, Lipinski's rule of five* and the *partition coefficients* (*Tabl.IV.2. 5*). The deviation from them is comparable to that of the amide form (*§III. 2.1*).

indicators		Basic Form (C)	Hydrolytic Form (C)
Principal Moment			
		2833	2881
		4587	4321
		5953	5827
Lipinski's ru	le of five	•	
molecular weight	g/mol	476	476
number of HBond acceptors	numbers	12	13
number of HBond donors	numbers	8	7
number of rotatable bonds	numbers	8	8
LogP	Log Units	-2.93	-3.11
Loog	Log Unita	0.06	0.912
LogS	Log Units	-0.06	0.812
Partition Coefficient	conditional units	-2.08	-10.55

 Tabl.IV.2. 5 Principal Moment, Lipinski's rule of five, LogP, LogS, Partition Coefficient of amygdalin carboxyl derivative

2.2.2. Conclusion of the part

Based on the analysis, we conclude that the acidity around the tumor cell is not a significant factor influencing the hydrolysis. It is again shifted in the direction of the product, i.e. HF(C).

2.3. Mechanism of penetration of the modified molecule into the cancer cell

2.3.1. Mechanism

The biological activity of the hydrolyzed to amide/carboxylic acid nitrile / cyano glycosides (*Tabl.II.2. 1*) is approximately the same as that of the native (basic) molecules. This allows high doses (*§IV.1.3*) to be administered, which in turn significantly increases their anticancer activity (in terms of concentration).

In *Fig.IV.2. 8* is a general schematic view of the data of *Tabl.II.2. 1* and their hydrolysis (Петров, 1996/2019).

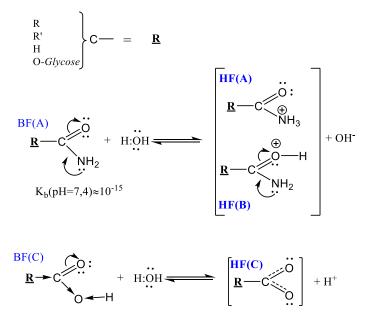


Fig.IV.2. 8 Hydrolysis of amide and carboxylic acid derivatives of nitrile (cyano) glycosides

Fig.IV.2. 9 presents two physiologically active cells: healthy (III.) with pH=7.2 and cancer (V.) with pH=7.4. They are found in a volume of blood (I.) with pH=7.4. Around each cell has an associated volume of liquid (VI.) With specific ionic activity and hence different acidity. For a healthy cell, pH=7.4 and for cancer pH=6.5. Based on the data of *§IV.2.1-2* it follows that in a healthy cell, all three hydration forms HF(A;B;C) will be in significant concentration both in the blood (I.) and in the closed volume (II.) around it. In the volume around the cancer cell, the hydrolytic equilibrium is shifted in the HF direction (B). In this form, the molecule loses its activity in an environment of excess protons, i.e. behaves like a "regular carbohydrate".

second supplemented edition

Based on the fact that the cancer cell feeds primarily on carbohydrates, it is likely that the organisms have adapted to receive food containing nitrile glycosides and/or their modified forms to counteract "external" biological effects. Cancers, for their part, have evolved to the extent that they create conditions around their cells that eliminate the active apoptotic forms. This is far more appropriate for them than changing their entire enzyme regulation to counteract it. In this way, it protects itself and the gene set and develops according to its instructions.

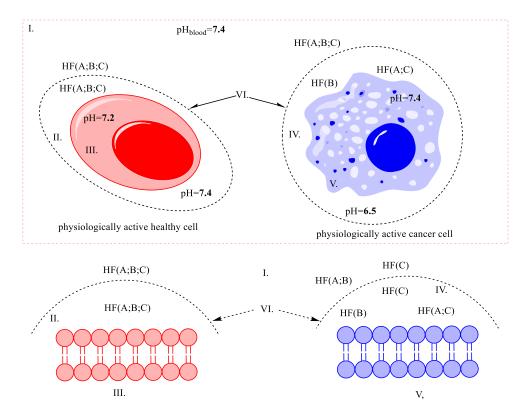


Fig.IV.2. 9 Schematic representation of the type of hydrolysis of amide and carboxylic acid derivatives of nitrile (cyano) glycosides around a physiologically active cancer and healthy cell

Therefore, the hydration balance of HF(A,B) in the blood, the medium around the cancer cell shifts it in the direction of HF(B). Parallel to this hydrolysis, the carboxylic acid, i.e. from BF(C) to HF(C). It is not sensitive to this change in acidity and the equilibrium is shifted towards the product. This concludes that the concentration of HF(C) is approximately the same in (I.) and (IV.) in healthy and cancer cells. This form also could hardly pass through the cell membrane in considerable concentration.

The presence of both types of hydrolysates in one volume in the blood (I.) changes the whole picture. The equilibrium at the amide derivative is shifted (*Fig.IV.2. 10*) in direction **HF**(**A**).

The compound thus obtained exhibits hydrolytic inertness at pH=6.4. Thus, the resulting HF(A;C) form reaches unaltered to the cell membrane of the cancer cell.

second supplemented edition

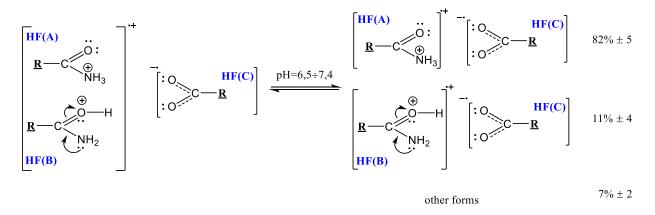
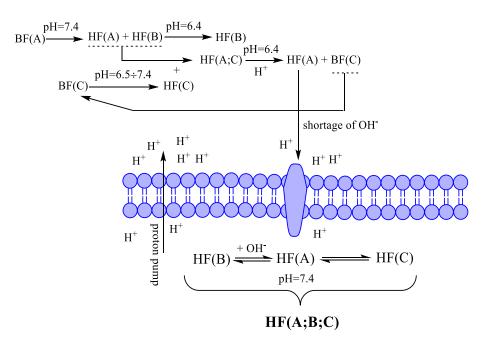



Fig.IV.2. 10 Formation of a complex with incomplete counter-charge between hydrolysis of amide and carboxylic acid derivatives of nitrile (cyano) glycosides

These compounds are due to the sharing of incomplete electron charges and are stabilized by a solvate shell of water. The shortage of -OH groups further stabilizes the process, due to the slightly acidic medium and free protons oriented directly above the cell membrane. In parallel with this process, reverse hydrolysis takes place (*Fig.IV.2. 11*) from **HF**(**C**) to **BF**(**C**) - which retains activity and leaves the associated volume around the cancer cell, re-hydrolyzes and binds a new amount of **HF**(**A**) and enters into the closed volume.

Fig.IV.2. 11 Scheme of chemical bonding between basic and hydrolyzed forms of amide and carboxyl forms of nitrile glycosides under various conditions in vivo around and in cancer cell

HF(A) molecule contains at least one glycosidic group. The compound is saturated with ammonia (-NH₃⁺) and readily binds with protein to glycoprotein. The hydrolysis-modified form is passed through a protein carrier through the cell membrane. Here, however, pH is equal to 7.4 and saturation of -OH groups. Thus, HF(B) is obtained, i.e. there is a partial shift of the hydrolytic equilibrium from HF(A) through BF(A) to HF(B). An enzyme amidase (Valiña, Mazumder-Shivakumar, & Bruice, 2004) is also synthesized in the cell, which converts -(CO).NH₂ to -

(COOH). As a final product under these conditions we have all three hydrolytic forms - HF(A;B;C).

Therefore, the eventual chemical apoptosis will proceed independently of all enzymes synthesized according to instructions from cancer DNA (for example, the *linamarase gene* to *linamarase*).

2.3.2. Toxication of the cancer cell

Active apoptotic form (AAF) with manifested anticancer activity are formed according to their molecular structure. For diglycoside compounds (*Amygdalin / Gentiobiose / Lucumin / Primeverose / Vicianin / Vicianose*, etc.) primary enzymatic hydrolysis (gluconases - which are abundant in tissue fluids) of the glycosidic bonds between the individual sugars takes place. The relationship between the secondary carbohydrate and the reaction-determining group is stronger and requires a longer reaction time and/or a specific enzyme such as amygdalin beta-gluconase. The latter is synthesized mainly inside the cell itself. This leads us to conclude that the passage through the cell membrane of the cancer cell (**§IV.2.1-2**) occurs with only one carbohydrate molecule. Once inside the cell, the only glycosidic bond is broken. This is how the **AAF**s themselves are created. Some of them are listed in *Tabl.IV.2. 6*.

chemical formula	name	natural precursor
HOOO	(R)-2-hydroxy-2-phenylacetamide	Prunasin Amygdalin Lucumin
(OH)	(R)-2-hydroxy-2-phenylacetic acid	Vicianin Sambunigrin
ОН	(R)-2-hydroxy-2-(4- hydroxyphenyl)acetamide	Dhurrin Taxiphyllein
HO (OH)	(R)-2-hydroxy-2-(4-hydroxyphenyl)acetic acid	Proteacin p- Glucosyloxymendelonitrile
НО	(R)-2-hydroxy-2-(3- hydroxyphenyl)acetamide	Zierin
H ₂ N (OH)	(R)-2-hydroxy-2-(3-hydroxyphenyl)acetic acid	
но	2-hydroxy-2-methylpropanamide	Linamarin
NH ₂ (OH)	2-hydroxy-2-methylpropanoic acid	

Tabl.IV.2. 6 Active apoptotic amide/carboxyl acid molecular forms

second supplemented edition

(OH) NH ₂	(S)-2-hydroxy-2-methylbutanamide	– Lotaustralin	
ИШИНОН	(S)-2-hydroxy-2-methylbutanoic acid	Lotaustrann	
(OH) NH ₂	2-hydroxy-3-methylbut-2-enamide	– Acacipetalin	
ОН	2-hydroxy-3-methylbut-2-enoic acid	1 cuerpetanii	
HO OH (OH) NH ₂	(2Z,4E)-4-(2-amino-1-hydroxy-2- oxoethylidene)hex-2-enedioic acid		
но но	(2E,4Z)-3-(carboxymethyl)-2- hydroxyhexa-2,4-dienedioic acid	- Triglochinin	
(OH)	(S)-1-hydroxycyclopent-2-ene-1- carboxamide	Deidaclin	
(ОН) NH ₂	(S)-1-hydroxycyclopent-2-ene-1- carboxylic acid	Tetraphyllin A	
	(1S,4S)-1,4-dihydroxycyclopent-2-ene-1- carboxamide	Tetraphyllin B Volkenin	
NH ₂	(1S,4S)-1,4-dihydroxycyclopent-2-ene-1- carboxylic acid	Taraktophyllin	
HO (OH) NH ₂	(1R,4R)-1,4,5-trihydroxycyclopent-2-ene- 1-carboxamide		
но	(1R,4R)-1,4,5-trihydroxycyclopent-2-ene- 1-carboxylic acid	- Gynocardin	
OH O (OH) NH ₂	(Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2- en-1-ylidene)acetamide	– Menisdaurin	
	(Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2- en-1-ylidene)acetic acid	Weinstaurm	
(OH) H ₂ N	(R)-2-hydroxy-3-methylbutanamide	Volkenin	
ОН	(R)-2-hydroxy-3-methylbutanoic acid	Voikenin	
HO (OH) NH ₂ HO ^{WW}	(E)-2-((4S,5R,6R)-4,5,6- trihydroxycyclohex-2-en-1- ylidene)acetamide (E)-2-((4S,5R,6R)-4,5,6- trihydroxycyclohex-2-en-1-ylidene)acetic	- Griffonin	
OH	acid (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-		
Olimit (OH) HO OH O	methoxycyclohex-2-en-1- ylidene)acetamide (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4- methoxycyclohex-2-en-1-ylidene)acetic acid	— Bauhinin	
	(E)-2-((4R,6S)-4,6-dihydroxycyclohex-2- en-1-ylidene)acetamide	Purshianin	

second supplemented edition

HO ^W , NH ² (OH)	(E)-2-((4R,6S)-4,6-dihydroxycyclohex-2- en-1-ylidene)acetic acid	
ОН НО НО ¹¹¹¹¹¹ 0 НО ¹¹¹¹¹¹ (ОН)	(E)-2-((4S,5R,6R)-4,5,6- trihydroxycyclohex-2-en-1- ylidene)acetamide (E)-2-((4S,5R,6R)-4,5,6- trihydroxycyclohex-2-en-1-ylidene)acetic acid	- Lithospermoside

Each of these molecules alone would not cross the cell membrane of the cancer cell. Only those related to carbohydrate and fulfilling the conditions of (**§IV.2.1-2**). they will block <u>and/or</u> permanently damage her normal physiology. The use of **AAF** (*Tabl.IV.2.6*) directly for treatment will lead to severe toxic reactions and allergic responses of the body.

By themselves, these compounds or their homologues are still used in conservative chemotherapy (Chabner & Longo, 2018) (Airley, 2009) (Priestman, 2012). Glycosides such as *Rehmapicroside*, *Loganic acid*, *HMBOA D-glucoside*, *Glucose beta-1,3-isofagamine*, *Vanillyl beta-D-glucopyranoside* and others. Although they contain **AAF** of the proposed type, they would not cross the cell membrane of the cancer cell. They do not fulfill the condition of *§IV.2.2.*, in the part of the amide derivative which is to be hydrolyzed by a transitional complex with a carboxylic acid.

The relative inertness of the glycosidic bond (*in vivo*) also allows the use of different amidecarboxyl glycosides simultaneously. This is also observed in nature with regard to the distribution of nitrile glycosides - they are often more than one representative in one plant. Thus, different AAFs can be injected simultaneously, at different concentrations and at different times, in order to closely differentiate the different types of cancers, through the synergistic action of the controlled toxicity itself inside the "attacked" cell.

Natural nitrile glycosides would not cross the cancer cell membrane. They decompose to HCN-acid, phenyl methanol and carbohydrate. <u>They do NOT have anticancer activity due to their inability to reach the target unchanged.</u> These compounds, in their natural form, are extremely toxic to the human body. Applying them is not a cure, even at a higher concentration, they do more than they can help. We have theoretically derived dozens of their modified forms, but their amides and their carboxylic acids are the most promising for their introduction into conservative oncology. The fact is that the cancer cell itself tries to counteract it in a fairly certain way.

2.4. Determination of the drug dose

The drug dose is determined by considering all possible substances obtained by the final hydrolysis of the glycosidic bond inside the cancer cell (*Tabl. IV.2. 6*, *-7*).

second supplemented edition

AACF chemical formula obtained after crossing the cell membrane	natural precursor enzymatically modified to amide and carboxylic acid	AACF concentration derived from 1 mg/ml pharmacological form [mg/ml]
но о	Prunasin 4.87:1	0.40
	Amygdalin 4.87:1	0.27
NH ₂	Lucumin 4.87:1	0.27
(OH)	Vicianin 4.87:1	0.27
	Sambunigrin 4.87:1	0.40
ОН	Dhurrin 4.87:1	0.42
	Taxiphyllin 4.87:1	0.42
	Proteacin 4.87:1	0.31
HO NH2 (OH)	p-Glucosyloxymandelonitrile 4.87:1	0.42
HO HO H ₂ N (OH)	Zierin 4.87:1	0.42
HO NH ₂ (OH)	Linamarin 4.87:1	0.32
	Lotaustralin 4.87:1	0.35
(OH) NH ₂ OH	Acacipetalin 4.87:1	0.34
HO OH (OH) NH ₂ HO O	Triglochinin 4.87:1	0.47

 Tabl.IV.2. 7 Nature and concentration of active anticancer cell molecules obtained after crossing the cell membrane by their natural precursors

second supplemented edition

(OH) NH ₂	Deidaclin 4.87:1 Tetraphyllin A 4.87:1	0.36 0.36
О НО	Tetraphyllin B 4.87:1	0.39
(ОН)	Volkenin 4.87:1	0.39
NH ₂	Taraktophyllin 4.87:1	0.39
HO HO HO	Gynocardin 4.87:1	0.41
	Menisdaurin 4.87:1	0.42
(OH) H ₂ N O OH	Epiheterodendrin 4.87:1	0.35
HO HOWWING OH	Griffonin 4.87:1	0.44
(OH) HO OH O	Bauhinin 4.87:1	0.46
HO ^{WV} OH NH ₂ (OH)	Purshianin 4.87:1	0.42
HO HO HO HO HO HO HO HO HO HO HO HO HO H	Lithospermoside 4.87:1	0.44

The use of two or more pharmaceutical forms would not prevent their penetration subject to the mass ratios between the active antitumor amide and the active carboxyl transfer form.

The known cellular reactions, which in this case are a function of one of the fundamental principles of medical chemistry - "structure-activity", define conclusions that give some of the scientific answers on the topic "Theoretical analysis of anticancer cellular effects of glycosamidamides":

3. On the third goal

It is mandatory to follow the tree structure of presentation, because it is also a function of the subsequent interpretation of the results.

Natural nitrile glycosides hydrolyzed to amide/carboxylic acid are still unexplored, but with great theoretical potential. As biologically active substances, these compounds also have significant toxicity. Lack of sufficient information (including mathematical and/or statistical models) for their accumulation, assimilation, decomposition, separation, etc. in the body raises many questions about the chemical and pharmacological molecular form, the concentration used for treatment, the time to maintain the necessary activity in the body. One of the purposes of this article is to limit laboratory testing to animals.

3.1. Analysis of data for active anticancer cell form

To produce an active anticancer molecule, two molecular forms must be present inside the cancer cell: amide and carboxylic acid. The amide molecule crosses the cell membrane and the carboxyl molecule minimizes the protection of the cancer cell [see §5 of (Tsanov, H. & Tsanov, 2021)]. They are easily obtained from natural nitrile glycosides [§3.2.2. of Article (Tsanov & Tsanov, Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product, 2020)].

- 🛇 -

3.1.1. (R)-2-hydroxy-2-phenylacetamide

Subjected to analysis potential pharmaceutical forms for release within the cancer cell of *(R)-2-hydroxy-2-phenylacetamide*, comprising an amides and carboxylic acids obtained by hydrolysis of the nitrile groups of *Prunasin*, *Amygdalin*, *Lucumin*, *Vicianin* and *Sambunigrin*. The process proceeds according to *§IV.2.3*.

3.1.1.1. General Druglikeness of the pharmaceutical form

In **Tabl.IV.3.1.** 1 are listed the values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-*hydroxy*-2-*phenylacetamide*.

Tabl.IV.3.1. 1 Data for total druglikeness of chemical molecules potentially possible to pass	
through the cancer cell membrane and release (R) -2-hydroxy-2-phenylacetamide	

	GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Prunasin / Sambunigrin						
amide	0.23	-0.07	-0.05	-0.20	0.27	0.42
acid	0.39	0.13	0.02	0.19	0.32	0.60
Amygdalin						
amide	0.20	-0.05	0	-0.21	0.21	0.33
acid	0.31	0.09	0.04	0.05	0.24	0.44
Lucumin / Vicianin						
amide	0.15	-0.07	-0.11	-0.29	0.19	0.32
acid	0.26	0.07	-0.06	-0.01	0.22	0.44

Data in *Tabl.IV.3.1. 1* show that the amides and carboxylic acids of *Prunasin* and *Sambunigrin* have more pronounced overall drug activity *in vivo*.

3.1.1.2. Pharmacological and biological activity of oral active drugs

3.1.1.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.1.2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-phenylacetamide.

second supplemented edition

		Lipinsk	i's Rule			Ghose Filter					CMC-50-Like Rule			
	MW	logP	HBA	HBD		MW	logP	AMR	nAtom		MW	logP	AMR	nAtom
Prunasin / Sambunig	Prunasin / Sambunigrin													
amide	313	-2.0	8	5		313	-2.0	75	41		313	-2.0	75	41
acid	314	-1.3	8	5		314	-1.3	75	40		314	-1.3	75	40
Amygdalin														
amide	475	-3.5	13	8		475	-3.5	108	62		475	-3.5	108	62
acid	476	-2.8	13	8		476	-2.8	108	61		476	-2.8	108	61
Lucumin / Vicianin														
amide	445	-3.3	12	7		445	-3.3	102	58		445	-3.3	102	58
acid	446	-2.6	12	7		446	-2.6	102	57		446	-2.6	102	57

Tabl.IV.3.1. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-phenylacetamide

Two molecular forms stand out here (the corresponding amides and carboxylic acid of *Prunasin* and *Sambunigrin*, which cover most of the requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.1.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*R*)-2-hydroxy-2-phenylacetamide are listed in *Tabl.IV.3.1. 3*.

Tabl.IV.3.1. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-phenylacetamide

	Veber	Filter	MDDR-Like Rule					BBB Likeness	
	TPSA	nRB	nRB	RC	nRingidB		MW	nAcid Group	nHB
Prunasin / Sambun	igrin								
amide	142	5	5	2	18		313	0	13
acid	137	5	5	2	18		314	1	13
Amygdalin									
amide	222	8	8	3	27		475	0	21
acid	215	8	8	3	27		476	1	21
Lucumin / Vicianii	n								
amide	201	7	7	3	26		445	0	19
acid	196	7	7	3	26		446	1	19

second supplemented edition

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1.2*.

3.1.1.2.3. QED

The analysis is performed according to *§III.3.3.3.1.3*.

A. uwQED rules

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.1. 4*.

Tabl.IV.3.1. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-phenylacetamide

	uwQED								
	MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Prunasin / Sambunigri	n								
amide	313	-1.8	8	5	142	5	0	1	0.45
acid	314	-1.4	8	5	137	5	0	1	0.48
Amygdalin									
amide	475	-3.5	13	8	222	8	0	1	0.12
acid	476	-3.1	13	8	216	8	0	1	0.13
Lucumin / Vicianin									
amide	445	-3.0	12	7	201	7	0	1	0.17
acid	446	-2.6	12	7	196	7	0	1	0,18

The information obtained from the calculations indicates that the amides and carboxylic acids obtained by hydrolysis of the nitrile groups of *Prunasin* and *Sambunigrin* are more applicable in a treatment.

B. wQED

In **Tabl.IV.3.1. 5** Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (*R*)-2-hydroxy-2-phenylacetamide.

second supplemented edition

		wQED								
	MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED	
Prunasin / Sambunigri	n									
amide	313	-1.8	8	5	142	5	0	1	0.52	
acid	314	-1.4	8	5	137	5	0	1	0.55	
Amygdalin										
amide	475	-3.5	13	8	222	8	0	1	0.20	
acid	476	-3.1	13	8	216	8	0	1	0.22	
Lucumin / Vicianin										
amide	445	-3.0	12	7	201	7	0	1	0.26	
acid	446	-2.6	12	7	196	7	0	1	0.28	

 Tabl.IV.3.1. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2

 phenylacetamide

The information obtained from the calculations indicates the amides and carboxylic acids of *Prunasin* and *Sambunigrin* as covering the requirements for *Weighted Quantitative Estimate* of Druglikeness.

3.1.1.3. Non-laboratory and no clinical information on the chemical form

3.1.1.3.1. Receptor activity

In *Tabl.IV.3.1. 6* shows the bioactivity of amide and carboxylic acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* to receptors (according to *§III.3.3.4.1*).

 Tabl.IV.3.1. 6 Receptor activity of amide and carboxyl derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

indicator	Prunasin / Sambunigrin / Amygdalin / Lucumin / Vicianin amide acid						
	annae	ueiu					
AR							
ERa							
ERb							
GR							
MR							
PR							
RARa							
RARb							
RARr							
TRa							
TRb							
VDR							

second supplemented edition

From the presented it is unambiguously concluded that the studied molecules show inertness to the studied receptor set.

3.1.1.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.1.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Prunasin* and *Sambunigrin*.

 Tabl.IV.3.1. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

CAESAD	Prunasin / Sambunigrin		Amygdalin / Lucumin /			
CAESAR indicator	Samot	mgrin	Vicianin			
	amide	acid	amide	acid		
GADI	0	0.83	0.74	0.74		
SMKEV	0.80	0.80	0.82	0.83		
APSM	0.67	1	0.66	0.66		
CSM	0	0.68	0.67	0.67		
MDRC	true	true	true	true		
ACFFSC	1	1	1	1		
Prediction	М	NM	NM	NM		
true- descriptors for this compound have values inside						
the descriptor range of the compounds of the training						
set; M- mutagenic	ity; NM-	non muta	agenicity			

However, molecular fragments of the amide of *Prunasin* and *Sambunigrin* coincide with those of other molecules with mutagenicity already studied¹⁹.

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* did not show activity (*Tabl.IV.3.1.8*).

¹⁹ Similarity: 0.77-9 by CAS: 51-34-3, CAS: 7195-43-9 and CAS: 3544-94-3

second supplemented edition

SarPy/IRFMN indicator		Prunasin / Sambunigrin		dalin / min / anin		
indicator	amide	acid	amide	acid		
GADI	0.81	0.81	0.74	0.74		
SMKEV	0.80	0.80	0.82	0.83		
APSM	0.67	1	0.66	0.66		
CSM	1	0.68	0.67	0.67		
ACFFSC	1	1	1	1		
	•	·	•	·		
Prediction	NM	NM	NM	NM		
NM- non mutagenicity						

Tabl.IV.3.1. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Prunasin,
Sambunigrin, Amygdalin, Lucumin and Vicianin

c) ISS

Amide and carboxyl acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* are non-mutagenic according to *ISS* methodology (*Tabl.IV.3.1. 9*).

	Prun	asin /	Amygdalin /			
ISS	Samb	unigrin	Lucu	min /		
indicator			Vici	anin		
	amide	acid	amide	acid		
GADI	0.75	0.75	0.76	0.76		
SMKEV	0.79	0.79	0.80	0.81		
APSM	0.50	0.52	1	1		
CSM	1	1	0.51	0.52		
ACFFSC	1	1	1	1		
Prediction	NM	NM	NM	NM		
NM- non mutagenicity						

 Tabl.IV.3.1. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Amygdalin*, *Lucumin* and *Vicianin* show some deviation from *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

KNN/Read-Across	Prunasin / Sambunigrin		Amygdalin / Lucumin /			
indicator			Vici	anin		
	amide	acid	amide	acid		
GADI	0.71	0.78	0.60	0.60		
SMKEV	0.82	0.81	0.82	0.83		
APSM	0.50	0.75	0.25	0.26		
CSM	0.75	0.75	0.75	0.76		
ACFFSC	1	1	1	1		
Prediction	NM	NM	NM	NM		
NM- non mutagenicity						

 Tabl.IV.3.1. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

B. Consensus model

Data from *Tabl.IV.3.1. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* to mutagenicity.

 Tabl.IV.3.1. 11 Consensus model for mutagenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

Consensus model mutagenicity indicator	Prunasin / Sambunigrin amide acid		Amyg Lucu Vici	
			amide	acid
numerical value	0.45	0.60	0.50	0.50

3.1.1.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

CAESAR carcinogenicity method recognizes that amide and carboxyl acid derivatives of amygdalin are the most non-carcinogenic of all the model forms studied (*Tab.IV.3.1. 12*). We attribute this to two facts: the molecules of *Amygdalin*, *Lucumin* and *Vicianin* have two glycosidic nuclei, therefore the electron density is more evenly distributed in the direction of the functional group (*§IV.2.1*), and hence the activity decreases - especially in dilute solutions; *amygdalin* is the best studied molecule of all the compounds studied, and hence the training set is more detailed.

CAESAR indicator	Prunasin / Sambunigrin		Amygdalin		Lucumin / Vicianin		
	amide	acid	amide	acid	amide	acid	
	-						
GADI	0.74	0.50	0.86	0.86	0.60	0.60	
SMKEV	0.77	0.76	0.71	0.75	0.73	0.73	
APSM	0.50	0.50	1	1	0.50	0.59	
CSM	1	0.50	1	1	0.50	0.50	
MDRC	true	true	true	true	true	true	
ACFSC	1	1	1	1	1	1	
MCAR	0.39	0.39	0.35	0.35	0.35	0.35	
NMNC	1	0.50	1	1	1	1	
Carcinogen	0.31	0.59	0.33	0.33	0.33	0.33	
NON-Carcinogen	0.69	0.41	0.67	0.67	0.67	0.67	
Prediction	NC	С	NC	NC	NC	NC	
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; NC- NON-Carcinogen; C- carcinogen							

Tabl.IV.3.1. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Prunasin,
Sambunigrin, Amygdalin, Lucumin and Vicianin

Molecular sites of carboxyl acid derivatives of *Prunasin* and *Sambunigrin* coincide with fragments of molecules with proven carcinogenicity²⁰.

b) ISS

ISS for amides and carboxyl acids derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* do not give an unambiguous answer about carcinogenicity (*Tabl.IV.3.1*. 13).

ISS		Prunasin / Sambunigrin		Amygdalin		min / anin
indicator	amide	acid	amide	acid	amide	acid
GADI	0.75	0.75	0.76	0.76	0.76	0.76
SMKEV	0.79	0.79	0.80	0.80	0.80	0.80
APSM	0.50	0.52	1	1	1	1
CSM	1	1	0.51	0.82	0.52	0.52
ACFSC	1	1	1	1	1	1
Prediction	PNC	PNC	PNC	PNC	PNC	PNC
PNC- possible non-carcinogenic						

 Tabl.IV.3.1. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

²⁰ Similarity: 0.76 by CAS: 51-55-8 | Similarity: 0.74 by CAS: 18883-66-4 and CAS: 54749-90-5

c) IRFMN/Antares

The carcinogenicity data (*Table IV.3.1. 14*) of amide and carboxyl acid derivatives of *Prunasin, Sambunigrin, Amygdalin, Lucumin* and *Vicianin* are comparable to those of *ISS* (*§b*).

 Tabl.IV.3.1. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

IRFMN/Antares indicator	Prunasin / Sambunigrin		Amygdalin		Lucumin / Vicianin	
mulcator	amide	acid	amide	acid	amide	acid
GADI	0.61	0.62	0.62	0.62	0.62	0.62
SMKEV	0.79	0.81	0.82	0.83	0.82	0.82
APSM	0.67	0.34	0.34	0.33	0.34	0.34
CSM	0.34	0.67	0.66	0.66	0.65	0.65
ACFSC	1	1	1	1	1	1
Prediction	PNC	PNC	PNC	PNC	PNC	PNC
PNC- possible non-carcinogenic						

d) IRFMN/ISSCMN-CGX

The acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* coincides with part of a molecule that is listed in the training set as alert²¹ for carcinogenicity (*Tabl.IV.3.1. 15*).

 Tabl.IV.3.1. 15 IRFMN/ISSCMN-CGX carcinogenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

IRFMN/ISSCAN-CGX indicator	Prunasin / Sambunigrin		Amygdalin / Lucumin / Vicianin			
maleator	amide	acid	amide	acid		
GADI	0.72	0.60	0.68	0.81		
SMKEV	0.78	0.77	0.80	0.80		
APSM	0.67	0.68	1	1		
CSM	0.67	0.32	0.34	0.66		
ACFSC	1	1	1	1		
Prediction	PNC	С	PNC	С		
PNC- possible non-carcinogenic; C- carcinogen						

²¹ Similarity: 0.74-6 by CAS: 51-55-8, CAS: 9000-07-1, CAS: 69644-85-5, CAS: 17924-92-4, CAS: 18883-66-4 which have been shown to be carcinogenic

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The method did not report information (*Tabl.IV.3.1. 16*) on carcinogenicity for the amide and carboxyl derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin*.

Tabl.IV.3.1. 16 Carcinogenicity oral classification model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

IRFMN indicator	Prunasin / Sambunigrin amide acid		Amygdalin amide acid		Lucumin / Vicianin amide acid	
	unnae	uoru	unnuu	uoru	unnuu	uera
GADI	0.73	0.88	0.70	0.84	0.71	0.60
SMKEV	0.77	0.77	0.70	0.71	0.71	0.71
APSM	1	1	1	1	1	0.51
CSM	0.49	1	0.50	1	0.50	0.51
MDRC	true	true	true	true	true	true
ACFSC	1	1	1	1	1	1
Prediction	NC	NC	NC	NC	NC	NC
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; NC- NON-Carcinogen						

b) Carcinogenicity oral Slope Factor model

It is noteworthy (*Tabl.IV.3.1.17*) that the molecules with two glycosidic nuclei (*Amygdalin*, *Lucumin* and *Vicianin*) allow higher allowable working concentrations. However, when checking the molecular weight ratio of the compound to the functional group mass, the results were comparable to those with a single glycoside nucleus (*Prunasin* and *Sambunigrin*).

Tabl.IV.3.1. 17 Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

IRFMN indicator		asin / ınigrin	Amygdalin / Lucumin / Vicianin	
	amide	acid	amide	acid
GADI	0.64	0.63	0	0
SMKEV	0.76	0.74	0.70	0.70
APSM	0.18	0.18	0.57	0.57
CSM	1.95	2.01	5.03	5.04
MEPASM	0.28	0,28	1.07	1.07
MDRC	true	true	n-true	n-true
ACFSC	0.85	0.85	0.85	0.85

second supplemented edition

Predicted Oral Carcinogenicity SF	$(g/kg-day)^{-1}$						
for molecular forms	14.4 16.6	42.2 42.2					
Presumed concentration of the	$(g/kg-day)^{-1}$						
active form inside the cancer cell	5.8 11.4						
true- descriptors for this compound have values inside the descriptor							
range of the compounds of the training set; n-true - does not cover.							

3.1.1.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

Data in *Tabl.IV.3.1. 18* visualize the lack of toxicity in amide and carboxyl acid derivatives of *Prunasin, Sambunigrin, Amygdalin, Lucumin* and *Vicianin*. Given that amygdalin is the best studied nitrile and with the most clinical information, toxins²² have been reported in the training set.

		asin /	Amygdalin /				
CAESAR	Sambu	ınigrin	Lucumin /				
indicator			Vicia	nin			
	amide	acid	amide	acid			
GADI	0.64	0.75	0.69	0.91			
SMKEV	0.76	0.79	0.70	0.83			
APSM	0.18	0.51	0.57	1			
CSM	1.96	1	5.03	1			
MEPASM	0.28	?	1.07	?			
MDRC	true	true	N-true	true			
ACFSC	0.85	1	0.85	1			
Prediction	NT	NT	Т	NT			
true- descriptors for this compound have values							
inside the descriptor range of the compounds of the							
training set; N-true - does not cover; T- toxic; NT-							
non-toxic							

Tabl.IV.3.1. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

²² Similarity: 0.78-84 by CAS: 59-01-8, CAS: 32986-56-4, CAS: 33419-42-0 and CAS: 23214-92-8

b) PG (Reproductive Toxicity library)

The results of the comparative analysis of amide and carboxyl acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* in *PG* (Reproductive Toxicity library) did not show toxicity (*Tab.IV.3.1. 19*).

 Tabl.IV.3.1. 19 PG toxicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

PG	Prunasin / Sambunigrin		Amygdalin / Lucumin /		
indicator				anin	
	amide	acid	amide	acid	
GADI	0	0	0	0	
SMKEV	0.78	0.77	0.83	0.81	
APSM	1	1	1	1	
CSM	0	0	0	0	
ACFSC	1	1	1	1	
Prediction	NT	NT	NT	NT	
NT- non-toxic					

B. Models related to the development of the organism

a) Zebrafish embryo AC50

The toxicity assessment of *Zebrafish embryo AC50* did not detect potentially dangerous for the development of the organism fragments in the molecules of amide and carboxyl acid derivatives of *Amygdalin, Lucumin* and *Vicianin* (*Tab.IV.3.1. 20*).

 Tabl.IV.3.1. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

IRFMN/CORAL indicator	Prunasin / Sambunigrin		Amygdalin		Lucumin / Vicianin		
indicator	amide	acid	amide	acid	amide	acid	
GADI	0.30	0.46	0.27	0.41	0.28	0.42	
SMKEV	0.76	0.76	0.69	0.68	0.69	0.69	
APSM	0.73	0.73	0.12	0.12	0.14	0.12	
CSM	1.20	1.60	1,44	1.84	1.39	1.79	
MEPASM	1.04	1.01	0.18	0.18	0.18	0.18	
MDRC	true	true	true	true	true	true	
ACFSC	0.40	0.60	0.40	0.60	0.40	0.60	
Prediction			[m	g/L]			
	4.50	11.4	74.8	189.5	63.1	159.8	
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set							

second supplemented edition

The amide and carboxylic acid derivatives of *Prunasin* and *Sambunigrin* would show some activity, but it is mainly due to the weaker connection of the glycoside residue with the functionally determining structure.

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.1. 21*). Everything is determined by the concentration and time of treatment.

Tabl.IV.3.1. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of
Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

CORAL indicator	Prunasin / Sambunigrin		Amygdalin		Lucumin / Vicianin			
Indicator	amide	acid	amide	acid	amide	acid		
GADI	0.30	0.46	0.27	0.41	0.28	0.42		
SMKEV	0.76	0.76	0.69	0.68	0.69	0.69		
APSM	0.73	0.73	0.12	0.12	0.12	0.12		
CSM	1.20	1.60	1.44	1.84	1.39	1.79		
MEPASM	1.01	1.01	0.18	0.18	0.18	0.17		
MDRC	true	true	true	true	true	true		
ACFSC	0.40	0.60	0.40	0.60	0.40	0.60		
Prediction	Α	Α	Α	A	Α	A		
true- descriptors for this compound have values inside the descriptor								
range of the com	pounds o	of the trai	ning set					

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and / or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* (*Tab.IV.3.1. 22*). Concentration and treatment time are crucial in accurately describing the process.

 Tabl.IV.3.1. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

IRFMN indicator	Prunasin / Sambunigrin		Amygdalin		Lucumin / Vicianin	
Indicator	amide	acid	amide	acid	amide	acid
GADI	0.63	0.64	0.74	0.75	0.64	0.74
SMKEV	0.77	0.78	0.77	0.77	0.76	0.76
APSM	1	1	1	1	1	1
CSM	0.52	0.52	1	1	0.55	1

second supplemented edition

ACFSC	0.85	0.85	0.85	0.85	0.85	0.85
Active Agonist	0.10	0.10	0.14	0.14	0.14	0.13
Active Antagonist:	0.04	0.03	0.08	0.07	0.06	0.06
Inactive:	0.86	0.87	0.78	0.79	0.80	0.81
Prediction	inA	inA	inA	inA	inA	inA
inA- inactive						

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Prunasin, Sambunigrin, Amygdalin, Lucumin* and *Vicianin* did not report any deviations (*Tabl.IV.3.1. 23*) affecting the studied process.

Tabl.IV.3.1. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

NIC		asin / ınigrin	Amygdalin / Lucumin / Vicianin				
indicator	amide	acid	amide	acid			
GADI	0.76	0.91	0.78	0.77			
SMKEV	0.82	0.82	0.86	0.86			
APSM	1	1	1	1			
CSM	0.50	1	0.48	0.48			
MDRC	true	true	true	true			
ACFSC	1	1	1	1			
Euclidean Distance from the central neuron:	1.39	2.44	2.69	4.04			
Prediction	NA	NA	NA	NA			
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; NA- Non active							

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Prunasin, Sambunigrin, Amygdalin, Lucumin* and *Vicianin* we understand (*Tabl.IV.3.1. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

second supplemented edition

INERIS indicator	Prunasin / Sambunigrin		Amygdalin		Lucumin / Vicianin	
Indicator	amide	acid	amide	acid	amide	acid
	1		•			,
GADI	0	0	0	0	0	0
SMKEV	0.77	0.77	0.71	0.70	0.72	0.71
APSM	0.31	0.31	0.14	0.33	0.14	0.31
CSM	0.43	0.35	0.34	0.24	0.34	0.31
MEPASM	0.50	0.50	0.15	0.50	0.15	0.50
MDRC	N-true	N-true	N-true	N-true	N-true	N-true
ACFSC	0.51	0.51	0.51	0.51	0.51	0.51
Prediction						
$\log K (C - C)$	[log units]					
logK (C _{HF(A,B)} ,C _{adipose tissue})	0.183	0.264	0.195	0.299	0.238	0.306
			[numerio	cal units]		
K (C _{HF(A,B)} ,C _{adipose tissue})	1.525	1.837	1.583	1.991	1.718	2.023
N-true - does not cover						

 Tabl.IV.3.1. 24 Adipose tissue: blood model for toxicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.1. 25*).

Tabl.IV.3.1. 25 Total body elimination half-life toxicity of amide and carboxyl acid derivatives
of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

QSARINS		asin / migrin	Amyg	Amygdalin		ımin / ianin	
indicator	amide	acid	amide	acid	amide	acid	
GADI	0.85	0.85	0.85	0.85	0.85	0.85	
SMKEV	0.79	0.79	0.82	0.82	0.82	0.82	
APSM	0.09	0.09	0.33	0.13	0.33	0.33	
CSM	0.20	0.07	0.52	0.34	0.46	0.42	
MEPASM	0.15	0.15	0.62	0.23	0.62	0.62	
MDRC	true	true	true	true	true	true	
ACFSC	1	1	1	1	1	1	
Prediction							
LogHLt			[log	units]			
	0.30	0.33	0.13	0.17	0.20	0.23	
Total half-life			[m	in]			
	120	130	80	90	95	105	
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set							

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Prunasin, Sambunigrin, Amygdalin, Lucumin* and *Vicianin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.1.26*).

Tabl.IV.3.1. 26 Micronucleus activity - In vitro for toxicity of amide and carboxyl acid derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin

IRFMN/VERMEER indicator	Prunasin / Sambunigrin		Amygdalin		Lucumin / Vicianin	
mulcator	amide	acid	amide	acid	amide	acid
GADI	0.86	0.86	0.89	0.89	0.89	0.89
SMKEV	0.73	0.74	0.79	0.79	0.78	0.78
APSM	1	1	1	1	1	1
CSM	1	1	1	1	1	1
ACFSC	1	1	1	1	1	1
Prediction	А	А	Α	А	Α	А
A- active						

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Prunasin*, *Sambunigrin*, *Amygdalin*, *Lucumin* and *Vicianin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.1. 27*). They are relatively safe in terms of *NOAEL* toxicity model.

IRFMN/CORAL indicator	Pruna Sambu	asin / Inigrin	Amyg	gdalin	Lucumin / Vicianin		
mulcator	amide	acid	amide	acid	amide	acid	
GADI	0.69	0.70	0.69	0.85	0.85	0.85	
SMKEV	0.82	0.82	0.82	0.83	0.83	0.84	
APSM	0.25	0.25	0.25	0.25	0.25	0.25	
CSM	1.42	1.26	0.69	0.55	0.93	0.79	
MEPASM	0.38	0.38	0.38	0.3u	0.38	0.38	
MDRC	true	true	true	true	true	true	
ACFSC	0.85	0.85	0.85 0.85		0.85	0.85	

Tabl.IV.3.1. 27 NOAEL toxicity of amide and carboxyl acid derivatives of Prunasin,
Sambunigrin, Amygdalin, Lucumin and Vicianin

second supplemented edition

Prediction		[-log(mg/kg)]								
Prediction	-2.25	-2.39	-2.96	96 -3.10 -2.72 - [mg/kg]	-2.86					
Prediction		[mg/kg]								
	178									
true- descriptors	s for this co	mpound	have val	lues insid	le the de	escriptor				

Prunasin/Sambunigrin derivatives are expected to be more active and therefore have lower toxicity limits.

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on gly*cosidamides and gly*cosacids in the training set.

3.1.1.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.1.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Prunasin* and *Sambunigrin* would be optimal for drugs taken orally to poison the cancer cell with (R)-2-hydroxy-2-phenylacetamide as performed in §*IV.2* second objective of the study.

Alternatively, amygdalin derivatives are available.

These two conclusions do not preclude the use of *Lucumin* and *Vicianin* derivatives in clinical need.

3.1.1.5. Conclusion from the part

The application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*) proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for Prunasin amide and Sambunigrin amide $2229 \le 5588 \le 14008$, Prunasin acid and Sambunigrin acid $1904 \le 5178 \le 14079$ and Bioaccumulation factor [conditional units] Prunasin amide and Sambunigrin amide $1.03 \le 16.3 \le 255.9$, Prunasin acid and Sambunigrin acid are $0.00 \le 0.30 \le 617$; $0.05 \le 0.39 \le 3.2$. This is understandable because both compounds are in isomeric form.

3.1.1.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.1.6.1. Lipophilicity

Data from *Tabl.IV.3.1. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.3.1. 28 Lipophilicity of amide and carboxylic acid derivatives of Prunasin and
Sambunigrin

			L	og P _{o/w}		
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Prunasin / Sam	bunigrin					
amide	0.97	-1.55	-2.29	-1.96	-1.47	-1.29
acid	1.01	-0.90	-1.70	-1.55	-1.23	-0.87
			1	1	I	

3.1.1.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.1. 29*).

Tabl.IV.3.1. 29 Water solubility of amide and carboxylic acid derivatives of Prunasin and
Sambunigrin

studied indicator	Prunasin /	Sambunigrin
studied indicator	amide	acid
ESOL		
Log S	-0.68	-1.09
Solubility, [mg/ml]	6.58e+01	2.53e+01
Class	VS	VS
Ali		
Log S	-0.93	-1.49
Solubility, [mg/ml]	3.64e+01	1.02e+01
Class	VS	VS
SILICOS-IT		
Log S	0.16	0.38
Solubility, [mg/ml]	4.53e+02	7.49e+02
Class	S	S
vs - very soluble; s - soluble		

3.1.1.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Prunasin* and *Sambunigrin* meets the pharmacokinetic requirements (*Table IV.3.1. 30*).

studied in diseten	Prunasin /	Sambunigrin
studied indicator	amide	acid
GI absorption	low	low
BBB permeant	no	no
P-gp substrate	no	no
inhibitors		
CYP1A2	low	no
CYP2C19	no	no
CYP2C9	no	no
CYP2D6	low	no
CYP3A4	no	no
$\text{Log } K_{\text{p}}$		
skin permeation, [cm/s]	-9.31	-8.86

Tabl.IV.3.1. 30 Pharmacokinetic indicators of amide and derivatives of Prunasin and
Sambunigrin

3.1.1.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.1. 31*) containing amide and derivatives of *Prunasin* and *Sambunigrin*.

 Tabl.IV.3.1. 31 Muegge activity and Bioavailability Score of amide and derivatives of Prunasin and Sambunigrin

studied indicator	Prunasin / Sambunigrin					
studied indicator	amide acid					
Muegge	Yes	Yes				
Bioavailability Score	0.55	0.56				

3.1.1.6.5. Medical Chemistry

Data from *Tabl.IV.3.1. 32* confirm the drug safety of amide and derivatives of *Prunasin* and *Sambunigrin*.

Tabl.IV.3.1. 32 Medical chemistry indicators for amide and derivatives of Prunasin and
Sambunigrin

studied indicator	Prunasin / Sambunigrin				
studied indicator	amide	acid			
PAINS, [number of alerts]	0	0			
Brenk, [number of alerts]	0	0			
Leadlikeness	Yes	Yes			
Synthetic accessibility	4.35	4.35			

3.1.2. (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide

Subjected to analysis are potential pharmaceutical forms for release within the cancer cell of (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide, comprising an amides and carboxylic acids obtained by hydrolysis of the nitrile groups of *Dhurrin*, *Taxiphyllin*, *Proteacin* and *p*-Glucosyloxymandelin. The process proceeds according to §IV.2.3.

3.1.2.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.2.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-*hydroxy*-2-(4-*hydroxyphenyl*)acetamide.

Tabl.IV.3.2. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor	
Dhurrin / Taxiphyllin								
	amide	0.27	-0.04	0.01	-0.05	0.28	0.44	
	acid	0.42	0.16	0.07	0.33	0.32	0.61	
Proteacin								
	amide	0.14	-0.08	-0.08	-0.11	0.17	0.29	
	acid	0.24	0.05	-0.04	0.14	0.20	0.41	
p-Glucosyloxymandelo-								
	amide	0.13	-0.11	-0.08	-0.06	0.14	0.39	
	acid	0.29	0.02	-0.05	0.32	0.17	0.45	

The data in *Tabl.IV.3.2. 1* show that the amides and carboxylic acids of *Dhurrin* and Taxiphyllin have more pronounced general drug activity *in vivo*.

3.1.2.2. Pharmacological and biological activity of oral active drugs

3.1.2.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.2. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*R*)-2-hydroxy-2-(4-hydroxyphenyl)acetamide.

Tabl.IV.3.2. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide

		Lipinski's Rule				Ghose Filter				CMC-50-Like Rule				Rule
	MW	logP	HBA	HBD		MW	logP	AMR	nAtom		MW	logP	AMR	nAtom
Dhurrin / Taxiphyllin / p-Glucosyloxymandelo-														
amide	329	-2.7	9	6		329	-2.7	77	42		329	-2.7	77	42
acid	330	-2.0	9	6		330	-2.0	77	41		330	-2.0	77	41
Proteacin														
amide	491	-4.0	14	9		491	-4.0	110	63		491	-4.0	110	63
acid	492	-3.3	14	9		492	-3.3	110	62		492	-3.3	110	62

Here there are two molecular forms that stand out (the respective amides and carboxylic acid of *Dhurrin* and *Taxiphyllin* which cover most of the requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.2.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*R*)-2-hydroxy-2-(4-hydroxyphenyl)acetamide are listed in *Tabl.IV.3.2. 3*.

 Tabl.IV.3.2. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide

	Veber Filter			MDE	R-Like	Rule		BBB Likeness	
	TPSA	nRB		nRB	RC	nRingidB	MW	nAcidGroup	nHB
Dhurrin									
amide	167	5		5	2	19	329	0	15
acid	157	5		5	2	19	330	1	15
Taxiphyllin / p-Glucosyloxyma	ndelo-								
amide	163	5		5	2	19	329	0	15
acid	157	5		5	2	19	330	1	15
Proteacin									
amide	242	8		8	3	28	491	0	23
acid	236	8		8	3	28	492	1	23

second supplemented edition

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.2.2.3. QED

The analysis is performed according to *§3.3.3.1.3*.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.2. 4*.

Tabl.IV.3.2. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide

	[uwQED										
							JED						
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAromaRing	uwQED			
Dhurrin / Taxiphyllin													
8	amide	329	-2.4	9	6	163	5	0	1	0.32			
	acid	330	-2.0	9	6	157	5	0	1	0.35			
Proteacin													
â	amide	491	-4.4	14	9	242	8	0	1	0.10			
	acid	492	-4.0	14	9	236	8	0	1	0.15			
p-Glucosyloxymandelo-													
â	amide	329	-2.7	9	6	163	5	0	1	0.30			
	acid	330	-2.3	9	6	157	5	0	1	0.33			

The information obtained from the calculations indicates that the amides and carboxylic acids of the studied molecules to the same extent deviate from the defined rules. In the absolute approximation, *Dhurrin* and *Taxiphyllin* derivatives would be more applicable for treatment.

B. wQED

In **Tabl.IV.3.2.5** Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide.

second supplemented edition

						wQ	ED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Dhurrin / Taxiphyllin										
	amide	329	-2.4	9	6	163	5	0	1	0.41
	acid	330	-2.0	9	6	157	5	0	1	0.44
Proteacin										
	amide	491	-4.4	14	9	242	8	0	1	0.17
	acid	492	-4.0	14	9	236	8	0	1	0.18
p-Glucosyloxymandelo-										
	amide	329	-2.7	9	6	163	5	0	1	0.39
	acid	330	-2.3	9	6	157	5	0	1	0.42

 Tabl.IV.3.2. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide

uwQED (*Tabl.IV.3.2. 4*) and *wQED* (*Tabl.11*) of potential pharmaceutical forms including amides and carboxylic acids obtained by hydrolysis of the nitrile group of *Dhurrin*, *Taxiphyllin*, *Proteacin* and *p-Glucosyloxymandelin* meet the requirements for conservative treatment.

3.1.2.3. Non-laboratory and no clinical information on the chemical

3.1.2.3.1. Receptor activity


In *Tabl.IV.3.2. 6* shows the bioactivity of amide and carboxylic acid derivatives of *Dhurrin*, *Taxiphyllin*, *Proteacin* and *p-Glucosyloxymandelo-* to receptors (according to *§III.3.3.4.1*).

Tabl.IV.3.2. 6 Receptor activity of amide and carboxyl derivatives of Dhurrin, Taxiphyllin,Proteacin and p-Glucosyloxymandelo-

	Dhurrin /				
	Taxiph	•			
indicator	Proteac	cin / p-			
Indicator	Glucosy	loxyma			
	nde	lo-			
	amide	acid			
AR					
ERa	active*				
ERb					
GR					
MR					
PR					
RARa					
RARb					
RARr					
TRa					

TRb		
VDR		
*- antagonis	t	

The amide form exhibits biological activity as an antagonist of *Estrogen Receptor a* (ERa). This is due to the close chemical nature (Scott, et al., 2016) (Lipfert, et al., 2006) with an already proven molecule: *4-(2-aminoethyl)phenol* (*Fig.IV.3. 1*).

Fig.IV.3. 1 Structural formulas of (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide u 4-(2aminoethyl)phenol

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

3.1.2.3.2. Mutagenicity

A. Stand -alone models

It is held respectively with §III.3.3.4.2

a) CAESAR

Data from *Tabl.IV.3.2.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *p*-*Glucosyloxymandeloamide/acid*.

CAESAR	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
indicator	amide	amide acid		acid	amide	acid
GADI	0.81	0.82	0.75	0.75	0.82	0.69
SMKEV	0.80	0.81	0.84	0.85	0.81	0.82
APSM	0.68	1	0.67	0.67	1	1
CSM	1	0.68	0.67	0.67	0.67	0.33
MDRC	true	true	true	true	true	true

 Tabl.IV.3.2. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Dhurrin, Taxiphyllin, Proteacin and p-Glucosyloxymandelo

second supplemented edition

ACFFSC	1	1	1	1	1	1
prediction	NM	NM	NM	NM	М	NM
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; M- mutagenicity; NM- non mutagenicity						

However, molecular fragments of *p*-*Glucosyloxymandeloamide* coincide with those of other molecules with mutagenicity already studied²³.

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin* did not show activity (*Table IV.3.2. 8*).

 Tabl.IV.3.2. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

SarPy/IRFMN indicator	Dhurrin / Taxiphyllin		Prote	eacin	p-Glucosyloxymandelo	
indicator	amide	acid	amide	acid	amide	acid
GADI	0.81	0.82	0.75	0.75	0.68	0.69
SMKEV	0.80	0.81	0.84	0.85	0.81	0.82
APSM	0.68	1	0.67	0.67	1	1
CSM	1	0.68	0.67	0.67	0.32	0.33
ACFFSC	1	1	1	1	1	1
prediction	NM	NM	NM	NM	NM	NM
NM- non mutagenicity						

c) ISS

Amide and carboxyl acid derivatives of *Proteacin*, *p*-Glucosyloxymandelo-, Dhurrin and Taxiphyllin are non-mutagenic according to ISS methodology (**Table IV.3.2.9**).

Tabl.IV.3.2. 9ISS mutagenicity of amide and carboxyl acid derivatives of Proteacin, p-
Glucosyloxymandelo-, Dhurrin and Taxiphyllin

ISS indicator	Dhurrin / Taxiphyllin		Prote	eacin	p-Glucosyloxymandelo		
Indicator	amide	acid	amide acid		amide	acid	
GADI	0.75	0.75	0.74	0.75	0.75	0.88	
SMKEV	0.78	0.79	0.78	0.78	0.77	0.78	

²³ Similarity: 0.82 by CAS: 54954-12-0 and CAS: 23445-00-3; Similarity: 0.78 by CAS: 152-84-1

second supplemented edition

APSM	0.51	0.52	1	1	1	1
CSM	1	1	0.50	0.50	0.52	1
ACFFSC	1	1	1	1	1	1
Prediction	NM	NM	NM	NM	NM	NM
NM- non mutager	nicity					

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Proteacin*, *Dhurrin* and *Taxiphyllin* show some deviation from *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

 Tabl.IV.3.2. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

KNN/Read-Across	Dhurrin / Taxiphyllin		Prote	eacin	p-Glucosyloxymandelo	
indicator	amide	acid	amide	acid	amide	acid
GADI	0.71	0.65	0.72	0.72	0.72	0.79
SMKEV	0.81	0.83	0.83	0.85	0.85	0.85
APSM	0.50	0.25	0.50	0.50	0.74	0.74
CSM	0.75	1	0.75	0.75	0.52	1
ACFFSC	1	1	1	1	1	1
prediction	NM	NM	NM	NM	NM	М
M- mutagenicity; NM- non mutagenicity						

However, molecular fragments of *p*-Glucosyloxymandeloacid coincide with those of other molecules with mutagenicity already studied²⁴.

B. Consensus model

Data from *Tabl.IV.3.2. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo-*, *Dhurrin* and *Taxiphyllin* to mutagenicity.

²⁴ Similarity: 0.88 by CAS: 531-75-9; Similarity: 0.84 by CAS: 39115-11-2, CAS: 53797-18-5 and CAS: 69686-05-1; Similarity: 0.82 by CAS: 60262-82-0

 Tabl.IV.3.2. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

	Dhurrin /		
	Taxipł	nyllin /	
Consensus model	Protea	cin / p-	
mutagenicity indicator	Glucosyloxym		
2 .	andelo		
	amide	acid	
numerical value	0.60	0.50	

3.1.2.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data from *Tabl.IV.3.2. 12* show that despite some deviations in the individual indicators, all studied representatives are non-carcinogenic.

 Tabl.IV.3.2. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

CAESAR indicator	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
Indicator	amide	acid	amide	acid	amide	acid
			-			1
GADI	0.73	0	0.85	0.85	0	0
SMKEV	0.76	0.75	0.73	0.72	0.76	0.75
APSM	0.50	1	1	1	1	1
CSM	1	0.51	1	1	0	0
MDRC	true	true	true	true	true	true
ACFSC	1	1	1	1	1	1
MCAR	0.39	0.02	0.35	0.35	0.02	0.02
NMNC	1	0.50	1	1	0.50	0.50
Carcinogen	0.31	0.49	0.33	0.33	0.49	0.49
NON-Carcinogen	0.69	0.51	0.67	0.67	0.51	0.51
Prediction	NC	NC	NC	NC	NC	NC
true- descriptors for this composition of the training set; NC- NON-			inside the	descript	or range of t	he compounds

b) ISS

The non-carcinogenicity of amide and carboxyl acid derivatives of *Proteacin*, *p*-Glucosyloxymandelo-, Dhurrin and Taxiphyllin was confirmed (**Tab.IV.3.2. 13**) and using ISS methodology.

second supplemented edition

ISS	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
indicator	amide	acid	amide	acid	amide	acid
GADI	0.75	0.75	0.74	0.75	0.63	0.75
SMKEV	0.78	0.78	0.78	0.78	0.78	0.78
APSM	0.51	0.52	1	1	0.51	0.52
CSM	1	1	0.50	0.50	0.51	1
ACFSC	1	1	1	1	1	1
Prediction	NC	NC	NC	NC	NC	NC
NC- NON-Carcinogen						

 Tabl.IV.3.2. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

c) IRFMN/Antares

The carcinogenicity data (*Table IV.3.2. 14*) of amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin* by *IRFMN/Antares* method could not be interpreted unambiguously.

Tabl.IV.3.2. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of
Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

IRFMN/Antares indicator	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
	amide	acid	amide	acid	amide	acid
GADI	0.62	0.62	0.73	0.81	0.52	0.52
SMKEV	0.80	0.81	0.79	0.80	0.80	0.80
APSM	0.67	0.34	0.67	0.67	0.33	0.34
CSM	0.34	0.66	0.67	1	0.33	0.34
ACFSC	1	1	1	1	1	1
Prediction	PNC	PNC	PNC	PNC	PNC	PNC
PNC- possible non-carcinogenic						

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX method reports increased carcinogenicity (*Tab.IV.3.2. 15*). This is due to compounds already studied similar to them²⁵.

²⁵ Similarity: 0.76-8 by CAS: 23214-92-8, CAS: 51-55-8, CAS: 17924-92-4, CAS: 69644-85-5, CAS: 9000-07-1 and CAS: 53973-98-1; Similarity: 0.71-2 by CAS: 643-22-1, CAS: 12663-46-6, CAS: 18883-66-4 and CAS: 116355-83-0 which have been shown to be carcinogenic

second supplemented edition

Tabl.IV.3.2. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives
of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

IRFMN/ISSCAN-CGX indicator	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo		
	amide	acid	amide	acid	amide	acid	
GADI	0.68	0.79	0.79	0.80	0.79	0.79	
SMKEV	0.77	0.77	0.77	0.78	0.77	0.77	
APSM	1	1	1	1	1	1	
CSM	0.35	0.64	0.67	0.66	0.65	0.65	
ACFSC	1	1	1	1	1	1	
Prediction	PNC	C	C	C	С	С	
PNC- possible non-carcinogenic; C- carcinogen							

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The method did not report information (*Tabl.IV.3.2. 16*) on carcinogenicity for the amide and carboxyl derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin*.

 Tabl.IV.3.2. 16 Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

IRFMN/ISSCAN-CGX indicator	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
	amide	acid	amide	acid	amide	acid
GADI	0.74	0.87	0.71	0.71	0.74	0.73
SMKEV	0.76	0.76	0.71	0.70	0.76	0.76
APSM	1	1	1	1	1	1
CSM	0.51	1	0.50	0.50	0.51	0.51
MDRC	true	true	true	true	true	true
ACFSC	1	1	1	1	1	1
Prediction	NC	NC	NC	NC	NC	NC
true- descriptors for this compound have values inside the descriptor range of the compounds						

true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; PNC- possible non-carcinogenic

b) Carcinogenicity oral Slope Factor model

It is noteworthy (*Tabl.IV.3.2. 17*) that the molecules with two glycosidic nuclei (*Proteacin* and *p-Glucosyloxymandelo-*) allow higher allowable working concentrations. However, when checking the molecular weight ratio of the compound to the functional group mass, the results were comparable to those with a single glycoside nucleus (*Dhurrin* and *Taxiphyllin*).

second supplemented edition

Tabl.IV.3.2. 17 Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

IRFMN indiactor	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo			
indicator	amide	acid	amide	acid	amide	acid		
GADI	0.64	0.63	0	0	0	0		
SMKEV	0.75	0.74	0.70	0.69	0.76	0.75		
APSM	0.18	0.18	0.57	0.57	0.18	0.18		
CSM	1.94	2.02	5.05	5.06	2.23	2.39		
MEPASM	0.28	0.28	1.07	1.07	0.28	0.28		
MDRC	true	true	n-true	n-true	n-true	n-true		
ACFSC	0.85	0.85	0.85	0.85	0.85	0.85		
Predicted								
Predicted Oral Carcinogenicity SF			()	g/kg-day)	$)^{-1}$			
for molecular forms	14.1	16.6	44.7	45.7	27.5	39.8		
Presumed concentration of the	$(g/kg-day)^{-1}$							
active form inside the cancer cell	5.9		13.9		11.6			
true- descriptors for this compound have values inside the descriptor range of the compounds of the								
training set; n-true - does not cover.				-				

3.1.2.3.4. Toxity

A. Developmental Toxicity model

a) CAESAR

The application of the *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*, *Dhurrin* and *Taxiphyllin* highlights the lack of toxicity (*Tabl. IV.3.2. 18*).

CAESAR	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo			
indicator	amide	acid	amide	acid	amide	acid		
GADI	0.75	0.74	0.90	0.90	0.74	0.73		
SMKEV	0.78	0.77	0.80	0.79	0.77	0.76		
APSM	0.51	0.51	1	1	1	1		
CSM	1	1	1	1	0.49	0.49		
MDRC	true	true	true	true	true	true		
ACFSC	1	1	1	1	1	1		
Prediction	NT	NT	NT	NT	NT	NT		
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; NT- non-toxic								

Tabl.IV.3.2. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Proteacin, p-
Glucosyloxymandelo-, Dhurrin and Taxiphyllin

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin* did not report values for GADI and CSM. Molecular fragments close to (*R*)-2-hydroxy-2-(4-hydroxyphenyl)acetamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.2. 19* cannot be considered reliable.

PG indicator	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
indicator	amide	acid	amide	acid	amide	acid
GADI	0	0	0	0	0	0
SMKEV	0.78	0.77	0.80	0.79	0.79	0.77
APSM	1	1	1	1	1	1
CSM	0	0	0	0	0	0
ACFSC	1	1	1	1	1	1
Prediction	NT	NT	NT	NT	NT	NT
NT- non-toxic						

Tabl.IV.3.2. 19 PG toxicity of amide and carboxyl acid derivatives of Proteacin, p-
Glucosyloxymandelo-, Dhurrin and Taxiphyllin

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Proteacin*, *p*-Glucosyloxymandelo-, Dhurrin and Taxiphyllin, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.2.* 20).

Tabl.IV.3.2. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid
derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

IRFMN/CORAL	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo			
indicator	amide	acid	amide	acid	amide	acid		
GADI	0.30	0.45	0.28	0.42	0.30	0.44		
SMKEV	0.75	0.75	0.69	0.69	0.74	0.74		
APSM	0.59	0.59	0.12	0.12	0.25	0.25		
CSM	1.34	1.74	1.39	1.80	0.98	1.38		
MEPASM	1.01	1.01	0.18	0.18	0.32	0.32		
MDRC	true	true	true	true	true	true		
ACFSC	0.40	0.60	0.40	0.60	0.40	0.60		
Prediction	[mg/L]							

second supplemented edition

	18.0	45.7	69.8	176.8	18.0	45.8	
true- descriptors for this compound have values inside the descriptor range of the							
compounds of the trai	ning set						

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo-*, *Dhurrin* and *Taxiphyllin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.2. 21*). Everything is determined by the concentration and time of treatment.

 Tabl.IV.3.2. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

CORAL	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo				
indicator	amide	acid	amide	acid	amide	acid			
GADI	0.64	0.64	0.73	0.73	0.63	0.64			
SMKEV	0.78	0.79	0.74	0.75	0.77	0.78			
APSM	0.52	0.53	1	1	1	1			
CSM	1	1	1	1	0.52	0.52			
ACFSC	0.85	0.85	0.85	0.85	0.85	0.85			
Prediction	А	Α	А	А	А	А			
A- active									

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and / or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin* (*Tab.IV.3.2. 22*). Concentration and treatment time are crucial in accurately describing the process.

 Tabl.IV.3.2. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

CORAL	Dhu Taxip	rrin / hyllin	Proteacin		p-Glucosyloxymandelo	
indicator	amide	acid	amide	acid	amide	acid
GADI	0.92	0.93	0.92	0.92	0.94	0.95
SMKEV	0.85	0.87	0.84	0.85	0.88	0.89
APSM	1	1	1	1	1	1
CSM	1	1	1	1	1	1
ACFSC	1	1	1	1	1	1

second	supplemented	edition

Active Agonist	0.14	0.13	0.15	0.14	0.14	0.14
Active Antagonist:	0.03	0.03	0.07	0.07	0.04	0.04
Inactive:	0.83	0.84	0.78	0.79	0.82	0.82
Prediction	inA	inA	inA	inA	inA	inA
inA- inactive						

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Proteacin, p-Glucosyloxymandelo-, Dhurrin* and *Taxiphyllin* did not report any deviations (*Tabl.IV.3.2. 23*) affecting the studied process.

Tabl.IV.3.2. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

CORAL indicator	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo			
Indicator	amide	acid	amide	acid	amide	acid		
GADI	0.91	0.92	0.92	0.92	0.93	0.93		
SMKEV	0.83	0.85	0.84	0.85	0.86	0.87		
APSM	1	1	1	1	1	1		
CSM	1	1	1	1	1	1		
MDRC	true	true	true	true	true	true		
ACFSC	1	1	1	1	1	1		
Euclidean Distance from	1.47	2.52	2.62	4.04	1.58	3.04		
the central neuron:								
Prediction	nonA	nonA	nonA	nonA	nonA	nonA		
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; nonA- non active								

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Proteacin, p-Glucosyloxymandelo-, Dhurrin* and *Taxiphyllin* we understand (*Tabl.IV.3.2. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

 Tabl.IV.3.2. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

INERIS	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
Indicator	amide	acid	amide	acid	amide	acid
GADI	0	0	0	0	0	0
SMKEV	0.76	0.76	0.72	0.71	0.78	0.77
APSM	0.31	0.31	0.11	0.11	0.08	0.07
CSM	0.42	0.33	0.24	0.34	0.17	0.26
MEPASM	0.50	0.50	0.15	0.15	0.10	0.10
MDRC	N-true	N-true	N-true	N-true	N-true	N-true

ACFSC	0.51	0.51	0.51	0.51	0.51	0.51	
Prediction							
logK (C _{HF(A,B)} ,C _{adipose tissue})		[log units]					
	0.192	0.291	0.197	0.301	0.193	0.247	
K (C _{HF(A,B)} ,C _{adipose tissue})		[numerical units]					
	1.556	1.954	1.574	2.000	1.560	1.766	
N-true - does not cover							

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.2. 25*).

Tabl.IV.3.2. 25 Total body elimination half-life model toxicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

QSARINS		rrin / hyllin	Prote	eacin	p-Glucosyloxymandelo	
indicator	amide	acid	amide	acid	amide	acid
						1
GADI	0.85	0.85	0.85	0.85	0.85	0.85
SMKEV	0.79	0.80	0.77	0.78	0.79	0.79
APSM	0.09	0.09	0.13	0.13	0.15	0.15
CSM	0.02	0.02	0.37	0.34	0.26	0.26
MEPASM	0.15	0.15	0.23	0.23	0.26	0.25
MDRC	true	true	true	true	true	true
ACFSC	1	1	1	1	1	1
LogHLt			[log units	5]	
	0.279	0.312	0.138	0.173	0.335	0.379
Total half-life	[min]					
	115	125	85	90	130	145
true- descriptors for t compounds of the tra	-	ound ha	ve values	s inside t	he descripto	r range of the

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.2. 26*).

second supplemented edition

IRFMN/VERMEER indicator	Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
indicator	amide	acid	amide	acid	amide	acid
GADI	0.86	0.86	0.89	0.89	0.72	0.72
SMKEV	0.74	0.73	0.78	0.78	0.73	0.74
APSM	1	1	1	1	1	1
CSM	1	1	1	1	0.50	0.50
ACFSC	1	1	1	1	1	1
Prediction	Α	А	Α	А	А	А
A- active						

Tabl.IV.3.2. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (\$IV.3.1.2.3.2), carcinogenicity (\$IV.3.1.2.3.3) and the previously analyzed toxicity methods (\$IV.3.1.2.3.4).

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Proteacin*, *p*-*Glucosyloxymandelo*-, *Dhurrin* and *Taxiphyllin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.2. 27*). They are relatively safe in terms of *NOAEL* toxicity model.

 Tabl.IV.3.2. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of Proteacin, p-Glucosyloxymandelo-, Dhurrin and Taxiphyllin

IRFMN indicator		Dhurrin / Taxiphyllin		Proteacin		p-Glucosyloxymandelo	
mulcator	amide	acid	amide	acid	amide	acid	
GADI	0.69	0.85	0.66	0.67	0.68	0.69	
SMKEV	0.81	0.83	0.78	0.79	0.80	0.81	
APSM	0.25	0.25	0.25	0.25	0.25	0.25	
CSM	1.05	0.91	0.34	0.19	1.05	0.91	
MEPASM	0.38	0.38	0.38	0.38	0.38	0.38	
MDRC	true	true	true	true	true	true	
ACFSC	0.85	0.85	0.85	0.85	0.85	0.85	
Prediction		[-log(mg/kg)]					
	-2.605	-2.748	-3.317	-3.46	-2.605	-2.748	

second supplemented edition

Prediction		[mg/kg]						
	403	560	2075	2884	403	560		
true- descriptors f	or this con	npound ha	we values	inside th	ne descripto	or range of the		
compounds of the	training se	t						

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.2.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.2.1*, -2 and -3) we assume that amide and carboxyl acid derivatives of *Prunasin* and *Sambunigrin* would be optimal for drugs taken orally to poison the cancer cell with (R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide as performed in §*IV.2* second objective of the study.

Alternatively, Proteacin derivatives are available.

These two conclusions do not preclude the use of *p*-Glucosyloxymandeloamide/acid derivatives in clinical need.

3.1.2.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), demonstrates maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values are respectively: *Oral rat LD50* [mg/kg] for Dhurrin amide and Taxiphyllin amide $2541 \le 7077 \le 19709$, Dhurrin acid and Taxiphyllin acid $1159 \le 2970 \le 7612$ and *Bioaccumulation factor* [conditional units] Dhurrin amide and Taxiphyllin amide $1.1 \le 17 \le 272$, Dhurrin acid and Taxiphyllin acid are $0.01 \le 0.28 \le 6.1$. This is understandable because both compounds are in isomeric form.

3.1.2.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.2.6.1. Lipophilicity

Data from *Tabl.IV.3.2. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

second supplemented edition

			L	og P _{o/w}		
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Dhurrin / Taxip	ohyllin					
amide	0.22	-1.77	-2.59	-2.47	-1.93	-1.71
acid	0.64	-1.12	-1.99	-2.06	-1.69	-1.24

Tabl.IV.3.2. 28 Lipophilicity of amide and carboxylic acid derivatives of Dhurrin and
Taxiphyllin

3.1.2.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.2. 29*).

 Tabl.IV.3.2. 29 Water solubility of amide and carboxylic acid derivatives of Dhurrin and Taxiphyllin

studied indicator	Dhurrin / '	Taxiphyllin
studied indicator	amide	acid
ESOL		
Log S	-0.63	-1.05
Solubility, [mg/ml]	7.73e+01	2.98e+01
Class	VS	VS
Ali		
Log S	-1.13	-1.68
Solubility, [mg/ml]	2.43e+01	6.84e+00
Class	VS	VS
SILICOS-IT		
Log S	0,74	0.96
Solubility, [mg/ml]	1.83e+03	3.01e+03
Class	S	S
vs - very soluble; s - soluble		

3.1.2.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Dhurrin* and *Taxiphyllin* meets the pharmacokinetic requirements (*Tabl.IV.3.2. 30*).

 Tabl.IV.3.2. 30 Pharmacokinetic indicators of amide and derivatives of Dhurrin and Taxiphyllin

studied indicator	Dhurrin / Taxiphyllin		
studied indicator	amide	acid	
GI absorption	low	low	
BBB permeant	no	no	
P-gp substrate	no	no	
inhibitors			

second supplemented edition

CYP1A2	no	no
CYP2C19	no	no
CYP2C9	no	no
CYP2D6	no	no
CYP3A4	no	no
$\log K_{\rm p}$		
skin permeation, [cm/s]	-9.57	-9.11

3.1.2.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.1. 31*) containing amide and derivatives of *Dhurrin* and *Taxiphyllin*.

 Tabl.IV.3.2. 31 Muegge activity and Bioavailability Score of amide and derivatives of Dhurrin and Taxiphyllin

studied indicator	Dhurrin / Taxiphyllin			
studied indicator	amide	acid		
Muegge	No*	No*		
Bioavailability Score	0.55	0.11		
* 2 violations: TPSA>150, H-don>5				

3.1.2.6.5. Medical Chemistry

Data from *Tabl.IV.3.2. 32* confirm the drug safety of amide and derivatives of *Dhurrin* and *Taxiphyllin*.

Tabl.IV.3.2. 32 Medical chemistry indicators for amide and derivatives of Dhurrin and
Taxiphyllin

studied indicator	Dhurrin / Taxiphyllin		
studied indicator	amide	acid	
PAINS, [number of alerts]	0	0	
Brenk, [number of alerts]	0	0	
Leadlikeness	yes	yes	
Synthetic accessibility	4.31	4.30	

3.1.3. (R)-2-hydroxy-2-(3-hydroxypheny3l)acetamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of(R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of Zierin. The process proceeds according to §**IV.2.3**.

3.1.3.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.3.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-*hydroxy*-2-(3-*hydroxyphenyl*)acetamide.

Tabl.IV.3.3. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide

	GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Zierin						
amide	0.26	-0.05	-0.01	-0.04	0.27	0.44
acid	0.41	0.15	0.05	0.33	0.31	0.61

Data in *Tabl.IV.3.3. 1* show that the amides and carboxylic acids of *Zierin* have more pronounced overall drug activity *in vivo*.

3.1.3.2. Pharmacological and biological activity of oral active drugs

3.1.3.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.3. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide.

Tabl.IV.3.3. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules
potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-
hydroxyphenyl)acetamide

	Lipinski's Rule				Ghose Filter				CMC-50-Like Rule				
	MW	logP	HBA	HBD	MW	logP	AMR	nAtom	Ν	1W	logP	AMR	nAtom
Zierin													
amide	329	-2.7	9	6	329	-2.7	77	42		329	-2.7	77	42
acid	330	-2.0	9	6	330	-2.0	77	41		330	-2.0	77	41

second supplemented edition

The two molecular modified forms of *Zierin* cover most of the requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.3.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide are listed in **Tabl.IV.3.3.3**.

Tabl.IV.3.3. *3* Tabl.14 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide

	Veber 1	Filter	MD	DR-Like	Rule		BBB Likeness	
	TPSA	nRB	nRB	RC	nRingidB	MW	nAcidGroup	nHB
Zierin								
amide	163	5	5	2	19	329	0	15
acid	157	5	5	2	19	330	1	15

There are no significant fluctuations in the individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.3.2.3. QED

The analysis is performed according to §3.3.3.1.3.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.3. 4*.

Tabl.IV.3.3. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide

	ſ					uwÇ	ED			
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Zierin										
	amide	329	-2.4	9	6	163	5	0	1	0.32
	acid	330	-2.0	9	6	157	5	0	1	0.35

B. wQED

In *Tabl.IV.3.3. 5* Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (*R*)-2-hydroxy-2-(3-hydroxyphenyl)acetamide.

Tabl.IV.3.3. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide

						wQ	ED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Zierin										
	amide	329	-2.4	9	6	163	5	0	1	0.41
	acid	330	-2.0	9	6	157	5	0	1	0.44

uwQED (*Tabl.IV.3.3. 4*) and *wQED* (*Tabl.IV.3.3. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Zierin* meets the requirements for conservative treatment.

3.1.3.3. Non-laboratory and no clinical information on the chemical form

3.1.3.3.1. Receptor activity

In *Tabl.IV.3.3. 6* shows the bioactivity of amide and carboxylic acid derivatives of *Zierin* (according to *§III.3.3.4.1*).

indicator	Zie	rin
indicator	amide	acid
AR		
ERa		
ERb		
GR		
MR		
PR		
RARa		
RARb		
RARr		
TRa		
TRb		
VDR		

Tabl.IV.3.3. 6 Receptor activity of amide and carboxyl derivatives of Zierin

second supplemented edition

From the presented it is unambiguously concluded that the studied molecules show inertness to the studied receptor set.

3.1.3.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.3.* 7 illustrate the mutagenic activity of amide and carboxylic acid derivatives of *Zierin*.

Tabl.IV.3.3. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Zierin

CAESAR	Zier	in					
		1					
indicator	amide	acid					
GADI	0.81	0.82					
SMKEV	0.80	0.81					
APSM	0.68	1					
CSM	1	0.68					
MDRC	true	true					
ACFFSC	1	1					
prediction	NM	NM					
true- descriptors f	or this com	pound					
have values inside	have values inside the descriptor						
range of the compounds of the							
training set; NM-	non mutag	enicity					

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Zierin* did not show activity (*Tabl.IV.3.3. 8*).

Tabl.IV.3.3. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Zierin

SarPy/IRFMN	Zier	rin					
indicator	amide	acid					
GADI	0.81	0.82					
SMKEV	0.80	0.81					
APSM	0.68	1					
CSM	1	0.68					
ACFFSC	1	1					
prediction	NM	NM					
NM- non mutagenicity							

c) ISS

Amide and carboxyl acid derivatives of *Zierin* are non-mutagenic according to *ISS* methodology (*Tabl.IV.3.3. 9*).

ISS	ISS Zierin						
indicator	amide	acid					
GADI	0.75	0.88					
SMKEV	0.78	0.78					
APSM	0.51	1					
CSM	1	1					
ACFFSC	1	1					
prediction	NM	NM					
NM- non mutagenicity							

Tabl.IV.3.3. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Zierin

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Zierin* show some deviation from *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

Tabl.IV.3.3. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives ofZierin

KNN/Read-Across	Zie	rin			
indicator	amide	acid			
GADI	0.71	0.64			
SMKEV	0.81	0.81			
APSM	0.50	0.25			
CSM	0.75	1			
ACFFSC	1	1			
prediction	NM	NM			
NM- non mutagenicity					

B. Consensus model

Data from *Tabl.IV.3.3. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Zierin* to mutagenicity.

. 22

second supplemented edition

Tabl.IV.3.3. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Zierin

Consensus model	Zierin			
mutagenicity indicator	amide	acid		
numerical value	0.60	0.50		

3.1.3.3.3. Carcinogenicity

Stand-alone models

a) CAESAR

Data on carcinogenicity in methodology *CAESAR* (*Tabl.IV.3.3. 12*) rejects any carcinogenicity of amide and carboxyl acid derivatives of *Zierin*.

Tabl.IV.3.3. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Zierin

CAESAR	Zierin		
indicator	amide	acid	
GADI	0.73	0.73	
SMKEV	0.75	0.75	
APSM	0.50	1	
CSM	1	0.50	
MDRC	true	true	
ACFSC	1	1	
MCAR	0.39	0.39	
NMNC	1	1	
Carcinogen	0.31	0.31	
NON-Carcinogen	0.69	0.69	
Prediction	NC	NC	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NC- NON-Carcinogen			

b) ISS

Like *CAESAR* (*§a*) *ISS* methodology (*Tabl.IV.3.3. 13*), it also did not detect carcinogenicity in amide and carboxyl acid derivatives of *Zierin*.

second supplemented edition

ISS	Zierin	
indicator	amide	acid
GADI	0.75	0.64
SMKEV	0.78	0.78
APSM	0.51	0.53
CSM	1	0.53
ACFSC	1	1
Prediction	NC	NC
NC- NON-Carcinogen		

Tabl.IV.3.3. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Zierin

c) IRFMN/Antares

IRFMN/Antares methodology (*Tabl.IV.3.3. 14*) provides quite dualistic information regarding the carcinogenicity of amide and carboxyl acid derivatives of *Zierin*.

 Tabl.IV.3.3. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Zierin

IRFMN/Antares	Zierin	
indicator	amide	acid
GADI	0.61	0.62
SMKEV	0.79	0.81
APSM	0.34	0.34
CSM	0.67	0.67
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

d) IRFMN/ISSCAN-CGX

Carboxylic acid form of *Zierin* derivative (*Tabl.IV.3.3. 15*) coincides with some molecules that have already been reported to be carcinogenic²⁶.

24

²⁶ Similarity: 0.74-5 by CAS: 17924-92-4; CAS: 69644-85-5; CAS: 303-47-9; CAS: 23214-92-8 and CAS: 53973-98-1 which have been shown to be carcinogenic

second supplemented edition

IRFMN/ISSCAN-CGX	Zierin	
indicator	amide	acid
GADI	0.67	0.78
SMKEV	0.77	0.77
APSM	1	1
CSM	0.35	0.64
ACFSC	1	1
Prediction	PNC	С
PNC- possible non-carcinogenic; C- carcinogen		

 Tabl.IV.3.3. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Zierin

A. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The method did not report information (*Tabl.IV.3.3. 16*) on carcinogenicity for the amide and carboxyl derivatives of *Zierin*.

Tabl.IV.3.3. 16 Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid
derivatives of Zierin

IRFMN	Zierin	
indicator	amide	acid
GADI	0.74	0.87
SMKEV	0.76	0.76
APSM	1	1
CSM	0.51	1
MDRC	true	true
ACFSC	1	1
· · ·		
Prediction	NC	NC
true- descriptors for this compound		
have values inside the descriptor range		
of the compounds of the training set;		
NC- NON-Carcinogen		

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.3.* 17 shows the data on oral concentration limits of amide and carboxyl acid derivatives of *Zierin*.

second supplemented edition

 Tabl.IV.3.3. 17 Carcinogenicity oral Slope Factor model (IRFMN) of amide and carboxyl acid derivatives of Zierin

IRFMN	Zierin		
indicator	amide	acid	
GADI	0.64	0.63	
SMKEV	0.75	0.73	
APSM	0.18	0.18	
CSM	1.90	1.96	
MEPASM	0.28	0.28	
MDRC	true	true	
ACFSC	0.85	0.85	
Predicted Oral Carcinogenicity SF for	for (g/kg-day) ⁻¹		
molecular forms	12.9	14.8	
Presumed concentration of the active $(g/kg-day)^{-1}$			
form inside the cancer cell	5.4		
true- descriptors for this compound har descriptor range of the compounds of the			

3.1.3.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Zierin* highlights the lack of toxicity (*Table IV.3.3. 18*).

CAESAR	Zierin	
indicator	amide	acid
GADI	0.75	0.74
SMKEV	0.78	0.77
APSM	0.51	0.51
CSM	1	1
MDRC	true	true
ACFSC	1	1
Prediction	NT	NT
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; NT- non-toxic		

Tabl.IV.3.3. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Zierin

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) method reports zeros in response to most evaluation indicators. This is due to the lack of clinical and QSAR data for (R)-2-hydroxy-2-(3-hydroxypheny3l) acetamide.

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of Zierin, no serious deviations from the generally accepted reference standards were observed (Tab.IV.3.3. 20).

Tabl.IV.3.3. 19 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid derivatives of Zierin

IRFMN/CORAL	Zierin		
indicator	amide	acid	
GADI	0.29	0.45	
SMKEV	0.75	0.75	
APSM	0.59	0.59	
CSM	1.17	1.57	
MEPASM	1.01	1.01	
MDRC	true	true	
ACFSC	0.40	0.60	
	_		
Prediction	[mg/L]		
	12.2 31.0		
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set			

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Zierin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.3. 21*). Everything is determined by the concentration and time of treatment.

second supplemented edition

CORAL	Zie	Zierin	
indicator	amide	acid	
GADI	0.64	0.64	
SMKEV	0.77	0.78	
APSM	0.52	0.53	
CSM	1	1	
ACFSC	0.85	0.85	
Prediction	А	А	
A- active			

Tabl.IV.3.3. 20 Chromosomal aberration model of amide and carboxyl acid derivatives ofZierin

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Zierin* (*Tab.IV.3.3. 22*). Concentration and treatment time are crucial in accurately describing the process.

IRFMN	Zierin	
indicator	amide	acid
GADI	0.92	0.93
SMKEV	0.85	0.87
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.14	0.14
Active Antagonist:	0.02	0.02
Inactive:	0.84	0.84
Prediction	inA	inA

 Tabl.IV.3.3. 21 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of Zierin

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Zierin* did not report any deviations (*Tabl.IV.3.3. 23*) affecting the studied process.

second supplemented edition

NIC	Zierin	
indicator	amide	acid
GADI	0.91	0.92
SMKEV	0.83	0.84
APSM	1	1
CSM	1	1
MDRC	true	true
ACFSC	1	1
Euclidean Distance from	1.66	2.78
the central neuron:		
Prediction	NA	NA
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; NA- Non active		

 Tabl.IV.3.3. 22 p-Glycoprotein activity model for toxicity of amide and carboxyl acid

 derivatives of Zierin

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Zierin* we understand (*Tabl.IV.3.3. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.3.3. 23 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of Zierin

INERIS	Zie	erin	
indicator	amide	acid	
GADI	0	0	
SMKEV	0.76	0.75	
APSM	0.31	0.31	
CSM	0.42	0.33	
MEPASM	0.50	0.50	
MDRC	N-true	N-true	
ACFSC	0.51	0.51	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]		
	0.192	0.291	
	[numerical units]		
K (C _{HF(A,B)} ,C _{adipose tissue})	1.556	1.954	
N-true - does not cover			

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Zierin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.3. 25*).

QSARINS	Zie	Zierin	
indicator	amide	acid	
GADI	0.85	0.85	
SMKEV	0.79	0.79	
APSM	0.09	0.09	
CSM	0.02	0.05	
MEPASM	0.15	0.15	
MDRC	true	true	
ACFSC	1	1	
Prediction			
LogHLt	[log	units]	
	0.281	0.313	
Total half-life	[m	in]	
	115	125	
true- descriptors for	this compo	und have	
values inside the descriptor range of the			
compounds of the training set			

Tabl.IV.3.3. 24 Total body elimination half-life model toxicity of amide and carboxyl acid
derivatives of Zierin

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Zierin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.3. 26*).

Tabl.IV.3.3. 25 Micronucleus toxicity activity – in vitro for amide and carboxyl acid derivatives of Zierin

IRFMN/VERMEER	Zierin		
indicator	amide	acid	
GADI	0.86	0.86	
SMKEV	0.74	0.74	
APSM	1	1	
CSM	1	1	
ACFSC	1	1	
Prediction	А	А	
A- active			

second supplemented edition

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.3.3.2*), carcinogenicity (*§IV.3.1.3.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.3.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives *Zierin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.3. 27*). They are relatively safe in terms of *NOAEL* toxicity model.

Tabl.IV.3.3. 26 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of
Zierin

IRFMN/VERMEER	Zierin				
indicator	amide	acid			
	i i				
GADI	0.69	0.85			
SMKEV	0.82	0.83			
APSM	0.25	0.25			
CSM	1.05	0.91			
MEPASM	0.38	0.38			
MDRC	true	true			
ACFSC	0.85	0.85			
'					
Prediction	[-log(mg/kg)]				
	-2.605	-2.748			
Prediction	[mg	/kg]			
	403	560			
true- descriptors for this compound have					
values inside the descriptor range of the					
compounds of the training set					

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.3.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.3.1*, -2 and -3) we assume that amide and carboxyl acid derivatives of *Zierin* would be optimal for drugs taken orally to poison the cancer cell with (*R*)-2-hydroxy-2-(3-hydroxypheny3l)acetamide as performed in §*IV.2* second objective of the study.

3.1.3.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), demonstrates maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide $2646 \le 7387 \le 20620$, acid $2283 \le 5725 \le 14356$ and *Bioaccumulation factor* [conditional units] amide $1.13 \le 17.7 \le 279$, acid are $0.03 \le 0.64 \le 14.31$.

3.1.3.6. Checking conclusion of the part

Conducted according to the methodological scheme *§III.3.3.7*.

3.1.3.6.1. Lipophilicity

Data from *Tabl.IV.3.3. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.3.3. 27 Lipophilicity of amide and	d carboxylic acid	derivatives of Zierin
--	-------------------	-----------------------

			L	og P _{o/w}		
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Zierin						
amide	0.67	-1.77	-2.59	-2.47	-1.93	-1.62
acid	1.11	-1.12	-1.99	-2.06	-1.63	-1.15

3.1.3.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.3. 29*).

Tabl.IV.3.3. 28 Water solubility of amide and carboxylic acid derivatives of Zierin

studied indicator	Zierin				
studied indicator	amide	acid			
ESOL					
Log S	-0.63	-1.05			
Solubility, [mg/ml]	7.73e+01	2.98e+01			
Class	VS	VS			
Ali	Ali				
Log S	-1.13	-1.68			
Solubility, [mg/ml]	2.43e+01	6.84e+00			
Class	VS	VS			
SILICOS-IT					
Log S	0,74	0.96			

second supplemented edition

Solubility, [mg/ml]	1.83e+03	3.01e+03
Class	S	S
vs - very soluble; s - soluble		

3.1.3.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Zierin* meets the pharmacokinetic requirements (*Table IV.3.3. 30*).

studied indicator	Zierin		
studied indicator	amide	acid	
GI absorption	low	low	
BBB permeant	no	no	
P-gp substrate	P-gp substrate no		
inhibitors			
CYP1A2	no	no	
CYP2C19	no	no	
CYP2C9	no	no	
CYP2D6	no	no	
CYP3A4	no	no	
Log K _p			
skin permeation, [cm/s]	-9.57	-9.11	

Tabl.IV.3.3. 29 Pharmacokinetic indicators of amide and derivatives of Zierin

3.1.3.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.3. 31*) containing amide and derivatives of *Zierin*

Tabl.IV.3.3. 30 Muegge activity and Bioavailability Score of amide and derivatives of Zierin

studied indicator	Zierin			
studied indicator	amide	acid		
Muegge	No*	No*		
Bioavailability Score	0.55	0.11		
* 2 violations: TPSA>150, H-don>5				

3.1.3.6.5. Medical Chemistry

Data from Tabl.IV.3.3. 32 confirm the drug safety of amide and derivatives Zierin.

second supplemented edition

studied indicator	Zierin	
studied indicator	amide	acid
PAINS, [number of alerts]	0	0
Brenk, [number of alerts]	0	0
Leadlikeness	yes	yes
Synthetic accessibility	4.38	4.37

Tabl.IV.3.3. 31 Medical chemistry indicators for amide and derivatives of Zierin

- 🛇 -

3.1.4. 2-hydroxy-2-methylpropanamide

Subject to analysis is a potential pharmaceutical form for release within the cancer cell of 2-hydroxy-2-methylpropanamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Linamarin*. The process proceeds according to §IV.2.3.

3.1.4.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.4.1** are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2-methylpropanamide.

 Tabl.IV.3.4. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2-methylpropanamide

[GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
amide	0.15	0.18	0	-0,20	0.19	0.57
acid	0.22	0.20	-0.13	0.28	0.09	0.75

Data in *Tabl.IV.3.4. 1* show that the amides and carboxylic acids of *Linamarin* have more pronounced overall drug activity *in vivo*.

3.1.4.2. Pharmacological and biological activity of oral active drug

3.1.4.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.4. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2-methylpropanamide.

Tabl.IV.3.4. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules
potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2-
methylpropanamide

	Lipinski's Rule			Lipinski's Rule Ghose Filter						Γ		CMC-50	-Like Ru	le
	MW	logP	HBA	HBD		MW	logP	AMR	nAtom	Ν	ИW	logP	AMR	nAtom
Linamarin														
amide	265	-2.3	8	5		265	-2.3	56	37		265	-2.3	56	37
acid	266	-1.6	8	5		266	-1.6	56	36		266	-1.6	56	36

	1	

Linamarin

second supplemented edition

The two molecular modified forms of *Linamarin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.4.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2-methylpropanamide are listed in *Tabl.IV.3.4. 3*.

Tabl.IV.3.4. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2methylpropanamide

						. –			
	Veber	Veber Filter		1DDR-L	ike Rule		BE	BB Likeness	
	TPSA	nRB	nRB	RC	nRingidB		MW	nAcidGroup	nHB
Linamarin									
amide	142	4	4	1	14		265	0	13
acid	137	4	4	1	14		266	1	13

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.4.2.3. QED

The analysis is performed according to *§3.3.3.1.3*.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.4. 4*.

 Tabl.IV.3.4. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2

 methylpropanamide

						uw	QED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAromaRing	uwQED
Linamarin										
	amide	265	-2.2	8	5	142	4	0	0	0.38
	acid	266	-1.8	8	5	137	4	0	0	0.41

B. wQED

In *Tabl.IV.3.4.5* Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2-methylpropanamide.

Tabl.IV.3.4. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-2 methylpropanamide

						wQ	ED			
		MW	AlogP	HBA	HBD	TPSA	nRB	Salerts	nAtomRing	wQED
Linamarin										
	amide	265	-2.2	8	5	142	4	0	0	0.45
	acid	266	-1.8	8	5	137	4	0	0	0.47

uwQED (*Tabl.IV.3.4. 4*) and *wQED* (*Tabl.IV.3.4. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Linamarin* meets the requirements for conservative treatment.

3.1.4.3. Non -laboratory and no clinical information on the chemical form

3.1.4.3.1. Receptor activity

In *Tabl.IV.3.4. 6* shows the bioactivity of amide and carboxylic acid derivatives of *Linamarin* (according to *§III.3.3.4.1*).

Tabl.IV.3.4. 6 Receptor activity of amide and carboxyl derivatives of Linamarin

:	Linan	narin
indicator	amide	acid
AR		
ERa		
ERb		
GR		
MR	-	-
PR		
RARa		
RARb		
RARr		
TRa		
TRb		
VDR		

second supplemented edition

With the exception of *Mineralocorticoid Receptor* (MR), the studied molecules show inertness to the studied receptor set.

3.1.4.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.4.* 7 illustrate explicitly the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied.

Tabl.IV.3.4. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Linamarin

CAESAR	Linan	narin					
indicator	amide	acid					
GADI	0.75	0.75					
SMKEV	0.83	0.82					
APSM	0.67	0.67					
CSM	0.67	0.68					
MDRC	true	true					
ACFFSC	1	1					
prediction	NM	NM					
true- descriptors f	or this con	npound					
have values insid	have values inside the descriptor						
range of the compounds of the							
training set; NM- r	non mutage	enicity					

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Linamarin* did not show activity (*Table IV.3.4. 8*).

Tabl.IV.3.4. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Linamarin

SarPy/IRFMN	Linamarin				
indicator	amide	acid			
GADI	0.75	0.75			
SMKEV	0.83	0.82			
APSM	0.67	0.67			
CSM	0.67	0.68			

ACFFSC	1	1				
prediction	NM	NM				
NM- non mutagenicity						

c) ISS

Amide and carboxyl acid derivatives of *Linamarin* are non-mutagenic according to *ISS* methodology (*Table IV.3.4. 9*).

Tabl.IV.3.4. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Linamarin

ISS	Lina	marin							
indicator	amide	acid							
GADI	0.77	0.77							
SMKEV	0.83	0.83							
APSM	1	1							
CSM	0.51	0.52							
ACFFSC	1	1							
prediction	NM	NM							
- - - -									
NM- non mutag	NM- non mutagenicity								

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Linamarin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

Tabl.IV.3.4. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of
Linamarin

KNN/Read-Across	Linamarin		
indicator	amide	acid	
GADI	0.54	0.54	
SMKEV	0.83	0.83	
APSM	0.24	0.24	
CSM	0.51	0.52	
ACFFSC	1	1	
Prediction	NM	NM	
NM- non mutagenicity			

B. Consensus model

Data from *Tabl.IV.3.4. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Linamarin* to mutagenicity.

Tabl.IV.3.4. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives ofLinamarin

Consensus model	Linamarin	
mutagenicity indicator	amide	acid
numerical value	0.50	0.50

3.1.4.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data on carcinogenicity activity, using the *CAESAR* methodology (*Tab.IV.3.4. 12*), for amide and carboxyl acid derivatives of *Linamarin* did not indicate the presence of carcinogenicity (by training set²⁷).

Tabl.IV.3.4. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Linamarin
--

CAESAR Linamarin					
indicator amide acid					
GADI 0.76 0.75					
SMKEV 0.82 0.80					
APSM 1 1					
CSM 0.50 0.50					
MDRC true true					
ACFSC 1 1					
MCAR 0.61 0.25					
NMNC 1 1					
Carcinogen 0.19 0.62					
NON-Carcinogen 0.81 0.38					
Prediction NC C					
true- descriptors for this compound have					
values inside the descriptor range of the					
compounds of the training set; NC- NON-					
Carcinogen					

²⁷ Similarity: 0.80 by CAS: 18883-66-4 and CAS: 54749-90-5

b) ISS

Like *CAESAR* (*§a*) and *ISS* methodology (*Tab.IV.3.4.13*), it identifies amide and carboxyl acid derivatives of *Linamarin* as non-carcinogenic.

Tabl.IV.3.4. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Linamarin

ISS	Linamarin	
indicator	amide	acid
GADI	0.77	0.78
SMKEV	0.83	0.83
APSM	1	1
CSM	0.51	0.52
ACFSC	1	1
Prediction	NC	NC
NC- NON-Carcinogen		

c) IRFMN/Antares

Carboxyl acid form of *Linamarin* is prone to carcinogenicity (*Table IV.3.4. 14*) according to *IRFMN/Antares* methodology. In the training set there are molecules with close to analyzed fragments.

Tabl.IV.3.4. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of
Linamarin

IRFMN/Antares Linamarin					
indicator amide acid					
GADI 0.63 0.76					
SMKEV 0.84 0.86					
APSM 0.67 0.67					
CSM 0.33 0.66					
ACFSC 1 1					
Prediction PNC C					
PNC- possible non-carcinogenic;					
C- carcinogen					

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.4. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Linamarin*.

141

second supplemented edition

IRFMN/ISSCAN-CGX	Linamarin			
indicator	amide	acid		
· · ·				
GADI	0.69	0.70		
SMKEV	0.82	0.81		
APSM	1	1		
CSM	0.34	0.35		
ACFSC	1	1		
Prediction	PNC	PNC		
	•			
PNC- possible non-carcinogenic				

 Tabl.IV.3.4. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Linamarin

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Linamarin* was confirmed (*Table IV.3.4. 16*) by *Carcinogenicity oral classification model* (IRFMN).

 Tabl.IV.3.4. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Linamarin

IRFMN Linamarin					
indicator amide acid					
GADI 0 0					
SMKEV 0.82 0.80					
APSM 1 1					
CSM 0 0					
MDRC true true					
ACFSC 1 1					
· · · ·					
Prediction NC NC					
ii					
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; NC- NON-Carcinogen					

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.4.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Linamarin* should not be administered orally.

second supplemented edition

-	, i i i i i i i i i i i i i i i i i i i			
IRFMN	Linamarin			
indicator	amide acid			
GADI	0.69	0.68		
SMKEV	0.82	0.80		
APSM	0.18	0.18		
CSM	2.17	2.17		
MEPASM	0.28 0.28			
MDRC	true true			
ACFSC	0.85 0.85			
Predicted Oral Carcinogenicity (g/kg-day) ⁻¹				
SF for molecular forms	23.4	24.0		
Presumed concentration of the	$(g/kg-day)^{-1}$			
active form inside the cancer cell	7.5			
true- descriptors for this compound have values inside the descriptor range of the compounds of the				

 Tabl.IV.3.4. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Linamarin

3.1.4.3.4. Toxicity

A. Developmental Toxicity model

training set

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Linamarin* highlights the lack of toxicity (*Table IV.3.3. 18*).

Tabl.IV.3.4. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Linamarin

CAESAR Linamarin					
indicator amide acid					
· · ·					
GADI	0.89	0.89			
SMKEV 0.79 0.79					
APSM 1 1					
CSM 1 1					
MDRC true true					
ACFSC 1 1					
Prediction NT NT					
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; NT- non-toxic					

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) method reports zeros in response to most evaluation indicators. This is due to the lack of clinical and QSAR data for 2-hydroxy-2-methylpropanamide.

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Linamarin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.4. 19*).

 Tabl.IV.3.4. 19 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid derivatives of Linamarin

IRFMN/CORAL	Linamarin		
indicator	amide	acid	
		-	
GADI	0.27	0.41	
SMKEV	0.68	0.68	
APSM	0.58	0.58	
CSM	0.81	1.04	
MEPASM	1.01	1.01	
MDRC	true	true	
ACFSC	0.40	0.60	
Prediction	[mg/L]		
	4.2	10.6	
true- descriptors for this compound have			
values inside the descriptor range of the			
compounds of the training set			

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Linamarin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.4. 20*). Everything is determined by the concentration and time of treatment.

Tabl.IV.3.4. 20 Chromosomal aberration model of amide and carboxyl acid derivatives ofLinamarin

CORAL	Lina	Linamarin	
indicator	amide	acid	
GADI	0.65	0.64	
SMKEV	0.80	0.82	
APSM	1	1	
CSM	0.52	0.48	
ACFSC	0.85	0.85	

second supplemented edition

 Prediction
 A
 inA

 A- active; inA- inactive

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and / or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Linamarin* (*Tab.IV.3.4. 21*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.3.4. 21 Aromatase activity model for toxicity of amide and carboxyl acid derivatives ofLinamarin

IRFMN	Linamarin	
indicator	amide acid	
GADI	0.93	0.94
SMKEV	0.87	0.88
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.04	0.02
Active Antagonist:	0.01	0.08
Inactive:	0.95	0.90
Prediction	inA	inA
inA- inactive		

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Linamarin* did not report any deviations (*Tabl.IV.3.4. 22*) affecting the studied process.

Tabl.IV.3.4. 22 p-Glycoprotein activity model for toxicity of amide and carboxyl acid
derivatives of Linamarin

NIC	Linamarin		
indicator	amide	acid	
GADI	0.78	0.77	
SMKEV	0.85	0.83	
APSM	0.51	0.52	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	

.45

second supplemented edition

Euclidean Distance from the	2.62	2.43
central neuron:		
Prediction	NA	NA

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Linamarin* we understand (*Tabl.IV.3.4. 23*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

 Tabl.IV.3.4. 23 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of Linamarin

INERIS	Linamarin		
indicator	amide	acid	
	-		
GADI	0	0	
SMKEV	0.68	0.66	
APSM	0.05	0.29	
CSM	0.16	0.30	
MEPASM	0.08	0.50	
MDRC	N-true	N-true	
ACFSC	0.51	0.51	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]		
	0.158	-0.041	
	[numerical units]		
K (C _{HF(A,B)} ,C _{adipose tissue})	1.439	1.099	
N-true - does not cover			

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Linamarin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.4. 24*).

Tabl.IV.3.4. 24 Total body elimination half-life model toxicity of amide and carboxyl acid
derivatives of Linamarin

QSARINS	Linamarin	
indicator	amide	acid
GADI	0.85	0.85
SMKEV	0.82	0.83
APSM	0.09	0.03
CSM	0.02	0.12

second supplemented edition

MEPASM	0.15	0.03	
MDRC	true true		
ACFSC	1	1	
Prediction			
LogHLt	[log units]		
	0.281	0.301	
Total half-life [min]			
Total half-life	[mi	nj	
Total half-life	[mi 115	n] 120	
Total half-life	L		
Total half-life true- descriptors for thi	115	120	
	115 s compour	120 nd have	

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Linamarin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.4. 25*).

IRFMN/VERMEER	Linamarin	
indicator	amide	acid
GADI	0.73	0.72
SMKEV	0.76	0.75
APSM	1	1
CSM	0.49	0.48
ACFSC	1	1
Prediction	А	А
A- active		

 Tabl.IV.3.4. 25 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid

 derivatives of Linamarin

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.4.3.2*), carcinogenicity (*§IV.3.1.4.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.4.3.4*).

b) in vivo

Linamarin is a well-studied natural product, and hence 2-hydroxy-2-methylpropanamide is well known. It is used in a clinical setting. *Micronucleus* activity - *in vivo* does not report genotoxic loading of the tested substances (*Tabl.IV.3.4. 26*).

second supplemented edition

IRFMN	Lina	Linamarin	
indicator	amide	acid	
GADI	0.91	0.93	
SMKEV	0.83	0.86	
APSM	1	1	
CSM	1	1	
ACFSC	1	1	
Prediction	NON-	NON-	
	genotoxic	genotoxic	

Tabl.IV.3.4. 26 Micronucleus toxicity activity model – in vivo of amide and carboxyl acid derivatives of Linamarin

F. NOAEL

The amide and carboxylic acid derivatives of *Linamarin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.4. 27*). They are relatively safe in terms of *NOAEL* toxicity model.

Tabl.IV.3.4. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of
Linamarin

IRFMN/VERMEER	Linamarin			
indicator	amide	acid		
GADI	0.85	0.85		
SMKEV	0.85	0.87		
APSM	0.25	0.25		
CSM	0.97	0.82		
MEPASM	0.38	0.38		
MDRC	true	true		
ACFSC	0.85	0.85		
Prediction	[-log(n	ng/kg)]		
	-2.691	-2.834		
	· · ·			
Prediction	[mg	/kg]		
	491	682		
true- descriptors for this compound have				
values inside the descriptor range of the				
compounds of the training set				

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.4.4. Evaluation of the results

After a comparative analysis of the results (*§IV.3.1.10.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Linamarin* would be optimal for drugs taken orally to poison the cancer cell with *2-hydroxy-2-methylpropanamide* as performed in *§IV.2* second objective of the study.

3.1.4.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), demonstrates maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide $1092 \le 2218 \le 4506$, acid $1218 \le 2280 \le 4266$ and *Bioaccumulation factor* [conditional units] amide $0.02 \le 18.3 \le 13516$, acid form are $0.24 \le 1.22 \le 6.21$.

3.1.4.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.4.6.1. Lipophilicity

Data from *Tabl.IV.3.4. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

			Log	g $P_{ m o/w}$		
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Linamarin						
amide	0.74	-3.11	-2.93	-2.77	-2.37	-2.09
acid	0.14	-2.46	-2.33	-2.37	-2.13	-1.83

Tabl.IV.3.4. 28 Lipophilicity of amide and carboxylic acid derivatives of Linamarin

3.1.4.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.4. 29*).

second supplemented edition

studied indicator	Lina	marin
studied indicator	amide	acid
ESOL		
Log S	0.74	0.31
Solubility, [mg/ml]	1.45e+03	5.60e+02
Class	hs	hs
Ali		
Log S	0.68	0.13
Solubility, [mg/ml]	1.28e+03	3.60e+02
Class	hs	hs
SILICOS-IT		
Log S	1.88	2.10
Solubility, [mg/ml]	2.03e+04	3.34e+04
Class	S	S
hs - highly soluble; s - soluble		

Tabl.IV.3.4. 29 Water solubility of amide and carboxylic acid derivatives of Linamarin

3.1.4.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Dhurrin* and *Taxiphyllin* meets the pharmacokinetic requirements (*Table IV.3.4. 30*).

Tabl.IV.3.4. 30 Pharmacokinetic indicators of amide and derivatives of Linamarin

studied indicat		Linamarin			
studied indical	studied indicator		acid		
	GI absorption	low	low		
	BBB permeant	no	no		
	P-gp substrate	no	no		
inhibitors					
	CYP1A2	no	no		
	CYP2C19	no	no		
	CYP2C9	no	no		
	CYP2D6	no	no		
	CYP3A4	no	no		
Log K _p					
skin per	meation, [cm/s]	-10.13	-9.67		

3.1.4.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.4. 31*) containing amide and derivatives of *Linamarin*.

second supplemented edition

Tabl.IV.3.4. 31 Muegge activity and Bioavailability Score of amide and derivatives of
Linamarin

studied indicator	Linamarin			
studied indicator	amide	acid		
Muegge	No*	No*		
Bioavailability Score	0.55	0.56		
* 1 violations: XLOGP3<-2				

3.1.4.6.5. Medical Chemistry

Data from *Tabl.IV.3.4. 32* confirm the drug safety of amide and derivatives of *Linamarin*.

Tabl.IV.3.4. 32 Medical chemistry indicators for amide and derivatives of Linamarin

studied indicator	Linamarin			
studied indicator	amide	acid		
PAINS, [number of alerts]	0	0		
Brenk, [number of alerts]	0	0		
Leadlikeness	yes	yes		
Synthetic accessibility	4.43	4.46		

- 🛇 -

3.1.5. (S)-2-hydroxy-2-methylbutanamide

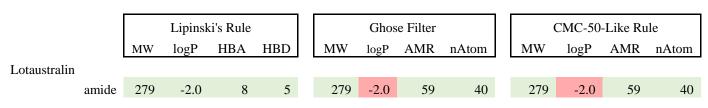
Subject to analysis is a potential pharmaceutical form for release within the cancer cell of (S)-2-hydroxy-2-methylbutanamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Lotaustralin*. The process proceeds according to §IV.2.3.

3.1.5.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.5.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-*hydroxy*-2-(3-*hydroxyphenyl*)acetamide.

Tabl.IV.3.5. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Lotaustralin							
	amide	0.14	0.14	0	-0.60	0.24	0.58
	acid	0.20	0.16	-0.12	0.31	0.15	0.75


Data in *Tabl.IV.3.5.1* show that the amides and carboxylic acids of *Lotaustralin* have more pronounced overall drug activity *in vivo*.

3.1.5.2. Pharmacological and biological activity of oral active drugs

3.1.5.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.5. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*S*)-2-hydroxy-2-methylbutanamide.

Tabl.IV.3.5. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-2-hydroxy-2methylbutanamide

					The	eoretical	study of the	e anticancer	activity of	glucosam	nidamides		
										second supp	blemented edition		
acid	280	-12	8	5	280	-12	59	39	280	-12	59	39	

The two molecular modified forms of *Lotaustralin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.5.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-2-hydroxy-2-methylbutanamide are listed in **Tabl.IV.3.5. 3**.

Tabl.IV.3.5. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-2-hydroxy-2-methylbutanamide

		Veber	Filter	MI	DDR-I	ike Rule	BE	B Likeness	
		TPSA	nRB	nRB	RC	nRingidB	MW	nAcidGroup	nHB
Lotaustralin									
	amide	142	5	5	1	14	279	0	13
	acid	137	5	5	1	14	280	1	13

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.5.2.3. QED

The analysis is performed according to *§3.3.3.1.3*.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.5. 4*.

Tabl.IV.3.5. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-2-hydroxy-2methylbutanamide

		uwQED								
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Lotaustralin										
	amide	279	-2.9	8	5	142	5	0	0	0.34
	acid	280	-2.5	8	5	137	5	0	0	0.37

B. wQED

In **Tabl.IV.3.5. 5** shows Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-2-hydroxy-2-methylbutanamide.

Tabl.IV.3.5. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially able to overcome the cancer cell and release (S)-2-hydroxy-2-methylbutanamide in it

						wQ)ED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Lotaustralin										
	amide	279	-2.9	8	5	142	5	0	0	0.40
	acid	280	-2.5	8	5	137	5	0	0	0.43

uwQED (*Tabl.IV.3.5. 4*) and *wQED* (*Tabl.IV.3.5. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Lotaustralin* meets the requirements for conservative treatment.

3.1.5.3. Non -laboratory and no clinical information on the chemical form

3.1.5.3.1. Receptor activity

In *Tabl.IV.3.5.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Lotaustralin* to receptors (according to *§III.3.3.4.1*).

Tabl.IV.3.5. 6 Re	ceptor activity o	of amide and carboxy	l derivatives of	Lotaustralin
-------------------	-------------------	----------------------	------------------	--------------

indicator	Lotaus	stralin
mulcator	amide	acid
AR		
ERa		
ERb		
GR		
MR	-	-
PR		
RARa		
RARb		
RARr		
TRa		
TRb		
VDR		

second supplemented edition

With the exception of *Mineralocorticoid Receptor* (MR), the studied molecules show inertness to the studied receptor set.

3.1.5.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.5.* 7 explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of *Lotaustralin*.

Tabl.IV.3.5. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Lotaustralin

CAESAR	Lotaustralin		
indicator	amide	acid	
GADI	0.83	0.75	
SMKEV	0.83	0.83	
APSM	1	0.68	
CSM	0.67	0.68	
MDRC	true	true	
ACFFSC	1	1	
· · · · ·			
prediction	NM	NM	
NM- non mutagenicity			

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Lotaustralin* did not show activity (*Table IV.3.5. 8*).

 Tabl.IV.3.5. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Lotaustralin

SarPy/IRFMN	Lotaustralin			
indicator	amide	acid		
GADI	0.83	0.64		
SMKEV	0.83	0.83		
APSM	1	0.36		
CSM	0.68	0.68		
ACFFSC 1 1				
prediction	NM	NM		
NM- non mutagenicity				

c) ISS

Amide and carboxyl acid derivatives of *Lotaustralin* are non-mutagenic according to *ISS* methodology (*Table IV.3.5. 9*).

ISS	Lotaustralin			
indicator	amide acid			
GADI	0.77	0.78		
SMKEV	0.83	0.82		
APSM	1	1		
CSM	0.52	0.53		
ACFFSC 1 1				
prediction	NM	NM		
NM- non mutagenicity				

Tabl.IV.3.5. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Lotaustralin

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Lotaustralin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

Tabl.IV.3.5. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of
Lotaustralin

KNN/Read-Across	Lotaustralin		
indicator	amide	acid	
GADI	0.60	0.55	
SMKEV	0.85	0.84	
APSM	0.24	0.24	
CSM	0.75	0.52	
ACFFSC	1	1	
Prediction	NM	NM	
NM- non mutagenicity			

B. Consensus model

Data from *Tabl.IV.3.5. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Lotaustralin* to mutagenicity.

156

second supplemented edition

 Tabl.IV.3.5. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Lotaustralin

Consensus model	Lotaustralin	
mutagenicity indicator	amide	acid
numerical value	0.50	0.40

3.1.5.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data from *Tabl.IV.3.5. 12* show us that *CAESAR* carcinogenicity assessment methodology (with training set²⁸) does not detect a deviation for of amide and carboxyl acid derivatives of *Lotaustralin*.

Tabl.IV.3.5. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Lotaustralin

CAESAR	Lotaus	tralin	
indicator	amide	acid	
GADI	0.76	0.75	
SMKEV	0.81	0.79	
APSM	1	1	
CSM	0.50	0.50	
MDRC	true	true	
ACFSC	1	1	
MCAR	0.61	0.25	
NMNC	1	1	
Carcinogen	0.19	0.62	
NON-Carcinogen 0.81 0.38			
Prediction	NC	C	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NC- NON-Carcinogen			

b) ISS

Carboxylic acid form of *Lotaustralin* is carcinogenic²⁹, according to *ISS* evaluation methodology (*Tab.IV.3.5. 13*).

²⁸ Similarity: 0.79 by CAS: 18883-66-4 and CAS: 54749-90-5

²⁹ Similarity: 0.74-9 by CAS: 18883-66-4, CAS: 51333-22-3, CAS: 60102-37-6 and CAS: 315-22-0

second supplemented edition

Tabl.IV.3.5. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Lotaustralin
--

ISS	Lotaustralin		
indicator	amide	acid	
GADI	0.77	0.75	
SMKEV	0.83	0.82	
APSM	1	1	
CSM	0.52	0.47	
ACFSC	1	1	
Prediction	NC	С	
NC- NON-Carcinogen; C- carcinogen			

c) IRFMN/Antares

Carboxylic acid form of *Lotaustralin* is carcinogenic, according to *IRFMN/Antares* evaluation methodology (*Tab.IV.3.5. 14*).

Tabl.IV.3.5. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of
Lotaustralin

IRFMN/Antares	Lotau	Lotaustralin	
indicator	amide	acid	
GADI	0.65	0.54	
SMKEV	0.85	0.87	
APSM	0.67	0.34	
CSM	0.34	0.33	
ACFSC	1	1	
Prediction	PNC	С	
PNC- possible non-carcinogenic;			
C- carcinogen			

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX (*Table IV.3.5. 15*) provides quite dualistic information regarding the carcinogenicity of amide and carboxyl acid derivatives of *Lotaustralin*.

 Tabl.IV.3.5. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Lotaustralin

IRFMN/ISSCAN-CGX	Lotaustralin		
indicator	amide	acid	
GADI	0.70	0.70	
SMKEV	0.82	0.81	
APSM	1	1	
CSM	0.35	0.36	
ACFSC	1	1	

second supplemented edition

Prediction	PNC	PNC
PNC- possible non-carcinogenic		

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The method did not report information (*Tabl.IV.3.5. 16*) on carcinogenicity for the amide and carboxyl derivatives of *Lotaustralin*.

 Tabl.IV.3.5. 16 Data of Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Lotaustralin

IRFMN	Lotaustralin	
indicator	amide	acid
GADI	0	0
	0.80	0.79
SMKEV		
APSM	1	1
CSM	0	0
MDRC	true	true
ACFSC	1	1
Prediction	NC	NC
true- descriptors for	r this cou	npound
have values inside the descriptor range		
of the compounds of the training set;		
NC- NON-Carcinogen		

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.5.* 17 shows the data on oral concentration limits of amide and carboxyl acid derivatives of *Lotaustralin*.

Tabl.IV.3.5. 17 Data of Carcinogenicity oral Slope Factor model (IRFMN) of amide and	
carboxyl acid derivatives of Lotaustralin	

amide	acid
0.69	
0.69	
0.68	0.67
0.80	0.79
0.18	0.18
2.14	2.13
0.28	0.28
true	true
0.85	0.85
-	0.18 2.14 0.28 true

second supplemented edition

Predicted Oral Carcinogenicity SF	(g/kg-c	$lay)^{-1}$
for molecular forms	22.4	21.9
Presumed concentration of the	(g/kg-c	lay) ⁻¹
active form inside the cancer cell	7.8	
true- descriptors for this compound	have value	s inside
the descriptor range of the compounds of the training		
set		

3.1.5.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Lotaustralin* highlights the lack of toxicity (*Table IV.3.5. 18*).

Tabl.IV.3.5. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Lotaustralin

CAESAR	Lotau	Lotaustralin	
indicator	amide	acid	
GADI	0.76	0.89	
SMKEV	0.80	0.80	
APSM	1	1	
CSM	0.53	1	
MEPASM	true	true	
ACFSC	1	1	
Prediction	NT	NT	
NT- non-toxic			

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Lotaustralin* did not report values for GADI and CSM. Molecular fragments close to (*S*)-2-hydroxy-2-methylbutanamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.5. 19* cannot be considered reliable.

PG	Lotaustralin	
indicator	amide	acid
GADI	0	0
SMKEV	0.77	0.76
APSM	1	1
CSM	0	0

Tabl.IV.3.5. 19 PG toxicity of amide and carboxyl acid derivatives of Lotaustralin

second supplemented edition

ACFSC	1	1
Prediction	NT	NT
NT- non-toxic		

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of Lotaustralin, no serious deviations from the generally accepted reference standards were observed (Tab.IV.3.5. 20).

 Tabl.IV.3.5. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid derivatives of Lotaustralin

IRFMN/CORAL	Lotaustralin	
indicator	amide	acid
GADI	0.27	0.41
SMKEV	0.68	0.68
APSM	0.35	0.58
CSM	0.18	1.05
MEPASM	0.54	1.01
MDRC	true	true
ACFSC	0.40	0.60
Prediction	[mg	/L]
	4.46 11.32	
· ·		
true- descriptors for this compound have		
values inside the descriptor range of the		
compounds of the training set		

b) Chromosomal aberration model

Like any biologically active substance, amide derivative of *Lotaustralin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.5. 21*). Everything is determined by the concentration and time of treatment.

 Tabl.IV.3.5. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of Lotaustralin

CORAL	Lotau	stralin
indicator	amide	acid
GADI	0.65	0.64
SMKEV	0.80	0.82
APSM	1	1
CSM	0.53	0.47
ACFSC	0.85	0.85

second supplemented edition

Prediction	А	inA
A- active; inA- inactive		

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Lotaustralin* (*Tab.IV.3.5. 22*). Concentration and treatment time are crucial in accurately describing the process.

 Tabl.IV.3.5. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of Lotaustralin

IRFMN	Lotaustralin	
indicator	amide	acid
GADI	0.93	0.94
SMKEV	0.87	0.88
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.03	0.01
Active Antagonist:	0.01	0.01
Inactive:	0.96	0.98
Prediction	inA	inA
inA- inactive		

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Lotaustralin* did not report any deviations (*Tabl.IV.3.5. 23*) affecting the studied process.

Tabl.IV.3.5. 23 p-Glycoprotein activity toxicity model of amide and carboxyl acid derivatives ofLotaustralin

NIC	Lotaustralin	
indicator	amide acid	
GADI	0.78	0.78
SMKEV	0.87	0.84
APSM	0.51	0.51
CSM	1	1
MDRC	true	true
ACFSC	1	1
ACFSC	1	1

second supplemented edition

Euclidean Distance from	2.27	2.24
the central neuron:		
Prediction	NA	NA

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Lotaustralin* we understand (*Tabl.IV.3.5. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

 Tabl.IV.3.5. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of Lotaustralin

INERIS	Lotaustralin		
indicator	amide	acid	
GADI	0	0	
SMKEV	0.68	0.67	
APSM	0.16	0.31	
CSM	0.57	0.34	
MDRC	0.19	0.50	
ACFSC	N-true	N-true	
GADI	0.51	0.51	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log	units]	
	0.181	0.278	
K (C _{HF(A,B)} ,C _{adipose tissue})	[numerical units]		
	1.517	1.897	
N-true - does not cover			

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Lotaustralin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.5. 25*).

 Tabl.IV.3.5. 25 Total body elimination half-life model toxicity of amide and carboxyl acid

 derivatives of Lotaustralin

QSARINS	Lotaustralin	
indicator	amide	acid
GADI	0.85	0.85
SMKEV	0.84	0.85
APSM	0.09	0.02
CSM	0.05	0.12
MEPASM	0.15	0.03
MDRC	true	true
ACFSC	1	1

second supplemented edition

Prediction				
LogHLt	[10	[log units]		
	0.310	0.333		
Total half-life	[min]		
	125	130		
true- descriptors for the	is compound h	ave values		
inside the descriptor ra	nge of the con	npounds of		

the training set

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Lotaustralin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.5. 26*).

Tabl.IV.3.5. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid
derivatives of Lotaustralin

IRFMN/VERMEER	Lotaustralin	
indicator	amide	acid
GADI	0.73	0.73
SMKEV	0.77	0.76
APSM	1	1
CSM	0.49	0.48
ACFSC	1	1
Prediction	А	A
A- active		

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.5.3.2*), carcinogenicity (*§IV.3.1.5.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.5.3.4*).

b) in vivo

Linamarin is a well-studied natural product, and hence (S)-2-hydroxy-2-methylbutanamide is well known. It is used in a clinical setting. *Micronucleus* activity - *in vivo* does not report genotoxic loading of the tested substances (*Tabl.IV.3.5. 27*).

second supplemented edition

IRFMN/VERMEER	Lotaustralin		
indicator	amide	acid	
GADI	0.92	0.93	
SMKEV	0.84	0.86	
APSM	1	1	
CSM	1	1	
ACFSC	1	1	
Prediction	NON-	NON-	
	genotoxic	genotoxic	

 Tabl.IV.3.5. 27 Micronucleus toxicity activity model – in vivo of amide and carboxyl acid

 derivatives of Lotaustralin

F. NOAEL

The amide and carboxylic acid derivatives of *Lotaustralin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.5. 28*). They are relatively safe in terms of *NOAEL* toxicity model.

IRFMN/VERMEER	Lotau	Lotaustralin			
indicator	amide	acid			
GADI	0.85	0.85			
SMKEV	0.87	0.89			
APSM	0.25	0.25			
CSM	0.94	0.80			
MEPASM	0.38	0.38			
MDRC	true	true			
ACFSC	0.85	0.85			
Prediction	[-log(mg	g/kg)]			
	-2.714	-2.857			
Prediction	Prediction [mg/kg]				
	518	719			
true- descriptors for this con	npound ha	ve values			
inside the descriptor range of	of the comp	ounds of			
the training set					

Tabl.IV.3.5. 28 NOAEL methodology for toxicity of amide and carboxyl acid derivatives ofLotaustralin

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.5.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.5.1*, -2 and -3) we assume that amide and carboxyl acid derivatives of *Lotaustralin* would be optimal for drugs taken orally to poison the cancer cell with (*S*)-2-hydroxy-2-methylbutanamide as performed in §*IV.2* second goal of the study.

3.1.5.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), demonstrates maximum coverage of the requirements for oral medicinal products. No toxicity deviations were found and the values were respectively: *Oral rat LD50* [mg/kg] for amide $3000 \le 8420 \le 23633$, acid $5279 \le 13466 \le 34351$ and *Bioaccumulation factor* [conditional units] amide $4.01 \le 64.6 \le 1043$, acid are $0.04 \le 0.34 \le 2.98$.

3.1.5.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.5.6.1. Lipophilicity

Data from *Tabl.IV.3.5. 29* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

	$\log P_{o/w}$					
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Lotaustralin						
amide	1.16	-1.99	-2.54	-2.48	-2.00	-1.57
acid	1.00	-1.34	-1.94	-2.08	-1.76	-1.22
		•			•	

Tabl.IV.3.5. 29 Lipophilicity of amide and carboxylic acid derivatives of Lotaustralin

3.1.5.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.5. 30*).

second supplemented edition

studied indicator	Lotaustralin				
studied indicator	amide	acid			
ESOL					
Log S	0.01	-0.40			
Solubility, [mg/ml]	2.87e+02	1.11e+02			
Class	hs	VS			
Ali					
Log S	-0.48	-1.03			
Solubility, [mg/ml]	9.29e+01	2.61e+01			
Class	S	VS			
SILICOS-IT					
Log S	1.48	1.70			
Solubility, [mg/ml]	8.49e+03	1.40e+04			
Class	S	S			
vs - very soluble; hs - highly soluble; s - soluble					

Tabl.IV.3.5. 30 Water solubility of amide and carboxylic acid derivatives of Lotaustralin

3.1.5.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Lotaustralin* meets the pharmacokinetic requirements (*Table IV.3.5. 31*).

Tabl.IV.3.5. 31 Pharmacokinetic indicators of amide and derivatives of Lotaustralin

studied indicator	Lotaustralin		
studied indicator	amide	acid	
GI absorption	low	low	
BBB permeant	no	no	
P-gp substrate	no	no	
inhibitors			
CYP1A2	no	no	
CYP2C19	no	no	
CYP2C9	no	no	
CYP2D6	no	no	
CYP3A4	no	no	
$\log K_{\rm p}$			
skin permeation, [cm/s]	-9.42	-8.96	

3.1.5.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.5. 32*) containing amide and derivatives of *Lotaustralin*.

second supplemented edition

 Tabl.IV.3.5. 32 Muegge activity and Bioavailability Score of amide and derivatives of Lotaustralin

Lotaustralin			
amide	acid		
Yes	Yes		
0.55	0.56		
	amide Yes		

3.1.5.6.5. Medical Chemistry

Data from *Tabl.IV.3.5. 33* confirm the drug safety of amide and derivatives of *Lotaustralin*.

Tabl.IV.3.5. 33 Medical chemistry indicators for amide and derivatives of Lotaustralin

studied indicator	Lota	ustralin
studied indicator	amide	acid
PAINS, [number of alerts]	0	0
Brenk, [number of alerts]	0	0
Leadlikeness	yes	yes
Synthetic accessibility	4.60	4.67

3.1.6. 2-hydroxy-3-methylbut-2-enamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of 2hydroxy-3-methylbut-2-enamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of Acacipetalin. The process proceeds according to §IV.2.3.

3.1.6.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.6. 1** are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3-methylbut-2-enamide.

Tabl.IV.3.6. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3-methylbut-2-enamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Acacipetalin							
	amide	0.11	0.08	-0.17	-0.21	0.08	0.58
	acid	0.25	0.14	-0.25	-0.02	0.03	0.75

Data in *Tabl.IV.3.6.1* show that the amides and carboxylic acids of *Acacipetalin* have more pronounced overall drug activity *in vivo*.

3.1.6.2. Pharmacological and biological activity of oral active drugs

3.1.6.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.6. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3-methylbut-2-enamide.

Tabl.IV.3.6. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3-methylbut-2-enamide

		Lipins	ki's Rule	e		Ghose	e Filter		(CMC-5)-Like R	ule
	MW	logP	HBA	HBD	MW	logP	AMR	nAtom	MW	logP	AMR	nAtom
Acacipetalin												
amide	277	-1.7	8	5	277	-1.7	62	38	277	-1.7	62	38
acid	278	-1.0	8	5	278	-1.0	62	37	278	-1.0	62	37

second supplemented edition

The two molecular modified forms of Acacipetalin meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.6.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3-methylbut-2-enamide are listed in *Tabl.IV.3.6. 3*.

Tabl.IV.3.6. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3-methylbut-2-enamide

		Veber Filter		ME	DR-L	ike Rule	Γ		BBB Likenes	s
		TPSA	nRB	nRB	RC	nRingidB		MW	nAcidGroup	nHB
Acacipetalin										
	amide	142	4	4	1	15		277	0	13
	acid	137	4	4	1	15		278	1	13

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.6.2.3. QED

The analysis is performed according to *§3.3.3.1.3*.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.6. 4*.

Tabl.IV.3.6. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3 methylbut-2-enamide

						uv	VQED			
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Acacipetalin										
	amide	277	-1.7	8	5	142	4	2	0	0.39
	acid	278	-1.3	8	5	137	4	2	0	0.41

B. wQED

In **Tabl.IV.3.6. 5** presents the data from the calculations for a *Weighted Quantitative Estimate of Druglikeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3-methylbut-2-enamide.

Tabl.IV.3.6. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release 2-hydroxy-3 methylbut-2-enamide

						W	QED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Acacipetalin										
	amide	277	-1.7	8	5	142	4	2	0	0.42
	acid	278	-1.3	8	5	137	4	2	0	0.44

uwQED (*Tabl.IV.3.6. 4*) and *wQED* (*Tabl.IV.3.6. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Acacipetalin* meets the requirements for conservative treatment.

3.1.6.3. Non -laboratory and no clinical information on the chemical form

3.1.6.3.1. Receptor activity

In *Tabl.IV.3.6.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Acacipetalin* to receptors (according to *§III.3.3.4.1*).

Tabl.IV.3.6. 6 Receptor activity of amide and carboxyl derivatives of Acacipetalin

indicator	Acacip	petalin
indicator	amide	acid
AR		
ERa		
ERb		
GR		
MR	-	-
PR		
RARa		
RARb		
RARr		
TRa		
TRb		
VDR		

second supplemented edition

With the exception of *Mineralocorticoid Receptor* (MR), the studied molecules show inertness to the studied receptor set.

3.1.6.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.6.* 7 explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of *Acacipetalin*.

Tabl.IV.3.6. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Acacipetalin

CAESAR	Acacip	etalin
indicator	amide	acid
GADI	0.69	0.69
SMKEV	0.80	0.81
APSM	0.34	0.35
CSM	1	1
MDRC	true	true
ACFSC	1	1
prediction	NM	NM
NM- non mutagenio	city	

b) SarPy/IRFMN

In terms of mutagenicity, calculated using the *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Acacipetalin* did not show activity (*Table IV.3.6.8*).

SarPy/IRFMN	Acacipetalin			
indicator	amide	acid		
GADI	0.69	0.69		
SMKEV	0.80	0.81		
APSM	0.34	0.35		
CSM	1	1		
ACFSC	1	1		
	•			

 Tabl.IV.3.6. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Acacipetalin

second supplemented edition

prediction	NM	NM
NM- non mutagenicit	y	

c) ISS

Amide and carboxyl acid derivatives of *Acacipetalin* are non-mutagenic according to the *ISS* methodology (*Table IV.3.6. 9*).

Tabl.IV.3.6. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Acacipetalin

ISS	Acaci	petalin
indicator	amide	acid
GADI	0.75	0.76
SMKEV	0.80	0.80
APSM	1	1
CSM	0.50	0.52
ACFSC	1	1
prediction	NM	NM
NM- non mutagenic	ity	

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Acacipetalin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

KNN/Read-Across	Acacipetalin	
indicator	amide acid	
GADI	0.53	0.75
SMKEV	0.81	0.81
APSM	0.24	0.48
CSM	0.51	1
ACFSC	1	1
	•	
prediction	NM	NM
-	•	
NM- non mutagenicity		

Tabl.IV.3.6. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives ofAcacipetalin

B. Consensus model

Data from *Tabl.IV.3.6. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Acacipetalin* to mutagenicity.

Tabl.IV.3.6. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives ofAcacipetalin

Consensus model	Acacip	etalin
mutagenicity indicator	amide	acid
numerical value	0.25	0.50

3.1.6.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

The carcinogenicity data of the studied derivatives of *Acacipetalin* (*Tabl. IV.3.6. 12*) according to *CAESAR* methodology (with training set³⁰) could not be interpreted unambiguously. Due to some inaccuracies in the algorithm, the data is too dualistic. *Example:* if there are individual indicators for which there is no information - the algorithm writes zero (while not accepting them as loading the value of the output), and at the same time if the training set has a close molecule with carcinogenicity - an empirical value is written (then the value is determining the final result).

CAESAR	Acacipetalin	
indicator	amide	acid
GADI	0	0.74
SMKEV	0.79	0.78
APSM	1	1
CSM	0	0.50
MDRC	true	true
ACFSC	1	1
MCAR	0.61	0.25
NMNC	1	1
Carcinogen	0.19 0.63	
NON-Carcinogen	0.81 0.3	
Prediction	NC	С
true- descriptors for this compound		
have values inside the descriptor range		
of the compounds of the training set;		
NC-NON-Carcinog	en: C- Car	cinogen

Tabl.IV.3.6. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of
Acacipetalin

³⁰ Similarity: 0.77 by CAS: 18883-66-4 and CAS: 54749-90-5

b) ISS

Like *CAESAR* (§a) and *ISS*, the carcinogenicity assessment methodology does not provide amide and carboxyl acid derivatives of *Acacipetalin*. In this case we get identical (and/or those in the statistical error of the method) results for CSM, but neither can be accepted – i.e. is both below and above 0.50.

Tabl.IV.3.6. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Acacipetalin

ISS	Acacipetalin	
indicator	amide acid	
GADI	0.75	0.76
SMKEV	0.80	0.80
APSM	1	1
CSM	0.49	0.52
ACFSC	1	1
· · · ·		
Prediction	С	NC
· ·		
NC- NON-Carcinogen;		
C- Carcinogen		

However, the training set reports structurally similar molecules and/or fragments thereof for amide³¹ and carboxylic acid³² forms.

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.6. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Acacipetalin*.

IRFMN /Antares	Acacipetalin	
indicator	amide	acid
GADI	0.62	0.63
SMKEV	0.81	0.83
APSM	0.67	0.67
CSM	0.33	0.34
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

 Tabl.IV.3.6. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Acacipetalin

³¹ Similarity: 0.79 by CAS: 18883-66-4; Similarity: 0.75 by CAS: 23246-96-0 and CAS: 60102-37-6 which have been shown to be carcinogenic.

³² Similarity: 0.74 by CAS: 51333-22-3 plus some of the amide form

d) IRFMN/ISSCAN-CGX

The amide derivative of *Acacipetalin* (*Tabl. IV.3.6. 15*) contains molecular fragments close to those more reported in the training set of *IRFMN/ISSCAN-CGX* methodology for carcinogenicity assessment³³.

 Tabl.IV.3.6. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Acacipetalin

IRFMN/ISSCAN-CGX	Acacipetalin		
indicator	amide	acid	
GADI	0.81	0.67	
SMKEV	0.80	0.79	
APSM	1	1	
CSM	0.66	0.35	
ACFSC	1	1	
Prediction	С	PNC	
PNC- possible non-carcinogenic			

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Acacipetalin* was confirmed (*Table IV.3.6. 16*) by *Carcinogenicity oral classification model* (IRFMN) model.

1 adi.1 v. 5.6. 10 Data from Carcinogenicity ora	i classification model (IRFMN) of amide and
carboxyl acid derivati	ives of Acacipetalin
	John John Press, and P
IRFMN	Acacinetalin

Trbl W2 (16 Data from Coming a minite and sharifi ation and d (IDEMN) of muide and

IRFMN	Acacipetalin		
indicator	amide acid		
·			
GADI	0	0	
SMKEV	0.79	0.77	
APSM	1	1	
CSM	0	0	
MDRC	true	true	
ACFSC	0.85	0.79	
Prediction	NC	NC	
true- descriptors for this compound			
have values inside the descriptor range			
of the compounds of the training set;			
NC- NON-Carcinogen			

³³ Similarity: 0.79 by CAS: 18883-66-4 and CAS: 54749-90-5; Similarity: 0.75 by CAS: 3131-60-0 and CAS: 23246-96-0

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.6.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Acacipetalin* should not be administered orally.

Tabl.IV.3.6. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity
of amide and carboxyl acid derivatives of Acacipetalin

IRFMN	Acacip	etalin
indicator	amide	acid
GADI	0.67	0.66
SMKEV	0.79	0.77
APSM	0.18	0.18
CSM	2.13	2.10
MEPASM	0.28	0.28
MDRC	true	true
ACFSC	0.85	0.85
Predicted Oral	(g/kg-c	lay) ⁻¹
Carcinogenicity SF for	21.9	20.4
molecular forms	21.9	20.4
Presumed concentration of	(g/kg-c	lay) ⁻¹
the active form inside the 7.4		
cancer cell 7.4		
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set		

3.1.6.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Acacipetalin* highlights the lack of toxicity (*Table IV.3.6. 18*).

CAESAR	Acaci	Acacipetalin	
indicator	amide	acid	
GADI	0.75	0.88	
SMKEV	0.78	0.77	
APSM	1	1	
CSM	0.52	1	
MDRC	true	true	
ACFSC	1	1	

Tabl.IV.3.6. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Acacipetalin

Prediction	NT	NT	
true- descriptors for this compound			
have values inside the descriptor range			
of the compounds of the training set;			
NT- non-toxic			

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of carboxyl acid derivative of *Acacipetalin* did not report values for GADI and CSM. Molecular fragments close to 2-hydroxy-3-methylbut-2-enamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.6. 19* cannot be considered reliable.

Tabl.IV.3.6. 19 PG toxicity of amide and carboxyl acid derivatives of Acacipetalin

PG	Acacipetalin	
indicator	amide	acid
GADI	0.62	0
SMKEV	0.76	0.74
APSM	0.51	1
CSM	0.49	0
ACFSC	1	1
Prediction	NT	NT
NT- non-toxic		

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of Acacipetalin, no serious deviations from the generally accepted reference standards were observed (**Tab.IV.3.6.20**).

Tabl.IV.3.6. 20	Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid
	derivatives of Acacipetalin

Acacipetalin		
amide	acid	
0.27	0.41	
0.68	0,68	
0.35	0.32	
0.18	0.37	
0.54	0.54	
true	true	
0.40	0.60	
	amide 0.27 0.68 0.35 0.18 0.54 true	

Prediction	[mg	[mg/L]	
	4.6	11.7	

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Acacipetalin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.6. 21*). Everything is determined by the concentration and time of treatment.

 Tabl.IV.3.6. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of Acacipetalin

CORAL	Acaci	petalin
indicator	amide	acid
GADI	0.75	0.62
SMKEV	0.78	0.79
APSM	1	1
CSM	1	0.47
ACFSC	0.85	0.85
Prediction	Α	Α
	•	
A- active		

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Acacipetalin* (*Tab.IV.3.6. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.3.6. 22 Aromatase activity toxicity model for amide and carboxyl acid derivatives of
Acacipetalin

IRFMN	Acacipetalin	
indicator	amide	acid
GADI	0.91	0.92
SMKEV	0.83	0.84
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.05	0.03
Active Antagonist:	0.02	0.01
Inactive:	0.93	0.97
Prediction	inA	inA
inA- in active		

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Acacipetalin* did not report any deviations (*Tabl.IV.3.6. 23*) affecting the studied process.

Tabl.IV.3.6. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acidderivatives of Acacipetalin

NIC	Acacipetalin		
indicator	amide	acid	
GADI	0.77	0.76	
SMKEV	0.83	0.81	
APSM	0.51	0.52	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	
Euclidean Distance from the	2.26	1.99	
central neuron:	2.20		
Prediction	nonA	nonA	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; nonA- non active			

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Acacipetalin* we understand (*Tabl.IV.3.6. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.3.6. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of
Acacipetalin

INERIS	Acaci	petalin	
indicator	Acacipetalin amide acid		
liidicatoi	annue	aciu	
	1		
GADI	0	0	
SMKEV	0.68	0.69	
APSM	0.13	0.32	
CSM	0.23	0.43	
MEPASM	0.14	0.50	
MDRC	N-true	N-true	
ACFSC	0.34	0.40	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]		
	-0.162	-0.062	
	[numerical units]		
K (C _{HF(A,B)} ,C _{adipose tissue})	1.452	1.153	
N-true - does not cover			

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Acacipetalin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.6. 25*).

Tabl.IV.3.6. 25 Total body elimination half-life model toxicity of amide and carboxyl acid
derivatives of Acacipetalin

QSARINS	Acacip	oetalin
indicator	amide	acid
GADI	0.85	0.85
SMKEV	0.80	0.81
APSM	0.09	0.03
CSM	0.05	0.12
MEPASM	0.15	0.03
MDRC	true	true
ACFSC	1	1
LogHLt	[log u	inits]
	0.31	0.34
Total half-life	[mi	n]
	125	135
true- descriptors for this com		
inside the descriptor range of	the compo	ounds of
the training set		

E. Micronucleus activity

a) In vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Acacipetalin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.6. 26*).

 Tabl.IV.3.6. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid

 derivatives of Acacipetalin

IRFMN/VERMEER	Acacipetalin			
indicator	amide	acid		
GADI	0.73	0.86		
SMKEV	0.76	0.74		
APSM	1	1		
CSM	0.50	1		
ACFSC	1	1		
Prediction	А	А		
A- active				

second supplemented edition

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.7.3.2*), carcinogenicity (*§IV.3.1.7.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.7.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Acacipetalin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.6. 27*). They are relatively safe in terms of *NOAEL* toxicity model.

Tabl.IV.3.6. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of
Acacipetalin

	A ·	. 1'			
IRFMN/VERMEER	Acacipetalin				
indicator	amide acid				
GADI	0.42	0.43			
SMKEV	0.82	0.84			
APSM	0.25	0.25			
CSM	0.83	0.69			
MEPASM	0.38	0.38			
MDRC	true	true			
ACFSC	0.51	0.51			
Prediction	[-log(mg	g/kg)]			
	-2.824	-			
		2.967			
Prediction	[mg/	kg]			
	667	927			
true- descriptors for this com	pound have	e values			
inside the descriptor range of	the compo	unds of			
the training set	_				

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.6.4. Evaluation of the results

After a comparative analysis of the results (*§IV.3.1.6.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Acacipetalin* would be optimal for drugs taken orally to poison the cancer cell with *2-hydroxy-3-methylbut-2-enamide* as performed in *§IV.2* second objective of the study.

3.1.6.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide 4475 \leq 11298 \leq 28524, acid 5245 \leq 13299 \leq 33714 and *Bioaccumulation factor* [conditional units] amide 2.45 \leq 39.49 \leq 637.29, acid form are $0.02 \leq 0.17 \leq 1.49$.

3.1.6.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.6.6.1. Lipophilicity

Data from *Tabl.IV.3.6. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

	$\log P_{ m o/w}$									
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus				
Acacipetalin										
amide	0.82	-1.36	-2.42	-2.59	-2.16	-1.54				
acid	0.38	-0.71	-1.82	-2.18	-1.92	-1.25				

Tabl.IV.3.6. 28 Lipophilicity of amide and carboxylic acid derivatives of Acacipetalin

3.1.6.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.6. 29*).

second supplemented edition

studied indicator	Acaci	Acacipetalin						
studied indicator	amide	acid						
ESOL								
Log S	-0.44	-0.85						
Solubility, [mg/ml]	1.01e+02	3.90e+01						
Class	VS	VS						
Ali								
Log S	-1.13	-1.68						
Solubility, [mg/ml]	2.05e+01	5.75e+00						
Class	VS	VS						
SILICOS-IT								
Log S	1.84	2.06						
Solubility, [mg/ml]	1.94e+04	3.21e+04						
Class	S	S						
vs - very soluble; s - soluble								

Tabl.IV.3.6. 29 Water solubility of amide and carboxylic acid derivatives of Acacipetalin

3.1.6.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Acacipetalin* meets the pharmacokinetic requirements (*Table IV.3.6. 30*).

Tabl.IV.3.6. 30 Pharmacokinetic indicators of amide and derivatives of Acacipetalin

studied indicator	Acacipetalin								
studied indicator	amide	acid							
GI absorption	low	low							
BBB permeant	no	no							
P-gp substrate	Yes	Yes							
inhibitors									
CYP1A2	no	no							
CYP2C19	no	no							
CYP2C9	no	no							
CYP2D6	no	no							
CYP3A4	no	no							
Log K _p									
skin permeation, [cm/s]	-8.50	-8.86							

3.1.6.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.6. 31*) containing amide and derivatives of *Acacipetalin*.

second supplemented edition

 Tabl.IV.3.6. 31 Muegge activity and Bioavailability Score of amide and derivatives of Acacipetalin

studied indicator	Acacipetalin			
studied indicator	amide	acid		
Muegge	Yes	Yes		
Bioavailability Score	0.56	0.51		
Bloavanability Score	0.50	0.51		

3.1.6.6.5. Medical Chemistry

Data from *Tabl.IV.3.6. 32* confirm the drug safety of amide and derivatives of *Acacipetalin*.

Tabl.IV.3.6. 32 Medical chemistry indicators for amide and derivatives of Acacipetalin

studied indicator	Acaci	Acacipetalin			
studied indicator	amide	acid			
PAINS, [number of alerts]	0	0			
Brenk, [number of alerts]	Yes*	Yes*			
Leadlikeness	Leadlikeness Yes Yes				
Synthetic accessibility	4.82 4.82				
* 2 alerts: acyclic_C=C-O, michael_accep	tor_1				

- 🛇 -

3.1.7. (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid

Subjected to analysis potential pharmaceutical form for release within the cancer cell of (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Triglochinin*. The process proceeds according to *§IV.2.3*.

3.1.7.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.7.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid.

Tabl.IV.3.7. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2oxoethylidene)hex-2-enedioic acid

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Triglochinin							
	amide	0.37	0.10	-0.10	0.22	0.27	0.56
	acid	0.40	0.12	-0.12	0.28	0.18	0.64

Data in *Tabl.IV.3.7. 1* show that the amides and carboxylic acids of *Triglochinin* have more pronounced overall drug activity *in vivo*.

3.1.7.2. Pharmacological and biological activity of oral active drugs

3.1.7.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.7. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid.

Tabl.IV.3.7. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid

		Lipinski's Rule				Ghose Filter				CMC-50-Like Rule			
		MW	logP	HBA	HBD	MW	logP	AMR	nAtom	MW	logP	AMR	nAtom
Triglochinin													
	amide	377	-2.9	12	7	377	-2.9	80	45	377	-2.9	80	45
	acid	378	-2.1	12	7	378	-2.1	80	44	378	-2.1	80	44

second supplemented edition

The two molecular modified forms of *Triglochinin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.7.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid are listed in **Tabl.IV.3.7.3**.

 Tabl.IV.3.7. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid

		Veber Filter		ME	MDDR-Like Rule			BBB Likeness		
		TPSA	nRB	nRB	RC	nRingidB		MW	nAcidGroup	nHB
Triglochinin										
	amide	217	8	8	1	18		377	2	19
	acid	211	8	8	1	18		378	3	19

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.7.2.3. QED

The analysis is performed according to §3.3.3.1.3.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.7. 4*.

Tabl.IV.3.7. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid

						u	wQED			
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Triglochinin										
	amide	377	-3.1	12	7	217	8	3	0	0.13
	acid	378	-2.7	12	7	211	8	3	0	0.14

B. wQED

In **Tabl.IV.3.7. 5** presents the data from the calculations for a *Weighted Quantitative Estimate of Druglikeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid.

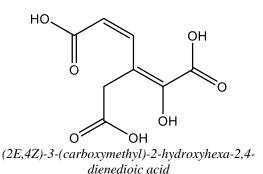
Tabl.IV.3.7. 5 Weighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid

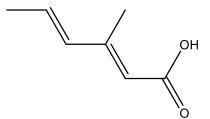
			wQED							
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Triglochinin										
	amide	277	-3.1	12	7	217	8	3	0	0.18
	acid	378	-2.7	12	7	211	8	3	0	0.19

uwQED (*Tabl.IV.3.7. 4*) and *wQED* (*Tabl.IV.3.7. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Triglochinin* meets the requirements for conservative treatment.

3.1.7.3. Non -laboratory and no clinical information on the chemical form

3.1.7.3.1. Receptor activity

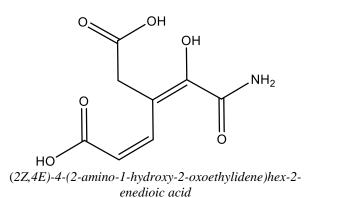

In *Tabl.IV.3.7.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Triglochinin* to receptors (according to *§III.3.3.4.1*).


Tabl.IV.3.7. 6 Receptor activity of amide and carboxyl derivatives of Triglochinin

:	Triglo	chinin
indicator	amide	acid
AR		
ERa		
ERb	active*	active *
GR		
MR	-	-
PR		
RARa		active *
RARb		
RARr		
TRa		
TRb		
VDR		
*- agonist		

second supplemented edition

Data from *Tabl.IV.3.7. 6* show that the acid form exhibits *Retinoic Acid Receptor* (RARa) agonist activity. The active molecular form would inhibit the development of a number of tumors (oral cavity, stomach) and melanoma (Soprano & Soprano, 2002). This is probably due to an overlap of a fragment of (2E,4Z)-3-(carboxymethyl)-2-hydroxyhexa-2,4-dienedioic acid c (2E,4E)-3-methylhexa-2,4-dienoic acid (*Fig.IV.3. 2*).



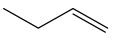

(2E,4E)-3-methylhexa-2,4-dienoic acid

Fig.IV.3. 2 Structural formulas of (2E,4Z)-3-(carboxymethyl)-2-hydroxyhexa-2,4-dienedioic acid u (2E,4E)-3-methylhexa-2,4-dienoic acid

It is important to note that (2E,4Z)-3-(carboxymethyl)-2-hydroxyhexa-2,4-dienedioic acid is formed as a by-product after the passage of HF(A) across the cancer cell membrane (§IV.2.3 .1). On the other hand, the amide and acid forms exhibit agonist activity to Estrogen Receptor b (ERb).

This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (2E,4Z)-3-(carboxymethyl)-2-hydroxyhexa-2,4-dienedioic acid (**Fig.IV.3. 2**), (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid with but-1-ene chain (**Fig.IV.3. 3**).

but-1-ene

Fig.IV.3. 3 Structural formulas of (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2enedioic acid u but-1-ene

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

189

3.1.7.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.7.7* explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of *Triglochinin*.

Tabl.IV.3.7. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Triglochinin

CAESAR	Trigloc	chinin			
indicator	amide	acid			
GADI	0.80	0.80			
SMKEV	0.77	0.78			
APSM	0.68	0.68			
CSM	1	1			
MDRC	true	true			
ACFSC	1	1			
Prediction	NM	NM			
true- descriptors for	or this con	npound			
have values inside the descriptor range					
of the compounds of the training set;					
NM- non mutagenicity					

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Triglochinin* show activity (*Table IV.3.7.8*).

Tabl.IV.3.7. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives ofTriglochinin

SarPy/IRFMN	Triglo	chinin			
indicator	amide	acid			
GADI	0	0			
SMKEV	0.77	0.78			
APSM	0.68	0.68			
CSM	0	0			
ACFSC	1	1			
prediction	М	М			
M- mutagenicity					

second supplemented edition

This is due to already reported mutagenic molecules with a similar structure in the training set³⁴.

c) ISS

Carboxyl acid derivative of *Triglochinin* is non-mutagenic according to *ISS* methodology (*Table IV.3.7. 9*). However, the amide form coincides with already reported molecules leading to mutagenicity³⁵.

Tabl.IV.3.7. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Triglochinin

ISS	Trigloc	chinin		
indicator	amide	acid		
GADI	0.72	0.75		
SMKEV	0.76	0.76		
APSM	1	1		
CSM	0.47	0.54		
ACFSC	1	1		
prediction	М	NM		
M- mutagenicity; NM- non				
mutagenicity				

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Triglochinin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

KNN/Read-Across	Triglochinin			
indicator	amide	acid		
GADI	0.58	0.74		
SMKEV	0.79	0.79		
APSM	0.24	0.48		
CSM	0.75	1		
ACFSC	1	1		
prediction	NM	NM		
NM- non mutagenicity				

Tabl.IV.3.7. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives ofTriglochinin

³⁴ Similarity: 0.76 by CAS: 23282-20-4 and CAS: 23255-69-8

³⁵ Similarity: 0.70-3 by CAS: 23246-96-0, CAS: 18883-66-4, CAS: 2058-46-0, CAS: 303-34-4 and CAS: 64-75-5

B. Consensus model

Data from *Tabl.IV.3.7. 11* show that the amide derivative has a mutagenic effect on the organism, and the acid form does not.

 Tabl.IV.3.7. 11 Consensus mutagenicity model of amide and carboxyl acid derivatives of Triglochinin

Consensus model	Triglochinin		
mutagenicity indicator	amide	acid	
numerical value	0.20	0.45	

3.1.7.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Like *§IV.3.1.6.3.3.A.a*, CAESAR methodology (with training set³⁶) cannot accurately assess the carcinogenicity of amide and carboxyl acid derivatives of *Triglochinin* (*Table IV.3.7. 12*).

Tabl.IV.3.7. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Triglochinin

CAESAR	Trigloc	chinin		
indicator	amide	acid		
GADI	0	0		
SMKEV	0.75	0.76		
APSM	1	1		
CSM	0	0		
MDRC	true	true		
ACFSC	1	1		
MCAR	0.01	0.01		
NMNC	0.50	0.50		
Carcinogen	0.51	0.51		
NON-Carcinogen	0.49	0.49		
Prediction	С	С		
true- descriptors for this compound have values				
inside the descriptor range of the compounds of				
the training set; C- Carcinoger	1			

³⁶ Similarity: 0.73 by CAS: 54749-90-5, CAS: 15503-86-3, CAS: 18883-66-4 and CAS: 480-54-6

b) ISS

Similar to *§IV.3.1.6.3.3.A.b ISS* data for the assessment of the carcinogenicity of amide and carboxyl acid derivatives of *Triglochinin* cannot be interpreted unambiguously (*Table IV.3.7.13*).

ISS	Trigloc	chinin		
indicator	amide	acid		
GADI	0.72	0.75		
SMKEV	0.76	0.76		
APSM	1	1		
CSM	0.47	0.54		
ACFSC	1	1		
Prediction	С	NC		
NC- NON-Carcinogen; C- Carcinogen				

Tabl.IV.3.7. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Triglochinin

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.7. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Triglochinin*.

Tabl.IV.3.7. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of
Triglochinin

IRFMN/Antares	Triglo	chinin	
indicator	amide	acid	
GADI	0.61	0.62	
SMKEV	0.79	0.80	
APSM	0.34	0.35	
CSM	0.66	0.66	
ACFSC	1	1	
Prediction	PNC	PNC	
PNC- possible non-carcinogenic			

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.7. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Triglochinin*.

IRFMN/ISSCAN-CGX	Triglochinin		
indicator	amide	acid	
GADI	0.78	0.77	
SMKEV	0.75	0.75	
APSM	1	1	
CSM	0.64	0.63	
ACFSC	1	1	
Prediction	PNC	PNC	
PNC- possible non-carcinogenic			

 Tabl.IV.3.7. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Triglochinin

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Triglochinin* was confirmed (*Table IV.3.7. 16*) by *Carcinogenicity oral classification model* (IRFMN).

 Tabl.IV.3.7. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Triglochinin

IRFMN	Triglo	Triglochinin	
indicator	amide	acid	
GADI	0	0	
SMKEV	0.73	0.72	
APSM	1	1	
CSM	0	0	
MDRC	true	true	
ACFSC	0.85	0.85	
Prediction	NC	NC	
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set: NC- NON-Carcinogen			

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.7. 17* determines the concentrations above which oral amide and carboxyl acid derivatives of *Triglochinin* should not be administered orally.

		-
IRFMN	Triglochinin	
indicator	amide	acid
GADI	0.62	0.61
SMKEV	0.73	0.72
APSM	0.18	0.18
CSM	2.13	2.11
MEPASM	0.28	0.28
MDRC	true	true
ACFSC	0.85	0.85
Predicted Oral	$(g/kg-day)^{-1}$	
Carcinogenicity SF for molecular forms	21.9	20.9
Presumed concentration of	(g/kg-day) ⁻¹	
the active form inside the cancer cell		
true- descriptors for this compound have values inside the descriptor range of the compounds of		

 Tabl.IV.3.7. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Triglochinin

3.1.7.3.4. Toxicity

A. Developmental Toxicity model

the training set;

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Triglochinin* highlights the lack of toxicity (*Table IV.3.7. 18*).

Tabl.IV.3.7. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Triglochinin

Triglochinin		
amide	acid	
0.73	0.86	
0.75	0.75	
1	1	
0.51	1	
true	true	
1	1	
NT	NT	
ound have	e values	
the compo	unds of	
the training set; NT- non-toxic		
	amide 0.73 0.75 1 0.51 true 1 NT pound have	

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Triglochinin* did not report values for GADI and CSM. Molecular fragments close to (2Z, 4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid have not been well studied and there are no clinical data on them. The data from **Tabl.IV.3.7.19** cannot be considered reliable.

Tabl.IV.3.7. 19 PG toxicity of amide and carboxyl acid derivatives of Triglochinin

PG	Triglochinin	
indicator	amide	acid
GADI	0.62	0.61
SMKEV	0.76	0.74
APSM	0.49	0.49
CSM	0.51	0.51
ACFSC	1	1
Prediction	NT	NT
NT- non-toxic		

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Triglochinin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.7. 20*).

Tabl.IV.3.7. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid
derivatives of Triglochinin

IRFMN/CORAL	Triglochinin			
indicator	amide	acid		
GADI	0.27	0.39		
SMKEV	0.67	0.65		
APSM	0.31	0.31		
CSM	0.54	0.60		
MEPASM	0.54	0.54		
MDRC	true	true		
ACFSC	0.40	0.60		
	-			
Prediction	[mg/L]			
	7.2	8.2		
true- descriptors for this compound have values				
inside the descriptor range of the	he compou	nds of the		
training set				

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Triglochinin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.7.21*). Everything is determined by the concentration and time of treatment.

CORAL	Triglo	chinin	
indicator	amide	acid	
GADI	0.74	0.74	
SMKEV	0.76	0.76	
APSM	1	1	
CSM	1	1	
ACFSC	0.85	0.85	
Prediction	Α	А	
A- active			

Tabl.IV.3.7. 21 Chromosomal aberration model of amide and carboxyl acid derivatives ofTriglochinin

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic process is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Triglochinin* (*Tab.IV.3.7. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.3.7. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of
Triglochinin

IRFMN	Triglochinin	
indicator	amide	acid
GADI	0.87	0.87
SMKEV	0.75	0.76
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.13	0.12
Active Antagonist:	0.02	0.02
Inactive:	0.85	0.86
Prediction	inA	inA
inA- inactive		

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Triglochinin* did not report any deviations (*Tabl.IV.3.7. 23*) affecting the studied process.

NIC	Triglo	chinin
indicator	amide	acid
GADI	0.74	0.87
SMKEV	0.77	0.76
APSM	0.50	1
CSM	1	1
MDRC	true	true
ACFSC	1	1
Englideen Distance from the	4.05	4.10
Euclidean Distance from the		
central neuron		
	NA	NA
central neuron	NA	NA

Tabl.IV.3.7. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid
derivatives of Triglochinin

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Triglochinin* we understand (*Tabl.IV.3.7. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.3.7. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of
Triglochinin

INERIS	Trialo	chinin			
	U	1			
indicator	amide	acid			
GADI	0	0			
SMKEV	0.66	0.65			
APSM	0.33	0.52			
CSM	0.91 0.66				
MEPASM	0.54	0.54			
MDRC	N-true	N-true			
ACFSC	0.34	0.40			
Prediction					
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log	units]			
	0.139	0.234			
K (C _{HF(A,B)} ,C _{adipose tissue})	[numerio	cal units]			
	1.377	1.714			
N-true - does not cover					

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Triglochinin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.7. 25*).

 Tabl.IV.3.7. 25 Total body elimination half-life model toxicity of amide and carboxyl acid derivatives of Triglochinin

QSARINS	Triglo	chinin
indicator	amide	acid
GADI	0.85	0.85
SMKEV	0.79	0.79
APSM	0.07	0.07
CSM	0.11	0.08
MEPASM	0.11	0.11
MDRC	true	true
ACFSC	1	1
Prediction		
LogHLt	[log u	inits]
	0.135	0.168
Total half-life	[mi	in]
	80	90
true- descriptors for this com	pound have	e values
inside the descriptor range of	the compo	ounds of
the training set		

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Triglochinin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.7. 26*).

<i>Tabl.IV.3.7. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid</i>
derivatives of Triglochinin

IRFMN/VERMEER	Triglochinin				
indicator	amide	acid			
GADI	0.84	0.83			
SMKEV	0.70	0.69			
APSM	1	1			
CSM	1	1			
ACFSC	1	1			
Prediction	А	А			
A- active					

second supplemented edition

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.7.3.2*), carcinogenicity (*§IV.3.1.7.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.7.3.4*).

b) in vivo

The *in vivo* toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of Triglochinin can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.7. 27*). They are relatively safe in terms of NOAEL toxicity model.

Tabl.IV.3.7. 27 Toxicity of NOAEL of amide and carboxyl acid derivatives of Triglochinin

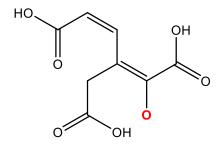
IRFMN/VERMEER	Triglo	chinin
indicator	amide	acid
GADI	0.42	0.42
SMKEV	0.81	0.83
APSM	0.25	0.25
CSM	0.19	0.33
MEPASM	0.38	0.38
MDRC	true	true
ACFSC	0.51	0.51
Prediction	[-log(n	ng/kg)]
	-3.84	-3.99
Prediction	[mg/	/kg]
	6918	9772

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.7.4. Evaluation of the results

After a comparative analysis of the results (*§IV.3.1.7.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Triglochinin* would be optimal for drugs taken orally to poison


the cancer cell with (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid as performed in **§IV.2** second objective of the study.

3.1.7.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), demonstrates maximum coverage of the requirements for oral medicinal products. No toxicity deviations were found and the values were respectively: *Oral rat LD50* [mg/kg] for amide $4809 \le 13902 \le 40189$, acid $3803 \le 9794 \le 25226$ and *Bioaccumulation factor* [conditional units] amide $0.00 \le 2.28\text{E}-02 \le 0.57$, acid are values close to 0.

3.1.7.6. Checking conclusion of the part

Due to the triple symmetry in the functional group (*Fig.IV.3. 4*) of the condensate with the carbohydrate, the methodological scheme (*§III.3.3.7*) cannot be applied.

(2E,4Z)-3-(carboxymethyl)-2- $(\lambda^1$ -oxidaneyl)hexa-2,4-dienedioic acid

Fig.IV.3. 4 Structural formula of (2E, 4Z)-3-(carboxymethyl)-2- $(\lambda^1$ -oxidaneyl)hexa-2,4dienedioic acid

- 🛇 -

3.1.8. (S)-1-hydroxycyclopent-2-ene-1-carboxamide

Subject to analysis are potential pharmaceutical forms for release within the cancer cell of *(S)-1-hydroxycyclopent-2-ene-1-carboxamide*, comprising an amides and carboxylic acids obtained by hydrolysis of the nitrile groups of *Deidaclin* and *Tetraphyllin A*. The process proceeds according to *§IV.2.3*.

3.1.8.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.8.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-1-hydroxycyclopent-2-ene-1-carboxamide.

Tabl.IV.3.8.1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-1-hydroxycyclopent-2-ene-1-carboxamide

	GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor	
Deidaclin / Tetraphyllin A	4						
amide	0.15	0.09	-0.05	-0.13	0.23	0.53	
acid	0.21	0.11	-0.16	0.22	0.14	0.69	

Data in *Tabl.IV.3.8.1* show that the amides and carboxylic acids of *Deidaclin* и *Tetraphyllin* A have more pronounced overall drug activity *in vivo*.

3.1.8.2. Pharmacological and biological activity of oral active drugs

3.1.8.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.8. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*S*)-*1-hydroxycyclopent-2-ene-1-carboxamide*.

Tabl.IV.3.8. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules
potentially possible to pass through the cancer cell membrane and release (S) -1-
hydroxycyclopent-2-ene-1-carboxamide

	Lipinski's Rule				Ghose Filter				CMC-50-Like Rule			
	MW	logP	HBA	HBD	MW	logP	AMR	nAtom	MW	logP	AMR	nAtom
Deidaclin / Tetraphyllin A												
amide	289	-2.1	8	5	289	-2.1	63	39	289	-2.1	64	39
acid	290	-1.4	8	5	290	-1.4	67	38	290	-1.4	67	38

They distinguish the three molecular forms (the corresponding amides and carboxylic acids of *Deidaclin* and *Tetraphyllin A*) that meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.8.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*S*)-1-hydroxycyclopent-2-ene-1-carboxamide are listed in *Tabl.IV.3.8. 3*.

Tabl.IV.3.8. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-1hydroxycyclopent-2-ene-1-carboxamideca

	Veber Filter			М	DDR-Li	ke Rule		BBB Likeness			
	TPSA nRB			nRB	RC	nRingidB		MW	nAcidGroup	nHB	
Deidaclin / Tetraphyllin A											
amide	142	4		4	2	17		289	0	13	
acid	137	4		4	2	17		290	1	13	

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.8.2.3. QED

The analysis is performed according to **§3.3.3.1.3**.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.8. 4*.

Tabl.IV.3.8. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-1-hydroxycyclopent-2-ene-1-carboxamide

	uwQED										
	MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAromaRing	uwQED		
Deidaclin / Tetraphyllin A											
amide	289	-2.1	8	5	142	4	1	0	0.39		
acid	290	-1.8	8	5	137	4	1	0	0.42		

B. wQED

In **Tabl.IV.3.8. 5** presents the data from the calculations for a *Weighted Quantitative Estimate of Druglikeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-1-hydroxycyclopent-2-ene-1-carboxamide

Tabl.IV.3.8. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (S)-1-hydroxycyclopent-2-ene-1-carboxamide

		wQED										
	MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED			
Deidaclin / Tetraphyllin A												
amide	289	-2.1	8	5	142	4	1	0	0.45			
acid	290	-1.8	8	5	137	4	1	0	0.48			

uwQED (*Tabl.IV.3.8. 4*) and *wQED* (*Tabl.IV.3.8. 5*) of potential pharmaceutical forms including amides and carboxylic acids obtained by hydrolysis of the nitrile group of *Deidaclin* and *Tetraphyllin A* meets the requirements for conservative treatment.

3.1.8.3. Non -laboratory and no clinical information on the chemical form

3.1.8.3.1. Receptor activity

In *Tabl.IV.3.8. 6* shows the bioactivity of amide and carboxylic acid derivatives of *Deidaclin* and *Tetraphyllin A* to receptors (according to *§III.3.3.4.1*).

	Deida	aclin /	
indicator	Tetraphyllin A		
	amide		
AR			
ERa			
ERb	active*	active *	
GR			
MR	-	-	
PR			
RARa			
RARb			
RARr			
TRa			
TRb			
VDR			
*- agonist			

Tabl.IV.3.8. 6 Receptor activity of amide and carboxyl derivatives of Deidaclin and
Tetraphyllin A

second supplemented edition

The amide and acid forms exhibit agonist activity to *Estrogen Receptor b* (ERb). This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (S)-1-hydroxycyclopent-2-ene-1-carboxamide and (S)-1-hydroxycyclopent-2-ene-1-carboxylic acid with but-1-ene chain (*Fig.IV.3. 5*).

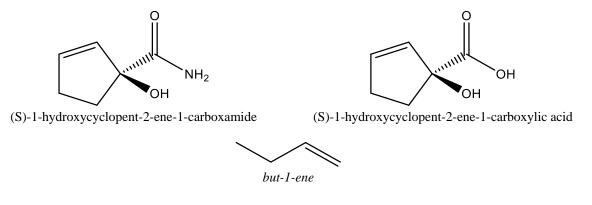


Fig.IV.3. 5 Structural formulas of (S)-1-hydroxycyclopent-2-ene-1-carboxamide, (S)-1hydroxycyclopent-2-ene-1-carboxylic acid and but-1-ene

It is important to note that (S)-1-hydroxycyclopent-2-ene-1-carboxylic acid is formed as a by-product after the passage of HF(A) across the cancer cell membrane (\$IV.2.3.1).

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

3.1.8.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.8.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Deidaclin* and *Tetraphyllin A*.

CAESAR indicator	Deidaclin / Tetraphyllin A		
	amide	acid	
	1		
GADI	0.74	0.75	
SMKEV	0.83	0.85	
APSM	0.67	0.67	
CSM	0.67	0.66	
MDRC	true	true	
ACFSC	1	1	
prediction	NM	NM	
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set; NM- non mutagenicity			

Tabl.IV.3.8. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Deidaclin and
Tetraphyllin A

b) SarPy/IRFMN

In terms of mutagenicity, calculated using the *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* did not show activity (*Table IV.3.8. 8*).

 Tabl.IV.3.8. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

SarPy/IRFMN indicator	20100	Deidaclin / Tetraphyllin A	
	amide	acid	
GADI	0.63	0.63	
SMKEV	0.83	0.85	
APSM	0.33	0.33	
CSM	0.67	0.66	
ACFSC	1	1	
prediction	NM	NM	
NM- non mutagenicity			

c) ISS

Amide and carboxyl acid derivatives of *Deidaclin and Tetraphyllin A* are non-mutagenic according to *ISS* methodology (*Table IV.3.8. 9*).

ISS		Deidaclin /	
indicator	Tetrapł	nyllin A	
	amide	acid	
GADI	0.76	0.76	
SMKEV	0.80	0.80	
APSM	1	1	
CSM	0.52	0.53	
ACFSC	1	1	
	-		
prediction	NM	NM	
-			
NM- non mutagenicity			

Tabl.IV.3.8. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Deidaclin andTetraphyllin A

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Deidaclin and Tetraphyllin A* show some deviation from *KNN/Read-Across* method due to the incomplete training set. At the same time, the model results in mutagenic activity³⁷ of their amide form.

 Tabl.IV.3.8. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

KNN/Read-Across	Deida	Deidaclin /	
indicator	Tetraph	Tetraphyllin A	
	amide	acid	
GADI	0.65	0.72	
SMKEV	0.83	0.85	
APSM	0.50	0.50	
CSM	0.50	0.75	
ACFSC	1	1	
prediction	Μ	NM	
M- mutagenicity; NM- non mutagenicity			

B. Consensus model

Data from *Tabl.IV.3.8. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* to mutagenicity.

 Tabl.IV.3.8. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

Consensus model	Deidaclin /	
mutagenicity indicator	Tetraphyllin A	
	amide	acid
numerical value	0.35	0.50

³⁷ Similarity: 0.82-3 by CAS: 3947-65-7, CAS: 87625-62-5 and CAS: 585-86-4 and CAS: 57-50-1

3.1.8.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

CAESAR methodology (with training set³⁸) for assessment of carcinogenicity of amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A*, similar to *§IV.3.1.6.3.3.A.a* and *§IV.3.1.7.3.3.A.a* does not give an unambiguous prognosis for tabulation (*Tabl. IV.3.8.12*).

Tabl.IV.3.8. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Deidaclin
and Tetraphyllin A

CAESAR	Deidaclin /	
indicator	Tetraphyllin A	
	amide	acid
GADI	0	0
SMKEV	0.80	0.79
APSM	1	1
CSM	0	0
MDRC	true	true
ACFSC	1	1
MCAR	0.24	0.24
NMNC	0.50	0.50
Carcinogen	0.62	0.62
NON-Carcinogen	0.38	0.38
Prediction	С	С
· · ·		
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; C- Carcinogen		

b) ISS

ISS methodology (*Tab.IV.3.8. 13*) is identifies amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* as non-carcinogenic.

Tabl.IV.3.8. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Deidaclin and
Tetraphyllin A

ISS	Deidaclin /	
indicator	Tetraph	yllin A
	amide acid	
GADI	0.76	0.76
SMKEV	0.80	0.80
APSM	1	1
CSM	0.52	0.53

³⁸ Similarity: 0.76 by CAS: 15503-86-3 and CAS: 18883-66-4

second supplemented edition

ACFSC	1	1
Prediction	NC	NC
NC- NON-Carcinogen		

c) IRFMN/Antares

Training set of *IRFMN/Antares* carcinogenicity assessment methodology reported for alerts with close molecular fragments to carboxylic acid forms of *Deidaclin* and *Tetraphyllin A* (*Tabl.IV.3.8.14*).

 Tabl.IV.3.8. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

IRFMN/Antares	Deidaclin /	
indicator	Tetraph	yllin A
	amide	acid
GADI	0.63	0.75
SMKEV	0.83	0.85
APSM	0.67	0.67
CSM	0.33	0.67
ACFSC	1	1
· · · · · ·		
Prediction	PNC	С
NC- NON-Carcinogen; C- Carcinogen		

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.8. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A*.

 Tabl.IV.3.8. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

IRFMN/ISSCAN-CGX	Deidaclin /		
indicator	Tetraphyllin A		
	amide acid		
GADI	0.80	0.79	
SMKEV	0.79	0.79	
APSM	1	1	
CSM	0.65	0.64	
ACFSC	1	1	
Prediction	PNC	PNC	
NC- NON-Carcinogen			

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* was confirmed (*Table IV.3.8. 16*) by *Carcinogenicity oral classification model* (IRFMN).

IRFMN	Deida	Deidaclin /	
indicator	Tetraph	Tetraphyllin A	
	amide	acid	
GADI	0.88	0.83	
SMKEV	0.78	0.72	
APSM	1	1	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	
Prediction	NC	NC	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NC- NON-Carcinogen			

 Tabl.IV.3.8. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.8.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* should not be administered orally.

 Tabl.IV.3.8. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

IRFMN	Deidaclin /	
indicator	Tetraphyllin A	
	amide acid	
GADI	0.66	0.65
SMKEV	0.78	0.76
APSM	0.18	0.18
CSM	1.85	1.85
MEPASM	0.28	0.28
MDRC	true	true
ACFSC	0.85	0.85
	$(g/kg-day)^{-1}$	

second supplemented edition

Predicted Oral Carcinogenicity SF for molecular forms)	11.5	11.5
Presumed concentration of the active form inside the cancer cell	(g/kg-c 4.	
true descriptors for this com	ound how	

true- descriptors for this compound have values inside the descriptor range of the compounds of the training set

3.1.8.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* highlights the lack of toxicity (*Table IV.3.8. 18*).

Tabl.IV.3.8. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Deidaclin and
Tetraphyllin A

a + 77 + 7			
CAESAR	Deida	Deidaclin /	
indicator	Tetraph	yllin A	
	amide	acid	
GADI	0.76	0.88	
SMKEV	0.78	0.78	
APSM	1	1	
CSM	0.53	1	
MDRC	true	true	
ACFSC	1	1	
Prediction	NT	NT	
NT- non-toxic			

b) **PG(Reproductive Toxicity library)**

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* did not report values for GADI and CSM. Molecular fragments close to (*S*)-1-hydroxycyclopent-2-ene-1-carboxamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.8. 19* cannot be considered reliable.

PG indicator		Deidaclin / Tetraphyllin A	
	amide	acid	
GADI	0.62	0	
SMKEV	0.77	0.78	
APSM	0.51	1	
CSM	0.49	0	
ACFSC	1	1	
Prediction	NT	NT	
NT- non-toxic			

Tabl.IV.3.8. 19 PG toxicity of amide and carboxyl acid derivatives of Deidaclin and
Tetraphyllin A

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.8. 20*).

 Tabl.IV.3.8. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

IRFMN/CORAL	Deida	Deidaclin /		
indicator	Tetraph	Tetraphyllin A		
	amide	acid		
GADI	0.28	0.41		
SMKEV	0.69	0.68		
APSM	0.33	0.33		
CSM	1.02	1.42		
MEPASM	0.54	0.54		
MDRC	true	true		
ACFSC	0.40	0.60		
	[mg	[mg/L]		
Prediction	9.85	24.99		
true- descriptors for this compound have values				
inside the descriptor range of the compounds of				
the training set				

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.8. 21*). Everything is determined by the concentration and time of treatment.

CORAL	Deida	Deidaclin /	
indicator	Tetraph	nyllin A	
	amide	acid	
GADI	0.76	0.65	
SMKEV	0.79	0.79	
APSM	1	1	
CSM	1	0.53	
ACFSC	0.85	0.85	
Prediction	А	А	
A- active			

 Tabl.IV.3.8. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and / or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* (*Tab.IV.3.8. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.3.8. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of
Deidaclin and Tetraphyllin A

IRFMN	Deidaclin /	
indicator	Tetraphyllin A	
	amide	acid
GADI	0.91	0.92
SMKEV	0.84	0.84
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.07	0.06
Active Antagonist:	0.04	0.04
Inactive:	0.89	0.90
Prediction	inA	inA

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* did not report any deviations (*Tabl.IV.3.8.23*) affecting the studied process.

NIC	Deidaclin /	
indicator	Tetraphyllin A	
	amide	acid
GADI	0.77	0.76
SMKEV	0.84	0.81
APSM	0.50	0.51
CSM	1	1
MDRC	true	true
ACFSC	1	1
Euclidean Distance from the	2.01	2.74
central neuron:	2.01	2.74
Prediction	NA	NA
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; NA- Non active		

Tabl.IV.3.8. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid
derivatives of Deidaclin and Tetraphyllin A

c) Adipose tissue: blood model

Applying Adipose tissue: blood model for toxicity of amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* we understand (*Tabl.IV.3.8. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.3.8. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of
Deidaclin and Tetraphyllin A

INERIS	Deidaclin /		
indicator	Tetraphyllin A		
	amide	acid	
GADI	0	0	
SMKEV	0.71	0.70	
APSM	0.31	0.311	
CSM	0.48	0.65	
MEPASM	0.50	0.50	
MDRC	N-true	N-true	
ACFSC	0.51	0.51	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]		
	0.138	-0.029	
K ($C_{HF(A,B)}$, $C_{adipose tissue}$)	[numerical units]		
	1.374	1.069	
N-true - does not cover			

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.8. 25*).

 Tabl.IV.3.8. 25 Total body elimination half-life model toxicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A

QSARINS	Deidaclin /		
indicator	Tetraphyllin A		
	amide	acid	
GADI	0.85	0.85	
SMKEV	0.82	0.82	
APSM	0.09	0.09	
CSM	0.06	0.08	
MEPASM	0.15	0.15	
MDRC	true	true	
ACFSC	1	1	
Prediction			
LogHLt	[log units]		
	0.32	0.34	
Total half-life	[min]		
	125	135	
true- descriptors for this compound have			
values inside the descriptor range of the			
compounds of the training set			

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Deidaclin* and *Tetraphyllin A* show activity for Micronucleus in *in vitro* was confirmed (*Tab.IV.3.8. 26*).

 Tabl.IV.3.8. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid

 derivatives of Deidaclin and Tetraphyllin A

IRFMN/VERMEER indicator	Deidaclin / Tetraphyllin A	
	amide	acid
GADI	0.74	0.73
SMKEV	0.76	0.75
APSM	1	1
CSM	0.51	0.50
ACFSC	1	1
Prediction	А	inA
A- active; inA- inactive		

second supplemented edition

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.8.3.2*), carcinogenicity (*§IV.3.1.8.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.8.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Deidaclin* and *Tetraphyllin A* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.8.* 27). They are relatively safe in terms of *NOAEL* toxicity model.

Tabl.IV.3.8. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of
Deidaclin and Tetraphyllin A

IRFMN/VERMEER	Deida	aclin /	
indicator	Tetraph	Tetraphyllin A	
	amide	acid	
GADI	0.85	0.85	
SMKEV	0.83	0.85	
APSM	0.25	0.25	
CSM	0.87	0.73	
MEPASM	0.38	0.38	
MDRC	true	true	
ACFSC	0.85	0.85	
Prediction	[-log(n	[-log(mg/kg)]	
	-2.72	-2.93	
Prediction	[mg/kg]		
	525	851	
	·		

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.8.4. Evaluation of the result

After a comparative analysis of the results (*§IV.3.1.10.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Deidaclin / Tetraphyllin A* would be optimal for drugs taken

Vasil Tsanov & Hristo Tsanov

second supplemented edition

orally to poison the cancer cell with (*S*)-1-hydroxycyclopent-2-ene-1-carboxamide as performed in *§IV.2* second objective of the study.

3.1.8.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), demonstrates maximum coverage of the requirements for oral medicinal products. No toxicity deviations were found and the values were respectively: *Oral rat LD50* [mg/kg] for Deidaclin and Tetraphyllin A amide $1447 \le 3284 \le 7449$, Deidaclin acid and Tetraphyllin A acid $1132 \le 2555 \le 5765$ and *Bioaccumulation factor* [conditional units] Deidaclin amide and Tetraphyllin A $0.00 \le 1.50 \le 4230$, Deidaclin acid and Tetraphyllin A acid are $0.02 \le 0.16 \le 1.45$. This is understandable because both compounds are in isomeric form.

3.1.8.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.8.6.1. Lipophilicity

Data from *Tabl.IV.3.8. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.3.8. 28 Lipophilicity of amide and carboxylic acid derivatives of Deidaclin and
Tetraphyllin A

			I	$\log P_{\rm o/w}$		
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Deidaclin / Tet	raphyllin A					
amide	1.06	-2.04	-2.62	-2.31	-2.10	-1.60
acid	-0.32	-1.38	-2.02	-1.90	-1.86	-1.50
	•	·		·		

3.1.8.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.8. 29*).

Tabl.IV.3.8. 29	Water solubility og	f amide and carbo	xylic acid deriv	vatives of Deidaclin and
		Tetraphyllin A	4	

studied indicator	Deidaclin /	Tetraphyllin A
studied indicator	amide	acid
ESOL		
Log S	-0.08	-0.51
Solubility, [mg/ml]	2.38e+02	9.05e+01
Class	VS	VS
Ali		
Log S	-0.43	-0.99
Solubility, [mg/ml]	1.08e+02	2.97e+01
Class	VS	VS
SILICOS-IT		
Log S	1.81	2.02
Solubility, [mg/ml]	1.85e+04	3.05e+04
Class	S	S
vs - very soluble; s - soluble		

3.1.8.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Deidaclin* and *Tetraphyllin A* meets the pharmacokinetic requirements (*Table IV.3.8. 30*).

studied indicator	Deidaclin / Te	traphyllin A	
	amide	acid	
GI absorption	low	low	
BBB permeant	no	no	
P-gp substrate	Yes	Yes	
inhibitors			
CYP1A2	no	no	
CYP2C19	no	no	
CYP2C9	no	no	
CYP2D6	no	no	
CYP3A4	no	no	
$\log K_{\rm p}$			
skin permeation, [cm/s]	-9.51	-9.05	

Tabl.IV.3.8. 30 Pharmacokinetic indicators of amide and derivatives of Deidaclin andTetraphyllin A

3.1.8.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.8. 31*) containing amide and derivatives of *Deidaclin* and *Tetraphyllin A*.

second supplemented edition

Tabl.IV.3.8. 31 Muegge activity and Bioavailability Score of amide and derivatives of
Deidaclin and Tetraphyllin A

studied indicator	Deidaclin / Tetraphyllin A			
	amide	acid		
Muegge	No*	Yes		
Bioavailability Score	0.55	0.56		
* 1 violation: XLOGP3<-2				

3.1.8.6.5. Medical Chemistry

Data from *Tabl.IV.3.8. 32* confirm the drug safety of amide and derivatives of *Deidaclin* and *Tetraphyllin A*.

Tabl.IV.3.8. 32 Medical chemistry indicators for amide and derivatives of Deidaclin and
Tetraphyllin A

studied indicator	Deidaclin /	Tetraphyllin A
	amide	acid
PAINS, [number of alerts]	0	0
Brenk, [number of alerts]	1*	1*
Leadlikeness	Yes	Yes
Synthetic accessibility	5.00	5.05
* 1 alert: isolated_alkene		

- 🛇 -

3.1.9. (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide

Subjected to analysis potential pharmaceutical forms for release within the cancer cell of (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide, comprising an amides and carboxylic acids obtained by hydrolysis of the nitrile groups of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin*. The process proceeds according to **§IV.2.3**.

3.1.9.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.9.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4-*dihydroxycyclopent-2-ene-1-carboxamide*.

Tabl.IV.3.9. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide

	GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Tetraphyllin B / Volkenin / Ta	raktophylli	n				
amide	0.22	0.15	0.13	0.03	0.28	0.66
acid	0.28	0.17	0.01	0.36	0.19	0.81

Data in *Tabl.IV.3.9. 1* show that the amides and carboxylic acids of Tetraphyllin B, Volkenin and Taraktophyllin have more pronounced overall drug activity *in vivo*.

3.1.9.2. Pharmacological and biological activity of oral active drugs

3.1.9.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.9. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*1S*,*4S*)-*1*,*4-dihydroxycyclopent-2-ene-1-carboxamide*.

Tabl.IV.3.9. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide

	Lipinski's Rule				Ghose Filter				Γ	CMC-50-Like Rule			
	MW	logP	HBA	HBD	MW	logP	AMR	nAtom		MW	logP	AMR	nAtom
Tetraphyllin B / Volkenin /	Tarakt	ophyllii	n										
amide	308	-2.9	9	6	305	-2.9	65	40		305	-2.9	65	40
acid	306	-2.1	9	6	306	-2.1	65	39		306	-2.1	65	39

They distinguish the three molecular forms (the corresponding amides and carboxylic acids of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin*) that meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.9.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4dihydroxycyclopent-2-ene-1-carboxamide are listed in **Tabl.IV.3.9.3**.

Tabl.IV.3.9. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4dihydroxycyclopent-2-ene-1-carboxamide

	Veber]	Filter	MI	DDR-L	ike Rule		BBB Likeness	
	TPSA	nRB	nRB	RC	nRingidB	MW	nAcidGroup	nHB
Tetraphyllin B / Volkenin / T	araktophy	llin						
amide	163	4	4	2	18	305	0	15
acid	157	4	4	2	18	306	1	15

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.9.2.3. QED

The analysis is performed according to §3.3.3.1.3.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.9. 4*.

Tabl.IV.3.9. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules
potentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4-
dihydroxycyclopent-2-ene-1-carboxamide

		uwQED							
	MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAromaRing	uwQED
Tetraphyllin B / Volkenin / Ta	araktoph	yllin							
amide	305	-2.9	9	6	163	4	1	0	0.27
acid	306	-2.5	9	6	157	4	1	0	0.29

B. wQED

In **Tabl.IV.3.9. 5** presents the data from the calculations for a Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide

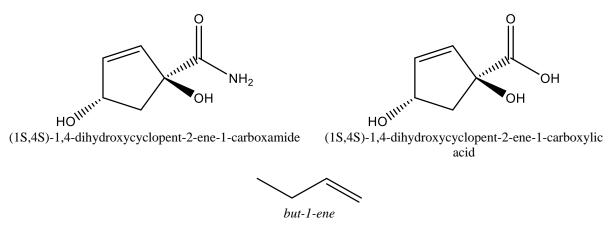
Tabl.IV.3.9. 5 Weighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide

	wQED								
	MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Tetraphyllin B / Volkenin / Ta	araktoph	yllin							
amide	305	-2.9	9	6	163	4	1	0	0.35
acid	306	-2.5	9	6	157	4	1	0	0.37

uwQED (*Tabl.IV.3.9. 4*) and *wQED* (*Tabl.IV.3.9. 5*) of potential pharmaceutical forms including amides and carboxylic acids obtained by hydrolysis of the nitrile group of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* meets the requirements for conservative treatment.

3.1.9.3. Non -laboratory and no clinical information on the chemical form

3.1.9.3.1. Receptor activity


In *Tabl.IV.3.9.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* to receptors (according to *§III.3.3.4.1*).

Tabl.IV.3.9. 6 Receptor activity of amide and carboxyl derivatives of Tetraphyllin B, Volkenin
and Taraktophyllin

	Tetraph	yllin B /		
indicator	Volkenin /			
	Tarakto	phyllin		
	amide	acid		
AR				
ERa				
ERb	active*	active		
GR				
MR	-	-		
PR				
RARa				
RARb				
RARr				
TRa				
TRb				
VDR				
*- agonist				

second supplemented edition

The amide and acid forms exhibit agonist activity to *Estrogen Receptor b* (ERb). This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide, (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxylic acid with but-1-ene chain (*Fig.IV.3. 6*).

Fig.IV.3. 6 Structural formulas of (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide, (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxylic acid and but-1-ene

It is important to note that (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxylic acid is formed as a by-product after the passage of HF(A) across the cancer cell membrane (§IV.2.3.1).

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

3.1.9.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with §III.3.3.4.2:

a) CAESAR

Data from *Tabl.IV.3.9.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Tetraphyllin B*, *Volkenin and Taraktophyllin*.

CAESAR	Tetraphyllin B / Volkenin /		
indicator	Tarakto	ophyllin	
	amide	acid	
GADI	0.75	0.75	
SMKEV	0.83	0.84	
APSM	0.67	0.67	
CSM	0.67	0.67	
MDRC	true	true	
ACFSC	1	1	
Prediction	NM	NM	
	•		

Tabl.IV.3.9. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Tetraphyllin B,Volkenin and Taraktophyllin

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* did not show activity (*Table IV.3.9. 8*).

the training set; NM- non mutagenicity

Tabl.IV.3.9. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of
Tetraphyllin B, Volkenin and Taraktophyllin

SarPy/IRFMN indicator	Tetraphy Volke Tarakto amide	enin /	
	united	1 4010	
GADI	0.63	0.63	
SMKEV	0.83	0.84	
APSM	0.34	0.34	
CSM	0.67	0.67	
ACFSC	1	1	
Prediction	NM	NM	
NM- non mutagenicity			

c) ISS

Amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* are non-mutagenic according to *ISS* methodology (*Table IV.3.9. 9*).

ISS	Volk	raphyllin B / Volkenin /		
indicator	Tarakto	ophyllin		
	amide	acid		
GADI	0.76	0.77		
SMKEV	0.81	0.80		
APSM	1	1		
CSM	0.52	0.54		
ACFSC	1	1		
Prediction	NM	NM		
NM- non mutagenicity				

Tabl.IV.3.9. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Tetraphyllin B,Volkenin and Taraktophyllin

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin and Taraktophyllin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

 Tabl.IV.3.9. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

KNN/Read-Across indicator	Tetraphy Volke Tarakto amide	enin /
GADI	0.54	0.72
SMKEV	0.84	0.85
APSM	0.25	0.49
CSM	0.50	0.75
ACFSC	1	1
Prediction	NM	NM
NM- non mutagenicity		

B. Consensus model

Data from *Tabl.IV.3.9. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* to mutagenicity.

second supplemented edition

Tabl.IV.3.9. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives ofTetraphyllin B, Volkenin and Taraktophyllin

Consensus model mutagenicity indicator	Tetraphyllin B Volkenin / Taraktophylli amide acid	
numerical value	0.40	0.50

3.1.9.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

CAESAR methodology (with training set³⁹) for assessment of carcinogenicity of amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin*, similar to *§IV.3.1.6.3.3.A.a*, *§IV.3.1.7.3.3.A.a* and *§IV.3.1.8.3.3.A.a* does not give an unambiguous prognosis for tabulation (*Tabl. IV.3.9. 12*).

Tabl.IV.3.9. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of TetraphyllinB, Volkenin and Taraktophyllin

Tetraphy	llin B /		
Volke	nin /		
Taraktor	phyllin		
amide	acid		
0	0		
0.79	0.78		
1	1		
0	0		
true	true		
1	1		
0.01	0.01		
0.50	0.50		
0.51	0.51		
0.49	0.49		
С	С		
· · ·			
ound have	e values		
inside the descriptor range of the compounds of			
the training set; C- Carcinogen			
	0 0.79 1 0 true 1 0.01 0.50 0.51 0.49 C		

b) ISS

ISS methodology (*Tab.IV.3.9. 13*), it identifies amide and carboxylic acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* as non-carcinogenic.

³⁹ Similarity: 0.77 by CAS: 83480-29-9, CAS: 18883-66-4, CAS: 54749-90-5, CAS: 15503-86-3 and CAS: 480-54-6

ISS indicator	Voll	nyllin B / kenin / ophyllin acid	
GADI	0.76	0.77	
SMKEV	0.81	0.80	
APSM	1	1	
CSM	0.52	0.54	
ACFSC	1	1	
Prediction	NC	NC	
NC- NON-Carcinogen			

Tabl.IV.3.9. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Tetraphyllin B,Volkenin and Taraktophyllin

c) IRFMN/Antares

Carboxyl acid form of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* is prone to carcinogenicity (*Table IV.3.9. 14*) according to *IRFMN/Antares* methodology. In the training set there are molecules with close to analyzed fragments.

Tabl.IV.3.9. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives ofTetraphyllin B, Volkenin and Taraktophyllin

IRFMN/Antares indicator	Voll Tarakt	Tetraphyllin B / Volkenin / Taraktophyllin	
	amide	acid	
GADI	0.63	0.75	
SMKEV	0.84	0.85	
APSM	0.67	0.67	
CSM	0.34	0.66	
ACFSC	1	1	
Prediction	PNC	C	
PNC- possible non-carcinogenic; C- carcinogen			

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.9. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin*.

	Tetraphyllin B	
IRFMN/ISSCAN-CGX	/ Volkenin /	
indicator	Taraktophyllin	
	amide	acid
GADI	0.80	0.79
SMKEV	0.79	0.79
APSM	1	1
CSM	0.64	0.63
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinoger	nic	

Tabl.IV.3.9. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* was confirmed (*Table IV.3.9. 16*) by *Carcinogenicity oral classification model* (IRFMN).

Tabl.IV.3.9. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and
carboxyl acid derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

IRFMN indicator	Tetraphyllin B Volkenin / Taraktophyllin amide acid	
GADI	0	0
SMKEV	0.78	0.75
APSM	1	1
CSM	0	0
MDRC	true	true
ACFSC	1	1
Prediction	NC	NC
NC-NON-Carcinogen		

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.9.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* should not be administered orally.

second s	supplemented	edition
----------	--------------	---------

IRFMN	Tetraphyllin B / Volkenin / Taraktophyllin		
indicator	Tarakt	ophyllin	
	amide	acid	
GADI	0.66	0.64	
SMKEV	0.78	0.75	
APSM	0.18	0.18	
CSM	1.83	1.80	
MEPASM	0.28	0.28	
MDRC	true	true	
ACFSC	0.85	0.85	
Predicted Oral	(g/kg-day) ⁻¹		
Carcinogenicity SF for molecular forms	11.0	10.2	
Presumed concentration of	(g/kg	(g/kg-day)-1	
the active form inside the cancer cell	4.3		
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set			
the training set			

Tabl.IV.3.9. 17 Data from Carcinogenicity oral classification model (IRFMN) of amide and
carboxyl acid derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

3.1.9.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of the *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* highlights the lack of toxicity (*Table IV.3.9. 18*).

Tabl.IV.3.9. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Tetraphyllin B,
Volkenin and Taraktophyllin

CAESAR indicator	Voll	nyllin B / cenin / ophyllin acid
	annue	aciu
GADI	0.76	0.88
SMKEV	0.79	0.77
APSM	1	1
CSM	0.53	1
MDRC	true	true
ACFSC	1	1

second supplemented edition

Prediction	NT	NT
true- descriptors for this comp	oound ha	ve values
inside the descriptor range of	the comp	ounds of
the training set; NT- non-toxic	-	

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* did not report values for GADI and CSM. Molecular fragments close to (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.9. 19* cannot be considered reliable.

 Tabl.IV.3.9. 19 PG toxicity of amide and carboxyl acid derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

	Tetraphyllin B /	
PG	Volkenin /	
indicator	Taraktophyllin	
	amide	acid
GADI	0.62	0
SMKEV	0.77	0.77
APSM	0.50	1
CSM	0.49	0
ACFSC	1	1
Prediction	NT	NT
NT- non-toxic		

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxylic acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.9. 20*).

 Tabl.IV.3.9. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

IRFMN/CORAL indicator		
	amide	acid
GADI	0.27	0.40
SMKEV	0.67	0.67
APSM	0.33	0.33
CSM	1.32	1.72

second supplemented edition

MEPASM	0.54	0.54
MDRC	true	true
ACFSC	0.40	0.60
Prediction	[mg/L]	
	20.9	53.0
	20.9	53.0
true- descriptors for this con	_ • • •	
true- descriptors for this con inside the descriptor range of the	pound hav	ve values

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.2. 21*). Everything is determined by the concentration and time of treatment.

Tabl.IV.3.9. 21 Chromosomal aberration model of amide and carboxyl acid derivatives ofTetraphyllin B, Volkenin and Taraktophyllin

r	1		
	Tetraphyllin B /		
CORAL	Voll	kenin /	
indicator	Tarakt	ophyllin	
malcator	-		
	amide	acid	
GADI	0.76	0.76	
SMKEV	0,79	0.79	
APSM	1	1	
CSM	1	1	
ACFSC	0.85	0.85	
Prediction	А	А	
A- active			

C. Toxity models with selective chemical activity

A. Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and / or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* (*Tab.IV.3.9. 22*). Concentration and treatment time are crucial in accurately describing the process.

IRFMN indicator	Tetraphyllin B / Volkenin / Taraktophyllin amide acid	
GADI	0.91	0.91
SMKEV	0.83	0.83
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.11	0.09
Active Antagonist:	0.03	0.03
Inactive:	0.86	0.88
Prediction	inA	inA
inA- inactive		

Tabl.IV.3.9. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives ofTetraphyllin B, Volkenin and Taraktophyllin

B. p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* did not report any deviations (*Tabl.IV.3.9. 23*) affecting the studied process.

Tabl.IV.3.9. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid	
derivatives of Tetraphyllin B, Volkenin and Taraktophyllin	

NIC	Tetraphyllin B / Volkenin /		
indicator	Taraktophyllin		
	amide	acid	
	-		
GADI	0.77	0.76	
SMKEV	0.84	0.81	
APSM	0.49	0.50	
CSM	1 1		
MDRC	true	true	
ACFSC	1	1	
Euclidean Distance from the	1.89	3.11	
central neuron:			
Prediction	NA	NA	

C. Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* we understand (*Tabl.IV.3.9. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

	Tetraph	yllin B /	
INERIS	Volkenin /		
indicator	Tarakto	ophyllin	
	amide	acid	
GADI	0	0	
SMKEV	0.69	0.68	
APSM	0.31	0.31	
CSM	0.44	0.38	
MEPASM	0.50	0.50	
MDRC	N-true	N-true	
ACFSC	0.51	0.51	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log	units]	
	0.180	0.278	
K (C _{HF(A,B)} , C _{adipose tissue}) [numerical uni		cal units]	
	1.514	1.897	
N-true - does not cover			

Tabl.IV.3.9. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives ofTetraphyllin B, Volkenin and Taraktophyllin

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.9. 25*).

 Tabl.IV.3.9. 25 Total body elimination half-life model toxicity of amide and carboxyl acid derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

QSARINS indicator	Tetraphyllin B / Volkenin / Taraktophyllin				
	amide	acid			
	0.05	0.07			
GADI	0.85	0.85			
SMKEV	0.83	0.83			
APSM	0.09	0.09			
CSM	0.03	0.06			
MEPASM	0.15	0.15			
MDRC	true	true			
ACFSC	1	1			
Prediction					
LogHLt	[log u	inits]			
	0.29	0.32			
Total half-life	[mi	n]			
	115	125			
· · ·					
true- descriptors for this com	pound have	e values			
inside the descriptor range of	the compo	ounds of			
the training set					

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.9. 26*).

 Tabl.IV.3.9. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid

 derivatives of Tetraphyllin B, Volkenin and Taraktophyllin

IRFMN/VERMEER indicator	Tetraphyllin B / Volkenin / Taraktophyllin		
	amide	acid	
GADI	0.73	0.72	
SMKEV	0.74	0.74	
APSM	1	1	
CSM	0.52	0.49	
ACFSC	1	1	
Prediction	Α	inA	
A- active; inA - inactive			

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (\$IV.3.1.6.3.2), carcinogenicity (\$IV.3.1.6.3.3) and the previously analyzed toxicity methods (\$IV.3.1.6.3.4).

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.9. 27*). They are relatively safe in terms of the *NOAEL* toxicity model.

<u>234</u>

1 2 2		1 2		
IRFMN/VERMEER indicator	Tetraphyllin B / Volkenin / Taraktophyllin			
	amide	acid		
GADI	0.85	0.85		
SMKEV	0.85	0.86		
APSM	0.25	0.25		
CSM	0.66	0.51		
MEPASM	0.38	0.38		
MDRC	true	true		
ACFSC	0.85	0,85		
Prediction	[-log(n	ng/kg)]		
	-3.00	-3.14		
Prediction	[mg	/kg]		
	1000	1380		
true- descriptors for this con	npound hav	ve values		
inside the descriptor range of the compounds of the				
training set				

Tabl.IV.3.9. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives ofTetraphyllin B, Volkenin and Taraktophyllin

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.9.4. Evaluation of the result

After a comparative analysis of the results (*§IV.3.1.10.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Tetraphyllin B, Volkenin and Taraktophyllin* would be optimal for drugs taken orally to poison the cancer cell with (*1S,4S*)-*1,4-dihydroxycyclopent-2-ene-1-carboxamide* as performed in *§IV.2* second objective of the study.

3.1.9.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. No toxicity deviations were found and the values were respectively: *Oral rat LD50* [mg/kg] for amide $1605 \le 4502 \le 12623$, acid $1719 \le 4318 \le 10842$ and *Bioaccumulation factor* [conditional units] amide $2.06 \le 33.1 \le 533$, acid are $0.00 \le 0.32 \le 678$. This is understandable because both compounds are in isomeric form.

3.1.9.6. Checking conclusion of the part

Conducted according to the methodological scheme *§III.3.3.7*.

3.1.9.6.1. Lipophilicity

Data from *Tabl.IV.3.9. 29* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.3.9. 28 Lipophilicity of amide and carboxylic acid derivatives of Tetraphyllin B,
Volkenin and Taraktophyllin

	$\log P_{ m o/w}$					
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Tetraphyllin B / Volkenin / Taraktophyllin						
amide	0.43	-3.15	-3.65	-3.09	-2.98	-2.49
acid	0.30	-2.50	-3.05	-2.68	-2.74	-2.13

3.1.9.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.9. 30*).

Tabl.IV.3.9. 29 Water solubility of amide and carboxylic acid derivatives of Tetraphyllin B,Volkenin and Taraktophyllin

studied indicator	Tetraphyllin B / Volkenin / Taraktophyllin			
	amide	acid		
ESOL				
Log S	0.52	0.10		
Solubility, [mg/ml]	1.00e+03	3.86e+02		
Class	VS	VS		
Ali				
Log S	0.30	-0.25		
Solubility, [mg/ml]	6.10e+02	1.71e+02		
Class	VS	VS		
SILICOS-IT				
Log S	2.62	2.83		
Solubility, [mg/ml]	1.27e+05	2.09e+05		
Class	S	S		
vs - very soluble; s - soluble				

3.1.9.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin* meets the pharmacokinetic requirements (*Table IV.3.9. 31*).

	Tetraphyllin B / Volkenin /			
studied indicator	Taraktophyllin			
	amide	acid		
GI absorption	low	low		
BBB permeant	no	no		
P-gp substrate	Yes	Yes		
inhibitors				
CYP1A2	no	no		
CYP2C19	no	no		
CYP2C9	no	no		
CYP2D6	no	no		
CYP3A4	no	no		
Log K _p				
skin permeation, [cm/s]	-10.40	-9.94		

Tabl.IV.3.9. 30 Pharmacokinetic indicators of amide and derivatives of Tetraphyllin B,Volkenin and Taraktophyllin

3.1.9.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.9. 32*) containing amide and derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin*.

Tabl.IV.3.9. 31 Muegge activity and Bioavailability Score of amide and derivatives of
Tetraphyllin B, Volkenin and Taraktophyllin

studied indicator	licator Tetraphyllin B / Volkenin amide acid			
Muegge	No*	No*		
Bioavailability Score	0.17	0.11		
* 3 violations: XLOGP3<-2, TPSA>150, H-don>5				

3.1.9.6.5. Medical Chemistry

Data from *Tabl.IV.3.9. 33* confirm the drug safety of amide and derivatives of *Tetraphyllin B*, *Volkenin* and *Taraktophyllin*.

Tabl.IV.3.9. 32 Medical chemistry indicators for amide and derivatives of Tetraphyllin B,
Volkenin and Taraktophyllin

studied indicator	Tetraphyllin B / Volkenin / Taraktophyllin			
	amide	acid		
PAINS, [number of alerts]	0	0		
Brenk, [number of alerts]	1*	1*		
Leadlikeness	Yes	Yes		
Synthetic accessibility	5.18	5.22		
* 1 alert: isolated_alkene				

- 🛇 -

3.1.10. (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of (*1R*,*4R*)-*1*,*4*,*5*-*trihydroxycyclopent-2-ene-1-carboxamide*, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Gynocardin*. The process proceeds according to *§IV.2.3*.

3.1.10.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.10.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide.

Tabl.IV.3.10. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Gynocardin							
	amide	0.23	0.14	0.15	0.05	0.29	0.69
	acid	0.29	0.15	0.04	0.37	0.21	0.83

Data in *Tabl.IV.3.10. 1* show that the amides and carboxylic acids of *Gynocardin* have more pronounced overall drug activity *in vivo*.

3.1.10.2. Pharmacological and biological activity of oral active drugs

3.1.10.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.10. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*1R*,*4R*)-*1*,*4*,*5-trihydroxycyclopent-2-ene-1-carboxamide*.

 Tabl.IV.3.10. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide

		Lipinski's Rule						Gho	se Filter		Γ	C	CMC-5)-Like R	ule
		MW	logP	HBA	HBD		MW	logP	AMR	nAtom		MW	logP	AMR	nAtom
Gynocardin															
	amide	321	-2.6	10	7		321	-2.6	67	41		321	-2.6	67	41
	acid	322	-2.3	10	7		322	-2.3	67	40		322	-2.3	67	40

The two molecular modified forms of *Gynocardin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.10.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*1R*,*4R*)-*1*,*4*,*5-trihydroxycyclopent-2-ene-1-carboxamide* are listed in *Tabl.IV.3.10. 3*.

Tabl.IV.3.10. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide

		Veber Filter			MI	DDR-I	like Rule		BBB Likeness	
		TPSA	nRB		nRB	RC	nRingidB	MW	nAcidGroup	nHB
Gynocardin										
	amide	183	4		4	2	19	321	0	17
	acid	177	4		4	2	19	322	1	17

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.10.2.3. QED

The analysis is performed according to *§3.3.3.1.3*.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.10. 4*.

 Tabl.IV.3.10. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (1R,4R)-1,4,5

 trihydroxycyclopent-2-ene-1-carboxamide

						uv	wQED			
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Gynocardin										
	amide	321	-3.7	10	7	183	4	1	0	0.19
	acid	322	-3.3	10	7	177	4	1	0	0.21

B. wQED

In **Tabl.IV.3.10. 5** presents the data from the calculations for a Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide.

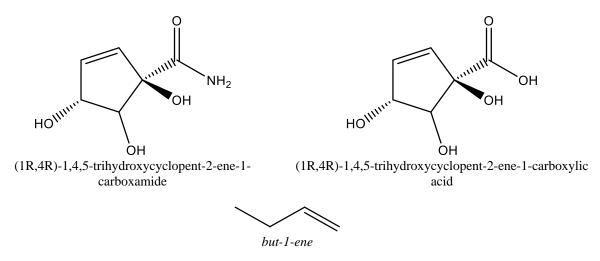
Tabl.IV.3.10. 5 Weighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide

						w	QED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Gynocardin										
	amide	321	-3.7	10	7	183	4	1	0	0.28
	acid	322	-3.3	10	7	177	4	1	0	0.29

uwQED (*Tabl.IV.3.10. 4*) and *wQED* (*Tabl.IV.3.10. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Gynocardin* meets the requirements for conservative treatment.

3.1.10.3. Non -laboratory and no clinical information on the chemical form

3.1.10.3.1. Receptor activity


In *Tabl.IV.3.10.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Gynocardin* to receptors (according to *§III.3.3.4.1*).

Tabl.IV.3.10. 6 Receptor activity of amide and carboxyl derivatives of Gynocardin

indicator	Gyno	cardin				
Indicator	amide	acid				
AR						
ERa						
ERb	active *	active *				
GR						
MR	-	-				
PR						
RARa						
RARb						
RARr						
TRa						
TRb						
VDR						
*- agonist						

second supplemented edition

The amide and acid forms exhibit agonist activity to *Estrogen Receptor b* (ERb). This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxylic acid and (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxylic acid with but-1-ene chain (**Fig.IV.3. 7**).

Fig.IV.3. 7 Structural formulas of (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide and (S)-1-hydroxycyclopent-2-ene-1-carboxylic acid, (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxylic acid and but-1-ene

It is important to note that (*1R*,4*R*)-*1*,4,5-*trihydroxycyclopent*-2-*ene*-1-*carboxylic acid* is formed as a by-product after the passage of HF(A) across the cancer cell membrane (*§IV.2.3.1*).

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

3.1.10.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with §III.3.3.4.2:

a) CAESAR

Data from *Tabl.IV.3.10.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Gynocardin*.

CAESAR	Gynoc	ardin						
indicator	amide	acid						
GADI	0.75	0.75						
SMKEV	0.83	0.84						
APSM	0.67	0.68						
CSM	0.67	0.67						
MDRC	true	true						
ACFSC	1	1						
Prediction	NM	NM						
true- descriptors for this compound have values								
inside the descriptor range of the compounds of								
the training set; NM- non muta	agenicity	the training set; NM- non mutagenicity						

Tabl.IV.3.10. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Gynocardin

b) SarPy/IRFMN

In terms of mutagenicity, calculated using the *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Gynocardin* did not show activity (*Table IV.3.10.8*).

SarPy/IRFMN	Gyno	cardin			
indicator	amide	acid			
GADI	0.63	0.64			
SMKEV	0.83	0.84			
APSM	0.34	0.35			
CSM	0.67	0.67			
ACFSC	1	1			
Prediction	NM	NM			
NM- non mutagenicity					

 Tabl.IV.3.10. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Gynocardin

c) ISS

Amide and carboxyl acid derivatives of *Gynocardin* are non-mutagenic according to *ISS* methodology (*Table IV.3.10.9*).

Tabl.IV.3.10. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Gynocardin

ISS	Gynocardin				
indicator	amide	acid			
GADI	0.77	0.77			
SMKEV	0.81	0.80			
APSM	1	1			

CSM	0.53	0.55			
ACFSC	1	1			
Prediction NM NM					
NM- non mutagenicity					

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Gynocardin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

 Tabl.IV.3.10. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Gynocardin

KNN/Read-Across	Gynocardin	
indicator	amide	acid
GADI	0.55	0.72
SMKEV	0.84	0.85
APSM	0.24	0.49
CSM	0.51	0.75
ACFSC	1	1
Prediction	NM	NM
	•	
NM- non mutagenicity		

B. Consensus model

Data from *Tabl.IV.3.10. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Gynocardin* to mutagenicity.

Tabl.IV.3.10. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives
of Gynocardin

Consensus model	Gynocardin	
mutagenicity indicator	amide	acid
numerical value	0.40	0.50

3.1.10.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

CAESAR methodology concludes that amide and carboxyl acid derivatives of *Gynocardin* are carcinogenic (*Tabl.IV.3.10.12*). They have close molecular fragments with a series of alerts⁴⁰.

CAESAR	Gynocardin	
indicator	amide	acid
GADI	0.37	0.37
SMKEV	0.78	0.77
APSM	1	1
CSM	0.49	0.48
MDRC	true	true
ACFSC	1	1
MCAR	0.61	0.61
NMNC	0.50	0.50
Carcinogen	0.84	0.84
NON-Carcinogen	0.16	0.16
Prediction	С	C
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; C- carcinogen		

Tabl.IV.3.10. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives ofGynocardin

b) ISS

ISS methodology (*Tab.IV.3.10. 13*), it identifies amide and carboxyl acid derivatives of *Gynocardin* as non-carcinogenic.

Tabl.IV.3.10. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Gynocardin

ISS	Gyno	Gynocardin	
indicator	amide	acid	
GADI	0.77	0.77	
SMKEV	0.81	0.80	
APSM	1	1	
CSM	0.53	0.55	
ACFSC	1	1	
Prediction	NC	NC	
NC- NON-Carcinogen			

⁴⁰ Similarity: 0.77 by CAS: 18883-66-4, CAS: 54749-90-5, CAS: 15503-86-3 and CAS: 480-54-6

c) IRFMN/Antares

Carboxylic acid form of *Gynocardin* is prone to carcinogenicity (*Table IV.3.10. 14*) according to *IRFMN/Antares* methodology. In the training set there are molecules with close to analyzed fragments⁴¹.

 Tabl.IV.3.10. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Gynocardin

IRFMN/Antares	Gyno	Gynocardin	
indicator	amide	acid	
GADI	0.63	0.75	
SMKEV	0.84	0.86	
APSM	0.66	0.66	
CSM	0.34	0.66	
ACFSC	1	1	
Prediction	PNC	С	
PNC- possible non-carcinogenic; C- carcinogen			

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.10. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Gynocardin*.

Tabl.IV.3.10. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives
of Gynocardin

IRFMN/ISSCAN-CGX	Gynocardin	
indicator	amide	acid
GADI	0.79	0.79
SMKEV	0.79	0.78
APSM	1	1
CSM	0.64	0.63
ACFSC	1	1
Prediction	PNC	PNC
	•	
C- carcinogen		

⁴¹ Similarity: 0.77 by CAS: 18883-66-4, CAS: 54749-90-5, CAS: 15503-86-3 and CAS: 480-54-6

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Gynocardin* was confirmed (*Table IV.3.10. 16*) by the *Carcinogenicity oral classification model* (IRFMN).

 Tabl.IV.3.10. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Gynocardin

IRFMN	Gynocardin	
indicator	amide	acid
GADI	0	0
SMKEV	0.77	0.75
APSM	1	1
CSM	0	0
MDRC	true	true
ACFSC	1	1
Prediction	NC	NC
NC- NON-Carcinogen		

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.10.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Gynocardin* should not be administered orally.

Tabl.IV.3.10. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Gynocardin

IRFMN	Gynocardin		
indicator	amide acid		
GADI	0	0	
SMKEV	0.77	0.75	
APSM	0.18	0.18	
CSM	2.36	2.36	
MEPASM	0.28	0.28	
MDRC	N-true	N-true	
ACFSC	0.85	0.85	
Predicted Oral Carcinogenicity	(g/kg-day) ⁻¹		
SF for molecular forms	37.2 37.2		
Presumed concentration of the	$(g/kg-day)^{-1}$		
active form inside the cancer cell	15.3		
n-true - does not cover			

247

3.1.10.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Gynocardin* highlights the lack of toxicity (*Table IV.3.10. 18*).

Tabl.IV.3.10. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Gynocardin

CAESAR	Gynocardin	
indicator	amide	acid
GADI	0.76	0.88
SMKEV	0.79	0.78
APSM	1	1
CSM	0.52	1
MDRC	true	true
ACFSC	1	1
Prediction	NT	NT
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; NT- non-toxic		

b) **PG(Reproductive Toxicity library)**

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Gynocardin* did not report values for GADI and CSM. Molecular fragments close to (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide have not been well studied and there are no clinical data on them. The data from **Tabl.IV.3.10. 19** cannot be considered reliable.

Tabl.IV.3.10. 19 PG toxicity of amide and carboxyl acid derivatives of Gynocardin

PG	Gynocardin	
indicator	amide	acid
GADI	0	0
SMKEV	0.78	0.76
APSM	1	1
CSM	0	0
ACFSC	1	1
Prediction	NT	NT
NT- non-toxic		

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Gynocardin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.10. 20*).

IRFMN/CORAL	Gynoc	cardin
indicator	amide	acid
GADI	0.27	0.39
SMKEV	0.66	0.66
APSM	0.33	0.33
CSM	1.78	2.18
MEPASM	0.54	0.54
MDRC	true	true
ACFSC	0.40	0.60
Prediction	[mg	;/L]
	63.1	160.0
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set		

Tabl.IV.3.10. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl
acid derivatives of Gynocardin

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Gynocardin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.10. 21*). Everything is determined by the concentration and time of treatment.

Tabl.IV.3.10. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of)f
Gynocardin	

CORAL	Gynocardin	
indicator	amide	acid
GADI	0.76	0.76
SMKEV	0.79	0.79
APSM	1	1
CSM	1	1
MDRC	1	1
ACFSC	0.85	0.85
Prediction	А	А
A- active		

249

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and / or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Gynocardin* (*Tab.IV.3.10. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.3.10. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of
Gynocardin

IRFMN	Gynocardin	
indicator	amide	acid
GADI	0.90	0.90
SMKEV	0.81	0.15
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.13	0.12
Active Antagonist:	0.01	0.01
Inactive:	0.86	0.87
Prediction	inA	inA
inA- inactive		

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Gynocardin* did not report any deviations (*Tabl.IV.3.10. 23*) affecting the studied process.

 Tabl.IV.3.10. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid

 derivatives of Gynocardin

NIC	Gynocardin	
indicator	amide	acid
GADI	0.76	0.75
SMKEV	0.83	0.81
APSM	0.49	0.49
CSM	1	1
MDRC	true	true
ACFSC	1	1
Euclidean Distance from the	2.20	3.86
central neuron:		
Prediction	nonA	nonA
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; nonA- non active		

250

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxylic acid derivatives of *Gynocardin* we understand (*Tabl.IV.3.10. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.3.10. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of
Gynocardin

INERIS	Gynocardin		
indicator	amide	acid	
GADI	0	0	
SMKEV	0.69	0.68	
APSM	0.31	0.31	
CSM	0.41	0.32	
MEPASM	0.50	0.50	
MDRC	N-true	N-true	
ACFSC	0.51	0.51	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]		
	0.201	0.294	
· · · · · · · · · · · · · · · · · · ·			
K (C _{HF(A,B)} ,C _{adipose tissue})	[numerical units]		
	1.589	1.968	
N-true - does not cover			

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Gynocardin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.10. 25*).

Tabl.IV.3.10. 25 Total body elimination half-life model toxicity of amide and carboxyl acid
derivatives of Gynocardin

QSARINS	Gynocardin		
indicator	amide	acid	
GADI	0.85	0.85	
SMKEV	0.83	0.83	
APSM	0.09	0.09	
CSM	0.05	0.03	
MEPASM	0.15	0.15	
MDRC	true	true	
ACFSC	1	1	
Prediction			
LogHLt	[log ι	[log units]	
	0.21	0.23	
Total half-life	[min]		

second supplemented edition

	100	105
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set	_	

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Gynocardin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.10.26*).

 Tabl.IV.3.10. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid

 derivatives of Gynocardin

IRFMN/VERMEER	Gynocardin	
indicator	amide	acid
GADI	0.73	0.71
SMKEV	0.73	0.73
APSM	1	1
CSM	0.52	0.49
ACFSC	1	1
Prediction	А	inA
A- active		

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.10.3.2*), carcinogenicity (*§IV.3.1.10.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.10.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Gynocardin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.10. 27*). They are relatively safe in terms of the *NOAEL* toxicity model.

IRFMN/VERMEER	Gynoo	cardin				
indicator	amide	acid				
GADI	0.85	0.85				
SMKEV	0.86	0.88				
APSM	0.25	0.25				
CSM	0.44	0.29				
MEPASM	0.38	0.38				
MDRC	true	true				
ACFSC	0.85	0.85				
Prediction	[-log(n	ng/kg)]				
	-3.22	-3.36				
	[mg	/kg]				
	1660	2291				
true- descriptors for this compound have values inside the descriptor range of the compounds of						

 Tabl.IV.3.10. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of Gynocardin

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on gly*cosidamides and gly*cosacids in the training set.

the training set

3.1.10.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.10.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Gynocardin* would be optimal for drugs taken orally to poison the cancer cell with (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide as performed in §*IV.2* second objective of the study.

3.1.10.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide $2957 \le 8312 \le 23360$, acid $3059 \le 7704 \le 19402$ and *Bioaccumulation factor* [conditional units] amide $2.45 \le 39 \le 638$, acid forms are $0.00 \le 0.31 \le 707$.

3.1.10.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.10.6.1. Lipophilicity

Data from *Tabl.IV.3.10. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.3.10. 28 Lipophilicity of amide and carboxylic acid derivatives of Gynocardin

	$\operatorname{Log} P_{\mathrm{o/w}}$									
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus				
Gynocardin										
amide	0.12	-3.57	-4.68	-3.86	-3.85	-3.17				
acid	0.11	-2.92	-4.08	-3.45	-3.61	-2.84				
	•									

3.1.10.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.10.29*).

Tabl.IV.3.10. 29 Water solubility of amide and carboxylic acid derivatives of Gynocardin

studied indicator	Gync	ocardin	
studied indicator	amide	acid	
ESOL			
Log S	0.68	0.27	
Solubility, [mg/ml]	1.54e+03	5.94e+02	
Class	VS	VS	
Ali			
Log S	0.31	-0.24	
Solubility, [mg/ml]	6.59e+02	1.85e+02	
Class	VS	VS	
SILICOS-IT			
Log S	3.43	3.65	
Solubility, [mg/ml]	8.69e+05	1.43e+06	
Class	S	S	
vs - very soluble; s - soluble			

3.1.10.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Gynocardin* meets the pharmacokinetic requirements (*Table IV.3.10. 30*).

studied indicator	Gynoo	cardin	
studied indicator	amide	acid	
GI absorption	low	low	
BBB permeant	no	no	
P-gp substrate	Yes	Yes	
inhibitors			
CYP1A2	no	no	
CYP2C19	no	no	
CYP2C9	no	no	
CYP2D6	no	no	
CYP3A4	no	no	
Log K _p			
skin permeation, [cm/s]	-10.79	-10.34	

Tabl.IV.3.10. 30 Pharmacokinetic indicators of amide and derivatives of Gynocardin

3.1.10.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.10. 31*) containing amide and derivatives of *Gynocardin*.

Tabl.IV.3.10. 31 Muegge activity and Bioavailability Score of amide and derivatives of
Gynocardin

studied indicator	Gync	ocardin					
studied indicator	amide	acid					
Muegge	No*	No*					
Bioavailability Score	0.55	0.11					
* No; 3 violations: XLOGP3<-2, TPSA>150, H-don>5							

3.1.10.6.5. Medical Chemistry

Data from *Tabl.IV.3.10.32* confirm the drug safety of amide and derivatives of *Gynocardin*.

Tabl.IV.3.10. 32 Medical chemistry indicators for amide and derivatives of Gynocardin

studied indicator	Gync	ocardin
studied indicator	amide	acid
PAINS, [number of alerts]	0	0
Brenk, [number of alerts]	1*	1*
Leadlikeness	Yes	Yes
Synthetic accessibility	5.31	5.34
* 1 alert: isolated_alkene		

3.1.11. (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of(Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Menisdaurin*. The process proceeds according to **§IV.2.3**.

3.1.11.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.11.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.3.11. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Menisdaurin							
	amide	0.53	0.35	0.22	0.42	0.27	0.99
	acid	0.57	0.47	0.21	0.68	0.34	1.01

Data in *Tabl.IV.3.11. 1* show that the amides and carboxylic acids of *Menisdaurin* have more pronounced overall drug activity *in vivo*.

3.1.11.2. Pharmacological and biological activity of oral active drugs

3.1.11.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.11.2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.3.11. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

			Lipinsk	i's Rule			Gho	ose Filter		CMC-50-Like Rule			
		MW	logP	HBA	HBD	MW	logP	AMR	nAtom	MW	logP	AMR	nAtom
nisdaurin													
	amide	331	-2.7	9	6	331	-2.6	74	44	331	-2.6	74	44
	acid	332	-1.9	9	6	332	-1.9	74	43	332	-1.9	74	43

second supplemented edition

The two molecular modified forms of *Menisdaurin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.11.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide are listed in **Tabl.IV.3.11.3**.

Tabl.IV.3.11. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemicalmolecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

		Veber Filter			MDDR-Like Rule			BBB Likeness			
		TPSA	nRB		nRB	RC	nRingidB		MW	nAcidGroup	nHB
Menisdaurin											
	amide	163	4		4	2	20		331	0	15
	acid	157	4		4	2	20		332	1	15

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.11.2.3. QED

The analysis is performed according to §3.3.3.1.3.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.11. 4*.

Tabl.IV.3.11. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

						u	wQED			
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Menisdaurin										
	amide	331	-3.1	9	6	163	4	1	0	0.26
	acid	332	-2.7	9	6	157	4	1	0	0.29

B. wQED

In **Tabl.IV.3.11. 5** presents the data from the calculations for a Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide.

 Tabl.IV.3.11. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (Z)-2-((4S,6R)-4,6

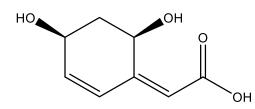
 dihydroxycyclohex-2-en-1-ylidene)acetamide

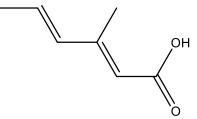
						wQ	ED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Menisdaurin										
	amide	331	-3.1	9	6	163	4	1	0	0.34
	acid	332	-2.7	9	6	157	4	1	0	0.36

uwQED (*Tabl.IV.3.11. 4*) and *wQED* (*Tabl.IV.3.11. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of Menisdaurin meets the requirements for conservative treatment.

3.1.11.3. Non -laboratory and no clinical information on the chemical form

3.1.11.3.1. Receptor activity

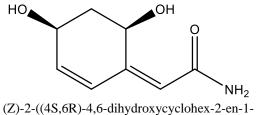

In *Tabl.IV.3.11.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Menisdaurin* to receptors (according to *§III.3.3.4.1*).


Tabl.IV.3.11. 6 Receptor activity of amide and carboxyl derivatives of Menisdaurin

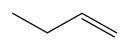
in diastan	Menis	daurin
indicator	amide	acid
AR		
ERa		
ERb	active *	active *
GR		
MR	-	-
PR		
RARa		active*
RARb		
RARr		
TRa		
TRb		
VDR		
*- agonist		

second supplemented edition

Data from *Tabl.IV.3.11. 6* show that the acid form exhibits *Retinoic Acid Receptor* (RARa) agonist activity. The active molecular form would inhibit the development of a number of tumors (oral cavity, stomach) and melanoma (Soprano & Soprano, 2002). This is probably due to an overlap of a fragment of (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetic acid c (2E,4E)-3-methylhexa-2,4-dienoic acid (**Fig.IV.3. 8**).


(Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1ylidene)acetic acid

(2E,4E)-3-methylhexa-2,4-dienoic acid


Fig.IV.3. 8 Structural formulas of (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetic acid u (2E,4E)-3-methylhexa-2,4-dienoic acid

It is important to note that (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetic acid is formed as a by-product after the passage of HF(A) across the cancer cell membrane (§IV.2.3 .1). On the other hand, the amide and acid forms exhibit agonist activity to Estrogen Receptor b (ERb).

This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (Z)-2-((4S,6R)-4,6dihydroxycyclohex-2-en-1-ylidene)acetic acid (**Fig.IV.3.** 2), (Z)-2-((4S,6R)-4,6dihydroxycyclohex-2-en-1-ylidene)acetamide with but-1-ene chain (**Fig.IV.3.** 3).

ylidene)acetamide

but-1-ene

Fig.IV.3. 9 Structural formulas of (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1ylidene)acetamide u but-1-ene

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

3.1.11.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.11.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Menisdaurin*.

Tabl.IV.3.11. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Menisdaurin

CAESAR	Menis	Menisdaurin	
indicator	amide	acid	
GADI	0.74	0.75	
SMKEV	0.83	0.83	
APSM	0.67	0.67	
CSM	0.67	0.67	
MDRC	true	true	
ACFSC	1	1	
Prediction	NM	NM	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NM- non mutagenicity			

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Menisdaurin* did not show activity (*Table IV.3.11. 8*).

Tabl.IV.3.11. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of
Menisdaurin

SarPy/IRFMN	Menis	daurin
indicator	amide	acid
GADI	0.63	0.63
SMKEV	0.83	0.83
APSM	0.34	0.34
CSM	0.67	0.67
ACFSC	1	1
Prediction	NM	NM
NM- non mutagenicity		

c) ISS

Carboxyl acid derivatives of *Menisdaurin* is non-mutagenic according to *ISS* methodology (*Table IV.3.11. 9*). The implementation of the algorithm gives for the amide form – mutagenicity⁴². This is due to already reported mutagenic molecules with a similar structure in the training set.

Tabl.IV.3.11. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Menisdaurin

ISS	Menisdaurin	
indicator	amide	acid
GADI	0.75	0.76
SMKEV	0.80	0.80
APSM	1	1
CSM	0.48	0.53
ACFSC	1	1
Prediction	М	NM
M- mutagenicity; NM- non mutagenicity		

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Menisdaurin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

 Tabl.IV.3.11. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Menisdaurin

KNN/Read-Across	Menisdaurin	
indicator	amide	acid
GADI	0.71	0.71
SMKEV	0.83	0.83
APSM	0.50	0.50
CSM	0.75	0.75
ACFSC	1	1
Prediction	NM	NM
NM- non mutagenicity		

⁴² Similarity: 0.71-8 by CAS: 23246-96-0, CAS: 303-34-4, CAS: 315-22-0, CAS: 18883-66-4 and CAS: 50-07-7

B. Consensus model

Data from *Tabl.IV.3.11. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Menisdaurin* to mutagenicity.

 Tabl.IV.3.11. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Menisdaurin

Consensus model	Menisdaurin	
mutagenicity indicator	amide	acid
numerical value	0.35	0.50

3.1.11.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data on carcinogenicity activity, using the CAESAR methodology (Tab.IV.3.11. 12), for amide and carboxyl acid derivatives of Menisdaurin did not indicate the presence of carcinogenicity.

CAESAR	Menisdaurin	
indicator	amide	acid
GADI	0.75	0.64
SMKEV	0.79	0.79
APSM	1	0.52
CSM	0.51	0.52
MDRC	true	true
ACFSC	1	1
MCAR	0.39	0.39
NMNC	1	1
Carcinogen	0.31	0.31
NON-Carcinogen	0.69	0.69
Prediction	NC	NC
true- descriptors for this compound have values		
inside the descriptor range of	the compo	ounds of
the training set		

 Tabl.IV.3.11. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Menisdaurin

b) ISS

ISS carcinogenicity assessment methodology does not provide amide and carboxyl acid derivatives of *Menisdaurin* (*Tabl.IV.3.11. 13*). In this case we get identical (and/or those in the

second supplemented edition

statistical error of the method) results for CSM, but neither can be accepted -i.e. is both below and above 0.50.

ISS	Menis	Menisdaurin	
indicator	amide	acid	
GADI	0.75	0.76	
SMKEV	0.80	0.80	
APSM	1	1	
CSM	0.48	0.53	
ACFSC	1	1	
Prediction	С	NC	
C- carcinogen; NC- NON-Carcinogen			

Tabl.IV.3.11. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Menisdaurin

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.11. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Menisdaurin*.

Tabl.IV.3.11. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of
Menisdaurin

IRFMN/Antares	Menisdaurin	
indicator	amide	acid
GADI	0.74	0.75
SMKEV	0.83	0.84
APSM	0.67	0.67
CSM	0.67	0.67
ACFSC	1	1
•		
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.11. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Menisdaurin*.

IRFMN/ISSCAN-CGX	Menisdaurin	
indicator	amide	acid
GADI	0.80	0.79
SMKEV	0.79	0.78
APSM	1	1
CSM	0.65	0.64
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

 Tabl.IV.3.11. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Menisdaurin

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Menisdaurin* was confirmed (*Table IV.3.11. 16*) by the *Carcinogenicity oral classification model* (IRFMN).

 Tabl.IV.3.11. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Menisdaurin

IRFMN	Menisdaurin	
indicator	amide	acid
GADI	0.73	0.72
SMKEV	0.76	0.74
APSM	0.50	0.50
CSM	1	1
MDRC	true	true
ACFSC	1	1
Prediction	NC	NC
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; NC- NON-Carcinogen		

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.11. 17* determines the concentrations above which oral amide and carboxyl acid derivatives of *Menisdaurin* should not be administered orally.

second supplemented edition

IRFMN	Menisdaurin	
indicator	amide	acid
GADI	0.64	0.63
SMKEV	0.76	0.74
APSM	0.07	0.07
CSM	2.65	2.60
MEPASM	0.11	0.11
MDRC	true	true
ACFSC	0.85	0.85
Predicted Oral	$[(g/kg-day)^{-1}]$	
Carcinogenicity SF for molecular forms	3.9	3.5
Presumed concentration of	$[(g/kg-day)^{-1}]$	
the active form inside the cancer cell	1.6	
·		
true- descriptors for this compound have values		

inside the descriptor range of the compounds of

the training set

Tabl.IV.3.11. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for
carcinogenicity of amide and carboxyl acid derivatives of Menisdaurin

3.1.11.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Menisdaurin* highlights the lack of toxicity (*Table IV.3.11. 18*).

Tabl.IV.3.11. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Menisdaurin

CAESAR	Menis	Menisdaurin	
indicator	amide	acid	
GADI	0.75	0.88	
SMKEV	0.77	0.77	
APSM	1	1	
CSM	0.52	1	
MDRC	true	true	
ACFSC	1	1	
Prediction	NT	NT	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NT- non-toxic			

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Menisdaurin* did not report values for GADI and CSM. Molecular fragments close to (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide have not been well studied and there are no clinical data on them. The data from **Tabl.IV.3.11. 19** cannot be considered reliable.

Tabl.IV.3.11. 19 PG toxicity of amide and carboxyl acid derivatives of Menisdaurin

PG	Menis	Menisdaurin	
indicator	amide	acid	
GADI	0	0	
SMKEV	0.76	0.77	
APSM	1	1	
CSM	0	0	
ACFSC	1	1	
Prediction	NT	NT	
NT- non-toxic			

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Menisdaurin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.11. 20*).

Tabl.IV.3.11. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl
acid derivatives of Menisdaurin

IRFMN/CORAL	Menis	Menisdaurin	
indicator	amide	acid	
GADI	0.28	0.41	
SMKEV	0.69	0.68	
APSM	0.31	0.33	
CSM	1.39	1.96	
MEPASM	0.54	0.54	
MDRC	true	true	
ACFSC	0.40	0.60	
Prediction	[mg/L]		
	39.5	100.2	
true- descriptors for this compound have values inside the descriptor range of the compounds of			
			the training set

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Menisdaurin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.11. 21*). Everything is determined by the concentration and time of treatment.

Tabl.IV.3.11. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of
Menisdaurin

CORAL	Menisdaurin	
indicator	amide	acid
GADI	0.76	0.76
SMKEV	0.79	0.79
APSM	1	1
CSM	1	1
ACFSC	0.85	0.85
Prediction	А	Α
A- active		

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Menisdaurin* (*Tab.IV.3.11. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.3.11. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives
of Menisdaurin

IRFMN	Menisdaurin	
indicator	amide	acid
GADI	0.90	0.90
SMKEV	0.81	0.81
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.09	0.08
Active Antagonist:	0.03	0.03
Inactive:	0.88	0.88
Prediction	inA	inA
inA- inactive		

267

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Menisdaurin* did not report any deviations (*Tabl.IV.3.11.23*) affecting the studied process.

 Tabl.IV.3.11. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid derivatives of Menisdaurin

NIC	Menisdaurin		
indicator	amide	acid	
GADI	0.75	0.75	
SMKEV	0.80	0.80	
APSM	0.49	0.50	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	
Euclidean Distance from the	2.27 3.27		
central neuron:			
Prediction	nonA	nonA	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; nonA- non active			

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Menisdaurin* we understand (*Tabl.IV.3.11. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.3.11. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives ofMenisdaurin

INERIS	Menisdaurin		
indicator	amide	acid	
GADI	0	0	
SMKEV	0.69	0.68	
APSM	0.31	0.31	
CSM	0.63	0.63	
MEPASM	0.50	0.50	
MDRC	N-true	N-true	
ACFSC	0.51	0.51	
Prediction			
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]		
	0.190	0.231	
K (C _{HF(A,B)} ,C _{adipose tissue})	[numerical units]		
	1.549	1.702	
N-true - does not cover			

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Menisdaurin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.11. 25*).

 Tabl.IV.3.11. 25 Total body elimination half-life model toxicity of amide and carboxyl acid derivatives of Menisdaurin

QSARINS	Menisc	laurin				
indicator	amide	acid				
GADI	0.85	0.85				
SMKEV	0.81	0.81				
APSM	0.09	0.09				
CSM	0.07	0.10				
MEPASM	0.15	0.15				
MDRC	true	true				
ACFSC	1	1				
Prediction						
LogHLt	[log u	nits]				
	0.33	0.36				
Total half-life	[mi	n]				
	130	135				
true- descriptors for this compound have values inside the descriptor range of the compounds of the training set						

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Menisdaurin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.11.26*).

 Tabl.IV.3.11. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid derivatives of Menisdaurin

IRFMN/VERMEER	Menisdaurin								
indicator	amide	acid							
GADI	0	0.86							
SMKEV	0.75	0.75							
APSM	1	1							
CSM	0	1							
ACFSC	1	1							
Prediction	inA	inA							
inA- inactive		inA- inactive							

269

second supplemented edition

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.11.3.2*), carcinogenicity (*§IV.3.1.11.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.11.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Menisdaurin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.11. 27*). They are relatively safe in terms of the *NOAEL* toxicity model.

Tabl.IV.3.11. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of
Menisdaurin

r	1	
IRFMN/CORAL	Meniso	laurin
indicator	amide	acid
GADI	0.85	0.85
SMKEV	0.83	0.84
APSM	0.25	0.25
CSM	0.50	0.36
MEPASM	0.38	0.38
MDRC	true	true
ACFSC	0.85	0.85
Prediction	[-log(m	g/kg)]
	-3.15	-3.30
Prediction	[mg/	'kg]
	1413	1995
true- descriptors for this com	pound have	e values
inside the descriptor range of	the compo	ounds of
the training set		

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.11.4. Evaluation of the results

After a comparative analysis of the results (\$IV.3.1.11.1, -2 and -3) we assume that amide and carboxyl acid derivatives of *Menisdaurin* would be optimal for drugs taken orally to poison the cancer cell with (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide as performed in \$IV.2 second objective of the study.

3.1.11.5. Conclusion from the part

Applying of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide $3924 \le 10845 \le 29968$, acid $2977 \le 73832.64 \le 18307.03$ and Bioaccumulation factor [conditional units] amide $0.85 \le 13.78 \le 224.33$, acid are $0.00 \le 0.30 \le 617.14$

3.1.11.6. Evaluation of the results

Conducted according to the methodological scheme §III.3.3.7.

3.1.11.6.1. Lipophilicity

Data from *Tabl.IV.3.11. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

			L	og P _{o/w}		
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Menisdaurin						
amide	1.82	-3.15	-3.10	-2.65	-2.66	-1.95
acid	0.19	-2.50	-2.50	-2.24	-2.42	-1.89

Tabl.IV.3.11. 28 Lipophilicity of amide and carboxylic acid derivatives of Menisdaurin

3.1.11.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.11. 29*).

studied indicator	Menisdaurin			
studied indicator	amide	acid		
ESOL				
Log S	0.35	-0.06		
Solubility, [mg/ml]	7.49e+02	2.89e+02		
Class	VS	VS		
Ali				
Log S	0.30	-0.25		
Solubility, [mg/ml]	6.62e+02	1.86e+02		
Class	VS	VS		
SILICOS-IT				
Log S	2.54	2.76		
Solubility, [mg/ml]	1.15e+05	1.91e+05		
Class	S	S		
vs - very soluble; s - soluble				

Tabl.IV.3.11. 29 Water solubility of amide and carboxylic acid derivatives of Menisdaurin

3.1.11.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Menisdaurin* meets the pharmacokinetic requirements (*Table IV.3.11. 30*).

Tabl.IV.3.11. 30 Pharmacokinetic indicators of amide and derivatives of Menisdaurin

studied indicator	Meni	Menisdaurin			
studied indicator	amide	acid			
GI absorption	low	low			
BBB permeant	no	no			
P-gp substrate	Yes	Yes			
inhibitors					
CYP1A2	no	no			
CYP2C19	no	no			
CYP2C9	no	no			
CYP2D6	no	no			
CYP3A4	no	no			
$\log K_{\rm p}$					
skin permeation, [cm/s]	-10.56	-10.10			

3.1.11.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.11. 31*) containing amide and derivatives of *Menisdaurin*.

second supplemented edition

 Tabl.IV.3.11. 31 Muegge activity and Bioavailability Score of amide and derivatives of Menisdaurin

studied indicator	Menisdaurin						
studied indicator	amide	acid					
Muegge	No*	No*					
Bioavailability Score	0.55	0.11					
* No; 3 violations: XLOGP3<-2, TPSA>150, H-don>5							

3.1.11.6.5. Medical Chemistry

Data from *Tabl.IV.3.11. 32* confirm the drug safety of amide and derivatives of *Menisdaurin*.

Tabl.IV.3.11. 32 Medical chemistry indicators for amide and derivatives of Menisdaurin

studied indicator	Menisdaurin			
studied indicator	amide	acid		
PAINS, [number of alerts]	0	0		
Brenk, [number of alerts]	1*	1*		
Leadlikeness	Yes	Yes		
Synthetic accessibility	5.35	5.42		
* 1 alert: michael acceptor 1				

- 🛇 -

3.1.12. (R)-2-hydroxy-3-methylbutanamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of (R)-2-hydroxy-3-methylbutanamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Epiheterodendrin*. The process proceeds according to §IV.2.3.

3.1.12.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.3.12.** 1 are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-*hydroxy*-3-*methylbutanamide*.

Tabl.IV.3.12. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3-methylbutanamide

		GPCR ligand	Ion channel modulator	Kinase Nuclear receptor inhibitor ligand		Protease inhibitor	Enzyme inhibitor
Epiheterodendrin							
	amide	0.02	-0.08	-0.26	-0.44	0.15	0.31
	acid	0.17	0.17	-0.25	0.16	0.21	0.52

Data in *Tabl.IV.3.12. 1* show that the amides and carboxylic acids of *Epiheterodendrin* have more pronounced overall drug activity *in vivo*.

3.1.12.2. Pharmacological and biological activity of oral active drugs

3.1.12.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.3.12. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3-methylbutanamide.

Tabl.IV.3.12. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3-methylbutanamide

		Lipinski's Rule				Lipinski's Rule Ghose Filter				CMC-50-Like Rule				
		MW	logP	HBA	HBD	MW	logP	AMR	nAtom	1	MW	logP	AMR	nAtom
Epiheterodendrin														
	amide	279	-1.8	8	5	279	-1.8	60	40		279	-1.8	60	40
	acid	280	-1.0	8	5	280	-1.0	60	39		280	-1.0	60	39

The two molecular modified forms of *Epiheterodendrin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.12.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3-methylbutanamide are listed in Tabl.IV.3.12. 3.

Tabl.IV.3.12. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3-methylbutanamide

		Veber Filter			Veber Filter MDDR-Like Rule				BBB Likeness			
		TPSA	TPSA nRB		nRB	RC	nRingidB	MW	nAcidGroup	nHB		
Epiheterodendrin												
	amide	142	5		5	1	14	279	0	13		
	acid	137	5		5	1	14	280	1	13		

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.12.2.3. QED

The analysis is performed according to *§3.3.3.1.3*.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.3.12. 4*.

 Tabl.IV.3.12. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3

 methylbutanamide

			uwQED							
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Epiheterodendrin										
	amide	279	-2.4	8	5	142	5	0	0	0.37
	acid	280	-2.0	8	5	137	5	0	0	0.40

B. wQED

In *Tabl.IV.3.12.* 5 presents the data from the calculations for a *Weighted Quantitative Estimate of Druglikeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3-methylbutanamide.

second supplemented edition

			wQED							
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Epiheterodendrin										
	amide	279	-2.4	8	5	142	5	0	0	0.43
	acid	280	-2.0	8	5	137	5	0	0	0.46

 Tabl.IV.3.12. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (R)-2-hydroxy-3

 methylbutanamide

uwQED (*Tabl.IV.3.12. 4*) and *wQED* (*Tabl.IV.3.12. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Epiheterodendrin* meets the requirements for conservative treatment.

3.1.12.3. Non -laboratory and no clinical information on the chemical form

3.1.12.3.1. Receptor activity

In *Tabl.IV.3.12.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Epiheterodendrin* to receptors (according to *§III.3.3.4.1*).

Tabl.IV.3.12. 6 Receptor activity of amide and carboxyl derivatives of Epiheterodendrin

indicator	Epiheterodendrin			
mulcator	amide	acid		
AR				
ERa				
ERb				
GR				
MR	-	-		
PR				
RARa				
RARb				
RARr				
TRa				
TRb				
VDR				

With the exception of *Mineralocorticoid Receptor* (MR), the studied molecules show inertness to the studied receptor set.

3.1.12.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.12.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Epiheterodendrin*.

Tabl.IV.3.12. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives ofEpiheterodendrin

CAESAR	Epiheter	odendrin				
indicator	amide	acid				
GADI	0.83	0.75				
SMKEV	0.83	0.83				
APSM	1	1				
CSM	0.67	0.68				
MDRC	true	true				
ACFSC	1	1				
Prediction	NM	NM				
true- descriptors for this con	pound ha	ve values				
inside the descriptor range of the	he compou	nds of the				
training set; NM- non mutager	nicity					

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Epiheterodendrin* did not show activity (*Table IV.3.1. 8*).

Tabl.IV.3.12. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives ofEpiheterodendrin

SarPy/IRFMN	SarPy/IRFMN Epiheterodendrin				
indicator	amide	acid			
GADI	0.83	0.64			
SMKEV	0.83	0.83			
APSM	1	0.36			
CSM	0.68	0.68			
ACFSC	1	1			
Prediction	NM	NM			
NM- non mutagenicity					

c) ISS

Amide and carboxyl acid derivatives of *Epiheterodendrin* are non-mutagenic according to *ISS* methodology (*Table IV.3.12. 9*).

Tabl.IV.3.12. 9 ISS mutagenicity	of amide and carbo	oxyl acid derivatives	of Epiheterodendrin
----------------------------------	--------------------	-----------------------	---------------------

ISS	Epiheterodendrin				
indicator	amide	acid			
GADI	0.77	0.78			
SMKEV	0.83	0.82			
APSM	1	1			
CSM	0.52	0.53			
ACFSC	1	1			
Prediction	NM	NM			
NM- non mutagenicity					

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Epiheterodendrin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

Tabl.IV.3.12. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of
Epiheterodendrin

KNN/Read-Across	Epihete	Epiheterodendrin		
indicator	amide	acid		
GADI	0.60	0.55		
SMKEV	0.85	0.84		
APSM	0.24	0.24		
CSM	0.75	0.52		
ACFSC	1	1		
Prediction	NM	NM		
	•			
NM- non mutagenicity				

B. Consensus model

Data from *Tabl.IV.3.12. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Epiheterodendrin* to mutagenicity.

278

second supplemented edition

 Tabl.IV.3.12. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Epiheterodendrin

Consensus model	Epiheterodendrin		
mutagenicity indicator	amide acid		
numerical value	0.50	0.40	

3.1.12.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data on carcinogenicity activity, using *CAESAR* methodology (*Tab.IV.3.12.12*), for amide and carboxyl acid derivatives of *Epiheterodendrin* did not indicate the presence of carcinogenicity.

CAESAR	Epiheter	odendrin
indicator	amide	acid
		<u>.</u>
GADI	0.76	0.75
SMKEV	0.81	0.79
APSM	1	1
CSM	0.50	0.50
MDRC	true	true
ACFSC	1	1
MCAR	0.61	0.25
NMNC	1	1
Carcinogen	0.19	0.38
NON-Carcinogen	0.81	0.62
Prediction	NC	NC
true- descriptors for this com inside the descriptor range of	-	

Tabl.IV.3.12. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives ofEpiheterodendrin

b) ISS

Carboxyl acid form of *Epiheterodendrin* is prone to carcinogenicity (*Table IV.3.12. 13*) according to *ISS* methodology. In the training set there are molecules with close to analyzed fragments⁴³.

the training set; NC- NON-Carcinogen

⁴³ Similarity: 0.81 by CAS: 18883-66-4; Similarity: 0.76 by CAS: 315-22-0, CAS: 51333-22-3 and CAS: 54749-90-5

second supplemented edition

ISS	Epiheterodendrin		
indicator	amide	acid	
GADI	0.76	0.75	
SMKEV	0.83	0.82	
APSM	1	1	
CSM	0.48	0.47	
ACFSC	1	1	
Prediction	С	С	
C- Carcinogen			

Tabl.IV.3.12. 13 ISS carcinogenicity of amide and carboxyl acid derivatives ofEpiheterodendrin

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.12. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Epiheterodendrin*.

Tabl.IV.3.12. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of
Epiheterodendrin

IRFMN/Antares	Epiheter	odendrin
indicator	amide	acid
GADI	0.64	0.64
SMKEV	0.85	0.87
APSM	0.67	0.34
CSM	0.34	0.67
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.12. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxylic acid derivatives of *Epiheterodendrin*.

IRFMN/ISSCAN-CGX	Epiheterodendrin	
indicator	amide	acid
GADI	0.81	0.80
SMKEV	0.82	0.81
APSM	1	1
CSM	0.65	0.64

 Tabl.IV.3.12. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxylic acid derivatives of Epiheterodendrin

second supplemented edition

ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

Data from *Carcinogenicity oral classification model* (IRFMN) of amide and carboxylic acid derivatives of *Epiheterodendrin* (*Tabl.IV.3.12. 16*).

 Tabl.IV.3.12. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Epiheterodendrin

IRFMN	Epiheter	odendrin
indicator	amide	acid
GADI	0	0
SMKEV	0.80	0.79
APSM	1	1
CSM	0	0
MDRC	true	true
ACFSC	1	1
Prediction	NC	NC
true- descriptors for this compound have values		
inside the descriptor range of the compounds of the		
training set; NC- NON-Carcinogen		

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.12.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Epiheterodendrin* should not be administered orally.

Tabl.IV.3.12. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Epiheterodendrin

IRFMN	Epihete	rodendrin
indicator	amide	acid
GADI	0.68	0.67
SMKEV	0.80	0.79
APSM	0.18	0.18
CSM	2.20	2.17
MEPASM	0.28	0.28
MDRC	true	true
ACFSC	0.85	0.85

second supplemented edition

Predicted Oral	(g/kg-	day) ⁻¹
Carcinogenicity SF for molecular forms	25.70	23.99
Presumed concentration of	$(g/kg-day)^{-1}$	
the active form inside the cancer cell	9	.0
true- descriptors for this compound have values		
inside the descriptor range of the compounds of the		
training set		

3.1.12.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Epiheterodendrin* highlights the lack of toxicity (*Table IV.3.12. 18*).

Tabl.IV.3.12. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Epiheterodendrin

CAESAR	Epiheter	odendrin
indicator	amide	acid
GADI	0.76	0.89
SMKEV	0.80	0.80
APSM	1	1
CSM	0.53	1
MDRC	true	true
ACFSC	1	1
Prediction	NT	NT
true- descriptors for this compound have values		
inside the descriptor range of the compounds of the		
training set; NT- non-toxic		

b) **PG(Reproductive Toxicity library)**

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Epiheterodendrin* did not report values for GADI and CSM. Molecular fragments close to (R)-2-hydroxy-3-methylbutanamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.12. 19* cannot be considered reliable.

PG	Epiheter	odendrin
indicator	amide	acid
GADI	0	0
SMKEV	0.77	0.76
APSM	1	1
CSM	0	0
ACFSC	1	1
Prediction	NT	NT
NT- non-toxic		

Tabl.IV.3.12. 19 PG toxicity of amide and carboxyl acid derivatives of Epiheterodendrin

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to *IRFMN/CORAL* toxicity test on amide and carboxyl acid derivatives of *Epiheterodendrin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.12. 20*).

 Tabl.IV.3.12. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid derivatives of Epiheterodendrin

IRFMN/CORAL	Epihete	rodendrin
indicator	amide	acid
GADI	0.27	0.41
SMKEV	0.68	0.68
APSM	0.35	0.58
CSM	0.18	1.11
MEPASM	0.54	1.01
MDRC	true	true
ACFSC	0.40	0.60
Prediction	[m	g/L]
	5.2	13.1
true- descriptors for this compound have values		
inside the descriptor range of the compounds of the		
training set		

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Epiheterodendrin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.12. 21*). Everything is determined by the concentration and time of treatment.

CORAL	Epiheter	odendrin
indicator	amide	acid
GADI	0.65	0.64
SMKEV	0.80	0.82
APSM	1	1
CSM	0.53	0.47
ACFSC	0.85	0.85
Prediction	А	inA
A- active; inA- inactive		

Tabl.IV.3.12. 21 Chromosomal aberration toxicity model of amide and carboxyl acidderivatives of Epiheterodendrin

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Epiheterodendrin* (*Tab.IV.3.12. 22*). Concentration and treatment time are crucial in accurately describing the process.

IRFMN	Epiheter	odendrin
indicator	amide	acid
GADI	0.93	0.94
SMKEV	0.87	0.88
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.04	0.02
Active Antagonist:	0.01	0.01
Inactive:	0.95	0.97
Prediction	inA	inA
inA- inactive		

 Tabl.IV.3.12. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of Epiheterodendrin

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Epiheterodendrin* did not report any deviations (*Tabl.IV.3.12. 23*) affecting the studied process.

NIC	Epiheterodendrin				
indicator	amide acid				
GADI	0.78	0.78			
SMKEV	0.87	0.84			
APSM	0.51	0.51			
CSM	1	1			
MDRC	true	true			
ACFSC	1 1				
Euclidean Distance from the	2.22	1.78			
central neuron: 2.22 1.78					
Prediction	nonA	nonA			
true- descriptors for this com	pound ha	ve values			
inside the descriptor range of the compounds of the					
training set; nonA- non active					

 Tabl.IV.3.12. 23 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of Epiheterodendrin

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Epiheterodendrin* we understand (*Tabl.IV.3.12. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.3.12. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives ofEpiheterodendrin

INERIS	Epiheterodendrin			
indicator	amide acid			
GADI	0	0		
SMKEV	0.68	0.67		
APSM	0.16	0.31		
CSM	0.59 0.47			
MEPASM	0.19	0.50		
MDRC	N-true	N-true		
ACFSC	0.51 0.60			
Prediction				
logK (C _{HF(A,B)} ,C _{adipose tissue})	gK (C _{HF(A,B)} , C _{adipose tissue}) [log units]			
	0.167 0.144			
K (C _{HF(A,B)} ,C _{adipose tissue})	(A,B), Cadipose tissue) [numerical units]			
	1.469	1.393		
N-true - does not cover				

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Epiheterodendrin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.12. 25*).

Tabl.IV.3.12. 25 Total body elimination half-life model toxicity of amide and carboxyl acid
derivatives of Epiheterodendrin

QSARINS	Epiheterodendrin			
indicator	amide acid			
GADI	0.85	0.85		
SMKEV	0.84	0.85		
APSM	0.09	0.03		
CSM	0.01	0.12		
MEPASM	0.15	0.03		
MDRC	true	true		
ACFSC	1	1		
Prediction				
LogHLt	[log units]			
	0.28 0.30			
Total half-life	[m	in]		
	115	120		
true- descriptors for this compound have values				
inside the descriptor range of the compounds of the				
training set				

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Epiheterodendrin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.12. 26*).

<i>Tabl.IV.3.12. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid</i>
derivatives of Epiheterodendrin

IRFMN/VERMEER	Epiheterodendrin		
indicator	amide	acid	
GADI	0.74	0.74	
SMKEV	0.77	0.76	
APSM	1	1	
CSM	0.49	0.52	
ACFSC	1	1	
Prediction	А	inA	
A- active; inA- inactive			

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.12.3.2*), carcinogenicity (*§IV.3.1.12.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.12.3.4*).

b) in vivo

The amides and carboxylic acid derivatives of *Epiheterodendrin*, as well as the (R)-2hydroxy-3-methylbutanamide secreted after the passage of the cancer cell membrane, have been well studied in the clinical setting. Applying the *Micronucleus* toxicity activity model in vivo, the analysis showed the absence of genotoxic activity (*Tabl.IV.3.12.27*).

 Tabl.IV.3.12. 27 Micronucleus toxicity activity model – in vivo of amide and carboxyl acid

 derivatives of Epiheterodendrin

IRFMN	Epiheter	Epiheterodendrin	
indicator	amide	acid	
GADI	0.92	0.93	
SMKEV	0.84	0.86	
APSM	1	1	
CSM	1	1	
ACFSC	1	1	
Prediction	NON- genoto xic	NON- genoto xic	

F. NOAEL

The amide and carboxylic acid derivatives of *Epiheterodendrin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.12. 28*). They are relatively safe in terms of the *NOAEL* toxicity model.

Tabl.IV.3.12. 28 NOAEL methodology for toxicity of amide and carboxyl acid derivatives ofEpiheterodendrin

IRFMN/VERMEER	Epiheterodendrin			
indicator	amide	acid		
GADI	0.85	0.85		
SMKEV	0.87	0.89		
APSM	0.25	0.25		
CSM	0.83	0.69		
MEPASM	0.38	0.38		
MDRC	true	true		
ACFSC	0.85	0.85		
Prediction	[-log(1	[-log(mg/kg)]		
	-2.82	-2.97		

second supplemented edition

Prediction	[mg/kg]			
	667	933		
true- descriptors for this compound have values				
true- descriptors for this con	ipound nu	e fuides		
inside the descriptor range of t	1			

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.12.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.12.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Epiheterodendrin* would be optimal for drugs taken orally to poison the cancer cell with (*R*)-2-hydroxy-3-methylbutanamide as performed in §*IV.2* second objective of the study.

3.1.12.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide 2991 \leq 8379 \leq 23479, acid 5167 \leq 13130 \leq 33364 and *Bioaccumulation factor* [conditional units] amide 5.5 \leq 89 \leq 1448 and acid form are 0.03 \leq 0.61 \leq 13.7.

3.1.12.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.12.6.1. Lipophilicity

Data from *Tabl.IV.3.12. 29* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.3.12. 29	Lipophilicity of am	de and carboxylic acid a	lerivatives of Epiheterodendrin
------------------	---------------------	--------------------------	---------------------------------

\sim	$\log P_{ m o/w}$					
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Epiheterodendi	rin					
amide	1.63	-2.34	-2.69	-2.48	-2.01	-1.58
acid	1.05	-1.69	-2.09	-2.08	-1.77	-1.32
		•	1		•	

3.1.12.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.12. 30*).

Tabl.IV.3.12. 30 Water solubility of amide and carboxylic acid derivatives of Epiheterodendrin

studied indicator	Epihete	rodendrin				
studied indicator	amide	acid				
ESOL						
Log S	0.23	-0.18				
Solubility, [mg/ml]	4.77e+02	1.84e+02				
Class	VS	VS				
Ali						
Log S	-0.11	-0.67				
Solubility, [mg/ml]	2.14e+02	6.02e+01				
Class	VS	VS				
SILICOS-IT						
Log S	1.84	2.06				
Solubility, [mg/ml]	1.93e+04	3.18e+04				
Class	S	S				
vs - very soluble; s - soluble						

3.1.12.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Epiheterodendrin* meets the pharmacokinetic requirements (*Table IV.3.12. 31*).

Tabl.IV.3.12. 31 Pharmacokinetic indicators of amide and derivatives of Epiheterodendrin

studied indicator	Epiheter	odendrin				
studied indicator	amide	acid				
GI absorption	low	low				
BBB permeant	no	no				
P-gp substrate	Yes	Yes				
inhibitors						
CYP1A2	no	no				
CYP2C19	no	no				
CYP2C9	no	no				
CYP2D6	no	no				
CYP3A4	no	no				
$\text{Log } K_{\text{p}}$						
skin permeation, [cm/s]	-9.67	-9.21				

3.1.12.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.12. 31*) containing amide and derivatives of *Epiheterodendrin*.

Tabl.IV.3.12. 32 Muegge activity and Bioavailability Score of amide and derivatives ofEpiheterodendrin

studied indicator	Epiheterodendrin			
studied indicator	amide	acid		
Muegge	No*	No*		
Bioavailability Score	0.55	0.56		
1 violation: XLOGP3<-2				

3.1.12.6.5. Medical Chemistry

Data from *Tabl.IV.3.12. 33* confirm the drug safety of amide and derivatives of *Epiheterodendrin*.

Tabl.IV.3.12. 33 Medical chemistry indicators for amide and derivatives of Epiheterodendrin

studied indicator	Epiheterodendrin			
studied indicator	amide	acid		
PAINS, [number of alerts]	0	0		
Brenk, [number of alerts]	0	0		
Leadlikeness	Yes	Yes		
Synthetic accessibility	4.60	4.67		

- 🛇 -

3.1.13. (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Griffonin*. The process proceeds according to *§IV.2.3*.

3.1.13.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.13. 1** are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*E*)-2-((4*S*,5*R*,6*R*)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.13. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Griffonin							
	amide	0.42	0.13	0.13	0.30	0.10	0.39
	acid	0.47	0.24	0.12	0.55	0.17	0.70

Data in *Tabl.IV.13. 1* show that the amides and carboxylic acids of *Griffonin* have pronounced overall drug activity *in vivo*.

3.1.13.2. Pharmacological and biological activity of oral active drugs

3.1.13.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.13. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.13. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical moleculespotentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

		Lipinski's Rule				Ghose Filter				Γ	CMC-50-Like Rule				
		MW	logP	HBA	HBD	М	W	logP	AMR	nAtom		MW	logP	AMR	nAtom
Griffonin															
	amide	347	-3.2	10	7	34	47	-3.2	77	45		347	-3.2	77	45
	acid	348	-2.5	10	7	34	48	-2.5	77	44		348	-2.5	77	44

second supplemented edition

The two molecular modified forms of *Griffonin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.13.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on *Veber Filter*, *MDDR-Like Rule* and *BBB Likeness* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*E*)-2-((4*S*,5*R*,6*R*)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide are listed in *Tabl.IV.13. 3*.

Tabl.IV.13. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

		Veber	Filter	MI	DDR-L	ike Rule	BBB Likeness			
		TPSA	nRB	nRB	RC	nRingidB	MW	nAcidGroup	nHB	
Griffonin										
	amide	183	4	4	2	21	347	0	17	
	acid	177	4	4	2	21	348	1	17	

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§3.1.1.2.1*.

3.1.13.2.3. QED

The analysis is performed according to §3.1.1.2.3.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.13. 4*.

Tabl.IV.13. 4 Unweighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

		uwQED								
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Griffonin										
	amide	347	-3.3	10	7	183	4	1	0	0.20
	acid	348	-2.9	10	7	177	4	1	0	0.22

B. wQED

In **Tabl.IV.13. 5** presents the data from the calculations for a Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer

cell	membrane	and	release	(E)-2- $((4S, 5R, 6R)$ -4,5,6-trihydroxycyclohex-2-en-1-
yliden	e)acetamide.			

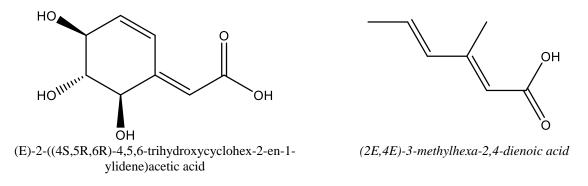
Tabl.IV.13. 5 Weighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

						W	QED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Griffonin										
	amide	347	-3.3	10	7	183	4	1	0	0.29
	acid	348	-2.9	10	7	177	4	1	0	0.31

uwQED (*Tabl.IV.13. 4*) and *wQED* (*Tabl.IV.13. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Griffonin* meets the requirements for conservative treatment.

3.1.13.3. Non -laboratory and no clinical information on the chemical form

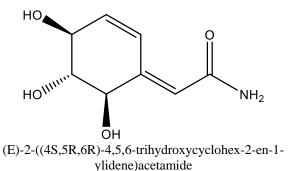
3.1.13.3.1. Receptor activity


In *Tabl.IV.3.13. 6* shows the bioactivity of amide and carboxylic acid derivatives of *Griffonin* to receptors (according to *§III.3.3.4.1*).

indicator	Griff	fonin
indicator	amide	acid
AR		
ERa		
ERb	active *	active *
GR		
MR	-	-
PR		
RARa		active*
RARb		
RARr		
TRa		
TRb		
VDR		
*- agonist		

Tabl.IV.13. (6 Receptor activ	ity of amide and ca	rboxyl derivatives	of Griffonin
---------------	------------------	---------------------	--------------------	--------------

Data from **Tabl.IV.3.13. 6** show that the acid form exhibits *Retinoic Acid Receptor* (RARa) agonist activity. The active molecular form would inhibit the development of a number of tumors (oral cavity, stomach) and melanoma (Soprano & Soprano, 2002). This is probably due to an overlap of a fragment of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid c (2E,4E)-3-methylhexa-2,4-dienoic acid (**Fig.IV.3. 10**).


second supplemented edition

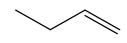


Fig.IV.3. 10 Structural formulas of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1ylidene)acetic acid u (2E,4E)-3-methylhexa-2,4-dienoic acid

It is important to note that (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid is formed as a by-product after the passage of HF(A) across the cancer cell membrane (*§IV.2.3.1*). On the other hand, the amide and acid forms exhibit agonist activity to*Estrogen Receptor b*(ERb).

This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid (**Fig.IV.3. 10**) and (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide with but-1-ene chain (**Fig.IV.3. 11**).

but-1-ene

Fig.IV.3. 11 Structural formulas of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide u but-1-ene

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

3.1.13.3.2. Mutagenicity

A. Stand-alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.13.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Griffonin*.

Tabl.IV.13. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Griffonin

CAESAR	Griffonin			
indicator	amide acid			
GADI	0.74	0.75		
SMKEV	0.82	0.83		
APSM	0.67	0.67		
CSM	0.67	0.67		
MDRC	true	true		
ACFSC	1	1		
Prediction	NM	NM		
true- descriptors for this compound have values				
inside the descriptor range of the compounds of				
the training set; NM- non mutagenicity				

b) SarPy/IRFMN

In terms of mutagenicity, calculated using *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Griffonin* did not show activity (*Table IV.3.13. 8*).

Tabl.IV.13. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Griffonin

SarPy/IRFMN	Grif	fonin	
indicator	amide	acid	
GADI	0.63	0.63	
SMKEV	0.82	0.83	
APSM	0.34	0.35	
CSM	0.67	0.67	
ACFSC	1	1	
Prediction	NM	NM	
	•		
NM- non mutagenicity			

c) ISS

Carboxyl acid derivative of *Griffonin* is non-mutagenic according to *ISS* methodology (*Table IV.3.13. 9*). However, the amide is mutagenic because there are similar molecules in the training set⁴⁴.

⁴⁴ Similarity: 0.72-7 by CAS: 23246-96-0, CAS: 303-34-4, CAS: 315-22-0, CAS: 18883-66-4 and CAS: 2058-46-0

ISS	Griffonin				
indicator	amide acid				
GADI	0.74	0.76			
SMKEV	0.80	0.80			
APSM	1	1			
CSM	0.47	0.54			
ACFSC	1	1			
Prediction M NM					
M- mutagenicity; NM- non mutagenicity					

Tabl.IV.13. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Griffonin

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Griffonin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

 Tabl.IV.13. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Griffonin

KNN/Read-Across	Griffonin				
indicator	amide acid				
GADI	0.54	0.71			
SMKEV	0.83	0.83			
APSM	0.24	0.49			
CSM	0.51	0.76			
ACFSC	1	1			
Prediction NM NM					
NM- non mutagenicity					

B. Consensus model

Data from *Tabl.IV.3.13. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Griffonin* to mutagenicity.

Tabl.IV.13. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives ofGriffonin

Consensus model	Griffonin		
mutagenicity indicator	amide acid		
numerical value	0.25	0.50	

3.1.13.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data on carcinogenicity activity, using *CAESAR* methodology (*Tab.IV.3.13.12*), for amide and carboxyl acid derivatives of *Griffonin* did not indicate the presence of carcinogenicity.

Tabl.IV.13. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Griffonin

CAESAR	CAESAR Griffonin				
indicator	amide	acid			
GADI	0.75	0.88			
SMKEV	0.78	0.78			
APSM	1	1			
CSM	0.51	1			
MDRC	true	true			
ACFSC	1	1			
MCAR	0.47	0.47			
NMNC	1	1			
· · ·					
Carcinogen	0.27	0.27			
NON-Carcinogen	0.73	0.73			
Prediction	Prediction NC NC				
true- descriptors for this compound have values					
inside the descriptor range of the compounds of					
the training set; NC- NON-Carcinogen					

b) ISS

ISS carcinogenicity assessment methodology does not provide amide and carboxyl acid derivatives of *Griffonin* (*Tabl.IV.3.13. 13*). In this case we get identical (and/or those in the statistical error of the method) results for CSM, but neither can be accepted – i.e. is both below and above 0.50.

Tabl.IV.13.	13 IS	SS carcinog	enicity of	^c amide and	l carboxyl acia	l derivatives d	of Griffonin
							· · · · · · · · · · · · · · · · · · ·

ISS	Griffonin			
indicator	amide acid			
GADI	0.74	0.76		
SMKEV	0.80	0.80		
APSM	1	1		
CSM	0.47	0.54		
ACFSC	1	1		
· · · ·				
Prediction	С	NC		
C- carcinogen; NC- NON-Carcinogen				

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.13. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Griffonin*.

 Tabl.IV.13. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Griffonin

IRFMN/Antares	Griffonin		
indicator	amide	acid	
GADI	0.74	0.75	
SMKEV	0.83	0.84	
APSM	0.66	0.66	
CSM	0.66	0.66	
ACFSC	1	1	
Prediction	PNC	PNC	
	•		
C- carcinogen			

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.13. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Griffonin*.

 Tabl.IV.13. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Griffonin

IRFMN/ISSCAN-CGX	Griffonin			
indicator	amide acid			
GADI	0.79	0.79		
SMKEV	0.78	0.78		
APSM	1	1		
CSM	0.64	0.63		
ACFSC	1	1		
Prediction	PNC	PNC		
C- carcinogen				

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

The non-carcinogenicity of amide and carboxyl acid derivatives of *Griffonin* was confirmed (*Table IV.3.13. 16*) by the *Carcinogenicity oral classification model* (IRFMN) model.

IRFMN	Griffonin			
indicator	amide acid			
GADI	0.73	0.85		
SMKEV	0.75	0.73		
APSM	0.50	1		
CSM	1	1		
MDRC	true	true		
ACFSC	1	1		
Prediction	PNC	NC		
true- descriptors for this com	oound have	e values		
inside the descriptor range of the compounds of				
the training set; PNC- possible non-carcinogenic;				
NC- NON-Carcinogen				

 Tabl.IV.13. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Griffonin

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.13.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Griffonin* should not be administered orally.

 Tabl.IV.13. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Griffonin

IRFMN	Griffonin		
indicator	amide	acid	
GADI	0	0	
SMKEV	0.75	0.73	
APSM	0.07	0.10	
CSM	3.56	2.86	
MEPASM	0.11	0.11	
MDRC	N-true	N-true	
ACFSC	0.85	0.85	
Predicted Oral	(g/kg-	-day) ⁻¹	
Carcinogenicity SF for molecular forms	32.4 31.6		
Presumed concentration	(g/kg-day) ⁻¹		
of the active form inside the cancer cell	14.3		
n-true - does not cover			

3.1.13.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Griffonin* highlights the lack of toxicity (*Table IV.3.13. 18*).

CAESAR	Griffonin	
indicator	amide	acid
GADI	0.88	0.88
SMKEV	0.77	0.77
APSM	1	1
CSM	1	1
MDRC	true	true
ACFSC	1	1
Prediction	NT	NT
true- descriptors for this compound have		
values inside the descriptor range of the		
compounds of the training set; NT- non-toxic		

Tabl.IV.13. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Griffonin

b) PG(Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives *Griffonin* did not report values for GADI and CSM. Molecular fragments close to (*E*)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamidehave not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.13. 19* cannot be considered reliable.

PG	Grif	Griffonin	
indicator	amide	acid	
GADI	0.62	0	
SMKEV	0.76	0.76	
APSM	0.49	1	
CSM	0.50	0	
ACFSC	1	1	
Prediction	NT	NT	
NT- non-toxic			

Tabl.IV.13. 19 PG toxicity of amide and carboxyl acid derivatives of Griffonin

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Griffonin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.13. 20*).

Tabl.IV.13. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and ca	rboxyl acid
derivatives of Griffonin	

IRFMN/CORAL	Griffonin	
indicator	amide	acid
GADI	0.28	0.40
SMKEV	0.69	0.67
APSM	0.31	0.31
CSM	1.37	1.77
MEPASM	0.54	0.54
MDRC	true	true
ACFSC	0.40	0.60
Prediction	[mg/L]	
Flediction	44.4	11.3
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set		

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Griffonin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.13. 21*). Everything is determined by the concentration and time of treatment.

Tabl.IV.13. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of
Griffonin

CORAL	Griffonin	
indicator	amide	acid
GADI	0.76	0.75
SMKEV	0.79	0.78
APSM	1	1
CSM	1	1
ACFSC	0.85	0.85
Prediction	А	Α
A- active		

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Griffonin* (*Tab.IV.3.13. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.13. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of
Griffonin

IRFMN	Griffe	onin
indicator	amide	acid
GADI	0.89	0.90
SMKEV	0.79	0.80
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.12	0.12
Active Antagonist:	0.04	0.04
Inactive:	0.84	0.84
Prediction	inA	inA
inA- inactive		

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Griffonin* did not report any deviations (*Tabl.IV.3.13. 23*) affecting the studied process.

Tabl.IV.13. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid derivativesof Griffonin

NIC	Griffonin	
indicator	amide	acid
GADI	0.75	0.75
SMKEV	0.79	0.79
APSM	0.49	0.49
CSM	1	1
MDRC	true	true
ACFSC	1	1
Euclidean Distance from the	2.42	3.94
central neuron:	2.42	3.94
Prediction	nonA	nonA
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; nonA- non active		

c) Adipose tissue: blood model

Applying Adipose tissue: blood model for toxicity of amide and carboxyl acid derivatives of *Griffonin* we understand (*Tabl.IV.3.13. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.13. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of
Griffonin

INERIS	Griffonin	
indicator	amide	acid
GADI	0	0
SMKEV	0.68	0.68
APSM	0.31	0.31
CSM	0.63	0.63
MEPASM	0.50	0.50
MDRC	N-true	N-true
ACFSC	0.51	0.60
Prediction		
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]	
	0.192	0.237
K (C _{HF(A,B)} ,C _{adipose tissue})	[numerical units	
]
	1.556	1.726
N-true - does not cover		

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Griffonin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.13. 25*).

<i>Tabl.IV.13. 25 Total body elimination half-life model toxicity of amide and carboxyl acid</i>
derivatives of Griffonin

QSARINS	Griffonin			
indicator	amide acid			
GADI	0.85	0.85		
SMKEV	0.81	0.81		
APSM	0.09	0.41		
CSM	0.02	0.29		
MEPASM	0.15	0.79		
MDRC	true	true		
ACFSC	1	1		
Prediction				
LogHLt	[log u	nits]		

second supplemented edition

	0.24	0.28						
Total half-life	[min] 105 115							
true- descriptors for this compound have								
values inside the descriptor range of the								
compounds of the train	ing set							

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodic part that amide and carboxyl acid derivatives of *Griffonin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.13. 26*).

Tabl.IV.13. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid derivatives of Griffonin

IRFMN/VERMEER	Griffonin				
indicator	amide acid				
GADI	0	0.86			
SMKEV	0.74	0.74			
APSM	1	1			
CSM	0	1			
ACFSC	1	1			
Prediction	inA	inA			
inA- inactive					

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.13.3.2*), carcinogenicity (*§IV.3.1.13.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.13.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus activity* could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Griffonin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.13. 27*). They are relatively safe in terms of the *NOAEL* toxicity model.

second supplemented edition

IRFMN/VERMEER	Griff	onin			
indicator	amide acid				
GADI	0.85	0.85			
SMKEV	0.84	0.86			
APSM	0.25	0.25			
CSM	0.28	0.19			
MEPASM	0.38	0.38			
MDRC	true	true			
ACFSC	0.85	0.85			
Prediction	[-log(m	ng/kg)]			
	-3.37	-3.52			
Prediction	[mg/	/kg]			
	2344	3311			
true- descriptors for this com	pound have	e values			

Tabl.IV.13. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives ofGriffonin

true- descriptors for this compound have values inside the descriptor range of the compounds of the training set

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on gly*cosidamides and gly*cosacids in the training set.

3.1.13.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.13.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Griffonin* would be optimal for drugs taken orally to poison the cancer cell with (*E*)-2-((4*S*,5*R*,6*R*)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide as performed in §*IV.2* second objective of the study.

3.1.13.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values are respectively: *Oral rat LD50* [mg/kg] for amide $5016 \le 13956 \le 38832$, acid $4015 \le 10006 \le 24938$ and *Bioaccumulation factor* [conditional units] amide $0.86 \le 13.9 \le 228$, acid are $0.00 \le 0.25 \le 567$.

3.1.13.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

Theoretical study of the anticancer activity of glucosamidamides second supplemented edition

3.1.13.6.1. Lipophilicity

Data from *Tabl.IV.3.13. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.13. 28 Lipophilicity of amide and carboxylic acid derivatives of Griffonin

	$\log P_{ m o/w}$									
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus				
Griffonin										
amide	0.67	-4.13	-4.13	-3.42	-3.54	-2.91				
acid	0.61	-3.48	-3.53	-3.01	-3.30	-2.54				

3.1.13.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.313. 29*).

Tabl.IV.13. 29 Water solubility of amide and carboxylic acid derivatives of Griffonin

studied indicator	Grif	fonin	
studied indicator	amide	acid	
ESOL			
Log S	0.87	0.46	
Solubility, [mg/ml]	2.59e+03	9.97e+02	
Class	VS	hs	
Ali			
Log S	0.89	0.34	
Solubility, [mg/ml]	2.71e+03	7.62e+02	
Class	VS	hs	
SILICOS-IT			
Log S	3.36	3.58	
Solubility, [mg/ml]	7.92e+05	1.31e+06	
Class	S	S	
vs - very soluble; hs - highly solu	ble; s - soluble	e	

3.1.13.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Griffonin* meets the pharmacokinetic requirements (*Table IV.3.13. 30*).

Tabl.IV.13. 30 Pharmacokinetic indicators of amide and derivatives of Griffonin

studied indicator	Griffonin			
studied indicator	amide	acid		
GI absorption	low	low		
BBB permeant	no	no		
P-gp substrate	Yes	Yes		

306

second supplemented edition

inhibitors		
CYP1A2	no	no
CYP2C19	no	no
CYP2C9	no	no
CYP2D6	no	no
CYP3A4	no	no
Log K _p		
skin permeation, [cm/s]	-11.35	-10.90

3.1.13.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.13. 31*) containing amide and derivatives of *Griffonin*.

Tabl.IV.13. 31 Muegge activity and Bioavailability Score of amide and derivatives of Griffonin

studied indicator	Griffonin							
studied indicator	amide	acid						
Muegge	No*	No*						
Bioavailability Score	0.55	0.11						
* 3 violations: XLOGP3<-2, TPSA>150, H-dor	n>5							

3.1.13.6.5. Medical Chemistry

Data from *Tabl.IV.3.13. 32* confirm the drug safety of amide and derivatives of *Griffonin*. *Tabl.IV.13. 32 Medical chemistry indicators for amide and derivatives of Griffonin*

studied indicator	Grif	Griffonin			
studied indicator	amide	acid			
PAINS, [number of alerts]	0	0			
Brenk, [number of alerts]	1*	1*			
Leadlikeness	Yes	Yes			
Synthetic accessibility	5.49	5.55			
* 1 alert: michael_acceptor_1					

- 🛇 -

3.1.14. (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of*Bauhinin*. The process proceeds according to*§IV.2.3*.

3.1.14.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.14.1** are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.14. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4methoxycyclohex-2-en-1-ylidene)acetamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Bauhinin							
	amide	0.42	0.18	0.19	0.30	0.13	0.64
	acid	0.46	0.29	0.18	0.54	0.19	0.65

Data in *Tabl.IV.14. 1* show that the amides and carboxylic acids of *Bauhinin* have pronounced overall drug activity *in vivo*.

3.1.14.2. Pharmacological and biological activity of oral active drugs

3.1.14.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.14. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*Z*)-2-((4*R*,5*R*,6*S*)-5,6-*dihydroxy*-4-*methoxycyclohex*-2-*en*-1-ylidene)acetamide.

Tabl.IV.14. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical moleculespotentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide

		Lipinski's Rule					Ghose Filter				CMC-50-Like Rule			
		MW	logP	HBA	HBD	MW	MW logP AMR nAtom				logP	AMR	nAtom	
Bauhinin														
	amide	361	-3.1	10	6	362	-3.1	82	48	361	-3.1	82	48	
	acid	362	-2.4	10	6	362	-2.4	82	47	362	-2.4	82	47	

second supplemented edition

The two molecular modified forms of Bauhinin meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.14.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide are listed in **Tabl.IV.14. 3**.

Tabl.IV.14. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide

		Veber Filter		MDDR-Like Rule		BBB Likeness				
		TPSA	nRB	nRB	RC	nRingidB		MW	nAcidGroup	nHB
Bauhinin										
	amide	172	5	5	2	21		361	0	16
	acid	166	5	5	2	21		362	1	16

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.14.2.3. QED

The analysis is performed according to *§3.3.3.1.3*.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.14. 4*.

Tabl.IV.14. 4 Unweighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide

			uwQED							
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Bauhinin										
	amide	361	-2.9	10	6	172	5	1	0	0.24
	acid	362	-2.5	10	6	166	5	1	0	0.26

B. wQED

Tabl.IV.14. 5 presents the data from the calculations for a Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide.

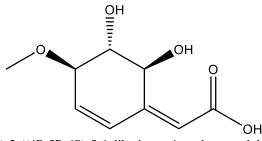
Tabl.IV.14. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide

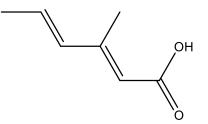
		wQED								
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Bauhinin										
	amide	361	-2.9	10	6	172	5	1	0	0.33
	acid	362	-2.5	10	6	166	5	1	0	0.36

uwQED (*Tabl.IV.14. 4*) and *wQED* (*Tabl.IV.14. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Lithospermoside* meets the requirements for conservative treatment.

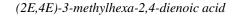
3.1.14.3. Non -laboratory and no clinical information on the chemical form

3.1.14.3.1. Receptor activity


In *Tabl.IV.3.14. 6* shows the bioactivity of amide and carboxylic acid derivatives of *Bauhinin* to receptors (according to *§III.3.3.4.1*).


indicator	Baul	ninin
mulcator	amide	acid
AR		
ERa		
ERb	active *	active *
GR		
MR	-	-
PR		
RARa		active*
RARb		
RARr		
TRa		
TRb		
VDR		
*- agonist		

Tabl.IV.14. 6 Receptor activity of amide and carboxyl derivatives of Bauhinin


second supplemented edition

Data from **Tabl.IV.3.14. 6** show that the acid form exhibits *Retinoic Acid Receptor* (RARa) agonist activity. The active molecular form would inhibit the development of a number of tumors (oral cavity, stomach) and melanoma (Soprano & Soprano, 2002). This is probably due to an overlap of a fragment of (Z)-2-((4R,5R,6S)-5,6-*dihydroxy*-4-*methoxycyclohex*-2-*en*-1-*ylidene*)*acetic acid* c (2E,4E)-3-*methylhexa*-2,4-*dienoic acid* (**Fig.IV.3.12**).

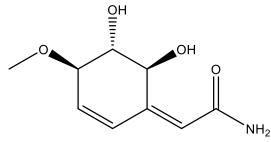

(Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetic acid

Fig.IV.3. 12 Structural formulas of (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetic acid u (2E,4E)-3-methylhexa-2,4-dienoic acid

It is important to note that (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetic acid is formed as a by-product after the passage of <math>HF(A) across the cancer cell membrane (*§IV.2.3.1*). On the other hand, the amide and acid forms exhibit agonist activity to *Estrogen Receptor b* (ERb).

This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (Z)-2-((4R,5R,6S)-5,6dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetic acid (**Fig.IV.3. 12**), (Z)-2-((4R,5R,6S)-5,6dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide with but-1-ene chain (**Fig.IV.3. 13**).

 \searrow

(Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide

Fig.IV.3. 13 Structural formulas of (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide u but-1-ene

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

31

3.1.14.3.2. Mutagenicity

A. Stand -alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.14.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Bauhinin*.

Tabl.IV.14. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Bauhinin

CAESAR	Bauh	inin			
indicator	amide	acid			
GADI	0.74	0.74			
SMKEV	0.82	0.83			
APSM	0.67	0.67			
CSM	0.67	0.67			
MDRC	true	true			
ACFSC	1	1			
Prediction	NM	NM			
true- descriptors for this compound have values					
inside the descriptor range of the compounds of					
the training set; NM- non muta	agenicity				

b) SarPy/IRFMN

In terms of mutagenicity, calculated using the *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Bauhinin* did not show activity (*Table IV.3.14.8*).

Tabl.IV.14. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Bauhinin

SarPy/IRFMN	Baul	ninin
indicator	amide	acid
GADI	0.62	0.63
SMKEV	0.82	0.83
APSM	0.34	0.34
CSM	0.67	0.67
ACFSC	1	1
Prediction	NM	NM
NM- non mutagenicity		

c) ISS

Carboxyl acid derivative of *Bauhinin* is non-mutagenic according to the *ISS* methodology (*Table IV.3.14. 9*). The amide derivative exhibits mutagenic activity⁴⁵ against the organism.

ISS	Bauh	inin
indicator	amide	acid
GADI	0.74	0.76
SMKEV	0.80	0.79
APSM	1	1
CSM	0.48	0.53
ACFSC	1	1
Prediction	М	NM
M- mutagenicity; NM- non mu	utagenicity	

Tabl.IV.14. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Bauhinin

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Bauhinin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

Tabl.IV.14. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives ofBauhinin

KNN/Read-Across	Bauh	inin
indicator	amide	acid
GADI	0.71	0.71
SMKEV	0.82	0.83
APSM	0.50	0.49
CSM	0.75	0.75
ACFSC	1	1
Prediction	NM	NM
NM- non mutagenicity		

B. Consensus model

Data from *Tabl.IV.3.14.11* confirmed the inertness of amide and carboxyl acid derivatives of *Bauhinin* to mutagenicity.

⁴⁵ Similarity: 0.74-7 by CAS: 23246-96-0 (SA37 Pyrrolizidine Alkaloid), CAS: 303-34-4 (SA37 Pyrrolizidine Alkaloid) and CAS: 315-22-0 (SA37 Pyrrolizidine Alkaloids); Similarity: 0.7203 by CAS: 18883-66-4 (SA21 Alkyl and aryl N-nitroso groups) and CAS: 64-75-5 (SA10 alfa, beta unsaturated carbonyls | SA38 Alkenylbenzenes)

Tabl.IV.14. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Bauhinin

Consensus model	Bauhinin		
mutagenicity indicator	amide	acid	
numerical value	0.35	0.50	

3.1.14.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data on carcinogenicity activity, using CAESAR methodology (Tab.IV.3.14. 12), for amide and carboxyl acid derivatives of Bauhinin did not indicate the presence of carcinogenicity.

Tabl.IV.14. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of Bau

CAESAR	Bauh	inin				
indicator	amide	acid				
GADI	0.75	0.89				
SMKEV	0.79	0.79				
APSM	1	1				
CSM	0.52	1				
MDRC	true	true				
ACFSC	1	1				
MCAR	0.47	0.47				
NMNC	1	1				
Carcinogen	0.26	0.26				
NON-Carcinogen	0.74	0.74				
Prediction	NC	NC				
· · · ·						
true- descriptors for this compound have values						
inside the descriptor range of the compounds of						
the training set; NC- NON-Ca	rcinogen	the training set; NC- NON-Carcinogen				

b) ISS

ISS carcinogenicity assessment methodology does not provide amide and carboxyl acid derivatives of Bauhinin (Tabl.IV.3.14. 13). In this case we get identical (and/or those in the statistical error of the method) results for CSM, but neither can be accepted - i.e. is both below and above 0.50.

ISS	Bauh	inin			
indicator	amide	acid			
GADI	0.74	0.76			
SMKEV	0.80	0.79			
APSM	1	1			
CSM	0.48	0.53			
ACFSC	1	1			
Prediction	С	NC			
C- carcinogen; NC- NON-	Carcinoger	1			

Tabl.IV.14. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Bauhinin

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.14. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Bauhinin*.

 Tabl.IV.14. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Bauhinin

IRFMN/Antares	Baul	ninin
indicator	amide	acid
GADI	0.74	0.75
SMKEV	0.82	0.83
APSM	0.67	0.67
CSM	0.67	0.67
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.14. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Bauhinin*.

Tabl.IV.14. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of
Bauhinin

IRFMN/ISSCAN-CGX	Bauhinin	
indicator	amide	acid
GADI	0.79	0.79
SMKEV	0.79	0.78
APSM	1	1

CSM	0.65	0.64	
ACFSC	1	1	
Prediction	PNC	PNC	
PNC- possible non-carcinogenic			

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

Carcinogenic activity (*Table IV.14. 16*) was observed with a single dose of amide and carboxylic acid derivatives of *Bauhinin* according to the *Carcinogenicity oral classification model* (IRFMN). The molecules reported⁴⁶ in APSM also determine the final prediction.

 Tabl.IV.14. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Bauhinin

IRFMN	Bauhinin		
indicator	amide	acid	
GADI	0.73	0.72	
SMKEV	0.75	0.73	
APSM	0.51	0.51	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	
Prediction	С	С	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; C- Carcinogen			

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.14.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Bauhinin* should not be administered orally.

 Tabl.IV.14. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Bauhinin

IRFMN	Bauhinin	
indicator	amide	acid
GADI	0	0
SMKEV	0.75	0.73
APSM	0.07	0.07

⁴⁶ Similarity: 0.73-5 by CAS: 303-34-4, CAS: 315-22-0, CAS: 18883-66-4, CAS: 54749-90-5; Similarity: 0.69 by CAS: 50-07-7

second supplemented edition

CSM	3.43	3.41	
MEPASM	0.11	0.11	
MDRC	N-true	N-true	
ACFSC	0.85	0.85	
Predicted Oral	(g/kg-	day) ⁻¹	
Carcinogenicity SF for	24.0	22.9	
molecular forms			
Presumed concentration of	(g/kg-	day) ⁻¹	
the active form inside the 11.0			
cancer cell	11.0		
N-true – do not cover			

3.1.14.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of the *CAESAR* toxicity method on amide and carboxyl acid derivatives of *Bauhinin* highlights the lack of toxicity (*Table IV.3.14. 18*).

CAESAR	Bauh	inin	
indicator	amide	acid	
GADI	0.75	0.88	
SMKEV	0.78	0.78	
APSM	1	1	
CSM	0.51	1	
MDRC	true	true	
ACFSC	1	1	
Prediction	NT	NT	
true- descriptors for this compound have values			
inside the descriptor range of	inside the descriptor range of the compounds of		
the training set; NT- non-toxic			

Tabl.IV.14. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Bauhinin

b) **PG(Reproductive Toxicity library)**

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Bauhinin* did not report values for GADI and CSM. Molecular fragments close to (Z)-2-((4R,5R,6S)-5,6-*dihydroxy*-4-*methoxycyclohex*-2-*en*-1-*ylidene*)*acetamide* have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.14. 19* cannot be considered reliable.

PG	Baul	Bauhinin	
indicator	amide	acid	
GADI	0.62	0	
SMKEV	0.77	0.77	
APSM	0.50	1	
CSM	0.50	0	
ACFSC	1	1	
Prediction	NT	NT	
NT- non-toxic			

Tabl.IV.14. 19 PG toxicity of amide and carboxyl acid derivatives of Bauhinin

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Bauhinin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.14. 20*).

Tabl.IV.14. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid
derivatives of Bauhinin

IRFMN/CORAL	Baul	Bauhinin	
indicator	amide	acid	
	- · · ·		
GADI	0.28	0.41	
SMKEV	0.69	0.68	
APSM	0.31	0.30	
CSM	1.16	1.56	
MEPASM	0.54	0.54	
MDRC	true	true	
ACFSC	0.40	0.60	
Prediction	[mg	[mg/L]	
Prediction	28.6	72.6	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set			

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Bauhinin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.14. 21*). Everything is determined by the concentration and time of treatment.

CORAL	Bau	Bauhinin	
indicator	amide	acid	
GADI	0.76	0.75	
SMKEV	0.79	0.79	
APSM	1	1	
CSM	1	1	
ACFSC	0.85	0.85	
Prediction	А	А	
A- active			

Tabl.IV.14. 21 Chromosomal aberration model of amide and carboxyl acid derivatives ofBauhinin

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and / or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Bauhinin* (*Tab.IV.3.14. 22*). Concentration and treatment time are crucial in accurately describing the process.

 Tabl.IV.14. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of Bauhinin

IRFMN	Bauhinin		
indicator	amide acid		
GADI	0.89	0.88	
SMKEV	0.79	0.79	
APSM	1	1	
CSM	1	1	
ACFSC	1	1	
Active Agonist	0.13	0.12	
Active Antagonist:	0.03	0.03	
Inactive:	0.84	0.85	
Prediction	inA	inA	
inA- inactive			

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Bauhinin* did not report any deviations (*Tabl.IV.3.14. 23*) affecting the studied process.

second supplemented edition

NIC	Bauhinin		
indicator	amide acid		
GADI	0	0	
SMKEV	0.79	0.79	
APSM	0	0	
CSM	0.51	0.50	
MDRC	true	true	
ACFSC	1	1	
Euclidean Distance from the	2.18	3.70	
central neuron:			
Prediction	NA	NA	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NA- Non activ	ve		

Tabl.IV.14. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid derivativesof Bauhinin

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Bauhinin* we understand (*Tabl.IV.3.14.24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

Tabl.IV.14. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives ofBauhinin

INERIS	Bauhinin	
indicator	amide acid	
GADI	0	0
SMKEV	0.68	0.68
APSM	0.31	0.31
CSM	0.63	0.63
MEPASM	0.50	0.50
MDRC	N-true	N-true
ACFSC	0.51	0.51
Prediction		
$\log K (C_{HF(A,B)}, C_{adipose tissue})$	[log	units]
_	0.181	0.223
K (C _{HF(A,B)} ,C _{adipose tissue})	[numerical units]	
	1.517	1.671
N-true - does not cover		

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Bauhinin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.14.25*).

QSARINS	Bauhinin		
indicator	amide acid		
GADI	0.85	0.85	
SMKEV	0.81	0.82	
APSM	0.09	0.41	
CSM	0.06	0.37	
MEPASM	0.15	0.79	
MDRC	true	true	
ACFSC	1	1	
Prediction			
LogHLt	[log units]		
	0.33	0.36	
Total half-life	[min]		
	130	140	
true- descriptors for this compound have values			

inside the descriptor range of the compounds of

the training set

 Tabl.IV.14. 25 Total body elimination half-life model toxicity of amide and carboxyl acid

 derivatives of Bauhinin

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Bauhinin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.14. 26*).

IRFMN/VERMEER	Bauhinin	
indicator	amide	acid
GADI	0	0.73
SMKEV	0.75	0.75
APSM	1	1
CSM	0	0.52
ACFSC	1	1
Prediction	inA	Α
A- active; inA- inactive		

 Tabl.IV.14. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid

 derivatives of Bauhinin

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.14.3.2*), carcinogenicity (*§IV.3.1.14.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.14.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus activity* could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives *Bauhinin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.14.27*). They are relatively safe in terms of the *NOAEL* toxicity model.

Tabl.IV.14. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives ofBauhinin

IRFMN/VERMEER	Bauhinin		
indicator	amide acid		
	-		
GADI	0.85	0.85	
SMKEV	0.83	0.84	
APSM	0.25	0.25	
CSM	0.54	0.39	
MEPASM	0.38	0.38	
MDRC	true true		
ACFSC	0.85	0.85	
Prediction	[-log(m	ig/kg)]	
	-3.12	-3.26	
Prediction	[mg/	'kg]	
	1318	1820	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set			

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.14.4. Evaluation of the results

After a comparative analysis of the results (\$IV.3.1.14.1, -2 and -3) we assume that amide and carboxyl acid derivatives of *Bauhinin* would be optimal for drugs taken orally to poison the cancer cell with (*Z*)-2-((4*R*,5*R*,6*S*)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide as performed in \$IV.2 second objective of the study.

3.1.14.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg / kg] for amide $3765 \le 10452 \le 29017$, acid $3521 \le 9817 \le 27375$ and *Bioaccumulation factor* [conditional units] amide $0.96 \le 15.6 \le 255$, acid form are $0.00 \le 0.28 \le 560$.

3.1.14.6. Checking conclusion of the part

Conducted according to the methodological scheme *§III.3.3.7*.

3.1.14.6.1. Lipophilicity

Data from *Tabl.IV.3.14. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.14. 28 Lipophilicity of amide and carboxylic acid derivatives of Bauhinin

			L	og P _{o/w}		
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Bauhinin						
amide	1.72	-3.59	-3.47	-3.16	-3.00	-2.30
acid	1.14	-2.94	-2.87	-2.75	-2.77	-2.04

3.1.14.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.14.29*).

Tabl.IV.14. 29 Water solubility of amide and carboxylic acid derivatives of Bauhinin

studied indicator	Bauhinin			
studied indicator	amide	acid		
ESOL	ESOL			
Log S	0.51	0.10		
Solubility, [mg/ml]	1.17e+03	4.52e+02		
Class	hs	hs		
Ali				
Log S	0.56	0.01		
Solubility, [mg/ml]	1.32e+03	3.71e+02		
Class	hs	hs		
SILICOS-IT	SILICOS-IT			
Log S	2.67	2.88		

second supplemented edition

Solubility, [mg/ml]	1.67e+05	2.76e+05	
Class	S	S	
vs - very soluble; hs - highly soluble; s - soluble			

3.1.14.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Bauhinin* meets the pharmacokinetic requirements (*Table IV.3.14. 30*).

Tabl.IV.14. 30 Pharmacokinetic indicators of amide and derivatives of Bauhinin

studied indicator	Bauhinin	
studied indicator	amide	acid
GI absorption	low	low
BBB permeant	no	no
P-gp substrate	Yes	Yes
inhibitors		
CYP1A2	no	no
CYP2C19	no	no
CYP2C9	no	no
CYP2D6	no	no
CYP3A4	no	no
Log K _p		
skin permeation, [cm/s]	-11.05	-10.60
skin permeation, [cm/s]	-11.05	-10.60

3.1.14.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.14. 31*) containing amide and derivatives of *Bauhinin*.

Tabl.IV.14. 31 Muegge activity and Bioavailability Score of amide and derivatives of Bauhinin

studied indicator	Bauhinin	
studied indicator	amide	acid
Muegge	No*	No*
Bioavailability Score	0.55	0.11
* 3 violations: XLOGP3<-2, TPSA>150, H-don>5		

3.1.14.6.5. Medical Chemistry

Data from Tabl.IV.3.14. 32 confirm the drug safety of amide and derivatives of Bauhinin.

second supplemented edition

studied indicator	Bau	hinin			
studied indicator	amide	acid			
PAINS, [number of alerts]	0	0			
Brenk, [number of alerts]	1*	1*			
Leadlikeness	No**	No**			
Synthetic accessibility	5.62	5.68			
* 1 alert: michael_acceptor_1; ** 1 violation: MW>350					

Tabl.IV.14. 32 Medical chemistry indicators for amide and derivatives of Bauhinin

3.1.15. (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Purshianin*. The process proceeds according to *§IV.2.3*.

3.1.15.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.15.1** are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (*E*)-2-((4*R*,6*S*)-4,6-*dihydroxycyclohex-2-en-1-ylidene*)*acetamide*.

Tabl.IV.15. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Purshianin							
	amide	0.53	0.35	0.22	0.42	0.27	0.99
	acid	0.57	0.47	0.21	0.68	0.34	1.01

Data in *Tabl.IV.15. 1* show that the amides and carboxylic acids of *Purshianin* have pronounced overall drug activity *in vivo*.

3.1.15.2. Pharmacological and biological activity of oral active drugs

3.1.15.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In *Tabl.IV.15. 2* shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.15. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical moleculespotentially possible to pass through the cancer cell membrane and release (R)-(E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide

			Lipinsl	ki's Rule	¢		Gho	ose Filter			CMC-5	0-Like R	ule
		MW	logP	HBA	HBD	MV	/ logP	AMR	nAtom	MW	logP	AMR	nAtom
Purshianin													
	amide	331	-2.6	9	6	33	-2.6	74	44	331	-2.6	74	44
	acid	332	-1.9	9	6	33	-1.9	74	43	332	-1.9	74	43

520

second supplemented edition

The two molecular modified forms of *Purshianin* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.15.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide are listed in **Tabl.IV.15.3**

 Tabl.IV.15. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (E)-2-((4R,6S)-4,6

 dihydroxycyclohex-2-en-1-ylidene)acetamide

		Veber Filter		MDDR-Like Rule				BBB Likeness		
		TPSA	nRB		nRB	RC	nRingidB	MW	nAcidGroup	nHB
Purshianin										
	amide	163	4		4	2	20	331	0	15
	acid	157	4		4	2	20	332	1	15

There are no significant fluctuations in individual indicators. All "problem" values correlate with pre-entered deviations **§III.3.3.3.1**.

3.1.15.2.3. QED

The analysis is performed according to §3.3.3.1.3.

A. uwQED

Data for *Unweighted Quantitative Estimate of Druglikeness* of the tested compounds are given in *Tabl.IV.15. 4*.

 Tabl.IV.15. 4 Unweighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (E)-2-((4R,6S)-4,6dihydroxycyclohex-2-en-1-ylidene)acetamide

						uv	wQED			
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Purshianin										
	amide	331	-3.1	9	6	163	4	1	0	0.27
	acid	332	-2.7	9	6	157	4	1	0	0.29

B. wQED

Tabl.IV.15. 5 presents the data from the calculations for a Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide.

						w	QED			
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Purshianin										
	amide	331	-3.1	9	6	163	4	1	0	0.34
	acid	322	-2.7	9	6	157	4	1	0	0.36

 Tabl.IV.15. 5 Weighted Quantitative Estimate of Druglikeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (E)-2-((4R,6S)-4,6

 dihydroxycyclohex-2-en-1-ylidene)acetamide

uwQED (*Tabl.IV.15. 4*) and *wQED* (*Tabl.IV.15. 5*) of a potential pharmaceutical form including amide and carboxylic acid obtained by hydrolysis of the nitrile group of *Lithospermoside* meets the requirements for conservative treatment.

3.1.15.3. Non -laboratory and no clinical information on the chemical form

3.1.15.3.1. Receptor activity

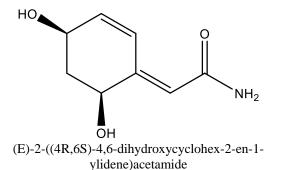
In *Tabl.IV.3.15.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Purshianin* to receptors (according to *§III.3.3.4.1*).

indicator	Pursh	ianin
Indicator	amide	acid
AR		
ERa		
ERb	active *	active *
GR		
MR	-	-
PR		
RARa		active*
RARb		
RARr		
TRa		
TRb		
VDR		
*- agonist		

Tabl.IV.15. 6 Receptor activity of amide and carboxyl derivatives of Purshianin

Data from *Tabl.IV.3.15. 6* show that the acid form exhibits *Retinoic Acid Receptor* (RARa) agonist activity. The active molecular form would inhibit the development of a number of tumors (oral cavity, stomach) and melanoma (Soprano & Soprano, 2002). This is probably due to an overlap of a fragment of (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetic acid c (2E,4E)-3-methylhexa-2,4-dienoic acid (**Fig.IV.3.14**).

second supplemented edition


OH

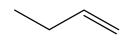

HO OH OH (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-(2E,4E)-3-methylhexa-2,4-dienoic acid ylidene)acetic acid

Fig.IV.3. 14 Structural formulas of (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetic acid u (2E,4E)-3-methylhexa-2,4-dienoic acid

It is important to note that (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)aceticacid is formed as a by-product after the passage of HF(A) across the cancer cell membrane (§IV.2.3.1). On the other hand, the amide and acid forms exhibit agonist activity to *Estrogen Receptor b* (ERb).

This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (E)-2-((4R,6S)-4,6dihydroxycyclohex-2-en-1-ylidene)acetic acid (*Fig.IV.3.* 14) and (*E*)-2-((4*R*,6*S*)-4,6dihydroxycyclohex-2-en-1-ylidene)acetamidewith but-1-ene chain (Fig.IV.3. 15).

but-1-ene

Fig.IV.3. 15 Structural formulas of (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1*ylidene*)*acetamide u but-1-ene*

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) - further developed in goal No.2, and as a secondary suppression of the development of solid tumors in the breast.

3.1.15.3.2. Mutagenicity

A. Stand -alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.15.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Purshianin*.

Tabl.IV.15. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Purshianin

CAESAR	Pursh	ianin			
indicator	amide	acid			
GADI	0.74	0.75			
SMKEV	0.83	0.83			
APSM	0.67	0.67			
CSM	0.70	0.67			
MDRC	true	true			
ACFSC	1	1			
Prediction	NM	NM			
true- descriptors for this compound have values					
inside the descriptor range of the compounds of					

b) SarPy/IRFMN

In terms of mutagenicity, calculated using the *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Purshianin* did not show activity (*Table IV.3.15. 8*).

the training set; NM- non mutagenicity

Tabl.IV.15. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Purshianin

SarPy/IRFMN	Pursh	ianin		
indicator	amide	acid		
GADI	0.63	0.63		
SMKEV	0.83	0.83		
APSM	0.34	0.34		
CSM	0.67	0.67		
ACFSC	1	1		
Prediction	NM	NM		
NM- non mutagenicity				

c) ISS

Carboxyl acid derivative of *Purshianin* is non-mutagenic according to the *ISS* methodology (*Table IV.3.15. 9*). The amide derivative exhibits mutagenic activity⁴⁷ against the organism.

⁴⁷ Similarity: 0.76-8 by CAS: 23246-96-0 (SA37 Pyrrolizidine Alkaloids), CAS: 303-34-4 (SA37 Pyrrolizidine Alkaloids) and CAS: 315-22-0 (SA37 Pyrrolizidine Alkaloids); Similarity: 0.71-4 by CAS: 18883-66-4 (SA21 Alkyl and aryl N-nitroso groups) and CAS: 50-07-7 (SA7 Epoxides and aziridines; SA12 Quinones; SA16 Alkyl carbamate and thiocarbamate)

second supplemented edition

ISS	Purshi	ianin					
indicator	amide	acid					
GADI	0.75	0.76					
SMKEV	0.80	0.80					
APSM	1	1					
CSM	0.48	0.53					
ACFSC	1	1					
Prediction M NM							
M- mutagenicity; NM- non mutagenicity							

Tabl.IV.15. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Purshianin

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Purshianin* show some deviation from the *KNN/Read-Across* method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

Tabl.IV.15. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of
Purshianin

KNN/Read-Across	Pursh	ianin
indicator	amide	acid
GADI	0.71	0.71
SMKEV	0.83	0.83
APSM	0.50	0.50
CSM	0.75	0.75
ACFSC	1	1
Prediction	NM	NM
NM- non mutagenicity		

B. Consensus model

Data from *Tabl.IV.3.15. 11* confirmed the inertness of amide and carboxyl acid derivatives of *Purshianin* to mutagenicity

Tabl.IV.15. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives ofPurshianin

Consensus model	Pursh	anin
mutagenicity indicator	amide	acid
numerical value	0.35	0.50

3.1.15.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data on carcinogenicity activity, using the CAESAR methodology (*Tab.IV.3.15. 12*), for amide and carboxyl acid derivatives of *Purshianin* did not indicate the presence of carcinogenicity.

Tabl.IV.15. 12 CAESAR card	cinogenicity of amide and	carboxyl acid derivati	ves of Purshianin
----------------------------	---------------------------	------------------------	-------------------

CAESAR	Pursh	ianin
indicator	amide	acid
GADI	0.75	0.64
SMKEV	0.79	0.79
APSM	1	0.52
CSM	0.51	0.52
MDRC	true	true
ACFSC	1	1
MCAR	0.39	0.39
NMNC	1	1
Carcinogen	0.31	0.31
NON-Carcinogen	0.69	0.69
Prediction	NC	NC
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; NC- NON-Carcinogen		

b) ISS

ISS carcinogenicity assessment methodology does not provide amide and carboxyl acid derivatives of *Purshianin* (*Tabl.IV.3.15. 13*). In this case we get identical (and/or those in the statistical error of the method) results for CSM, but neither can be accepted – i.e. is both below and above 0.50.

Tabl.IV.15. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Purshianin

ISS	Purshianin	
indicator	amide acid	
GADI	0.75	0.76
SMKEV	0.80	0.80
APSM	1	1
CSM	0.48	0.53
ACFSC	1	1
Prediction	С	NC
C- Carcinogen, NC- NON-Carcinogen		

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.15. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Purshianin*.

 Tabl.IV.15. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Purshianin

IRFMN/Antares	Pursh	Purshianin		
indicator	amide	acid		
GADI	0.74	0.75		
SMKEV	0.83	0.83		
APSM	0.67	0.67		
CSM	0.67	0.67		
ACFSC	1	1		
Prediction	PNC	PNC		
PNC- possible non-carcinogenic				

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.15. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxyl acid derivatives of *Purshianin*.

 Tabl.IV.15. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Purshianin

IRFMN/ISSCAN-CGX	Purshianin	
indicator	amide	acid
GADI	0.80	0.79
SMKEV	0.79	0.78
APSM	1	1
CSM	0.65	0.64
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

Carcinogenic activity (*Table IV.15. 16*) was observed with a single dose of amide and carboxylic acid derivatives of *Purshianin* according to the *Carcinogenicity oral classification model* (IRFMN). The molecules reported⁴⁸ in APSM also determine the final prediction.

⁴⁸ Similarity: 0.74-6 by CAS: 303-34-4, CAS: 315-22-0, CAS: 18883-66-4, CAS: 54749-90-5; Similarity: 0.71 by CAS: 50-07-7

second supplemented edition

IRFMN	Purshianin	
indicator	amide acid	
GADI	0.73	0.72
SMKEV	0.76	0.74
APSM	0.50	0.50
CSM	1	1
MDRC	true	true
ACFSC	1	1
Prediction	С	С
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; CCarcinogen		

 Tabl.IV.15. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and carboxyl acid derivatives of Purshianin

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.15.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Purshianin* should not be administered orally.

 Tabl.IV.15. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity of amide and carboxyl acid derivatives of Purshianin

IRFMN	Pursh	ianin
indicator	amide	acid
GADI	0.64	0.63
SMKEV	0.76	0.74
APSM	0.07	0.07
CSM	2.65	2.60
MEPASM	0.11	0.11
MDRC	true	true
ACFSC	0.85	0.85
Predicted Oral Carcinogenicity	$(g/kg-day)^{-1}$	
SF (log form)	3.89	3.47
Presumed concentration of the	(g/kg-c	lay) ⁻¹
active form inside the cancer cell	1.6	
true- descriptors for this compound have values		
inside the descriptor range of the compounds of the		
training set		

3.1.15.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of the CAESAR toxicity method on amide and carboxyl acid derivatives of *Purshianin* highlights the lack of toxicity (*Table IV.3.15. 18*).

CAESAR	Purshianin	
indicator	amide acid	
SMKEV	0.75	0.88
APSM	0.77	0.77
CSM	1	1
MDRC	0.52	1
.CFSC	true	true
SMKEV	1	1
Prediction	NT	NT
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set; NT- non-toxic		

Tabl.IV.15. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Purshianin

b) PG (Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Purshianin* did not report values for GADI and CSM. Molecular fragments close to (E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.15. 19* cannot be considered reliable.

Tabl.IV.15. 19 PG toxicity	y of amide and	' carboxyl acid a	lerivatives of Purshianin
----------------------------	----------------	-------------------	---------------------------

PG	Purshianin	
indicator	amide	acid
GADI	0	0
SMKEV	0.76	0.77
APSM	1	1
CSM	0	0
ACFSC	1	1
Prediction	NT	NT
NT- non-toxic		

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Purshianin*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.15. 20*).

Tabl.IV.15. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid
derivatives of Purshianin

IRFMN/CORAL	Purshianin			
indicator	amide acid			
GADI	0.28	0.41		
SMKEV	0.69	0.68		
APSM	0.31	0.33		
CSM	1.34	1.96		
MEPASM	0.54	0.54		
MDRC	true	true		
ACFSC	0.40 0.60			
	[mg	g/L]		
Prediction	39.5 100.2			
true- descriptors for this compound have values				
inside the descriptor range of the compounds of the				
training set				

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Purshianin* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.15. 21*). Everything is determined by the concentration and time of treatment.

Tabl.IV.15. 21 Chromosomal aberration model of amide and carboxyl acid derivatives ofPurshianin

CORAL	Pursh	nianin
indicator	amide	acid
GADI	0.76	0.76
SMKEV	0.79	0.79
APSM	1	1
CSM	1	1
ACFSC	0.85	0.85
Prediction	А	А
A- active		

C. Toxity models with selective chemical activity

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Purshianin* (*Tab.IV.3.15. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.15. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of
Purshianin

IRFMN	Purshianin			
indicator	amide	acid		
GADI	0.89	0.90		
SMKEV	0.81	0.81		
APSM	1	1		
CSM	1	1		
ACFSC	1	1		
Active Agonist	0.09	0.08		
Active Antagonist:	0.03	0.03		
Inactive:	0.88	0.89		
Prediction	inA	inA		
inA- inactive				

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Purshianin* did not report any deviations (*Tabl.IV.3.15.23*) affecting the studied process.

 Tabl.IV.15. 23 p-Glycoprotein activity model for toxicity of amide and carboxyl acid derivatives of Purshianin

NIC	Purshianin			
indicator	amide acid			
GADI	0.75	0.65		
SMKEV	0.79	0.98		
APSM	0.49	0.50		
CSM	1	1		
MDRC	true	true		
ACFSC	1	1		
Euclidean Distance from the	2.27	3.27		
central neuron:				
Prediction NA NA				
true- descriptors for this compound have values				
inside the descriptor range of the compounds of				
the training set; nonA- non act	tive			

c) Adipose tissue: blood model

Applying *Adipose tissue*: blood model for toxicity of amide and carboxyl acid derivatives of *Purshianin* we understand (*Tabl.IV.3.15. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

INERIS	Pursl	nianin			
indicator	amide	acid			
GADI	0	0			
SMKEV	0.69	0.68			
APSM	0.31	0.30			
CSM	0.63	0.63			
MEPASM	0.50	0.50			
MDRC	N-true	N-true			
ACFSC	0.51	0.60			
Prediction					
logK (C _{HF(A,B)} ,C _{adipose tissue})	logK (C _{HF(A,B)} ,C _{adipose tissue}) [log units]				
	0.19	0.23			
K (C _{HF(A,B)} ,C _{adipose tissue})	[numeri	[numerical units]			
	1.549 1.702				
N-true - does not cover					

Tabl.IV.15. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives ofPurshianin

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Purshianin* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.15. 25*).

Tabl.IV.15. 25 Total body elimination half-life model toxicity of amide and carboxyl acid
derivatives of Purshianin

QSARINS	Purshianin			
indicator	amide	acid		
GADI	0.85	0.85		
SMKEV	0.81	0.81		
APSM	0.09	0.09		
CSM	0.07	0.10		
MEPASM	0.15	0.15		
MDRC	true	true		
ACFSC	1	1		
Prediction				
LogHLt	[log units]			
	0.33 0.36			

second supplemented edition

Total half-life	[min]			
	130 135			
true- descriptors for this compound have values				
inside the descriptor range of the compounds of				
the training set				

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Purshianin* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.15. 26*).

Tabl.IV.15. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acidderivatives of Purshianin

IRFMN/VERMEER	Purshianin			
indicator	amide acid			
GADI	0	0.86		
SMKEV	0.75	0.75		
APSM	1	1		
CSM	0	1		
ACFSC	1	1		
Prediction	inA	А		
A- active; inA- inactive				

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.15.3.2*), carcinogenicity (*§IV.3.1.15.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.15.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus activity* could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Purshianin* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.15. 27*). They are relatively safe in terms of the *NOAEL* toxicity model.

second supplemented edition

IRFMN/CORAL	Pursh	Purshianin		
indicator	amide	acid		
GADI	0.85	0.85		
SMKEV	0.83	0.84		
APSM	0.25	0.25		
CSM	0.50	0.36		
MEPASM	0.38	0.38		
MDRC	true	true		
ACFSC	0.85	0.85		
Prediction	[-log(n	[-log(mg/kg)]		
	-3.15	-3.30		
Prediction	[mg	[mg/kg]		
	1413	1995		
true- descriptors for this compound have values inside the descriptor range of the compounds of				

 Tabl.IV.15. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of Purshianin

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

3.1.15.4. Evaluation of the results

the training set

After a comparative analysis of the results (§*IV.3.1.15.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Purshianin* would be optimal for drugs taken orally to poison the cancer cell with (*E*)-2-((4*R*,6*S*)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide as performed in §*IV.2* second objective of the study.

3.1.15.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide $3924 \le 10845 \le 29968$, acid $2977 \le 7382 \le 18307$ and *Bioaccumulation factor* [conditional units] amide $0.85 \le 13.8 \le 224$ and acid form is $0.00 \le 0.30 \le 617$.

3.1.15.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.15.6.1. Lipophilicity

Data from *Tabl.IV.3.15. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

Tabl.IV.15. 28 Lipophilicity of amide and carboxylic acid derivatives of Purshianin

	$\log P_{ m o/w}$					
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Purshianin						
amide	1.13	-3.15	-3.10	-2.65	-2.66	-2.09
acid	0.64	-2.50	-2.50	-2.24	-2.42	-1.80

3.1.15.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - *ESOL*, *Ali* and *SILICOS-IT* (*Tab.IV.3.15.29*).

Tabl.IV.15. 29 Water solubility of amide and carboxylic acid derivatives of Purshianin

studie die die ster	Pursh	ianin					
studied indicator	amide	acid					
ESOL							
Log S	0.35	-0.06					
Solubility, [mg/ml]	7.49e+02	2.89e+02					
Class	hs	VS					
Ali							
Log S	0.30	-0.25					
Solubility, [mg/ml]	6.62e+02	1.86e+02					
Class	hs	VS					
SILICOS-IT							
Log S	2.54	2.76					
Solubility, [mg/ml]	1.15e+05	1.91e+05					
Class	S	S					
vs- very soluble; hs - highly soluble; s - soluble							

3.1.15.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of Purshianin meets the pharmacokinetic requirements (*Table IV.3.15. 30*).

Tabl.IV.15. 30 Pharmacokinetic indicators of amide and derivatives of Purshianin

studied indicator	Purshianin			
studied indicator	amide	acid		
GI absorption	low	low		
BBB permeant	no	no		
P-gp substrate	Yes	Yes		

second supplemented edition

inhibitors		
CYP1A2	no	no
CYP2C19	no	no
CYP2C9	no	no
CYP2D6	no	no
CYP3A4	no	no
Log K _p		
skin permeation, [cm/s]	-10.56	-10.10

3.1.15.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.15. 31*) containing amide and derivatives of *Purshianin*.

Tabl.IV.15. 31 Muegge activity and Bioavailability Score of amide and derivatives of
Purshianin

studied indicator	Purshianin					
studied indicator	amide	acid				
Muegge	No*	No*				
Bioavailability Score	0.55	0.11				
* - 3 violations: XLOGP3<-2, TPSA>150, H-don>5						

3.1.15.6.5. Medical Chemistry

Data from *Tabl.IV.3.2. 32* confirm the drug safety of amide and derivatives of *Purshianin*.

Tabl.IV.15. 32 Medical chemistry indicators for amide and derivatives of Purshianin

studied indicator	Purshianin			
studied indicator	amide	acid		
PAINS, [number of alerts]	0	0		
Brenk, [number of alerts]	1*	1*		
Leadlikeness	Yes	Yes		
Synthetic accessibility	5.35	5.42		
*- 1 alert: michael_acceptor_1				

- 🛇 -

3.1.16. (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

Subjected to analysis potential pharmaceutical form for release within the cancer cell of (R)-2-hydroxy-2-phenylacetamide, comprising an amide and a carboxylic acid obtained by hydrolysis of the nitrile group of *Lithospermoside*. The process proceeds according to §IV.2.3.

3.1.16.1. Druglikeness of the pharmaceutical form

In **Tabl.IV.16.1** are listed values of *GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor* and *Enzyme inhibitor* of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.16. 1 Data for total druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

		GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
Lithospermoside							
	amide	0.43	0.13	0.13	0.30	0.10	0.69
	acid	0.47	0.24	0.12	0.55	0.17	0.70

Data in *Tabl.IV.16. 1* show that the amides and carboxylic acids of *Lithospermoside* have pronounced overall drug activity *in vivo*.

3.1.16.2. Pharmacological and biological activity of oral active drugs

3.1.16.2.1. Lipinski's Rule, Ghose Filter and CMC-50-Like Rule

In **Tabl.IV.16. 2** shows the empirical values (without their dimensions) for *Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule* of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide.

Tabl.IV.16. 2 Lipinski's Rule, Ghose Filter and CMC-50-Like Rule of chemical moleculespotentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

	Lipinski's Rule			Ghose Filter				CMC-50-Like Rule				
	MW	logP	HBA	HBD	MW	logP	AMR	nAtom	MW	logP	AMR	nAtom
Lithospermoside												
amide	347	-3.2	10	7	347	-3.2	77	45	347	-3.2	77	45
acid	348	-2.5	10	7	348	-2.5	77	44	348	-2.5	77	44

343

The two molecular modified forms of *Lithospermoside* meet most requirements. All deviations in individual indicators confirm the preliminary conditionally accepted approximations in the methodology.

3.1.16.2.2. Veber Filter, MDDR-Like Rule and BBB Likeness

Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide are listed in **Tabl.IV.16. 3**.

 Tabl.IV.16. 3 Data on Veber Filter, MDDR-Like Rule and BBB Likeness of chemical molecules

 potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)

 4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

There are no significant fluctuations in individual indicators. All "problematic" values correlate with the pre-entered deviations *§III.3.3.3.1*.

3.1.16.2.3. QED

The analysis is performed according to §3.1.1.2.3.

A. uwQED

Data for Unweighted Quantitative Estimate of Druglikeness of the tested compounds are given in *Tabl.IV.16. 4.*

Tabl.IV.16. 4 Unweighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

			uwQED							
		MW	AlogP	HBA	HBD	TPSA	nRB	sAlerts	nAromaRing	uwQED
Lithospermoside										
	amide	347	-3.3	10	7	183	4	1	0	0.20
	acid	348	-2.9	10	7	177	4	1	0	0.22

B. wQED

Tabl.IV.16. 5 presents the data from the calculations for a Weighted Quantitative Estimate of Druglikeness of chemical molecules potentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-*trihydroxycyclohex*-2-*en*-1-*ylidene*)*acetamide*.

second supplemented edition

			wQED							
		MW	AlogP	HBA	HBD	TPSA	nRB	SAlerts	nAtomRing	wQED
Lithospermoside										
	amide	347	-3.3	10	7	183	4	1	0	0.29
	acid	348	-2.9	10	7	177	4	1	0	0.31

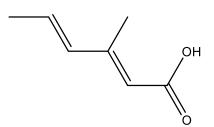
Tabl.IV.16. 5 Weighted Quantitative Estimate of Druglikeness of chemical moleculespotentially possible to pass through the cancer cell membrane and release (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide

uwQED (*Tabl.IV.16. 5*) and wQED (*Tabl.IV.16. 5*) of a potential pharmaceutical form including amide and carboxylic acid, obtained by hydrolysis of the nitrile group of *Lithospermoside* meets the requirements for conservative treatment.

3.1.16.3. Non -laboratory and no clinical information on the chemical form

3.1.16.3.1. Receptor activity

In *Tabl.IV.3.7.* 6 shows the bioactivity of amide and carboxylic acid derivatives of *Lithospermoside* to receptors (according to *§III.3.3.4.1*).

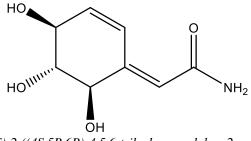

indicator	Lithospe	ermoside				
mulcator	amide	acid				
AR						
ERa						
ERb	active *	active*				
GR						
MR	-	-				
PR						
RARa		active*				
RARb						
RARr						
TRa						
TRb						
VDR						
*- agonist						

Tabl.IV.16. 6 Receptor activity of amide and carboxyl derivatives of Lithospermoside

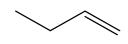
Data from *Tabl.IV.3.7.* 6 show that the acid form exhibits *Retinoic Acid Receptor* (RARa) agonist activity. The active molecular form would inhibit the development of a number of tumors (oral cavity, stomach) and melanoma (Soprano & Soprano, 2002). This is probably due to the overlap of a fragment of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid c (2E,4E)-3-methylhexa-2,4-dienoic acid (**Fig.IV.3.16**).

second supplemented edition

HO HO HO (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1ylidene)acetic acid



(2E,4E)-3-methylhexa-2,4-dienoic acid


Fig.IV.3. 16 Structural formulas of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1ylidene)acetic acid u (2E,4E)-3-methylhexa-2,4-dienoic acid

It is important to note that (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid is formed as a by-product after the passage of <math>HF(A) across the cancer cell membrane (*§IV.2.3. 1*). On the other hand, the amide and acid forms exhibit agonist activity to *Estrogen Receptor b* (ERb).

This property also leads to an increase in the proliferation of cancer cells in the breast (Zhou & Liu, 2020). We attribute it to the complexity in the construction of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid (**Fig.IV.3. 16**) and (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide with but-1-ene chain (**Fig.IV.3. 17**).

(E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1ylidene)acetamide

but-1-ene

Fig.IV.3. 17 *Structural formulas of (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide u* but-1-ene

Therefore, a synergistic effect will be manifested: as a primary, it could be an attack on cancer cells (Tsanov, H. & Tsanov, 2021) – further developed in goal No.2, and as a secondary - suppression of the development of solid tumors in the breast.

3.1.16.3.2. Mutagenicity

A. Stand -alone models

It is held respectively with *§III.3.3.4.2*:

a) CAESAR

Data from *Tabl.IV.3.16.* 7 do not explicitly illustrate the mutagenic activity of amide and carboxylic acid derivatives of the nitrile glycosides studied. We attribute it to the fact that the training set has insufficient data for *Lithospermoside*.

Tabl.IV.16. 7 CAESAR mutagenicity of amide and carboxyl acid derivatives of Lithospermoside

CAESAR	Lithosper	rmoside
indicator	amide	acid
GADI	0.74	0.75
SMKEV	0.82	0.83
APSM	0.67	0.67
CSM	0.67	0.67
MDRC	true	true
ACFSC	1	1
Prediction	NM	NM
	•	
true- descriptors for this comp	oound have	e values
inside the descriptor range of	the compo	unds of
the training set; NM- non muta	agenicity	

b) SarPy/IRFMN

In terms of mutagenicity, calculated using the *SarPy/IRFMN* methodology, amide and carboxyl acid derivatives of *Lithospermoside* did not show activity (*Table IV.3.16. 8*).

SarPy/IRFMN	Lithospe	spermoside		
indicator	amide	acid		
GADI	0.63	0.63		
SMKEV	0.82	0.83		
APSM	0.34	0.35		
CSM	0.67	0.67		
ACFSC	1	1		
Prediction	NM	NM		
	·			
NM- non mutagenicity				

 Tabl.IV.16. 8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Lithospermoside

c) ISS

Carboxyl acid derivative of *Lithospermoside* is non-mutagenic according to the ISS methodology (*Table IV.3.16. 9*). The amide derivative exhibits mutagenic activity⁴⁹ against the organism.

Tabl.IV.16. 9 ISS mutagenicity of amide and carboxyl acid derivatives of Lithospermoside

ISS	Lithospermoside	
indicator	amide	acid
GADI	0.74	0.76
SMKEV	0.80	0.80
APSM	1	1
CSM	0.47	0.54
ACFSC	1	1
Prediction	М	NM
M- mutagenicity; NM- non mutagenicity		

d) KNN/Read-Across

Amide and carboxyl acid derivatives of *Lithospermoside* show some deviation from the KNN/Read-Across method due to the incomplete training set. At the same time, the model is well adapted for such cases with algorithms that eliminate inaccuracies. Ultimately, all compounds tested were non-mutagenic.

Tabl.IV.16. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of			
Lithospermoside			
1			
1	KNN/Read-Across	Lithospermoside	

Lithospermoside	
amide	acid
0.54	0.71
0.83	0.83
0.24	0.49
0.51	0.76
1	1
NM	NM
	0.54 0.83 0.24 0.51 1

⁴⁹ Similarity: 0.76-8 by CAS: 23246-96-0 (SA37 Pyrrolizidine Alkaloids), CAS: 303-34-4 (SA37 Pyrrolizidine Alkaloids) and CAS: 315-22-0 (SA37 Pyrrolizidine Alkaloids); Similarity: 0.71-4 by CAS: 18883-66-4 (SA21 Alkyl and aryl N-nitroso groups) and CAS: 2058-46-0 (SA10 alfa, beta unsaturated carbonyls | SA38 Alkenylbenzenes)

B. Consensus model

Data from *Tabl.IV.3.16.11* confirmed the inertness of amide and carboxyl acid derivatives of *Lithospermoside*.

 Tabl.IV.16. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Lithospermoside

Consensus model	Lithospermoside	
mutagenicity indicator	amide	acid
numerical value	0.25	0.50

3.1.16.3.3. Carcinogenicity

A. Stand-alone models

a) CAESAR

Data on carcinogenicity activity, using the CAESAR methodology (Tab.IV.3.16. 12), for amide and carboxyl acid derivatives of Lithospermoside did not indicate the presence of carcinogenicity.

CAESAR	Lithospermoside	
indicator	amide	acid
GADI	0.75	0.88
SMKEV	0.78	0.78
APSM	1	1
CSM	0.51	1
MDRC	true	true
ACFSC	1	1
MCAR	0.47	0.47
NMNC	1	1
Carcinogen	0.26	0.23
NON-Carcinogen	0.74	0.77
Prediction	NC	NC
true- descriptors for this compound have values		
inside the descriptor range of the compounds of the training set; NC- NON-Carcinogen		

Tabl.IV.16. 12 CAESAR carcinogenicity of amide and carboxyl acid derivatives of
Lithospermoside

b) ISS

Data on carcinogenicity activity, using the *ISS* methodology (*Tab.IV.3.16.13*), for amide and carboxylic acid derivatives of *Lithospermoside* did not indicate the presence of carcinogenicity.

Tabl.IV.16. 13 ISS carcinogenicity of amide and carboxyl acid derivatives of Lithospermoside

ISS	Lithospermoside	
indicator	amide	acid
GADI	0.74	0.76
SMKEV	0.80	0.80
APSM	1	1
CSM	0.74	0.54
ACFSC	1	1
Prediction	NC	NC
C- carcinogen; NC- NON-Carcinogen		

c) IRFMN/Antares

IRFMN/Antares does not give well-distinguishable results (*Tab.IV.3.16. 14*), susceptible to interpretation, for carcinogenicity of amide and carboxylic acid derivatives of *Lithospermoside*.

Tabl.IV.16. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of
Lithospermoside

IRFMN/Antares	Lithospe	Lithospermoside	
indicator	amide	acid	
GADI	0.74	0.75	
SMKEV	0.83	0.84	
APSM	0.66	0.66	
CSM	0.66	0.66	
ACFSC	1	1	
Prediction	PNC	PNC	
PNC- possible non-carcinogenic			

d) IRFMN/ISSCAN-CGX

IRFMN/ISSCAN-CGX does not give well-distinguishable results (*Tab.IV.3.16. 15*), susceptible to interpretation, for carcinogenicity of amide and carboxylic acid derivatives of *Lithospermoside*.

350

second supplemented edition

IRFMN/ISSCAN-CGX	Lithospermoside	
indicator	amide	acid
GADI	0.79	0.79
SMKEV	0.78	0.78
APSM	1	1
CSM	0.64	0.63
ACFSC	1	1
Prediction	PNC	PNC
PNC- possible non-carcinogenic		

 Tabl.IV.16. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Lithospermoside

B. Prolonged intake. Carcinogenicity oral Slope Factor model

a) Carcinogenicity oral classification model (IRFMN)

Fragments of the amide derivative of *Lithospermoside* coincide with those reported⁵⁰ in the training set in APSM, according to *Carcinogenicity oral classification model* (IRFMN) methodology (*Tabl.IV.16. 16*).

Tabl.IV.16. 16 Data from Carcinogenicity oral classification model (IRFMN) of amide and	
carboxyl acid derivatives of Lithospermoside	

IRFMN	Lithospe	Lithospermoside	
indicator	amide	acid	
GADI	0.73	0.85	
SMKEV	0.75	0.73	
APSM	0.50	1	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	
Prediction	С	NC	
C- carcinogen; NC- NON-Carcinogen			

b) Carcinogenicity oral Slope Factor model

In *Tabl.IV.3.16.* 17 determines the concentrations above which oral amide and carboxyl acid derivatives of *Lithospermoside* should not be administered orally.

⁵⁰ Similarity: 0.75 by CAS: 303-34-4, CAS: 315-22-0, CAS: 18883-66-4 and CAS: 54749-90-5; Similarity: 0.70 by CAS: 50-07-7

second supplemented edition

IRFMN	Lithospermoside	
indicator	amide	acid
GADI	0	0
SMKEV	0.75	0.73
APSM	0.07	0.10
CSM	3.56	2.86
MEPASM	0.11	0.11
MDRC	N-true	N-true
ACFSC	0.85	0.85
Predicted Oral	(g/kg-day) ⁻¹	
Carcinogenicity SF for molecular forms	32.4	31.6
	1	
Presumed concentration of	(g/kg-day) ⁻¹	
the active form inside the cancer cell	14.3	
n-true - does not cover		

Tabl.IV.16. 17 Data for Carcinogenicity oral Slope Factor model (IRFMN) for carcinogenicity
of amide and carboxyl acid derivatives of Lithospermoside

3.1.16.3.4. Toxicity

A. Developmental Toxicity model

a) CAESAR

The application of the CAESAR toxicity method on amide and carboxyl acid derivatives of *Lithospermoside* highlights the lack of toxicity (*Tabl.IV.3.16. 18*).

Tabl.IV.16. 18 CAESAR toxicity of amide and carboxyl acid derivatives of Lithospermoside

CAESAR	Lithospermoside		
indicator	amide	acid	
GADI	0.88	0.88	
SMKEV	0.78	0.78	
APSM	1	1	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	
Prediction	NT	NT	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NT- non-toxic			

b) PG(Reproductive Toxicity library)

PG (Reproductive Toxicity library) test for the toxicity of amide and carboxyl acid derivatives of *Lithospermoside* did not report values for GADI and CSM. Molecular fragments close to (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide have not been well studied and there are no clinical data on them. The data from *Tabl.IV.3.16. 19* cannot be considered reliable.

Tabl.IV.16. 19 PG toxicity of amide and carboxyl acid derivatives of Lithospermoside

PG	Lithospermoside		
indicator	amide	acid	
GADI	0.61	0	
SMKEV	0.76	0.76	
APSM	0.49	1	
CSM	0.50	0	
ACFSC	1	1	
Prediction	NT	NT	
NT- non-toxic			

B. Models related to the development of the organism

a) Zebrafish embryo AC50

When Zebrafish embryo AC50 was subjected to IRFMN/CORAL toxicity test on amide and carboxyl acid derivatives of *Lithospermoside*, no serious deviations from the generally accepted reference standards were observed (*Tab.IV.3.16. 20*).

 Tabl.IV.16. 20 Zebrafish embryo AC50 at IRFMN/CORAL toxicity of amide and carboxyl acid

 derivatives of Lithospermoside

IRFMN/CORAL	Lithospermoside		
indicator	amide	acid	
GADI	0.27	0.40	
SMKEV	0.69	0.67	
APSM	0.31	0.31	
CSM	1.37	1.77	
MEPASM	0.54	0.54	
MDRC	true	true	
ACFSC	0.40	0.60	
Prediction	[mg/L]		
	44.4	112.6	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of the			
training set			

353

b) Chromosomal aberration model

Like any biologically active substance, amide and carboxyl acid derivatives of *Lithospermoside* exhibit would lead to a burden on the chromosome set (*Tab.IV.3.16. 21*). Everything is determined by the concentration and time of treatment.

 Tabl.IV.16. 21 Chromosomal aberration model of amide and carboxyl acid derivatives of Lithospermoside

CORAL	Lithospermoside	
indicator	amide	acid
GADI	0.76	0.75
SMKEV	0.79	0.79
APSM	1	1
CSM	1	1
ACFSC	0.85	0.85
Prediction	А	Α
A- active		

C. Models related to the development of the organism

a) Aromatase activity model

The ability to inhibit or protonate hormones (whether as antagonists or agonists) and/or enzymatic processes is clearly expressed for biologically active substances, incl. and amide and carboxyl acid derivatives of *Lithospermoside* (*Tab.IV.3.16. 22*). Concentration and treatment time are crucial in accurately describing the process.

Tabl.IV.16. 22 Aromatase activity model for toxicity of amide and carboxyl acid derivatives of
Lithospermoside

IRFMN	Lithospermoside	
indicator	amide	acid
GADI	0.89	0.90
SMKEV	0.79	0.80
APSM	1	1
CSM	1	1
ACFSC	1	1
Active Agonist	0.12	0.12
Active Antagonist:	0.04	0.04
Inactive:	0.84	0.84
Prediction	inA	inA
inA- inactive		

b) p-Glycoprotein activity model

p-Glycoprotein activity model for analysis of amide and carboxyl acid derivatives of *Lithospermoside* did not report any deviations (*Tabl.IV.3.16. 23*) affecting the studied process.

Tabl.IV.16. 23p-Glycoprotein activity model for toxicity of amide and carboxyl acid
derivatives of Lithospermoside

NIC	Lithospermoside		
indicator	amide	acid	
GADI	0.75	0.75	
SMKEV	0.79	0.79	
APSM	0.49	0.49	
CSM	1	1	
MDRC	true	true	
ACFSC	1	1	
Euclidean Distance from the	2.42	3.94	
central neuron:	2.42	3.94	
Prediction	NA	NA	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of			
the training set; NA- Non active			

c) Adipose tissue: blood model

Applying *Adipose tissue: blood model* for toxicity of amide and carboxyl acid derivatives of *Lithospermoside* we understand (*Tabl.IV.3.16. 24*) that the chemical equilibrium of possible reactions are in the direction of the product, i.e. when treated with the studied molecules, we will also have some accumulation in adipose tissue.

 Tabl.IV.16. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of

 Lithospermoside

INERIS	Lithospermoside	
indicator	amide	acid
GADI	0	0
SMKEV	0.68	0.68
APSM	0.32	0.31
CSM	0.63	0.63
MEPASM	0.50	0.50
MDRC	N-true	N-true
ACFSC	0.51	0.60
Prediction		
logK (C _{HF(A,B)} ,C _{adipose tissue})	[log units]	
	0.192	0.237
K (C _{HF(A,B)} ,C _{adipose tissue})	[numerical units]	
	1.556	1.726
N-true - does not cover		

D. Total body elimination half-life

The studied amide and carboxyl acid derivatives of *Lithospermoside* have a retention time in the body, comparable to the main conservative drugs (*Tab.IV.3.16.25*).

Tabl.IV.16. 25 Total body elimination half-life model toxicity of amide and carboxyl acid
derivatives of Lithospermoside

QSARINS	Lithospermoside	
indicator	amide	acid
GADI	0.85	0.85
SMKEV	0.81	0.81
APSM	0.09	0.41
CSM	0.02	0.29
MEPASM	0.15	0.79
MDRC	true	true
ACFSC	1	1
Prediction		
LogHLt	[log units]	
	0.24	0.28
Total half-life	[min]	
	105	115
true- descriptors for this compound have values		
inside the descriptor range of the compounds of		
the training set;		

E. Micronucleus activity

a) in vitro

The hypothesis set in the methodical part that amide and carboxyl acid derivatives of *Lithospermoside* show activity for *Micronucleus* in *in vitro* was confirmed (*Tab.IV.3.16.26*).

 Tabl.IV.16. 26 Micronucleus toxicity activity model – in vitro of amide and carboxyl acid

 derivatives of Lithospermoside

IRFMN/VERMEER	Lithospermoside	
indicator	amide acid	
GADI	0	0.86
SMKEV	0.74	0.74
APSM	1	1
CSM	0	1
ACFSC	1	1
Prediction	inA	А
inA- inactive, A- active		

second supplemented edition

The reported molecules from the training set coincide with those from those already analyzed: mutagenicity (*§IV.3.1.16.3.2*), carcinogenicity (*§IV.3.1.16.3.3*) and the previously analyzed toxicity methods (*§IV.3.1.16.3.4*).

b) in vivo

The in vivo toxicity analysis of *Micronucleus activity* could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

F. NOAEL

The amide and carboxylic acid derivatives of *Lithospermoside* can be treated as a drug even at doses above those generally accepted by good medical practice (*Table IV.3.16. 27*). They are relatively safe in terms of the *NOAEL* toxicity model.

IRFMN/VERMEER	Lithospermoside		
indicator	amide	acid	
GADI	0.85	0.85	
SMKEV	0.84	0.86	
APSM	0.25	0.25	
CSM	0.28	0.19	
MEPASM	0.38	0.38	
MDRC	true	true	
ACFSC	0.85	0.85	
Prediction	[-log(mg/kg)]		
	-3.37	-3.52	
Prediction	[mg/kg]		
Prediction	2344	3311	
true- descriptors for this compound have values			
inside the descriptor range of the compounds of the			
training set			

 Tabl.IV.16. 27 NOAEL methodology for toxicity of amide and carboxyl acid derivatives of Lithospermoside

G. Cramer classification

The toxicity analysis of *Cramer* activity could not be performed due to the lack of experimental empirical information on glycosidamides and glycosacids in the training set.

357

3.1.16.4. Evaluation of the results

After a comparative analysis of the results (§*IV.3.1.16.1, -2* and *-3*) we assume that amide and carboxyl acid derivatives of *Lithospermoside* would be optimal for drugs taken orally to poison the cancer cell with (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide as performed in §*IV.2* second objective of the study.

3.1.16.5. Conclusion from the part

Application of the methodological scheme of *§III.3.3.6* for a potential pharmacological form (*§IV.3.1.16*), proves maximum coverage of the requirements for oral medicinal products. Toxicity did not deviate from the rules and the values were respectively: *Oral rat LD50* [mg/kg] for amide $5016 \le 13956 \le 38832$, acid $4015 \le 10006 \le 24938$ and *Bioaccumulation factor* [conditional units] amide $0.86 \le 13.9 \le 228$ and for acid are $0.00 \le 0.25 \le 567$.

3.1.16.6. Checking conclusion of the part

Conducted according to the methodological scheme §III.3.3.7.

3.1.16.6.1. Lipophilicity

Data from *Tabl.IV.3.16. 28* that the test compounds are rather hydrophilic and will be separated from the aqueous medium of the stomach in the blood and will not reach, in sufficient concentration, the intestine.

	$\log P_{ m o/w}$					
	iLOGP	XLOGP3	WLOGP	MLOGP	SILICOS-IT	Consensus
Lithospermosio	de					
amide	0.67	-4.13	-4.13	-3.42	-3.54	-2.91
acid	0.61	-3.48	-3.53	-3.01	-3.30	-2.54
	•					•

Tabl.IV.16. 28 Lipophilicity of amide and carboxylic acid derivatives of Lithospermoside

3.1.16.6.2. Water Solubility

The tested compounds have very good solubility in water, confirmed by the three applied methodologies - ESOL, Ali and SILICOS-IT (*Tab.IV.3.16. 29*).

second supplemented edition

studied indicator	Lithospermoside		
studied indicator	amide	acid	
ESOL			
Log S	0.87	0.46	
Solubility, [mg/ml]	2.59e+03	9.97e+02	
Class	hs	hs	
Ali			
Log S	0.89	0.34	
Solubility, [mg/ml]	2.71e+03	7.62e+02	
Class	hs	hs	
SILICOS-IT			
Log S	3.36	3.58	
Solubility, [mg/ml]	7.92e+05	1.31e+06	
Class	S	S	
hs – highly soluble; s - soluble			

Tabl.IV.16. 29 Water solubility of amide and carboxylic acid derivatives of Lithospermoside

3.1.16.6.3. Pharmacokinetics

A medicinal product based on amide and carboxylic acid derivatives of *Lithospermoside* meets the pharmacokinetic requirements (*Table IV.3.16. 30*).

Tabl.IV.16. 30 Pharmacokinetic indicators of amide and derivatives of Lithospermoside

studied indicator	Lithospermoside		
studied indicator	amide	acid	
GI absorption	low	low	
BBB permeant	no	no	
P-gp substrate	Yes	Yes	
inhibitors			
CYP1A2	no	no	
CYP2C19	no	no	
CYP2C9	no	no	
CYP2D6	no	no	
CYP3A4	no	no	
$\text{Log } K_{\text{p}}$			
skin permeation, [cm/s]	-11.35	-10.90	

3.1.16.6.4. Druglikeness

Studies have shown that druglike determinants confirm the drug safety of a product (*Tabl.IV.3.16. 31*) containing amide and derivatives of *Lithospermoside*.

second supplemented edition

Tabl.IV.16. 31 Muegge activity and Bioavailability Score of amide and derivatives ofLithospermoside

studied indicator	Lithospermoside		
studied indicator	amide	acid	
Muegge	No*	No*	
Bioavailability Score	0.55	0.11	
*- 3 violations: XLOGP3<-2, TPSA>150, H-don>5			

3.1.16.6.5. Medical Chemistry

Data from *Tabl.IV.3.16. 32* confirm the drug safety of amide and derivatives of *Lithospermoside*.

Tabl.IV.16. 32 Medical chemistry indicators for amide and derivatives of Lithospermoside

studied indicator	Lithospermoside	
studied indicator	amide	acid
PAINS, [number of alerts]	0	0
Brenk, [number of alerts]	1*	1*
Leadlikeness	Yes	Yes
Synthetic accessibility	5.49	5.55
*- 1 alert: michael_acceptor_1		

- 🛇 -

3.2. Synthesis of results

The overall view of the hypothesis, the presented evidence, the methodology, the analysis, the interpretations and the tests represent the synthesis of the results.

In *Tabl.IV.17* the possible applications of the proposed molecular forms in the treatment of oncological diseases are summarized.

Tabl.IV.17 Optimal natural precursors for obtaining an active anti-tumor molecular form released inside a cancer cell and causing its toxicity

active anti-cancer molecular form	natural precursor
reatment of cancer of the breast	
(R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide	Dhurrin, Taxiphyllin
(S)-1-hydroxycyclopent-2-ene-1-carboxamide	Deidaclin, Tetraphyllin A
(1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide	Tetraphyllin B, Volkenir Taraktophyllin
(1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide	Gynocardin
reatment of cancer of the breast, skin, oral cavity, melanoma, stomach (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid	Triglochinin
(Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide	Menisdaurin
(E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide	Griffonin
(Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-	
ylidene)acetamide	Bauhinin
(E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide	Purshianin
(E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide	Lithospermoside
general anti-cancer (R)-2-hydroxy-2-phenylacetamide	Prunasin, Sambunigrin
(R)-2-hydroxy-2-(3-hydroxypheny3l)acetamide	Zierin
2-hydroxy-2-methylpropanamide	Linamarin
(S)-2-hydroxy-2-methylbutanamide	Lotaustralin
	Acacipetalin
2-hydroxy-3-methylbut-2-enamide	Acacipetanii

- 🛇 -

4. On the four goal

4.1. Conducting the experiment. Initial interpretation of the result.

4.1.1. Aerodigestive tract (*Tractus Aerodigestive*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Aerodigestive tract (*Tabl.IV.18. 1*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 4* and 7.

Tabl.IV.18. 1 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Aerodigestive tract

							:	activ	e anti	i-can	cer r	nole	cular	form	3					
aall East		1			2						7					10	12	14	15	16
cell line	Α	В	С	Α	В	С	3	4	5	6	/	8	9	10	11	12	13	14	15	16
								с	arcin	oma										
A-253																				
BB30-HNC																				
BB49-HNC															-					-
BHY																				
BICR10																				
BICR22																				
BICR31 BICR78																				
Ca9-22																				
Ca9-22 CAL-27																				
CAL-27 CAL-33																				
COLO-680N																				
Detroit562																				
EC-GI-10																				
ESO-26																				
ESO-51																				
FADU																				
FLO-1																				
H3118																				
HCE-4															_					
HN																				
HO-1-N-1																				
HO-1-u-1																				
HSC-2																				
HSC-3																				
HSC-4 JHU-011																				-
JHU-011 JHU-022																				
JHU-022 JHU-029																				
KON																				
KOSC-2																				
KYAE-1																				
KYSE-140																				
KYSE-150																				
KYSE-180																				
KYSE-220																				
KYSE-270																				
KYSE-410																				
KYSE-450																				
KYSE-50																				
KYSE-510																				
KYSE-520																				
KYSE-70																				

362

LB771-HNC	1	1	1			I	1	1	1		1						<u> </u>
OACM5-1																	
OACM3-1 OACp4C																	
OACp4C OE-19																	
OE-19 OE-21																	<u> </u>
OE-21 OSC-19																	<u> </u>
OSC-19 OSC-20																	<u> </u>
PCI-15A																	-
PCI-30																	-
PCI-38																	-
PCI-4B																	-
PCI-6A																	-
PE/CA-PJ15																	
RPMI-2650																	
SAS																	
SAT																	
SCC-15																	
SCC-25																	
SCC-4																	
SCC-9																	
SCC-90																	
SK-GT-4																	
SKN-3																	
TE-1																	
TE-10																	
TE-11																	
TE-12																	
TE-15																	
TE-4																	
TE-5																	
TE-6																	
TE-8																	
TE-9													1			1	<u> </u>
T-T													l		l	l	
						•		oth	er								
DOK																	
OE-33																	
					•	•						•					

4.1.2. Autonomic ganglion (Ganglion autonomicum)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Autonomic ganglion (*Tabl.IV.18. 2*), it is concluded that:

- main potential medicines: AACF 1.A, 1.B, 1.C, 4, 7, 9, 12 and 14;
- duplication of treatment and / or substitution on medical grounds: AACF 2.A, 5, 6, 8, 10 and 11.

 Tabl.IV.18. 2 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Autonomic ganglion

							i	activ	e ant	i-can	cer 1	nole	cular	form	5					
cell line	А	1 B	С	А	2 B	С	3	4	5	6	7	8	9	10	11	12	13	14	15	16
								neu	robla	aston	na									
KELLY																				
NB-1																				
SIMA																				

second supplemented edition

					oth	er					
CHP-126											
CHP-212											
IMR-32											
KPNRTBM1											
KPNSI9S											
KPNYN											
MHHNB11											
NH-6											
SHSY5Y											
SKNAS											
SKNBE2											
SKNDZ											
SKNFI											
SKNSH											

4.1.3. Biliary tract (Ductus biliaris)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Biliary tract (*Tabl.IV.18. 3*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A, 7, 9 and 14.

 Tabl.IV.18. 3 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Biliary tract

							i	activ	e ant	i-can	icer i	nole	cular	form	5					
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
cen me	Α	В	С	Α	В	С	3	4	5	0	/	0	9	10	11	12	15	14	15	10
								01	ther											
HUCCT-1																				
HUH-28																				
SNU-1079																				
SNU-1196																				
SNU-245																				
SNU-308																				
SNU-478																				
SNU-869																				
	•					•									-			•	-	

Other pharmaceutical forms would be highly active and potential agents for personalized therapies.

4.1.4. Bone (*Anatomia ossis*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Bone (*Tabl.IV.18. 4*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 4, 7 and 14.

 Tabl.IV.18. 4 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Bone

								activ	e ant	i-can	cer 1	nole	cular	form	s					
11.11		1			2											10	12	14	1.5	16
cell line	Α	В	С	Α	В	С	3	4	5	6	7	8	9	10	11	12	13	14	15	16
							chor	dros	arcon	na										
CAL-78							L					L								
CHSA-0011																				
CHSA-0108																				
CHSA-8926																				
H-EMC-SS																				
		Ew	ing's	Sarce	oma/l	Perip	heral	Prin	nitiv	e Nei	iroed	ctode	rmal	l Tum	or					
A-673																				
CADO-ES1																				
ES-1																				
ES-3																				
ES-4																				
ES-5																				
ES-6																				
ES-7																				
ES-8																				
EW-1																				
EW-11				L		Ĺ											Ĺ		Ĺ	
EW-12																				
EW-13																				
EW-16																		ľ	ľ	
EW-18																				
EW-22																				
EW-24																				
EW-3																				
EW-7																				
SK-ES-1																				
SK-PN-DW																				
TC-71																				
					•		ost	eosai	rcom	a										
CAL-72																				
G-292 Clone A141B1																				
HOS																				
HOS*																				
HuO-3N1																				
HuO9																				
MG-63																				
NOS-1																				
NY																				
Saos-2																				
U-2-OS																				
								othe	er											
143B																				
CADOES-1																				
CAL78																				
CS-1																				
EW-8																				
EWS-502																				
G-292CLONEA141B1																				
HS-706T																				
HS-737T																				
HS-819T																				
HS-821T																				
HS-822T																				
HS-863T					1															
HS-870T					1									l	l					<u> </u>
HS-888T																				
MG-63																				<u> </u>
1.10 00							I													I

second supplemented edition

MHHES1										
OUMS-27										
RDES										
SAOS-2										
SJSA-1										
SJSA-1*										
SKES-1										
SKNMC										
SW-1353										
T-173										
TC-32										
TC-71										
U2OS										

4.1.5. Breast (Mamma)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Breast (*Tabl.IV.18. 5*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 u 12;
- duplication of treatment and / or substitution on medical grounds: AACF 4, 7 u 14.

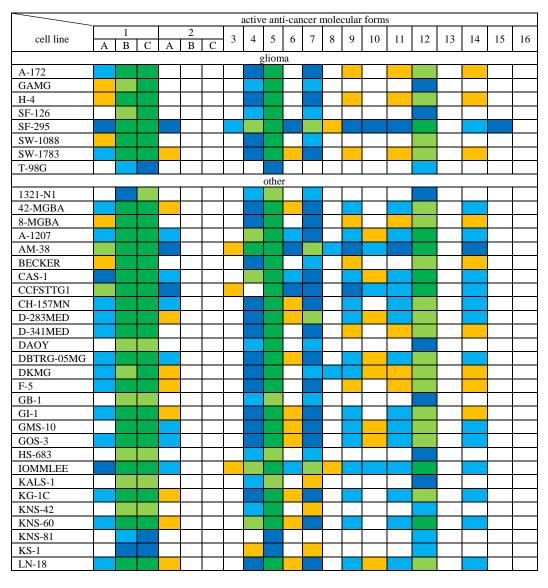
 Tabl.IV.18. 5 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Breast

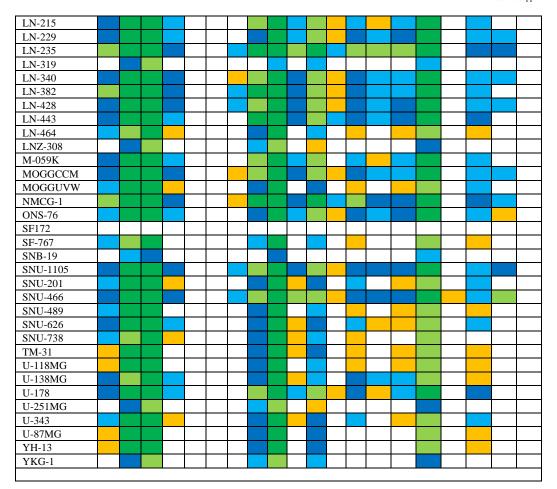
							i	activ	e ant	i-can	cer 1	nole	cular	form	s					
	[1			2		_		_		_									
cell line	А	В	С	А	В	С	3	4	5	6	7	8	9	10	11	12	13	14	15	16
								care	cinor	na										
AU-565																				
AU-565*																				
BT-20																				
BT-474																				
BT-483																				
BT-549																				
CAL-120																				
CAL-148																				
CAL-51																				
CAL-85-1																				
CAMA-1																				
COLO-824																				
DU-4475																				
EFM-19																				
EFM-192A																				
EVSA-T																				
HCC-1143																				
HCC-1143*																				
HCC-1187																				
HCC-1187*																				
HCC-1395																				
HCC-1395*																				
HCC-1419																				
HCC-1419*																				
HCC-1428																				
HCC-1428*																				
HCC-1500																				
HCC-1500*																				
HCC-1569																				
HCC-1569*																				

second supplemented edition	
-----------------------------	--

HCC.1599 Image: Constraint of the second
HCC-1599* H
HCC-1806 I<
HCC-1937 Image: Constraint of the sector
HCC-1937 H<
HCC-1937 Image: Constraint of the second
HCC-1937* Image: Sector of the sector of
HCC-1954 Image: Section of the sect
HCC-1954* Image: Sector of the sector of
HCC.202 M </td
HCC.202 M </td
HCC.202* HC HC HC HC HC HCC.2157* HC HC HC HC HCC.218* HC HC HC HCC.38 HC HC HC HCC.70 HC HC HC HCC.70* HC HC HC MDA-MB.157 HC HC HC MDA-MB.231 HC HC HC MDA-MB.231 HC HC HC MDA-MB.30 HC HC HC MDA-MB.31 HC HC HC MDA-MB.453 HC HC HC MDA-MB.453 HC HC HC MDA-MB.468
HCC.2157 H H H H HCC.217* H H H H HCC.218* H H H H HCC.38* H H H H HCC.38* H H H H HCC.70* H H H H HDQ-P1 H H H H HDQ-P1 H H H H JIMT-1 H H H H MDA-MB-157 H H H H MDA-MB-21 H H H H MDA-MB-30 H H H H MDA-MB-433 H H H H MDA-MB-433 H H H H MDA-MB-483
HCC.2157 H H H H HCC.217* H H H H HCC.218* H H H H HCC.38* H H H H HCC.38* H H H H HCC.70* H H H H HDQ-P1 H H H H HDQ-P1 H H H H JIMT-1 H H H H MDA-MB-157 H H H H MDA-MB-21 H H H H MDA-MB-30 H H H H MDA-MB-433 H H H H MDA-MB-433 H H H H MDA-MB-483
HCC:2157* Image: Constraint of the second secon
HCC-2218 Image: Constraint of the second
HCC-2218* Image: Constraint of the second secon
HCC:38 HC:38 HC:38 <t< td=""></t<>
HCC:38 HC:38 HC:38 <t< td=""></t<>
HCC.38* HCC.70 HCC.70*
HCC-70 HCC-70*
HCC-70* HD HD HD HD HDQ-PI HD HD HD HD JIMT-1 HD HD HD HD JIMT-1 HD HD HD HD MCF7-7 HD HD HD HD MDA-MB-31 HD HD HD HD MDA-MB-361 HD HD HD HD MDA-MB-453 HD HD HD HD MDA-MB-468 HD HD HD HD MDA-MB-468 HD HD HD HD HD MDA-MB-468 HD HD HD HD HD HD MDA-MB-468 HD
HDQ-P1 Ho Ho Ho Hs-S78-T Ho Ho Ho JIMT-1 Ho Ho Ho MCP.7 Ho Ho Ho MDA-MB-157 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-31 Ho Ho Ho MDA-MB-361 Ho Ho Ho MDA-MB-363 Ho Ho Ho MDA-MB-36 Ho Ho Ho MDA-MB-37 Ho Ho Ho MDA-MB-38 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-30 Ho Ho Ho </td
HDQ-P1 Ho Ho Ho Hs-S78-T Ho Ho Ho JIMT-1 Ho Ho Ho MCP.7 Ho Ho Ho MDA-MB-157 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-31 Ho Ho Ho MDA-MB-361 Ho Ho Ho MDA-MB-363 Ho Ho Ho MDA-MB-36 Ho Ho Ho MDA-MB-37 Ho Ho Ho MDA-MB-38 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-30 Ho Ho Ho MDA-MB-30 Ho Ho Ho </td
Hs-S78-T Image: Constraint of the second
JIMT-1 Image: state of the state of t
JIMT-1 Image: state of the state of t
MCF-7 MCF-7 MDA-MB-157 MDA-MB-231 MDA-MB-30 MDA-MB-30 MDA-MB-31 MDA-MB-30 MDA-MB-361 MDA-MB-36 MDA-MB-455 MDA-MB-453 MDA-MB-453 MDA-MB-453 MDA-MB-453 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-470 MDA-MB-468 MDA-MB-470 MDA-MB-468 MDA-MB-470 MDA-MB-468 MDA-MB-470 MDA-MB-470 MBA-MB-470 MDA-MB-470 MCC-812 MDA-MB-470 UACC-812 MDA-MB-470 UACC-812 MDA-470 MCC-812 MDA-470 MCC-8148 MDA-470 MDA-475 MDA-470 MDA-475 MDA-470 MDA-18 MDA-470 MMEL MDA-470 MMC-18 <t< td=""></t<>
MCF7.* MA Max Max <th< td=""></th<>
MDA-MB-157 MDA-MB-231 MDA-MB-30 MDA-MB-30 MDA-MB-361 MDA-MB-415 MDA-MB-415 MDA-MB-436 MDA-MB-436 MDA-MB-433 MDA-MB-433 MDA-MB-468 MDA-MB-433 MDA-MB-468 MDA-MB-473 MDA-MB-473 MDA-MB-488 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-488 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-473 MDA-MB-488 MDA-MB-473 MDA-MB-473 MDA-MB-473 OCUB-M MR MDA-MB-473 MDA-MB-473 UACC-812 MDA-MB-473 MDA-MB-473 MDA-MB-473 UACC-893 MDA-MB-474 MDA-MB-474 MDA-MB-474 BT-474 MDA MDA-MB-474 MDA-474 BT-474 MDA-484 MDA-484 MDA-484 CAL-120 MDA-484 MDA-484 MDA-484 CAL-148 MDA-484 MDA-484 MDA-484 MDA-475 MDA-484 MDA-484 MDA-444 MDA-4
MDA-MB-231 MDA-MB-330 MDA-MB-330 MDA-MB-361 MDA-MB-361 MDA-MB-361 MDA-MB-453 MDA-MB-453 MDA-MB-453 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MRK-nu-1 MEM MEM MEM MEM OCUB-M MEM MEM MEM MEM T47D MDA MEM MEM MEM UACC-812 MEM MEM MEM MEM UACC-893 MEM MEM MEM MEM BT-474 MEM MEM MEM MEM MEM CAL-120 MEM MEM MEM MEM MEM
MDA-MB-231 MDA-MB-330 MDA-MB-330 MDA-MB-361 MDA-MB-361 MDA-MB-361 MDA-MB-453 MDA-MB-453 MDA-MB-453 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MDA-MB-470 MRK-rau-1 MEW MEW MEW MEW OCUB-M MEW MEW MEW MEW T47D MDA MEW MEW MEW UACC-812 MEW MEW MEW MEW UACC-893 MEW MEW MEW MEW BT-474 MEW MEW MEW MEW BT-474 MEW MEW MEW MEW BT-474 MEW MEW MEW MEW MEW BT-474 MEW
MDA-MB-330 MDA-MB-361 MDA-MB-415 MDA-MB-415 MDA-MB-436 MDA-MB-436 MDA-MB-436 MDA-MB-438 MDA-MB-438 MDA-MB-488 MDA-MB-488 MDA-MB-488 MTFM-223 MDA MDA-MB-488 MTFM-223 MDA MDA-MB-488 MTFM-223 MDA MDA MTM-MB-488 MDA MDA MTM-MB-488 MDA MDA MTATD MDA MDA OCUB-M MDA MDA UACC-812 MDA MDA UACC-812 MDA MDA UACC-812 MDA MDA UACC-812 MDA MDA UACC-813 MDA MDA BT-474 MDA MDA BT-483 MDA MDA BT-483 MDA MDA CAL-120 MDA MDA CAL-120 MDA MDA MDA-MB-1 MDA MDA MDU-4475 MDA MDA EFM-192A MDA MDA MD
MDA-MB-361 MDA-MB-415 MDA-MB-436 MDA-MB-436 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA MDA-MB-468 MDA MRK-nu-1 MDA OCUB-M MDA T47D MDA UACC-812 MDA UACC-893 MDA ZR-75-30 MDA BT-474 MDA BT-549 MDA CAL-120 MDA CAL-131 MDA CAL-148 MDA MDA MDA MDA
MDA-MB-415 Image: Constraint of the second seco
MDA-MB-436 MDA-MB-453 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MEM-223 MDA-MB-468 MEM-223 MDA-MB-468 MDA-468 MDA-46
MDA-MB-436 MDA-MB-453 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MDA-MB-468 MEM-223 MDA-MB-468 MEM-223 MDA-MB-468 MDA-468 MDA-46
MDA-MB-453 MDA-MB-468
MDA-MB-468 Image: Constraint of the second seco
MFM-223 MRK-nu-1
MFM-223 MRK-nu-1
MRK-nu-1 Image: Constraint of the second
OCUB-M Image: Constraint of the second s
T47D Image: Constraint of the second sec
T47D Image: Constraint of the second sec
T47D Image: Constraint of the second sec
UACC-812 Image: Constraint of the second
UACC-893 Image: Constraint of the second
ZR-75-30 other BT-20 other BT-474 other BT-483 other BT-483 other BT-483 other BT-483 other BT-484 other BT-483 other BT-549 other CAL-120 other CAL-120 other CAL-51 other CAL-51 other CAL-51 other CAL-51 other CAL-851 other DU-4475 other EFM-19 other EFM-192A other EVSAT other HDQP-1 other HMEL other HMEL other HS-281T other HS-343T other
ZR-75-30 other BT-20 other BT-474 other BT-483 other BT-483 other BT-483 other BT-483 other BT-484 other BT-483 other BT-483 other BT-484 other CAL-120 other CAL-120 other CAL-51 other CAL-51 other CAL-51 other CAL-851 other CAL-851 other DU-4475 other EFM-19 other EFM-192A other EFM-192A other EVSAT other HDQP-1 other HMC-18 other HMEL other HS-281T other HS-281T other HS-343T other
other BT-20 Image: Constraint of the second s
BT-20 BT-474
BT-474 Image: Constraint of the second s
BT-474 Image: Constraint of the second s
BT-483 Image: Called and the second
BT-549 Image: CAL-120 Image: CAL-120 Image: CAL-148 Image: CAL-14
CAL-120 Image: Constraint of the second
CAL-148 Image: Constraint of the second
CAL-148 Image: Constraint of the second
CAL-51 Image: Constraint of the second s
CAL-851 Image: Constraint of the second
CAMA-1 Image: Comparison of the compar
CAMA-1 Image: Comparison of the compar
DU-4475 Image: Constraint of the const
EFM-19 Image: Constraint of the constr
EFM-192A Image: Constraint of the cons
EFM-192A Image: Constraint of the cons
EVSAT Image: Constraint of the constra
HDQP-1 Image: Constraint of the constr
HMC-18 Image: Constraint of the constr
HMEL Image: Constraint of the constr
HMEL Image: Constraint of the constr
HS-274T Image: Constraint of the con
HS-281T HS-281
HS-343T
HS-343T
HS-578T
HS-606T
HS-739T
HS-742T
JIMT-1
KPL-1
MDAMB-134VI
MDAMB-157
MDAMB-175VII
MDAMB-115VII
MDAMB-361
MDAMB-415
MDAMB-436
MDAMB-453
MDAMB-453 MDA MDAMB-468 MDAMB-468 SKBR-3 MDAMB-468

second supplemented edition


UACC-893 Image: Constraint of the cons	UACC-812										
ZR-751	UACC-893										
	YMB-1										
7P 7520	ZR-751										
ZR-7330	ZR-7530										


4.1.6. Central nervous system (Systema nervosum centrale)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4.1*) by transcriptome cell lines inherent in tumors in the Central nervous system (*Tabl.IV.18.6*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A, 7 and 14.

Tabl.IV.18. 6 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Central nervous system

4.1.7. Digestive system (*Apparatus digestorius*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Digestive system (*Tabl.IV.18. 7*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 4 and 7.

 Tabl.IV.18. 7 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Digestive system

							;	activ	e ant	i-can	icer i	nole	cular	form	5					1
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
cen nne	Α	В	С	А	В	С	3	4	3	0	/	0	9	10	11	12	15	14	15	10
							ca	arcin	oma											
23132-87																				
AGS																				
C-3A																				
ECC-10																				
ECC-12																				
EGI-1																				
ETK-1																				
FU-97																				
GCIY																				

second supplemented ed	ition
------------------------	-------

HGC:27 Image: Constraint of the second s	GT-3TKB	1														
HLE Image: state of the																
Hs-746T HSC-39 Hu-CT-1 HuH-1 HuH-1 HuH-7 HUTU-80 HU-S0 HH-6 JHH-6 JHH-6 JHH-6 JHH-7 JHH-6 JHH-7 JHH-7 JHH-6 JHH-7																
HSC-39 Horizon Horizon Horizon Horizon Horizon Huft-1 Horizon Horizon Horizon Horizon Horizon Horizon Huft-7 Horizon Horizon Horizon Horizon Horizon Horizon Horizon Huft-7 Horizon																
HuCCT-1 HuH-1 <	HS-7401															
Hull-1 Image: Constraint of the constr																
HuH-7 I <td></td>																
HUTU-80 Image: second seco									-	-						
IM-95 IM IM IM IM IM IM JHH-6 IM IM IM IM IM JHH-7 IM IM IM IM IM MKN-1 IM IM IM IM IM MKN-1 IM IM IM IM IM MKN-3 IM IM IM IM IM MKN-45 IM IM IM IM IM NC1-N87 IM IM IM IM IM NC1-SNU1 IM IM IM IM IM NC1-SNU5 IM IM IM IM IM NUGC-3 IM IM IM IM IM NUGC-4 IM IM IM IM IM NUGC-4 IM IM IM IM IM RF-48 IM IM IM IM IM SK-GT-2 IM IM IM IM IM SNU-387 IM IM IM IM IM SNU-387 IM IM IM IM IM SNU-423 IM IM IM </td <td></td>																
JHH-1 JHH-6 Image: Constraint of the second se																
JHH-6 JHA JHA JHA JHAA JHAA JHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA																
JHH-7 Image: state of the state of th	JHH-I															
KATOIII Image: Constraint of the second	JHH-6															
MKN-1 MKN-28 ME MKN-28 ME ME </td <td></td>																
MKN-28 MKN-45 MKN-45 MKN-7	KATOIII															
MKN-45 Image: Constraint of the second s	MKN-1	<u> </u>			<u> </u>		L									
MKN-7 I <td></td>																
NCI-N87 I </td <td></td>																
NCI-SNU1 Image: Constraint of the second	MKN-7															
NCI-SNU16 I																
NCI-SNU5 Image: Constraint of the second																
NUGC-3 Image: Constraint of the second s	NCI-SNU16															
NUGC-4 I <td></td>																
OCUM-1 I <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										-						
RERF-GC1B I <thi< th=""> I <thi< th=""> <thi< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thi<></thi<>									-	-						
RF-48 Image: Constraint of the second se																
SK-GT-2 Image: Constraint of the second																
SK-HEP1 I </td <td></td>																
SNU-182 Image: Constraint of the second	SK-GT-2															
SNU-387 Image: Constraint of the second	SK-HEP1															
SNU-398 Image: Constraint of the second se																
SNU-423 Image: Constraint of the state o																
SNU-449 Image: SNU-475																
SNU-475 Image: Constraint of the state o																
TGBC-11TKB Image: Constraint of the second	SNU-449															
TGBC-1TKB Image: Constraint of the second	SNU-475															
TGBC-1TKB Image: Constraint of the second	TGBC-11TKB															
TGBC-24TKB other Hep 3B2_1-7 Image: Constraint of the second sec	TGBC-1TKB															
other Hep 3B2_1-7 Image: Contract of the second seco	TGBC-24TKB	1														
Hep 3B2_1-7					•		othe	er			-	-				
	Hep 3B2_1-7															
JHH-2	JHH-2															
JHH-4		1	1													
SCH		1														
			·	 			•				i	i	i	 i		L

4.1.8. Endometrium (Endometrium)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Endometrium (*Tabl.IV.18. 8*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A, 4, 9* and *14*.

second supplemented edition

							activ	e ant	i-car	ncer i	nole	cular	form	s					
	1			2		2		~		-	0	0	10	1.1	10	10	14	1.5	10
Α	В	С	Α	В	С	3	4	5	6	7	8	9	10	11	12	13	14	15	16
						arci	noma	l											
						oth	ner												
		-	-			A B C A B C	1 2 3 A B C A B C a a a a a a	1 2 3 4 A B C A B C 3 4	1 2 3 4 5 A B C A B C 3 4 5 carcinoma	1 2 3 4 5 6 A B C A B C 3 4 5 6 carcinoma	1 2 3 4 5 6 7 A B C A B C 3 4 5 6 7 carcinoma	1 2 3 4 5 6 7 8 A B C A B C 3 4 5 6 7 8 carcinoma	1 2 3 4 5 6 7 8 9 A B C A B C 3 4 5 6 7 8 9 carcinoma	1 2 3 4 5 6 7 8 9 10 A B C A B C 3 4 5 6 7 8 9 10 carcinoma	A B C A B C 3 4 5 6 7 8 9 10 11 carcinoma	1 2 3 4 5 6 7 8 9 10 11 12 A B C A B C 3 4 5 6 7 8 9 10 11 12 carcinoma	1 2 3 4 5 6 7 8 9 10 11 12 13	1 2 3 4 5 6 7 8 9 10 11 12 13 14	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Tabl.IV.18. 8 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Endometrium

4.1.9. Hematopoietic and lymphoid tissues (Haematopoeticarum lymphoidearumque)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Hematopoietic and lymphoid tissues (*Tabl.IV.18. 9*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 4, 9, 10, 11* and *14*.

Tabl.IV.18. 9 Interpretable prognosis for susceptibility to active anti-cancer molecular forms
by transcriptome cell lines inherent in tumors in the Hematopoietic and lymphoid tissues

							6	activ	e ant	i-car	icer r	nole	cular	form	8					
cell line	A	1 B	C	٨	2 B	C	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	А	Б	C	А	Б	h	aema	topo	ietic	neop	olasm	1								<u> </u>
СМК																				
HEL																				
KU-812																				
							lym	phoi	d ne	oplas	sm									
697																				
CA-46																				

Theoretical study of the anticancer activity of glucosamidamides

second supplemented edition

DB													
DEL													
EB-2													
EHEB													
EJM													
HH													
JM-1													
LOUCY													
MC-116													
MM1S													
NAMALWA													
REH													
RL													
ST-486													
					C	other							
A3KAW													
A4FUK													
ALLSIL													
AML-193													
AMO-1													
BCP-1													
BDCM													
BL-41													
BL-70													
BV-173													
CI-1													
CMK-115													
CMK-86													
CMLT1													
COLO-677													
COLO-775 DAUDI				 									
DND-41													
DOHH-2													
EB-1													
EM-2													
EOL-1													
F-36P													
GA-10													
GDM1													
GRANTA-519													
HDLM2													
HDMYZ													
HEL-9217													
HL-60							-						
HP-BALL													
HS-604T													
HS-611T													
HS-616T													
HS-751T													
HT													
HTK													
HUNS-1													
HUT-102													
HUT-78													
JEKO-1													
JJN-3													
JK-1													
JURKAT													
JURLMK-1													
JVM-2								-					
JVM-3													
K-562													
KARPAS-299													
KARPAS-422													
KARPAS-620													
KASUMI-1													
KASUMI-2	-												
KASUMI-6													
KCL-22													
KE-37													
111-31													
VE 07													
KE-97							1						1
KG-1													

VMIL 2													1
KMH-2 KMM-1													
KMS-11		 			 								
KMS-12BM													
KMS-12BM KMS-18													
KMS-20				<u> </u>									
KMS-21BM													
KMS-26													
KMS-27					 								
KMS-28BM					 								
KMS-34													
KO-52 KOPN-8													
KYO-1 L-1236													
L-363													
L-428													
L-540 LAMA-84													
LP-1													
M-07E ME-1													
MEC-1													
MEC-2													
MEG-01													
MHHCALL-2													
MHHCALL-3													
MHHCALL-4													
MINO													
MJ													
MOL-M13	µ												
MOL-M16													
MOL-M6													
MOL-P2													
MOL-P8													
MOL-T13													
MOL-T16													
MOL-T4													
MONOMAC1													
MONOMAC6													
MOTN-1													
MUTZ-5							-						
MV-411							-						
NAL-M1													
NAL-M19													
NAL-M6													
NB-4													
NCI-H929													
NCO-2													
NOMO-1													
NUDHL-1													
NUDUL-1													
OC-IAML2													
OC-IAML3													
OC-IAML5													
OC-ILY10													
OC-ILY19													
OC-ILY3													
OC-IM1													
OP-M2													
P-12ICHIKAWA													
P-31FUJ													
P-3HR												L	
PCM-6													
PEER													
PF-382													
PFEIFFER													l
PL-21													
RAJI													
RCHACV													
RCHACV REC-1													1
RCHACV REC-1 RI-1													
RCHACV REC-1 RI-1 RPMI-8226													
RCHACV REC-1 RI-1													

Vasil Tsanov & Hristo Tsanov

second supplemented edition

SEM										
SET-2										
SIGM-5										
SKM-1										
SKM-M2										
SR-786										
SUDHL-1										
SUDHL-10										
SUDHL-4										
SUDHL-5										
SUDHL-6										
SUDHL-8										
SUPB-15										
SUPHD-1										
SUPM-2										
SUPT-1										
SUPT-11										
TALL-1										
TF-1										
THP-1										
TO-175T										
TOLEDO										
U-266B1										
U-937										
UT-7										
WSUDLCL-2										

4.1.10. Kidney (Ren)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Kidney (*Tabl.IV.18. 10*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 4 and 7.

Tabl.IV.18. 10 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Kidney

<u> </u>												1	1	C						
		1			2		1	activ	e ant	1-can	icer i	nole	cular	form	s					
cell line		1	~		2	~	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Α	В	С	Α	В	С		I												
						а	dren	al co	ortica	l car	cinor	na								
SW13																				
								ca	rcino	oma										
769-P																				
786-0																				
A-498																				
A-704																				
ACHN																				
BB65-RCC																				
BFTC-909																				
CAKI-1																				-
CAL-54																				
HA7-RCC																				-
KMRC-1																				
KMRC-20																				
LB1047-RCC																				
LB2241-RCC																				
LB996-RCC																				
NCC-010																				

Vasil Tsanov & Hristo Tsanov

Theoretical study of the anticancer activity of glucosamidamides

second	sup	plemented	editior

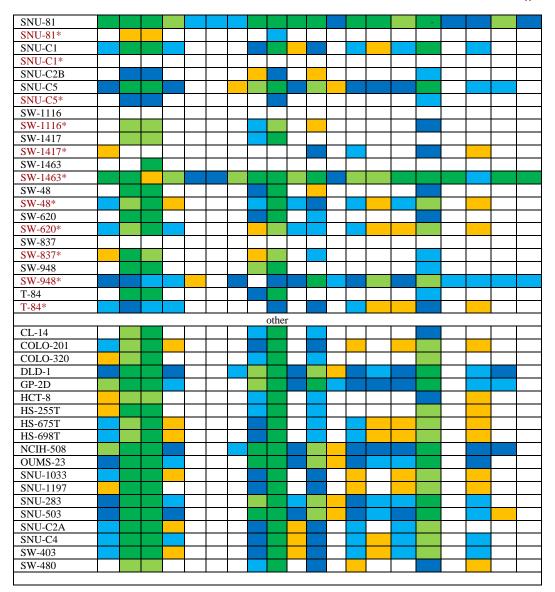
NCC-021															
OS-RC2															
RCC-10RGB															
RCC-AB															
RCC-ER															
RCC-FG2															
RCC-JF															
RCC-JW															
RCC-MF															
RXF-393															
SN-12C															
TK-10															
U-031															
VMRC-RCZ															
VIIIte Rez		1			T	habo	loid	umo	ur		1	1		1	4
G-401					· ·	Indoc		unio	ui			1			
0 401							othe	r							4
769-P							June								-
786-O															
BFTC-909															
CAKI-1															
CAKI-2															
CAL-54															
HEKTE															
HERTE HK-2															
KMRC-1															
KMRC-2															
KMRC-20															
KMRC-20 KMRC-3															
OSRC-2															
RCC-4															
SKRC-20															
SKRC-20 SKRC-31															-
SLR-20															-
SLR-20															-
SLR-23															
SLR-24															
SLR-25															-
SLR-26 SNU-1272															
SNU-1272 SNU-349															
SNU-349 SW-156										 					
TUHR-10TKB															
TUHR-14TKB															
TUHR-4TKB															
UMRC-2															
UMRC-6															
UOK-101															
VMRCRCW				ļ				L		 					
VMRCRCZ	l		l	l							I				
ł															

Other pharmaceutical forms would be highly active and potential agents for personalized therapies.

4.1.11. Large intestine (*Intestinum crassum*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Large intestine (*Tabl.IV.18. 11*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and/or substitution on medical grounds: AACF 4, 7, 9 and 14.


second supplemented edition

 Tabl.IV.18. 11 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Large intestine

							;	activ	e anti	i-can	cer r	nole	cular	form	3					
cell line		1			2		3	4		6	7		9	10	11	12	13	14	15	16
cen nne	А	В	С	А	В	С	3	4	3	0	/	0	9	10	11	12	15	14	15	10
	-							cai	cino	ma										
C2BBE1																				
C2BBE1*																				\square
CaR-1																				
CCK-81																				
CCK-81*			_																	
CL-11 CL-11*																				
CL-34																				
CL-34*																				
CL-40																				<u> </u>
CL-40*																				
COLO-205																				
COLO-205*																				
COLO-320HSR																				
COLO-678																				
COLO-678*																				
CW-2																				
CW-2*																				
GP5d																				
HC-C2998																				
HC-C56																				
HC-C56*							<u> </u>													\square
HC-T116																				
HC-T116*																				\square
HC-T15																				
HCT15*																				
HT-115 HT-115*																				
HT-29																				
HT-29*																				
HT-55																				
HT-55*																				
KM-12																				
KM-12*																				
LoVo																				
LoVo*																				
LS-1034																				
LS-1034*																				
LS-123																				
LS-123*																				
LS-180																				
LS-180* LS-411N																				
LS-411N*																				
LS-513																				
LS-513*																				┢──┤
MD-ST8																				
MD-ST8*																				
NCI-H630																				
NCI-H716																				
NCI-H716*																				
NCI-H747																				
NCI-H747*																tananay.				
RCM-1							<u> </u>													\square
RCM-1*																				\square
RKO																				\vdash
RKO*																				\parallel
SKCO-1 SKCO-1*																				\vdash
SNU-1040																				\parallel
SNU-1040 SNU-1040*																				┝──┤
SNU-1040**					<u> </u>															\vdash
SNU-175*																				\vdash
SNU-407																				┢──┤
SNU-407*																				\vdash
SNU-61																				
SNU-61*				1	l															
		۱								i	i		·							

4.1.12. Leukemia (Leuchaemia)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4.1*) by transcriptome cell lines inherent in tumors in the Leukemia (*Tabl.IV.18.12*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7, 9 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 10, 11 and 14.

second supplemented edition

							2	activ	e ant	i-car	icer i	nole	cular	form	8					
cell line		1			2		3	4	5		7	8	9	10	11	12	13	14	15	16
cen inte	А	В	С	Α	В	C							<i>′</i>	10	11	12	15	14	15	10
BV-173						na	iema	topo	ietic	neoj	olasn	1								
CESS																				
CMK																				
CML-T1																				
EM-2																				
EoL-1-cell																				
GDM-1																				
HEL																				
HL-60																				
JURL-MK1																				
K-562 KASUMI-1																				
KCL-22																				
KG-1																				
KMOE-2																				
KU812																				
KY821																				
LAMA-84																				
ME-1																				
MEG-01																				
ML-2	<u> </u>			<u> </u>													<u> </u>			
MOLM-13																				
MOLM-16																				
MONO-MAC-6 MV-4-11																				
NB-4																				
NKM-1																				
NOMO-1																				
OCI-AML2																				
OCI-AML3																				
OCI-AML5																				
OCI-M1																				
P31-FUJ																				
PL-21																				
QIMR-WIL																				
RPMI-8866																				
RS4-11 SIG-M5																				
SKM-1																				
THP-1																				
1111 1							lvm	phoi	id ne	oplas	sm									
697							-)	P												
ALL-PO																				
ALL-SIL																				
ATN-1																				
BALL-1																				
BE-13																				
CCRF-CEM																				
CTV-1 DND-41																	<u> </u>			
				_																<u> </u>
CD ST																				
GR-ST HAL-01										-										
HAL-01																		1		
HAL-01 HC-1																				
HAL-01 HC-1 HH																				
HAL-01 HC-1 HH Jurkat																				
HAL-01 HC-1 HH																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37 KOPN-8																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37 KOPN-8 LC4-1																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37 KOPN-8 LC4-1 LOUCY																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37 KOPN-8 LC4-1 LOUCY MHH-CALL-2																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37 KOPN-8 LC4-1 LOUCY MHH-CALL-2 MHH-PREB-1																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37 KOPN-8 LC4-1 LOUCY MHH-CALL-2 MHH-PREB-1 MLMA																				
HAL-01 HC-1 HH Jurkat KARPAS-231 KARPAS-45 KE-37 KOPN-8 LC4-1 LOUCY MHH-CALL-2 MHH-PREB-1																				

 Tabl.IV.18. 12 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Leukemia

Vasil Tsanov & Hristo Tsanov

second supplemented edition

MOLT-4										
Mo-T										
NALM-6										
P12-ICHIKAWA										
P30-OHK										
PF-382										
RCH-ACV										
REH										
ROS-50										
RPMI-8402										
SUP-B15										
SUP-B8										
SUP-T1										
U-698-M										

4.1.13. Liver (*Hepar*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Liver (*Tabl.IV.18. 13*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A, 9 and 11.

 Tabl.IV.18. 13 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Liver

							;	activ	e ant	i-can	cer 1	nole	cular	form	s					I
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
cen me	Α	В	С	Α	В	С	3	4	5	0	/	0	9	10	11	12	15	14	15	10
							c	arcin	oma											
C-3A																				
HLE																				
								oth	er											
ALEXANDERCELLS																				
HEP3B-217																				
HEPG-2																				
HLF																				
HUH-1																				
HUH-6																				
HUH-7																				
JHH-1																				
JHH-2																				
JHH-4																				
JHH-5																				
JHH-6																				
JHH-7																				
L-I7																				
NCIH-684																				
PLCPRF-5																				
SKHEP-1																				
SNU-182																				
SNU-387																				
SNU-398																				
SNU-423																				
SNU-449																				
SNU-475																				
SNU-761																				

SNU-878										
SNU-886										

4.1.14. Lung (Pulmo)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Lung (*Tabl.IV.18. 14*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 4 and 7.

 Tabl.IV.18. 14 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Lung

								activ	e ant	i-can	cer i	nole	cular	form	s					
		1		1	2			liettiv												
cell line	А	B	С	А	B	С	3	4	5	6	7	8	9	10	11	12	13	14	15	16
						ca	rcin	oid-e	ndoc	rine	tumo	our								
NCI-H835																				
UMC-11																				
	· · · · · ·							ca	rcino	ma										
201-T																				
A-427																				
A-549																				
A-549*																				
ABC-1																				
ABC-1*						1														
BEN															1					
BEN*						l														
CAL-12T	1					I														
CAL-12T*																				
CAL-U3																				
CAL-U3*																				
CAL-U6																				
CAL-U6*																				
CHAGOK-1																				
CHAGOK-1*																				
COLO-668																				
COLO-668*																				
CORL-105																				
CORL-105*																				
CORL-23																				
CORL-23*																				
CORL-279																				
CORL-279*																				
CORL-303																				
CORL-311																				
CORL-311*																				
CORL-32																				
CORL-88																				
CORL-88*																				
CORL-95																				
CORL-95*																				
CPCN						ſ				ſ					Γ	_				
CPCN*																				
DMS-114																				
DMS-114*																				

second supplemented edition

DMS-273																
DMS-273*																
DMS-53																
DMS-53*								i I								
DMS-79																
DMS-79*																
EBC-1																
EBC-1*																
EKVX																
EMC-BAC-1																
EMC-BAC-2																
EPLC-272H																
EPLC-272H*																
H-3255								i I								
HARA																
HARA*							_									
HCC-15																
HCC-15*																
HCC-366									-							
HCC-366*																
HCC-44																
HCC-44*						-										
				l	ļ											<u> </u>
HCC-78																
HCC-78*																1
HCC-827					1											1
HCC-827*				ļ												
HOP-62				1					1							
HOP-92				İ	1	İ							1		1	İ
IALM																I
IALM*																
ISTSL-1																
ISTSL-2																
KN-S62																
KN-S62*																
LB-647SCLC																
LB-04/SCLU																
LC-1SQSF																
LC-1SQSF*																
LC-2AD																
LCLC-103H																
LCLC-103H*																
LCLC-97TM1																
LCLC-97TM1*																
LK-2																
LK-2*																
LOUNH-91																
LOUNH-91*								i I								
LU-134A																
LU-135																
LU-139				L		L										L
LU-165				1				1								
LU-65						-										
									⊢		 				<u> </u>	
LU-65*																
LU-99A	I								i T							
LXF-289					1	1							1			
									⊢ – ∣							
LXF-289*						L									L	I
MS-1	I								i I							
NCI-H1048					1	1							1	1		
NCI-H1048*									┢──┦							
				<u> </u>	L	L									L	I
NCI-H1092																L
NCI-H1092*																
NCI-H1105				1					⊢ −−1							1
									\square		ļ					<u> </u>
NCI-H1105*																
NCI-H1155																
NCI-H1155*										 					<u> </u>	
									\vdash							
NCI-H1299																
NCI-H1299*																
NCI-H1304																
									⊢ – ∣						<u> </u>	<u> </u>
NCI-H1341				ļ												L
NCI-H1341*	I								i T							
NCI-H1355					1	1							1	1	1	1
									┝──┦		 					
				L												L
NCI-H1355*									1							
				1	1	1									1	1
NCI-H1355* NCI-H1395																
NCI-H1355* NCI-H1395 NCI-H1395*																
NCI-H1355* NCI-H1395																

second supplemented edition

	NCI-H1435*														
	NCI-H1563														
NCH-11588 NCH-11588 NCH-11588 NCH-11573 NCH-11581 NCH-1															
NCH-H1533 Normality															
NCH-H1373 Normality Normality Normality Normality NCH-H1373 Normality Normality Normality Normality NCH-H1381 Normality Normality Normality Normality NCH-H1381 Normality Normality Normality Normality NCH-H1688 Normality Normality Normality Normality NCH-H1688 Normality Normality Normality Normality NCH-H1688 Normality Normality Normality Normality NCH-H1689 Normality Normality Normality Normality NCH-H1688 Normality Normality Normality Normality NCH-H1689 Normality Normality Normality NCH11738															
NCH-H1531* Normality															
NCH11381 NCH11381 NCH1162 NCH1162 NCH1162 NCH11623 NCH1162 NCH1162 NCH1162 NCH1162 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11789 NCH11039 NCH11739 NCH11739 NCH1739 NCH1739 NCH11734 NCH1739 NCH1739 NCH1739 NCH1739 NCH1779 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH17	NCI-H1573														
NCH11381 NCH11381 NCH1162 NCH1162 NCH1162 NCH11623 NCH1162 NCH1162 NCH1162 NCH1162 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11689 NCH11789 NCH11039 NCH11739 NCH11739 NCH1739 NCH1739 NCH11734 NCH1739 NCH1739 NCH1739 NCH1739 NCH1779 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH1739 NCH17	NCI-H1573*														
NCH-H1631 N															
NCH11023 NCH1027 NCH1028 NCH1048 NCH1048 NCH11648 NCH1058 NCH1058 NCH1058 NCH1058 NCH11651 NCH1058 NCH1058 NCH1058 NCH1058 NCH11651 NCH1058 NCH1058 NCH1058 NCH1058 NCH11651 NCH1058 NCH1058 NCH1058 NCH1058 NCH1058 NCH1058 NCH1058 NCH1058 NCH1058 NCH1059 NCH1058 NCH1058 NCH1058 NCH1058 NCH1059 NCH1058 NCH1058 NCH1058 NCH1058 NCH1079 NCH1078 NCH1078 NCH1078 NCH1078 NCH11734 NCH1734 NCH1078 NCH1734 NCH1734 NCH1779 NCH1778 NCH1778 NCH1778 NCH1778 NCH1778 NCH1778 NCH1778 NCH1778 NCH1778 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
NCI-HI043 N															
NCI-H1648 Norther intervention Norther intervention Norther intervention NCI-H1659 Norther intervention Norther intervention Norther intervention NCI-H1659 Norther intervention Norther intervention Norther intervention NCI-H1659 Norther intervention Norther intervention Norther intervention NCI-H1666 Norther intervention Norther intervention Norther intervention NCI-H1666 Norther intervention Norther intervention Norther intervention NCI-H1666 Norther intervention Norther intervention Norther intervention NCI-H1703 Norther intervention Norther intervention Norther intervention NCI-H1703 Norther intervention Norther intervention Norther intervention NCI-H1734 Norther interv															
NCH-H1650 Image: Constraint of the second secon	NCI-H1623*														
NCI-HI050 Image: Constraint of the second	NCI-H1648														
NCI-HI050 Image: Constraint of the second	NCI-H1648*														
NCI-HIGS0 Image: Section of the sec															
NCI-HI051 No															
NCI-H1651* No.															
NCI-H1066 NCI-H1068* NCI-H1068* NCI-H1068* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1069* NCI-H1070* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1079* NCI-H1179* NCI-H1179* NCI-H1179* NCI-H1179* NCI-H1179* NCI-H	NCI-H1651														
NCI-H1066 NCI-H1068 NCI-H1068 NCI-H1068 NCI-H1068 NCI-H1063* NCI-H1063* NCI-H1063* NCI-H1064 NCI-H1063* NCI-H1063* NCI-H1063* NCI-H1073* NCI-H1073* NCI-H1073* NCI-H1073* NCI-H1173* NCI-H1073* NCI-H1073* NCI-H1074* NCI-H1173* NCI-H1075* NCI-H1074* NCI-H1074* NCI-H1173* NCI-H1075* NCI-H1075* NCI-H1075* NCI-H1173* NCI-H1075* NCI-H1075* NCI-H1075* NCI-H1174* NCI-H1075* NCI-H1075* NCI-H1075* NCI-H1175* NCI-H1075* NCI-H1075* NCI-H1075* NCI-H11975* NCI-H1075* </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
NCL-H1666* Image: Constraint of the second															
NCL-HI088 NCL-HI093 NCL-HI093 NCL-HI093 NCL-HI093 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI093 NCL-HI093 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI093 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI093 NCHI094 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI093 NCHI094 NCL-HI094 NCL-HI094 NCL-HI094 NCL-HI094 NCHI094 NCHI094 NCHI094 NCHI094 NCHI094 NCHI094 NCHI094 NCHI094 NCHI094 NCHI1934 NCHI094 NCHI094 NCHI094 NCHI094 NCHI1935 NCHI094 NCHI094 NCHI094 NCHI094 NCH1936 NCHI095 NCHI094 NCHI094 NCHI094 NCH1936 NCHI094 NCHI094 NCHI094 NCHI094 NCH1836 NCH1838 NCHI094 NCHI094 NCHI094 NCH1838 NCH1838 NCHI094 NCHI094 NCHI094 NCH1838 NCH1934 NCHI094 NCH1094 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									-						
NCL-H1693 NCL-H1694 NCL-H1694 NCL-H1694 NCL-H1694 NCL-H1703 NCL-H1703 NCL-H1703 NCL-H1703 NCL-H1734 NCL-H1734 NCL-H1734 NCL-H1734 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1734 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1792 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1792 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1793 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1795 NCL-H1735 NCL-H1735 NCL-H1735 NCL-H1886 NCL-H1735 NCL-H1735 NCL-H1735													 		
NCL-H1693* NCL-H1694* NCL-H1694* NCL-H1694* NCL-H1703* NCL-H1703* NCL-H1703* NCL-H1703* NCL-H1734* NCL-H1734* NCL-H1734* NCL-H1734* NCL-H1734* NCL-H1735* NCL-H1734* NCL-H1734* NCL-H1734* NCL-H1735* NCL-H1734* NCL-H1734* NCL-H1734* NCL-H1735* NCL-H1735* NCL-H1735* NCL-H1735* NCL-H1735* NCL-H1735* NCL-H1735* NCL-H1836 NCL-H1836* NCL-H1838* NCL-H1838* NCL-H1838* NCL-H1838* NCL-H1838* NCL-H1869* NCL-H1869* NCL-H1869* NCL-H1869* NCL-H1869* NCL-H1876* NCL-H1869* NCL-H1869* NCL-H1869* NCL-H1876* NCL-H195* NCL-H195* NCL-H195* NCL-H195* NCL-H196* NCL-H196* NCL-H196* NCL-H196* NCL-H196* NCL-H197* NCL-H197* NCL-H1975* NCL NC															
NCI-H1694 NCI-H1703 Image: Constraint of the second secon					L										
NCI-H1694 NCI-H1703 Image: Constraint of the second secon	NCI-H1693*							-							
NCL-H1694* Image: Constraint of the second															
NCI-H1703* NCI-H1703* NCI-H1703* NCI-H1734* NCI-H1734* NCI-H1734* NCI-H1734* NCI-H1734* NCI-H1734* NCI-H1735* NCI-H1735* NCI-H1735* NCI-H1735* NCI-H1734* NCI-H1737* NCI-H1737* <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td>															
NCI-H1703* NCI-H1734 NCI-H1734 NCI-H1734 NCI-H1734* NCI-H1734* NCI-H1755* NCI-H175*															<u> </u>
NCI-H1734 NCI-H1734 NCI-H1734 NCI-H1735 NCI-H1735 NCI-H1755 NCI-H1755 NCI-H1755 NCI-H1770 NCI-H															
NCI-H1734* NCI-H1755 Image: Constraint of the second seco															
NCL-H1755 NCL-H1755 NCL-H1755 NCL-H1770 NCL-H1770 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1836 NCL-H1836 NCL-H1836 NCL-H1836 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1869 NCL-H1869 NCL-H1869 NCL-H1869 NCL-H1876 NCL-H1869 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1975 NCL-H1975 NCL-H1975 NCL-H1964 NCL-H1963 NCL-H1963 NCL-H1963 NCL-H1963 NCL-H1975 NCL NCL-H1975 NCL-H1975* NCL NCL-H1963 NCL-H1975 NCL-H1963 NCL-H2023 NCL NCL-H2023 NCL-H2029 NCL-H2024 NCL-H2025 NCL-H2025 NCL-H2006	NCI-H1734														
NCL-H1755 NCL-H1755 NCL-H1755 NCL-H1770 NCL-H1770 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1781 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1793 NCL-H1836 NCL-H1836 NCL-H1836 NCL-H1836 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1869 NCL-H1869 NCL-H1869 NCL-H1869 NCL-H1876 NCL-H1869 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1876 NCL-H1975 NCL-H1975 NCL-H1975 NCL-H1964 NCL-H1963 NCL-H1963 NCL-H1963 NCL-H1963 NCL-H1975 NCL NCL-H1975 NCL-H1975* NCL NCL-H1963 NCL-H1975 NCL-H1963 NCL-H2023 NCL NCL-H2023 NCL-H2029 NCL-H2024 NCL-H2025 NCL-H2025 NCL-H2006	NCI-H1734*														
NCI-H1755* NCI-H170 Image: Constraint of the second s															
NCI-HI170 NCI-HI171 NCI-HI1781 NCI-HI1781 NCI-HI1781 NCI-HI1781 NCI-HI1792 NCI-HI1792 NCI-HI1793 NCI-HI1793 NCI-HI1793 NCI-HI1793 NCI-HI1793 NCI-HI1793 NCI-HI1793 NCI-HI1836 NCI-HI1793 NCI-HI1793 NCI-HI1793 NCI-HI1793 NCI-HI1836 NCI-HI1838 NCI-HI1838 NCI-HI1838 NCI-HI1838 NCI-HI1838 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-HI1876 NCI-H1915 NCI-H1915 NCI-H1915 NCI-H1915 NCI-H1915 NCI-H1915 NCI-H1926 NCI-H1926 NCI-H1926 NCI-H1926 NCI-H1963 NCI-H1963 NCI-H1963 NCI-H1963 NCI-H1963 NCI-H1963 NCI-H1963 NCI-H1963															
NCL-H1781 NCL-H1781 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1792 NCL-H1793 NCL-H1793* NCL-H1793* NCL-H1793* NCL-H1793* NCL-H1793* NCL-H1793* NCL-H1793* NCL-H1793* NCL-H1836 NCL-H1836 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1838 NCL-H1836 NCL-H1838 NCL-H1838 NCL-H1869* NCL-H1869* NCL-H1869* NCL-H1869* NCL-H1876* NCL-H1876* NCL-H1876* NCL-H1876* NCL-H1876* NCL-H1975* NCL-H1915* NCL-H1915* NCL-H1915* NCL-H196* NCL-H196* NCL-H196* NCL-H196* NCL-H196* NCL-H196* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H1975* NCL-H2029* NCL H2024*															
NCL-H1781* Image: state of the state															
NCI-H1792 NCI-H1793 NCI-H1793 NCI-H1793 NCI-H1836* NCI-H1836* NCI-H1836* NCI-H1838* NCI-H1838* NCI-H1838* NCI-H1838* NCI-H1869 NCI-H1869 NCI-H1876 NCI-H1876 NCI-H1876 NCI-H1876 NCI-H1876 NCI-H1975 NCI-H1915* NCI-H1944 NCI-H1944 NCI-H1968 NCI-H1968* NCI-H1968* NCI-H1963* NCI-H1975* NCI-H1975* NCI-H1975* NCI-H2009* NCI-H2009* NCI-H2029* NCI-H2029* NCI-H2029* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H204 NCI-H204 NCI-H203* NCI-H204 NCI-H204 N	NCI-H1781														
NCI-H1792 NCI-H1793 NCI-H1793 NCI-H1793 NCI-H1836* NCI-H1836* NCI-H1836* NCI-H1838* NCI-H1838* NCI-H1838* NCI-H1838* NCI-H1869 NCI-H1869 NCI-H1876 NCI-H1876 NCI-H1876 NCI-H1876 NCI-H1876 NCI-H1975 NCI-H1915* NCI-H1944 NCI-H1944 NCI-H1968 NCI-H1968* NCI-H1968* NCI-H1963* NCI-H1975* NCI-H1975* NCI-H1975* NCI-H2009* NCI-H2009* NCI-H2029* NCI-H2029* NCI-H2029* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H203* NCI-H204 NCI-H204 NCI-H203* NCI-H204 NCI-H204 N	NCI-H1781*														
NCI-H1792* Image: Constraint of the second seco	NCI-H1792														
NCI-H1793 NCI-H1793* Image: Constraint of the second															
NCI-H1793* Image: Constraint of the second seco									 						
NCI-H1836 Image: Constraint of the second secon															
NCI-H1836* Image: Constraint of the second seco			_												
NCI-H1838 NCI-H1838* NCI-H1838* NCI-H1838* NCI-H1869* NCI-H1869* NCI-H1869* NCI-H1876 NCI-H1876 NCI-H1876* NCI-H1876* NCI-H1876* NCI-H1976* NCI-H1915 NCI-H1915 NCI-H1915 NCI-H1915 NCI-H1944* NCI-H1944* NCI-H1944* NCI-H196* NCI-H196* NCI-H1963* NCI-H1963* NCI-H1963* NCI-H1963* NCI-H1975* NCI-H1975* NCI-H1975* NCI-H1975* NCI-H1975* NCI-H1975* NCI-H2029 NCI-H2023 NCI-H2023 NCI-H2023 NCI-H2029* NCI-H2029 NCI-H2029* NCI-H2029 NCI-H2026* NCI-H2085* NCI-H2087 NCI-H2087	NCI-H1836														
NCI-H1838* Image: Constraint of the second seco	NCI-H1836*														
NCI-H1838* Image: Constraint of the second seco	NCI-H1838														
NCI-H1869 Image: Constraint of the second secon															
NCI-H1869* Image: Constraint of the second seco															
NCI-H187 Image: Constraint of the second													 		
NCI-H1876 Image: Constraint of the second secon															
NCI-H1876* Image: Constraint of the second seco	NCI-H187														
NCI-H1876* Image: Constraint of the second seco	NCI-H1876														
NCI-H1915 Image: Constraint of the second secon															
NCI-H1915* Image: Constraint of the second seco															
NCI-H1944 Image: Constraint of the second secon															
NCI-H1944* Image: Constraint of the second seco															
NCI-H196 Image: Constraint of the cons															
NCI-H196* Image: Constraint of the second secon															
NCI-H196* Image: Constraint of the second secon	NCI-H196														
NCI-H1963 Image: Constraint of the second secon															
NCI-H1963* Image: Constraint of the second seco		· I													
NCI-H1975 Image: Constraint of the second secon											1				
NCI-H1975* Image: Constraint of the second seco	NCI H1062*														
NCI-H1993 Image: Constraint of the second secon															
NCI-H1993 Image: Constraint of the second secon	NCI-H1975														
NCI-H2009 Image: Constraint of the second secon	NCI-H1975 NCI-H1975*														
NCI-H2009* Image: Constraint of the second seco	NCI-H1975 NCI-H1975*														
NCI-H2023 Image: Constraint of the second secon	NCI-H1975 NCI-H1975* NCI-H1993														
NCI-H2023* Image: Constraint of the co	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009														
NCI-H2029 Image: Constraint of the con	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009 NCI-H2009*														
NCI-H2029* Image: Constraint of the co	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009 NCI-H2009* NCI-H2023														
NCI-H2030 Image: Constraint of the con	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023*														
NCI-H2030 Image: Constraint of the con	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023*														
NCI-H2030* Image: Constraint of the co	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029														
NCI-H2066 Image: Constraint of the con	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029 NCI-H2029*														
NCI-H2066* Image: Constraint of the constrai	NCI-H1975 NCI-H1975* NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029 NCI-H2029* NCI-H2030														
NCI-H2085 Image: Constraint of the constrain	NCI-H1975 NCI-H1975* NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029* NCI-H2030 NCI-H2030*														
NCI-H2085* Image: Constraint of the constrai	NCI-H1975 NCI-H1975* NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029 NCI-H2029* NCI-H2030* NCI-H2066														
NCI-H2087	NCI-H1975 NCI-H1975* NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029* NCI-H2030* NCI-H2066*														
NCI-H2087	NCI-H1975 NCI-H1975* NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029* NCI-H2030* NCI-H2066* NCI-H2085														
	NCI-H1975 NCI-H1975* NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029* NCI-H2030* NCI-H2066* NCI-H2085														
	NCI-H1975 NCI-H1975* NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029* NCI-H2030* NCI-H2066* NCI-H2085*														
	NCI-H1975 NCI-H1975* NCI-H1993 NCI-H2009 NCI-H2009* NCI-H2023 NCI-H2023* NCI-H2029 NCI-H2029* NCI-H2030* NCI-H2030* NCI-H2066 NCI-H2066* NCI-H2085* NCI-H2087														

second supplemented edition

NCI-H209																
NCI-H209*																
NCI-H211																
NCI-H211*																
				-												
NCI-H2110																
NCI-H2110*																
NCI-H2122																
NCI-H2122*																
NCI-H2135																
NCI-H2141																
NCI-H2141*																
		_	-								 					
NCI-H2170			_													
NCI-H2170*																
NCI-H2172				-												
NCI-H2172*																
NCI-H2196																
NCI-H2196*																
NCI-H2227																
NCI-H2227*																
NCI-H2228																
NCI-H2228*																
NCI-H226															ļ	
NCI-H226*																
NCI-H2291																
NCI-H2291*					1											1
NCI-H23										-						
NCI-H23*																
NCI-H2342																
NCI-H2342*																
NCI-H2347															ļ	
NCI-H2347*																
NCI-H2405																
NCI-H2405*																
NCI-H2444																
NCI-H2444*																
				-					 		 					
NCI-H250																
NCI-H292																
NCI-H3122																
NCI-H3122*																
NCI-H322M																
NCI-H345																
NCI-H358																
NCI-H358*																
NCI-H378																
NCI-H441																
NCI-H441*																
NCI-H446						L									ļ	
NCI-H446*																
NCI-H510A																
NCI-H520																
NCI-H520*					1	1										1
NCI-H522					1	1						1				
NCI-H522*				-											<u> </u>	1
NCI-H524																
										<u> </u>						
NCI-H524*															l	
NCI-H526						L									ļ	
NCI-H526*																
NCI-H596						L										
NCI-H596*																
NCI-H64					1	1										1
NCI-H647					1	1					1	1				
NCI-H647*											 					
										<u> </u>						
NCI-H650																
NCI-H650*					<u> </u>	L										ļ
NCI-H661																
NCI-H661*						L _										
NCI-H69																
NCI-H69*					1	1					1	1				
NCI-H720				-											<u> </u>	1
NCIH-727																
NCIH-727*	\vdash		\square			L		l								
	i															
NCI-H748			_									1		1	1	1
NCIH-810																
NCIH-810																

second supplemented edition

		 -										-			
NCI-H82*								-							
NCI-H838															
NCI-H838*															
NCI-H841															
NCI-H841*															
NCI-H847					1										
PC-14															
PC-14*															
PC-3 [JPC-3]															
RERFLCKJ															
RERFLCKJ*															
RERFLCMS															
KENTLUMS															
RERFLCMS*															
RERFLCSQ-1															
RERFLCSQ-1*															
SBC-1															
SBC-3															
SBC-5															
SBC-5*															
SHP-77															
SHP-77*															
SKLU-1															
SKLU-1*					1										
SKMES-1			1	1	İ									1	1
SKMES-1*															
SW-1271															
SW-1271*															
SW-1573			1	1											1
SW-1573*															
SW-900															
SW-900*															
VMRCLCD															
VMRCLCD*															
						meso	othel	ioma	l						
H-2369															
H-2373															
H-2461										 			 		
H-2591															
H-2595															
H-2722															
H-2731															
H-2795															
H-2803															
H-2804															
H-2810															
H-2818											-				
H-2869															
H-290															
H-513															
ISTMES-1															
MPP-89														<u> </u>	
MSTO-211H								_			_				
NCI-H2052															
NCI-H2452	_		1	1		1	1						1	İ	1
NCI-H28							Ļ								
		 					other						 		
CALU-1															
CORL-24				1											1
CORL-321															
CORL-47															
CORL-51															
DFCI-024															
DMS-153										-					
DMS-454														<u> </u>	
DV-90															
HCC-1171			1	1									1		1
HCC-1195				L	I										 L
HCC-1359															
HCC-1438															
HCC-1588				1											
HCC-1833					I										
HCC-1897			L	L									L		
HCC 2100															
HCC-2108				i											
HCC-2108															
HCC-2279															

	1	11.1
second	supplemented	edition

HCC-2935										
HCC-33										
HCC-364										
HCC-4006										
HCC-827GR5										
HCC-95										
HLC-1										
HLFA										
HS-229T										
HS-618T										
LC-1F										
LU-99										
LUDLU-1										
MORCPR		_								
NCIH-1184										
NCIH-1339										
NCIH-1373										
NCIH-1385										
NCIH-1437										
NCIH-1618										
NCIH-1930										
NCIH-2081										
NCIH-2106										
NCIH-2126										
NCIH-2171										
NCIH-2286										
NCIH-292										
NCIH-292*										
NCIH-3255										
NCIH-460										
NCIH-510										
NCIH-854										
NCIH-889										
RERFLCAD-1										
RERFLCAD-2										
RERFLCAI										
SALE										
SCLC-21H										
SQ-1										
T3M-10										
TIG-3TD										
VMRCLCP										

4.1.15. Lymphoma (Lymphoma)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4.1*) by transcriptome cell lines inherent in tumors in the Lymphoma (*Tabl.IV.18.15*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7, 9 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 6, 10, 11* and *14*.

second supplemented edition

		1		I	2		<u> </u>						cului	form	5					<u> </u>
cell line	А	I B	С	А	B	С	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		-					lym	phoi	d neo	oplas	m				1	1	1			
A3-KAW																				
A4-Fuk																				
BC-1																				
BL-41																				
CA46 CRO-AP2																				
CTB-1																				
Daudi																				
DB																				
DEL																				
DG-75																				
DOHH-2																				
EB2																				
EB-3																				
EHEB																				
Farage																				
GA-10 GRANTA-519																				
H-9																				<u> </u>
HDLM-2																				<u> </u>
HD-MY-Z																				
Hs-445																				
JEKO-1																				
JiyoyeP-2003																				
JM1																				
JSC-1																				
JVM-2																				
JVM-3 KARPAS-1106P																				
KARPAS-299																				
KARPAS-422																				
KM-H2																				
L-1236																				
L-428																				
L-540																				
MC-116																				
NAMALWA																				
NU-DUL-1																				
OCI-LY-19 OCI-LY7																				
P32-ISH																				
Raji																				
Ramos-2G6-4C10																				
RC-K8																				
RL																				
RPMI-6666																				
SCC-3																				<u> </u>
SLVL																				<u> </u>
SR ST496																				├
ST486 SU-DHL-1																				├
SU-DHL-10																				-
SU-DHL-16																				
SU-DHL-4																				<u> </u>
SU-DHL-5																				
SU-DHL-6																				
SUP-HD1																				
SUP-M2				<u> </u>															L	┣
TK																				┣
TUR																			<u> </u>	├
VAL WIL2-NS																				┣──
WIL2-NS WSU-DLCL2																				├
WSU-NHL																				-
YT																				<u> </u>
					I	L	1		ther	L			í	L	I			l	l	ı

Tabl.IV.18. 15 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Lymphoma

Vasil Tsanov & Hristo Tsanov

4.1.16. Myeloma (*Myeloma*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Myeloma (*Tabl.IV.18. 16*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7, 12 and 14;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A, 2.A, 6, 9, 10 and 11.

 Tabl.IV.18. 16 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Myeloma

								activ	e ant	i-can	cer 1	nole	cular	form	s					
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
een nne	Α	В	С	Α	В	С	_		_			0		10	11	12	15	14	15	10
					-		ly	mph	oid n	leopl	asm						-		-	
AMO-1																				
ARH-77																				
EJM																				
IM-9																				
JJN-3																				
KARPAS-620																				
KMS-11																				
KMS-12-BM																				
L-363																				
LP-1																				
MC-CAR																				
MM-1S																				
MOLP-8																				
NCI-H929																				
OPM-2																				
RPMI-8226																				
SK-MM-2																				
U-266																				

Other pharmaceutical forms would be highly active and potential agents for personalized therapies.

4.1.17. Neuroblastoma (Neuroblastoma)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Neuroblastoma (*Tabl.IV.18. 17*), it is concluded that:

- main potential medicines: AACF 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 4.

								activ	e ant	i-can	cer r	nole	cular	form	5				-	
cell line		1	1		2	1	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Α	В	С	Α	В	С	Ũ		-		·	Ŭ	-	10			10		10	10
	1	1	1	1			r	1	oth	er		1		1			-			1
BE2-M17																				
CHP-126														-				-		
CHP-134														-						
CHP-212																				
GI-ME-N																				
GOTO														-						
IMR-5																				
KELLY																				
KP-N-YN																				
LAN-6																				
MHH-NB-11																				
NB(TU)1-10																				
NB-1																				
NB-10																				
NB-12																				
NB-13																				
NB-14																				
NB-17																				
NB-5																				
NB-6																				
NB-69																				
NB-7																				
NH-12																				
SIMA																				
SK-N-AS																				
SK-N-DZ																				
SK-N-FI																				
SK-N-SH																				
TGW																				

 Tabl.IV.18. 17 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Neuroblastoma

4.1.18. Nervous system (Systema nervosum)

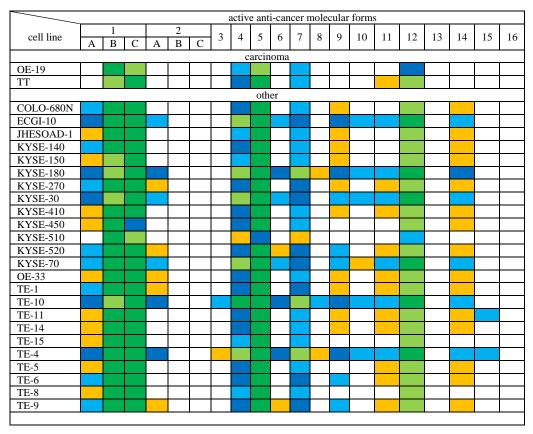
From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Nervous system (*Tabl.IV.18. 18*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF* 4 and 7.

 Tabl.IV.18. 18 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Nervous system

							i	activ	e ant	i-car	icer i	nole	cular	form	s					
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
cen nne	Α	В	С	Α	В	С	3	4	5	0	/	0	9	10	11	12	15	14	15	10
								ų,	glion	na										
42-MG-BA																				
8-MG-BA																				
A-172																				
AM-38																				
Becker																				

G 1 G 1																1	1	
CAS-1																		
CCF-STTG1																		
D-247MG																		
D-263MG																		
D-336MG																		
D-392MG																		
D-423MG																		
D-502MG																		
D-542MG																		
D-566MG																		
DBTRG-05MG																		
DK-MG																		
GAMG																		
GB-1																		
GI-1																		
DBTRG-05MG																		
DK-MG																		
GAMG																		
GAMO GB-1																		\vdash
GI-1																		\vdash
GMS-10									-									\vdash
GMS-10 H-4																		
													ļ					\vdash
Hs-683																		
KALS-1																		
KINGS-1																		
KNS-42																		
KNS-81-FD																		
KS-1																		
LN-18																		
LN-229																		
LN-405																		
LNZTA3WT-4																		
M-059J																		
MOG-G-CCM																		
MOG-G-UVW																		
NMC-G1																		
no-10																		
no-11																		
SF-126																		
SF-268																		
SF-295																		
SF-539																		
SK-MG-1									-		-	-						\vdash
SNB-75																		\vdash
SW-1088																		\vdash
SW-1088									-									
T-98G																	<u> </u>	\vdash
																		\vdash
U-118-MG													ļ				l	\vdash
U251											<u> </u>	<u> </u>						
U-87-MG									<u> </u>									
YH-13									<u> </u>									
YKG-1			L	L		I	L				<u> </u>	l	L			I	I	
]	Medu	llobl	aston	na an	d pri	mitiv	ve ne	uroe	ctod	erma	l tumo	or	1	r	r	
D-283MED																		
Daoy																		
ONS-76																		
PFSK-1																		


4.1.19. Oesophagus (Oesophagus)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Oesophagus (*Tabl.IV.18. 19*) it is concluded that:

- second supplemented edition
- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A, 9 and 14.

 Tabl.IV.18. 19 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Oesophagus

4.1.20. Ovary (Ovarium)

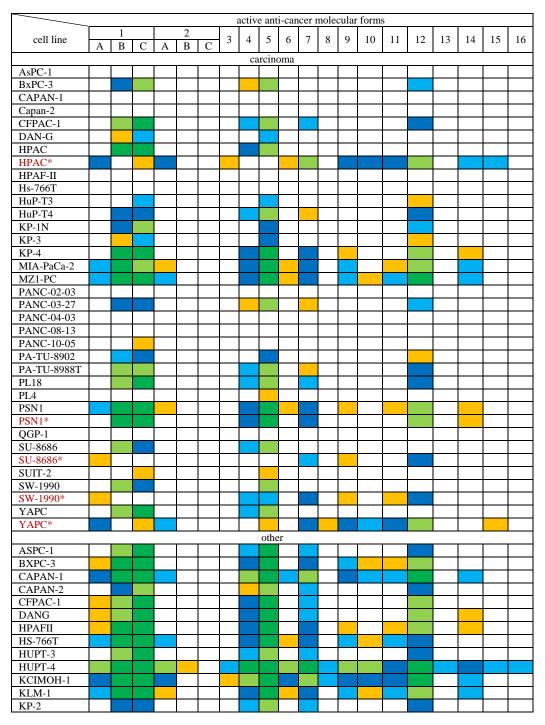
From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Ovary (*Tabl.IV.18. 20*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A, 9, 11* and *14*.

second supplemented edition

article artintende artintende article article article article artic									activ	e ant	i-can	cer r	nole	cular	form						
cell ine A B C A B C 3 4 1 8 9 10 11 12 13 14 15 16 A-2780 C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""> <thc< td="" th<=""><td></td><td></td><td>1</td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10111</td><td></td><td></td><td></td><td></td><td></td><td>[</td></thc<></thc<></thc<></thc<></thc<>			1			2									10111						[
A-2780 A <td>cell line</td> <td>А</td> <td></td> <td>С</td> <td>Α</td> <td></td> <td>С</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> <td>14</td> <td>15</td> <td>16</td>	cell line	А		С	Α		С	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A-2780 A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ca</td> <td>rcinc</td> <td>ma</td> <td></td>									ca	rcinc	ma										
KURAMOCHI Image: Constraint of the second secon	A-2780																				[
OVISE OVEATE </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																					
OVKARE OVE OVE OVE OVE OVE 59-M OVE OVE OVE OVE OVE OVE 59-M OVE OVE OVE OVE OVE OVE OVE 59-M OVE OVE OVE OVE OVE OVE OVE OVE CAOV-3 OVE																					
OVTOKO OW OWE OWE 59-M Image: Construction of the second	OVKATE																				
other other 59-M CAOV-3 CAOV-34 CAOV-34 CAOV-34 CAOV-36 CAOV-34 CAOV-36 CAOV-34 CAOV-36 CAOV-34 CAOV-36 CAOV-34 CAOV-36 CAOV-34 CAOV-36 CAOV-37 CAOV-37 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																					
59-M A										othe	r										
CAOV-3 CAOV-4 CAOV-4 CAOV-4 CAOV-30	59-M					[1			oune											1
CAOV-4 Image: Construction of the second																					
COLO-704 COU-304 COU-318 COU-332 COU-334 COU-344																					
COV-318 COV-362 COV-344																					
COV-362 COV-364																					
COV-334 COV-644																					
COV-504 COV-644																					<u> </u>
COV-644 Image: Constraint of the second					-						-										<u> </u>
EFO-21 Image: Constraint of the second s																					<u> </u>
EFO-27 Image: Constraint of the constr																					<u> </u>
ES-2 FUOV-1																					
FUOV-1 Image: state of the state of t																					<u> </u>
HEYA-8 Image: state of the state of t																					<u> </u>
HS-571T Image: Constraint of the const																					
IGROV-1 I </td <td>HS-571T</td> <td></td>	HS-571T																				
JHOC-5 Image: constraint of the second s																					
JHOM-1 JHOM-2B Image: Constraint of the second																					
JHOM-2B JHOS-2 Image: Constraint of the second																					
JHOS-2 Image: Constraint of the second s																					
JHOS-4 Image: Constraint of the second s													-								
MCAS Image: Constraint of the second sec																					
NIHOVCAR-3 Image: Constraint of the second seco																					
OAW-28 Image: Constraint of the second s																					
OAW-42 Image: Constraint of the second s																					
OC-314 Image: Constraint of the constr																					
OC-315 Image: Constraint of the constr																					
OC-316 Image: Constraint of the second s	OC-315																				
OELE Image: Constraint of the second sec	OC-316																				
ONCODG1 Image: Constraint of the second		1				l	1	1													-
OV-56 Image: Constraint of the second se							1	1													-
OV-7 Image: Constraint of the second sec																					<u> </u>
OV-90 Image: Constraint of the constra	OV-7						1	1													-
OVCAR-4 Image: Constraint of the const							1	1													-
OVCAR-8 Image: Constraint of the second						l	1	1													-
OVK-18 Image: Constraint of the constr						l	1	1													-
OVMANA Image: Constraint of the constr																					<u> </u>
OVSAHO Image: Constraint of the constr							1	1													-
RMGI Image: Constraint of the constrai							1	1													-
RMUGS Image: Constraint of the constra																					<u> </u>
SKOV-3 Image: Constraint of the constr																					<u> </u>
SNU-119 Image: Constraint of the const							1	1													
SNU-8 Image: Constraint of the state																					<u> </u>
SNU-840 Image: SNU-840																					<u> </u>
TOV-112D Image: Constraint of the constraint							1	1													-
TOV-21G																					<u> </u>
		1				1	1	1													<u> </u>
														•		·					

 Tabl.IV.18. 20 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Ovary


4.1.21. Pancreas (*Pancreas*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Pancreas (*Tabl.IV.18. 21*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A*, *7*, *11* and *14*.

 Tabl.IV.18. 21 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Pancreas

Vasil Tsanov & Hristo Tsanov

second supplemented edition

KP-2*										
KP-3										
KP-4										
L-33										
MIAPACA-2										
PANC-0203										
PANC-0213										
PANC-0327										
PANC-0403										
PANC-0504										
PANC-0813										
PANC-1										
PANC-1005										
PATU-8902										
PATU-8988S										
PATU-8988T										
PK-1										
PK-45H										
PK-59										
PL-45										
QGP-1										
SNU-213										
SNU-324										
SNU-410										
SUIT-2										
T3M-4										
TCCPAN-2									_	

4.1.22. Pleura (*Pleurae*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4.1*) by transcriptome cell lines inherent in tumors in the Pleura (*Tabl.IV.18.22*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A, 9, 11* and *14*.

 Tabl.IV.18. 22 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Pleura

								activ	e ant	i-can	cer r	nole	cular	form	5					
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Α	В	С	Α	В	С	3	4	5	0	/	0	9	10	11	12	15	14	15	10
									othe	er										
ACCMESO-1																				
DM-3																				
ISTMES-1																				
ISTMES-2																				
JL-1																				
MPP-89																				
MSTO-211H																				
NCIH-2052																				
NCIH-2452																				
NCIH-28																				
RS-5																				

4.1.23. Prostate (Prostata)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Prostate (*Tabl.IV.18. 23*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A*, *6*, *9* and *14*.

 Tabl.IV.18. 23 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Prostate

								activ	e ant	i-car	icer 1	nole	cular	form	s					
cell line		1	1		2	1	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Α	В	С	Α	В	С	U		5	,	,	0	1	10			10	1.	10	10
							C	carci	noma	ı										
22RV-1																				
								oth	ner											
DU-145																				
LNCAPCLONEFGC																				
MDAPCA-2B																				
NCIH-660																				
PC-3																				
PRECLH																				
VCAP																				

Other pharmaceutical forms would be highly active and potential agents for personalized therapies.

4.1.24. Salivary gland (*Glandulae salivariae*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Salivary grand (*Tabl.IV.18. 24*), it is concluded that:

- main potential medicines: AACF 1.A, 1.B, 1.C, 4, 5, 7, 9, 11, 12 and 14;
- duplication of treatment and / or substitution on medical grounds: *AACF 2.A, 3, 6, 8, 10* and *15*.

394

second supplemented edition

 Tabl.IV.18. 24 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Salivary gland

								activ	e ant	i-can	cer r	nole	cular	form	s					
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
cen nne	Α	В	С	А	В	С	3	4	5	0	'	0	2	10	11	12	15	14	15	10
A-253																				
YD-15																				

4.1.25. Skin (Cutis)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Skin (*Tabl.IV.18. 25*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 11 and 12;
- duplication of treatment and/or substitution on medical grounds: AACF 7 and 13.

 Tabl.IV.18. 25 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Skin

							;	activ	e ant	i-can	cer 1	nole	cular	form	s					
cell line		1	1		2	1	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	А	В	С	А	В	С						Ŭ	ĺ.	10			10	••	10	10
DJM-1	1				1	r		adne	xal tı	imou	Ir		r					1	r	r
DJM-1									rcino											
A-388								Ca	Teme	ma										1
A-388 A-431																				
A-431							ma	lions	ant m	elan	oma									
451-Lu						1	ma	Ingin		Clair	Jilla		1						1	r
A-101D																				
A-101D*						<u> </u>													<u> </u>	<u> </u>
A-2058																				<u> </u>
A-2058*																				
A-375																				
A-375*																				
C-32																				
C-32*																				
CHL-1																				
CHL-1*																				
COLO-679																				
COLO-679*																				
COLO-783																				
COLO-783*																				
COLO-792																				
COLO-792*																				
COLO-800																				
COLO-800*																				
COLO-829																				
COLO-829*																				
CP50-MEL-B																				
CP66-MEL																				
G-361																				

G-361*																
GAK																
G-MEL																
HMV-II																
HS-940T																
HS-940T*																
HT-144																
HT-144*																
IGR-1																
IGR-1*																
IGR-37																
IGR-37*																
IPC-298																
IPC-298*																
IST-MEL1																
K-2																
LB2518-MEL																
LB373-MEL-D																
LOXIMVI																
LOXIMVI*																
M-14																
MELHO																
MELHO*																
MELJUSO																
MELJUSO*																
MEWO																-
											-					└── │
MEWO*			<u> </u>	<u> </u>				-								\vdash
MMAC-SF																
MZ2-MEL			<u> </u>	<u> </u>												\square
MZ7-mel																
RPM-I7951																
RPM-I7951*																
RVH-421																
RVH-421*																
SH-4																
SH-4*																
SKMEL-1																
SKMEL-1*																
SKMEL-2																
SKMEL-2*																
SKMEL-24																<u> </u>
SKMEL-24*																
SKMEL-28																
SKMEL-28*																
SKMEL-3																
SKMEL-3*																
SKMEL-30																
SKMEL-30*																
SKMEL-31																
SKMEL-31*					1											
SKMEL-5																
SKMEL-5*																\vdash
UACC-257				-												\vdash
																\vdash
UACC-257*											ļ				ļ	\vdash
UACC-62				<u> </u>												\square
UACC-62*																\square
WM-115																
WM-115*																
WM-1552C				\Box	L _								L _	\Box		$\lfloor \neg$
WM-278					ľ											
WM-35						1										
WM-793B																
	I				I	I	othe	r	<u> </u>	<u> </u>	i				i	
BJHTERT							June	-								
CJM																\vdash
COLO-741				-												
																├ ──
COLO-818				<u> </u>												
COLO-849																\vdash
GRM																
HMCB																

second supplemented edition

HS-294T										
HS-600T										
HS-688AT										
HS-695T										
HS-834T										
HS-839T										
HS-852T										
HS-895T										
HS-934T										
HS-936T										
HS-939T										
HS-944T										
IGR-39										
K-029AX										
MALME-3M										
MDAMB-435S										
WM-1799										
WM-2664										
WM-793										
WM-88										
WM-983B										

4.1.26. Small intestine (*Intestinum tenue*)

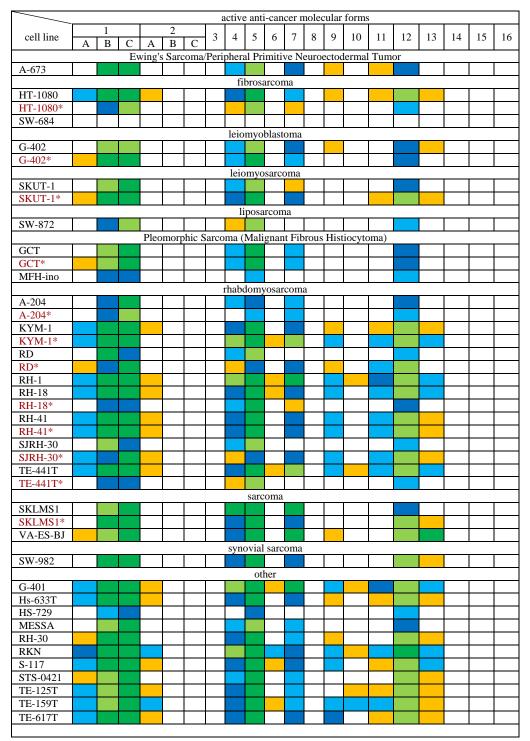
From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Small intestine (*Tabl.IV.18. 26*) it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A, 9, 11* and *14*.

 Tabl.IV.18. 26 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Small intestine

							i	activ	e ant	i-can	cer r	nole	cular	forms	5					
cell line		1			2		2	4	5	6	7	0	0	10	11	12	12	14	15	16
cen nne	А	В	С	Α	В	С	3	4	3	0	/	0	9	10	11	12	15	14	15	10
								0	ther											
HUTU-80																				

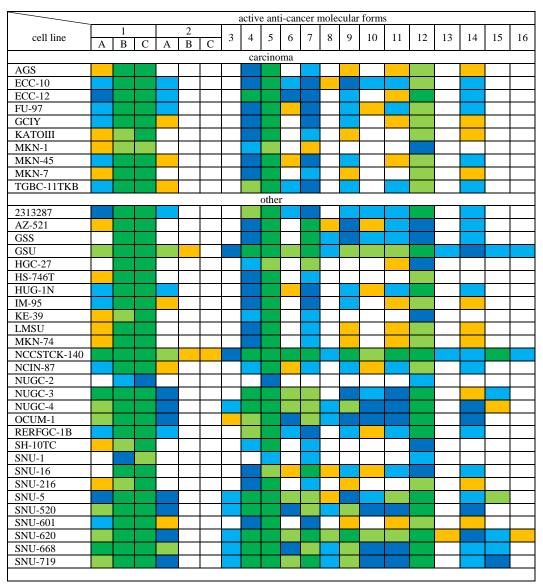
Other pharmaceutical forms would be highly active and potential agents for personalized therapies.


4.1.27. Soft tissue (Mollis textus)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Soft tissue (*Tabl.IV.18. 27*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A, 9 and 13.

 Tabl.IV.18. 27 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Soft tissue

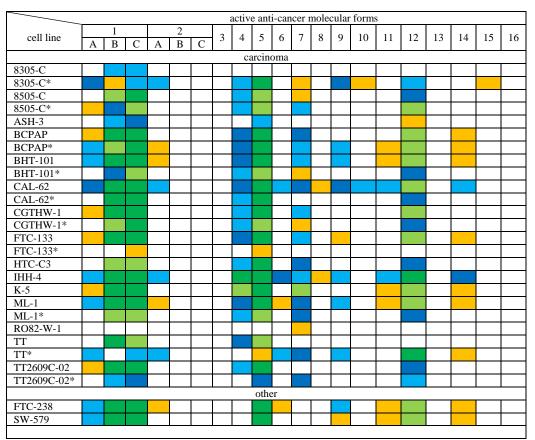

4.1.28. Stomach (*Stomachus*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Stomach (*Tabl.IV.18. 28*), it is concluded that:

- main potential medicines: AACF 1.A, 1.B, 1.C, 4, 5, 7, 9, 12 and 14;
- duplication of treatment and/or substitution on medical grounds: AACF 2.A and 11.

 Tabl.IV.18. 28 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Stomach

Other pharmaceutical forms would be highly active and potential agents for personalized therapies.


4.1.29. Thyroid (*Glandula thyreoidea*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Thyroid (*Tabl.IV.18. 29*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5 and 12;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A, 4 and 7.

 Tabl.IV.18. 29 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Thyroid

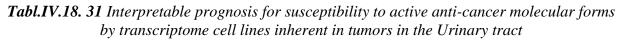
Other pharmaceutical forms would be highly active and potential agents for personalized therapies.

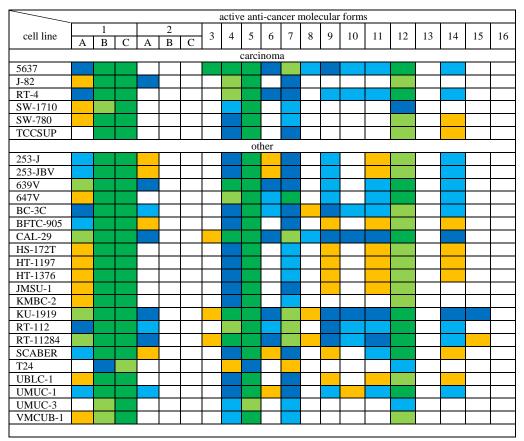
4.1.30. Upper aerodigestive tract (*Tractus superior aerodigestive*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Upper aerodigestive tract (*Tabl.IV.18. 30*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A, 9, 11* and *14*.

								activ	e ant	i-can	cer 1	nole	cular	forms	s					
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
cen inie	Α	В	С	А	В	С	5	4	5	0	'	0	2	10	11	12	15	14	15	10
							ca	rcine	oma											
BHY																				
BICR-22																				
BICR-31																				
FADU																				
BHY																				
								othe	r											
BICR-16																				
BICR-18																				
BICR-56																				
BICR-6																				
CAL-27																				
CAL-33																				
DETROIT-562																				
HS-840T																				
HSC-2																				
HSC-3																				
HSC-4																				
PECAPJ-15																				
PECAPJ34CLONEC-12																				
PECAPJ41CLONED-2																				
PECAPJ-49																				
SCC-15																				
SCC-25																				
SCC-4																				
SCC-9																				
SNU-1041																				
SNU-1066																				
SNU-1076																				
SNU-1214																				
SNU-46																				
SNU-899																				
YD-10B																				
YD-38																				
YD-8																				


 Tabl.IV.18. 30 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Upper aerodigestive tract


4.1.31. Urinary tract (Urinarii tractus)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Urinary tract (*Tabl.IV.18. 31*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 7 and 12;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A*, *9*, *11* and *14*.

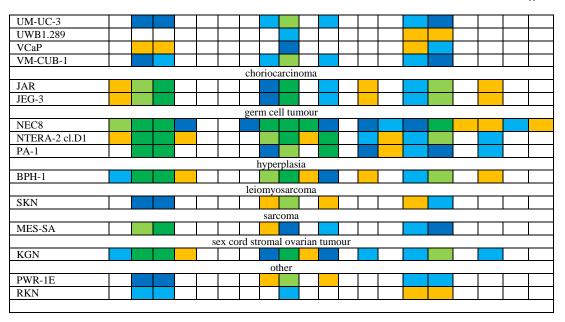
second supplemented edition

4.1.32. Urogenital system (Systema urogenitale)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl.III.4. 1*) by transcriptome cell lines inherent in tumors in the Urogenital system (*Tabl.IV.18. 32*), it is concluded that:

- main potential medicines: AACF 1.B, 1.C, 4, 5, 11 and 12;
- duplication of treatment and/or substitution on medical grounds: *AACF* 7.

 Tabl.IV.18. 32 Interpretable prognosis for susceptibility to active anti-cancer molecular forms by transcriptome cell lines inherent in tumors in the Urogenital system


							;	activ	e ant	i-can	cer r	nole	cular	form	s					
cell line		1			2		3	4	5	6	7	8	9	10	11	12	13	14	15	16
cen nne	Α	В	С	Α	В	С	3	4	5	0	/	0	9	10	11	12	15	14	15	10
								carci	inom	a										
5637																				
22RV1																				
639-V																				
647-V																				
A-2780																				
AN3-CA																				
BFTC-905																				
C-33-A																				
C-4-I																				
CAL-29																				

second supplemented edition

	CAL 20				r							1		· · · · ·
Caskis Date	CAL-39		_											
COLO684 Doving <th></th> <th></th> <th></th> <th><u> </u></th> <th> </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th> </th>				<u> </u>										
DDT2-4310 DW-13 DW-13 DW-14														
DOV-13 DN-14	COLO-684													
DSH-1 DU-145 </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
DU-14S DU-14S	DOV-13													
DU-14S DU-14S	DSH-1													
PrO-21PrO-27PrO-	DU-145													
FDO-27 Image: Section of the section		_												
EN I </th <th>EFO 27</th> <th></th>	EFO 27													
ES-2 SA									 					
FSS-1 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
FU-CN-1 Image: Constraint of the second se														
HEC.1 Image: Constraint of the second se														
HeLa No	FU-OV-1													
HeLa No	HEC-1													
Hey Me														
HT-1197 HT														
HT-1376 HT			_											
HT-3 Image: sector of the							 		 					
IGROV-1 IM									 					
J82 J82 J82 J82 J82 J84 J85 J84 J85 J84 HT-3</td> <th></th> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td>	HT-3			ļ										
J82 J82 J82 J82 J82 J84 J85 J84 J85 J84 </td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
JHOS-2 JHOS-2 JHOS-3 JHOS-4 J82</td> <th></th> <td></td> <td>1</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	J82			1										1
JHOS-3 JHOS-4 </td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
JHOS:4 Image: state of the				1										
KLE KLB KLP-19 <				1	1									
KU1-19 KURAMOCHI	VIE													
KURAMOCH Image: state of the state of										 				
LB831-BLC Image: sector of the sector of		-+		I										<u> </u>
LNC2+Clone-FGC Image:				<u> </u>								L	ļ	
ME-180 ME-280 ME				ļ										<u> </u>
MFE-280 MIE-296 MIE														
MFE-280 MIE-296 MIE														
MFE-296 ME-319 <th></th> <th></th> <th></th> <th>1</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				1	1									
MFF-319 M </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
MS751 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
OAW-28 OAW-28 OAW-42 </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
OAW-42 Image: Constraint of the second s	MS/51													
OC-314 Image: Construction of the sector														
OV-17R OV-36 OV														
OV-56 OV.7	OC-314													
OV-7 OV-90														
OV-7 OV-90	OV-56													
OV-90 OV	OV-7													
OVCA-420 OV OVCAR-3 OV OV <th></th> <th></th> <th></th> <th>1</th> <th></th>				1										
OVCAR-3 OV OVCAR-4 OVCAR-4 OV				1										
OVCAR-4 Image: Constraint of the second	OVCAP 3		_	-										
OVCAR-5 I </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
OVCAR-8II <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
OVISE Image: Constraint of the second se	OVCAR-5													
OVK-18 Image: state														
OVKATE I <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														
OVMIU Image: state s	OVK-18													
OVMIU Image: state s	OVKATE		Т	1										
OVTOKOII <th>OVMIU</th> <th></th> <th></th> <th>1</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	OVMIU			1	1									
PC-3 I				1										
PEO-1 I <th>PC-3</th> <th></th> <th></th> <th>1</th> <th></th>	PC-3			1										
RL95-2 I <th></th> <th>-+</th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th> </th>		-+		1										
RMG-I I <thi< th=""> <thi< th=""></thi<></thi<>														
RT-112 I <th></th> <th></th> <th></th> <th><u> </u></th> <th> </th> <th> </th> <th></th> <th> </th> <th></th> <th></th> <th></th> <th> </th> <th></th> <th> </th>				<u> </u>										
RT4 I	KMG-I			<u> </u>								<u> </u>		
SiHa I														
SISO Image: Siso of the second se														
SISO Image: Siso of the second se		_ [L						
SKG-IIIa I<														
SK-OV-3 Image: Constraint of the second				1	1							1		
SNG-M Image: Constraint of the sector of				1										
SW-1710 Image: Sweet of the sector of th				1										
SW-626 Image: SW-756	SW 1710													
SW-756 Image: Constraint of the second s	SW-1/10	_		<u> </u>					 	 				 <u> </u>
SW-780 Image: SW-954 Image: SW-954 Image: SW-962	SW-020	\rightarrow	_	I										
SW-954 Image: Constraint of the second s	SW-756	\square		ļ										
SW-962 Image: SW-962	SW-780													
SW-962 Image: SW-962														
T-24 Image: Constraint of the state o														ſ
TCCSUP Image: Constraint of the constr	T-24			1										
TC-YIK Image: Constraint of the state of th				1	1									
TOV-112D														
				<u> </u>										
				<u> </u>								<u> </u>		
	TOV-21G													
TYK-nu IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TYK-nu							L						

Vasil Tsanov & Hristo Tsanov

second supplemented edition

4.2. Results analysis

In *Fig.IV.4.* 1 presents (§.III.3.4.2.) the descriptive dependences of the interpretable predictions of sensitivity to active anti-cancer molecular forms by transcriptomal cell lines inherent in tumors of different nature. They highlight some molecular forms that are extremely active. These are: for basic pharmaceutical forms - 1.B., 1.C., 5, 7 and 12; for substitute forms - 1.A., 4, 9 and 14.

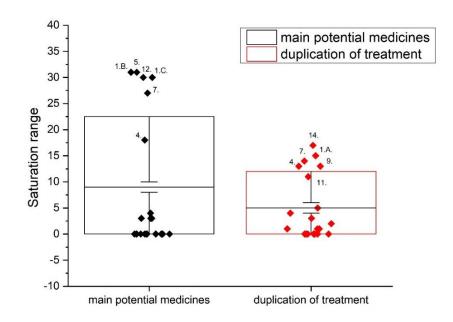


Fig.IV.4. 1 Schematic representation of the descriptive dependences of the interpretable predictions of sensitivity to active anti-cancer molecular forms by transcriptomal cell lines inherent in tumors

Vasil Tsanov & Hristo Tsanov

V. CLINICAL CONTROL

1. Correlation of bio constants

The bio constants of the human organism should not be accepted as a dogma, should be abolished, but should be used as benchmarks of the norm. Deviation from them should not necessarily be considered pathology. The human body adapts extremely well to the environment and strives to respond adequately to each stimulus.

Especially when performing chemotherapy on cancer patients, it is necessary to monitor the overall reference picture of the patient. It is good to avoid interpreting individual deviations from the physiologically healthy organism and to direct the treatment of cancer in the direction of "suppression" of individual symptoms.

In Tabl.VII.1. the control forms that the clinician must comply with before and during chemotherapy are indicated. These are reference correlations that would directly affect the release of the active anticancer molecular form (*Tabl.IV.2. 6*) within the cancer cell.

A. **VOLUME OF BLOOD**: it is directly related to the fluid ratio, and secondarily to the water content in the body - hence the change in a number of physicochemical parameters

When the total blood volume increases, it is important for the treating physician to rule out diagnoses:

- chronic leucosis;
- uremia (due to the change in nitrogen balance, which will prevent the transport of amide derivatives in the body) is often accompanied by hyperkalemia and hyperchloremia.

When the total blood volume decreases, it is necessary to exclude the diagnoses:

- acidosis increased water content is also reported;
- tubular acidosis IMPORTANT: do not rush with tenal tubular acidosis we also have hypophosphatemia.

B. **HEMATOCRIT**:

In case of a decrease in the value of the hematocrit in the blood, it is obligatory for the attending physician to reject the diagnoses:

- spherocytic anemia at the beginning of treatment with amide / carboxyl derivative of nitrile glycosides there is a **REAL POSSIBILITY FOR CRISIS** !;
- This condition is often an indicator of brain metastases.

C. NATREMIA:

Particular attention should be paid to cases of hyponatremia. Here the attending physician needs to comply with diagnoses such as:

- cystic fibrosis (CP) / mucoviscidose/- in these cases treatment should begin with a very low concentration of the dosage form;
- this condition is often an indicator of lung cancer.

D. KALEMIA:

To some extent, hyperkalemia has a synergistic effect on the action of the studied dosage forms. It is good for your doctor to maintain higher blood potassium reference values. In cases where this is difficult, two circumstances must be taken into account:

- to reject Cushing's syndrome, by control test and for hyperchloremia gives both increase and decrease;
- is often observed together with hypophosphatemia. If necessary, to introduce phosphorus preparations into the body.

E. CHLORAEMIA:

Hypochloraemia alters the ionic and electrostatic activity of both amides and carboxylic acids - especially when they are in low concentrations in the blood. It is good to consider treatment with:

- presence of liver cirrhosis - the analysis should be done at least 4 hours after glucose infusion and diuretics taken. The results should be differentiated from Hepato-renal syndrome.

F. CALCEMIA:

Hypercalcemia can suppress the spread of the drug form. Treatment should be resected and any comorbidities considered:

- extensive metastases;
- osteorenal sarcoma;
- breast carcinoma with bone metastases during treatment with ANDROGENS and ESTRONES;
- sarcoidosis.

G. SIDERINEMIA:

Hyposiderinemia could delay the detection of a more acidic environment around the cancer cell and from there slow down the action of the drug under study. The clinician should be aware that this is often accompanied by:

- ballast leukemia;
- carcinomas;
- uterine fibroids;
- myelosis and lymphadenosis (in terminal stage);
- erythraemia vera (in terminal stage).

Correction of iron in the blood is one of the most important factors in treatment with these doses.

Tabl. VII. 1 Correlation data of microcomponents in human blood that affect the digestibility and activity of amides and carboxylic acids derivatives of natural nitrile glycosides

control form	r	aise	reduction						
	indicator	indicator control	indicator	indicator control					
volume of blood	chronic leucosis		acidosis	increased water content is also reported					
volume of blood			tubular acidosis*	hypophosphatemia					
	uremia‡	hyperkalemia hyperchloremia	_						
	ſ		1 1	*					
hematocrit			spherocytic anemia indicator of brain m						
			indicator of brain m	etastases					
natremia 🛦			mucoviscidose**						
			indicator of lung car	ncer					
				1					
kalemia			to reject Cushing's s						
			often seen with hype	ophosphatemia					
-1-1			indiantan and affling	n simles sis 9					
chloraemia			indicator and of live						
	extensive metastase	20							
	osteorenal sarcoma		-						
		vith bone metastases							
calcemia	during treatment w								
	and ESTRONES								
	sarcoidosis								
	•								
			ballast leukemia						
			carcinomas						
siderinemia			uterine fibroids						
sidermenna				adenosis (in terminal					
			stage)						
			erythraemia vera (in	terminal stage)					
total inon hinding	honomory		hemosiderosis						
total iron-binding capacity	bone marrow hypoplasia		malignant tumors						
capacity	пуроргазга		manghant tumors						
	malignant tumors	increase in iodine in the blood							
	malignant								
cupremia	melanoma		_						
cupicinia	hemochromatosis		_						
	malignant hemopathy (T- leucosis)	increase of sulfates in the blood							

	meligenic		
	lymphomas		
	treatment with		
	estrogen		
	cirrhosis of the	reduction of iodine	
	liver	in the blood	
		in th	e serum
	erythraemia vera		bone marrow hypoplasia
7 in a contract in the	atrophic cirrhosis	of the liver	lymphadenosis
Zinc content in the blood	acute leucosis		myelosis
01000		in ery	throcytes
	bone marrow hype	oplasia	myelosis

*- IMPORTANT: do not rush with tenal tubular acidosis - we also have hypophosphatemia

*- due to a change in the nitrogen balance

☆- REAL POSSIBILITY FOR CRISIS !
 *- MANDATORY- the treatment should begin with a very low concentration of the dosage form

▲ - to rule out myxedema as a concomitant disease

◊- control test and for hyperchloremia - gives both increase and decrease

§- the analysis should be performed at least 4 hours after glucose infusion and diuretics taken. The results should be differentiated from Hepato-renal syndrome

H. TOTAL IRON-BINDING CAPACITY

In case of increased content of total iron-binding capacity, it is necessary for the clinician to take into account the possible presence of:

- bone marrow hypoplasia,

and at reduced content with:

- hemosiderosis;
- malignant tumors.

I. CUPREMIA:

Hypercupressia would significantly increase the need for a higher drug dose. She herself is also an instructor for:

- malignant tumors as an control sample can be used and the increase in iodine in the blood; malignant melanoma;
- hemochromatosis;
- malignant hemopathy (T-leukemia) as an control sample can be used and the increase of sulfates in the blood;
- meligenic lymphomas;
- treatment with estrogen;
- cirrhosis of the liver as a control sample can be used and the reduction of iodine in the blood.

J. ZINC CONTENT IN THE BLOOD

The content of zinc in the blood determines its extremely complex role in cancer. Its compounds are both inhibitors and promoters. It can displace a number of metals from organometallic biologically active substances, but at the same time its coordination compounds in an in vivo environment are volatile.

We recommend a mandatory blood test for zinc in the blood before starting chemotherapy according to the studied experimental methodology. The following reference deviations must be taken into account:

a. in the serum:

increased serum zinc concentration:

- erythraemia vera;
- atrophic cirrhosis of the liver;
- acute leukemia.
- decreased serum zinc concentration:
 - bone marrow hypoplasia;
 - lymphadenosis;
 - myelosis.
 - b. in erythrocytes:

increased concentration of zinc in erythrocytes:

- bone marrow hypoplasia;
- erythraemia vera.

decreased concentration of zinc in erythrocytes:

- myelosis;
- lifadenosis.

2. Chemoprevention and Homeopathy

The proposed methodological program for conservative treatment of oncological diseases does not contradict the good medical practices for chemotherapy. In order to improve the general condition of patients, chemoprevention (Lele, 2021) and/or homeopathy could be applied, but not at the expense of a varied diet, incl. table salt, water, culinary acidifiers and fats. Alternative medicine should only be used to treat individual symptoms, not syndromes.

VI. CONCLUSIONS

1. On the first goal

Our legacy of the *Hunza people* and the knowledge from tens-of-thousands of scientists who created modern synthesis and biochemistry make the production of nitrile amide into a routine (especially with nitrile hydratase). Thus, humanity holds in its hands a huge medicinal resource that can provide treatment for diseases of all parts of conservative medicine (including all listed in *Section 1.1*.).

The hydrolyzed to amide/carboxylic acid nitrile/cyanide carbohydrates will occupy one of the fundamental steps of countless future clinical practices. This is the purpose of our modest research!

Other substances in these groups with pronounced biological activity (including anti-tumor) are the hydrolyzed nitrile groups of *Linamarin*, (R) -*Lotaustralin*, *S*-*Sambunigrin*, etc., to their amide/carboxylic acid.

2. The second goal

- 1) The amide derivatives of nitrile glycosides are potential chemical compounds with anticancer activity;
- 2) the cancer cell seeks to shift the hydrolysis of these derivatives in a direction that would not pass through its cell membrane;
- 3) the amide-carboxyl derivatives of nitrile glycosides can deliver extremely toxic compounds inside the tumor cell itself and thus block and / or permanently damage its normal physiology;
- 4) the use of these compounds in oncology could turn cancer from a lethal to a chronic disease (such as diabetes). The cause and conditions of the disease are not eliminated, but the number of cancer cells could be kept low for a long time (even a lifetime).

3. On the third goal

- 1) Amides resulting from the hydrolysis of nitrile glycosides would be able to cross the cell membrane of a cancer cell and thus cause its cellular response;
- 2) the pharmaceutical form must represent the exact amide/carboxylic acid ratio for the corresponding active anticancer cell form;

- 3) clinical concentrations are more than 7 times higher than those of nitrile glycosides due to their reduced toxicity;
- 4) no significant deviations are observed, on a theoretical level, in the complex use of several pharmaceutical forms together and/or sequentially.

4. On the four goal

The results of the analysis show that the studied molecular forms do NOT contradict conservative oncology. Their activity is significant and many times exceeds a number of approved products for treatment.

Anti-cancer agents could best be administered orally. Their toxicity is many times less than that of most references accepted in clinical chemotherapy.

Data in *Fig. 1* eloquently characterize the treatment. It should be divided into two major clinical stages:

- general therapy - any oncological treatment should start with a preparation of any of the following compounds:

BASIC

- (R)-2-phenyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetamide to ...acetic acid form in the ratio 4.87:1.
- (R)-2-phenyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetamide to ...acetic acid form in the ratio 4.87:1.
- (R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanamide to ...butanoic acid form in the ratio - 4.87:1.
- (2Z,4E)-4-(2-amino-2-oxo-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)ethylidene)hex-2-enedioic acid to (2E,4Z)-3-(carboxymethyl)-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexa-2,4-dienedioic acid in the ratio 4.87:1.
- (R)-3-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanamide to ...butanoic acid form in the ratio - 4.87:1.

ALTERNATIVE

(Z)-2-((4R,5S,6S)-5-hydroxy-4-methoxy-6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-2-en-1-ylidene)acetamide to ...acetic acid form in the ratio - 4.87:1.

- (R)-2-phenyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetamide to ...acetic acid form in the ratio 4.87:1.
- (1R,4R)-4-hydroxy-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclopent-2-ene-1-carboxamide to ...carboxylic acid form in the ratio - 4.87:1.
- 2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2Hpyran-2-yl)oxy)propanamide to ...propanoic acid form in the ratio - 4.87:1.
- Personalized therapy in a small number of cases, it is necessary to act individually according to the patient's current history. For this purpose, after the application of the general therapy and / or in combination with it, the specific agent for the respective cell lines must be taken (§.4.1.). The ratio of amide to carboxylic acid should again be 4.87:1.

- 🔷 -

AUTHOR'S NOTES

With the present scientific work we have tried to present in a more generalized form our long-term theoretical research. We tried to draw every value, every dependence and every conclusion precisely, in a form that is not subject to any personal view and/or to be enslaved to a generally "accepted" opinion.

Natural nitrile glycosides would not cross the tumor cell membrane. They decompose to HCN-acid, phenyl methanol and carbohydrate. They do NOT have antitumor activity due to their inability to reach the target unchanged. These compounds, in their natural form, are extremely toxic to the human body. Applying them is not a cure, even at higher concentrations they do more harm than good. Theoretically, we have derived dozens of their modified forms, but their amides and carboxylic acids are the most promising for their introduction in conservative oncology. The fact is that the tumor cell itself is trying to counteract in a way that is quite safe for it.

The knowledge that humanity has gained from the millennial battle between it and tumors, combined with the development of mathematics, statistical and quantum molecular thermodynamics, molecular topology and geometry, clinical oncology, pathophysiology, etc., with the unequivocal contribution of thousands of scientists, we tried to we present this thesis as a sentence and the most modest way to try to confirm and prove it.

- 🛇 -

second supplemented edition

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No Animals/Humans were used for studies that are the basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The authors confirm that the data supporting the findings of this study are available within the article.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

REFERENCES

- ACS (Ed.). (1991). Unproven methods of cancer management: Laetrile. *CA: A Cancer Journal* for Clinicians, 41(3), 187-92. doi:10.3322/canjclin.41.3.187
- Ahmed, M. (2016). Ethnicity, Identity and Group Vitality: A study of Burushos of Srinagar. *Journal of Ethnic and Cultural Studies*, 3(1), 1-10. doi:10.29333/ejecs/51
- Airley, R. (2009). Cancer Chemotherapy: Basic Science to the Clinic. Wiley.
- Allinger, N. L. (1977). Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc., 99(25), 8127–8134. doi:10.1021/ja00467a001
- Allinger, N. L. (1977). Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. *Journal of the American Chemical Society*, 99(25), 8127-34. doi:10.1021/ja00467a001
- Ames, B. N., Durston, W. E., Yamasaki, E., & Lee, F. D. (1973). Carcinogens are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection. *Proceedings of the National Academy of Sciences of the United States of America*, 70(8), 2281-5. doi:10.1073/pnas.70.8.2281
- Ani, R., Anand, P. S., Sreenath, B., & Deepa, O. S. (2020). In Silico Prediction Tool for Druglikeness of Compounds based on Ligand Based Screening. *International Journal of Research in Pharmaceutical Sciences*, 11(4), 6273-81. doi:10.26452/ijrps.v11i4.3310
- Aoyagi, T., shizuka, M., Takeuchi, T., & Umezawa, H. (1977). Enzyme inhibitors in relation to cancer therapy. *Japanese journal of antibiotics*, *30*, 121-32.
- Azad, I., Nasibullah, M., Khan, T., Hassan, F., & Akhter, Y. (2018). Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. *Journal of Molecular Graphics and Modelling*, 81, 211-28. doi:10.1016/j.jmgm.2018.02.013
- Babić, D., Klein, D. J., Lukovits, I., Nikolić, S., & Trinajstić, N. (2001). Resistance-distance matrix: A computational algorithm and its application. *Int. Journal of Quantum Chemistry*, 90(1), 166-76. doi:10.1002/qua.10057
- Baderna, D., & Benfenati, E. (2019). In vitro Micronucleus activity (IRFMN/VERMEER) v.1.0.0. (A. Manganaro, Ed.) Retrieved from https://www.vegahub.eu/vegahubdwn/qmrf/QMRF_MNVITRO_VERMEER.pdf
- Balaban, A. T. (1982). Distance Connectivity Index. Chemical Physics Letters, 89, 399-404.
- Barceloux, D. (2008). *Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous animals.* John Wiley & Sons.
- Baroni, A., Paoletti, I., Greco, R., Satriano, R. A., Ruocco, E., Tufano, M. A., & Perez, J. J. (2005). Immunomodulatory effects of a set of amygdalin analogues on human keratinocyte cells. *Experimental Dermatology*, 14(11), 854-9. doi:10.1111/j.1600-0625.2005.00368.x

- Barwina, M., Wiergowski , M., & Anand, J. S. (2013). Accidental poisoning with peach seeds used as anticancer therapy--report of two cases. *Przeglad lekarski*, 70(8), 687-9.
- Batista, J., Tan, L., & Bajorath, J. (2010). Atom-Centered Interacting Fragments and Similarity Search Applications. *Journal of Chemical Information and Modeling*, 50(1), 79-86. doi:10.1021/ci9004223
- Baue, C. A., Schneider, G., & Göller, A. H. (2019). Machine learning models for hydrogen bond donor and acceptor strengths using large and diverse training data generated by firstprinciples interaction free energies. *Journal of Cheminformatics*, 11, 59. doi:10.1186/s13321-019-0381-4
- Benfenati, E. (2020, 10). *Adipose tissue:blood model (INERIS) v. 1.0.0.* (A. Manganaro, Ed.) Retrieved from https://www.vegahub.eu/vegahubdwn/qmrf/QMRF_ADIPOSE_BLOOD_IRMFN.pdf
- Benfenati, E., & Marzo, M. (2020, March). *QMRF Title:Developmental/Reproductive Toxicity library (PG) (version 1.1.0).* Retrieved from https://www.vegahub.eu/vegahubdwn/qmrf/QMRF_DEVTOX_PG.pdf
- Benfenati, E., Benigni, R., Demarini, D. M., Helma, C., Kirkland, D., Martin, T. M., . . . Yang, C. (2009). Predictive Models for Carcinogenicity and Mutagenicity: Frameworks, Stateof-the-Art, and Perspectives. *Journal of Environmental Science and Health*, 27(2), 57-90. doi:10.1080/10590500902885593
- Benfenati, E., Roncaglioni, A., Lombardo, A., & Manganaro, A. (2019). Integrating QSAR, Read-Across, andScreening Tools: The VEGAHUB Platform as an Example. In H. Hong (Ed.). Springer. doi:10.1007/978-3-030-16443-0
- Benigni, R., & Bossa, C. (2011). Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for. *Chemical Reviews*, 111(4), 2507-36. doi:10.1021/cr100222q
- Benigni, R., Bossa, C., & Tcheremenskaia, O. (2013). In vitro cell transformation assays for an integrated, alternative assessment of carcinogenicity: a databased. *Mutagenesis*, 28(1), 101-16. doi:10.1093/mutage/ges059
- Benigni, R., Bossa, C., & Tcheremenskaia, O. (2013). Nongenotoxic carcinogenicity of chemicals: mechanisms of action and early recognition through a new set of structural alerts. *Chemical Reviews*, 113(5), 2940-57. doi:10.1021/cr300206t
- Benigni, R., Bossa, C., Jeliazkova, N. G., Netzeva, T. I., & Worth, A. P. (2008). The Benigni/Bossa rulebase for mutagenicity and carcinogenicity - a module of toxtree. Technical Report EUR 23241 EN, European Commission, Joint Research Centre. Retrieved from https://publications.jrc.ec.europa.eu/repository/handle/JRC43157
- Bernard, H. R. (1998). Handbook of Methods in Cultural Anthropology.
- BHAGAVAN, N. V. (2002). CHAPTER 1 Water, Acids, Bases, and Buffers. In *Medical Biochemistry* (pp. 1-16). Academci press. doi:10.1016/B978-012095440-7/50003-2
- Bhullar, K. S., Lagarón, N. O., McGowan, E. M., Parmar, I., Jha, A., Hubbard, B. P., & Rupasinghe, H. V. (2018). Kinase-targeted cancer therapies: progress, challenges and future directions. *Molecular Cancer*, 17(48). doi:10.1186/s12943-018-0804-2

- Biaglow, J. E., & Durand, R. E. (1978). The enhanced radiation response of an in vitro tumour model by cyanide released from hydrolysed amygdalin. *International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 33*(4), 397-401. doi:10.1080/09553007814550311
- Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. *Nature Chemistry*, 4(2), 90-8. doi:10.1038/nchem.1243
- Bitting, T. H. (1978). Drugs--Federal Drug Administration ban on Laetrile treatments for terminally ill cancer patients is arbitrary and capricious. *Tulsa Law Review (former: TL Journal), 14, 222-5.*
- Böcker, A., Derksen, S., Schmidt, E., Teckentrup, A., & Schneider, G. (2005). A hierarchical clustering approach for large compound libraries. *Journal of Chemical Information and Modeling*, 45(4), 807-15. doi:10.1021/ci0500029
- Bodor, N., Buchwald, P., & Huang, M. J. (1999). The Role of Computational Techniques in Retrometabolic Drug Design Strategies. *Theoretical and Computational Chemistry*, 8, 569-618.
- Bolarinwa, I. F., Orfila, C., & Morgan, M. R. (2014). Amygdalin content of seeds, kernels and food products commercially-available in the UK. *Food Chemistry*, 152(1), 133-9. doi:10.1016/j.foodchem.2013.11.002
- Born, M., & Wolf, E. (1999). *Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light* (Vol. section 2.3.3). Cambridge University Press.
- Box, G., & Wilson, K. (1951). On the Experimental Attainment of Optimum Conditions. *Journal* of the Royal Statistical Society, 12.
- Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. *ChemMedChem*, 3(3), 435-44. doi:10.1002/cmdc.200700139
- Brown, I. D. (2009). Topology and Chemistry. *Structural Chemistry*, *13*, 339-55. doi:10.1023/A:1015872125545
- Busby, S. A., & Burris, T. P. (2012). Retinoic Acid Receptors (RARA, RARB, and RARC). In S. Choi (Ed.), *Encyclopedia of Signaling Molecules*. New York: Springer. doi:10.1007/978-1-4419-0461-4_385
- Cadow, J., Born, J., Manica, M., Oskooei, A., & Martínez, M. R. (2020). PaccMann: a web service for interpretable anticancer compound sensitivity prediction. *Nucleic Acids Research*, 48(W1), W502-8. doi:10.1093/nar/gkaa327
- Cappelli, C. I., Manganelli, S., Toma, C., Benfenati, E., & Mombelli, E. (2021). Prediction of the Partition Coefficient between Adipose Tissue and Blood for Environmental Chemicals: From Single QSAR Models to an Integrated Approach. *Molecular Informatics*, 40(3). doi:10.1002/minf.202000072
- Carter, J. H., McLafferty, M. A., & Goldman, P. (1980). Role of the gastrointestinal microflora in amygdalin (laetrile)-induced cyanide toxicity. *Biochemical Pharmacology*, 29(3), 301-4. doi:10.1016/0006-2952(80)90504-3

- Cassano, A., Manganaro, A., Martin, T., Young, D., Piclin, N., Pintore, M., . . . Benfenati, E. (2010). The CAESAR models for developmental toxicity. *Chemistry Central Journal*, *4*(1). doi:10.1186/1752-153X-4-S1-S4
- Chabner, B. A., & Longo, D. L. (2018). *Cancer Chemotherapy, Immunotherapy and Biotherapy: Principles and Practice* (6th Ed. ed.). Lippincott Williams & Wilkins (LWW).
- Chang, H. K., Shin, M. S., Yang, H. Y., Lee, J. W., Kim, Y. S., Lee, M. H., . . . Kim, C. J. (2006). Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. *Biological and Pharmaceutical Bulletin*, 29(8), 1597-602. doi:10.1248/bpb.29.1597
- Chang, L., Zhu, H., Li, W., Liu, H., Zhang, Q., & Chen, H. (2005). Protective effects of amygdalin on hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat lungs in vitro. *Zhonghua er ke za zhi. Chinese journal of pediatrics*, 43(2), 118-23.
- Chen, Y., Ma, J., Wang, F., Hu, J., Cui, A., Wei, C., . . . Li, F. (2013). Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. *Immunopharmacology and Immunotoxicology*, 35(1), 43-51. doi:10.3109/08923973.2012.738688
- Christopher, A. (2017). Drawing conclusions from data: descriptive statistics, inferential statistics, and hypothesis testing, In Interpreting and using statistics in psychological research. SAGE Publications Inc. doi:10.4135/9781506304144
- Chye, F. Y., & Sim, K. Y. (2009). Antioxidative and Antibacterial Activities of Pangium edule Seed Extracts. *International Journal of Pharmacology*, 5, 285-97. doi:10.3923/ijp.2009.285.297
- Clayden, J. (2001). Chapter 48. In *Organometallic Chemistry* (pp. 1311–1314). Oxford University Press.
- Cömert, S., Akin, Y., Vitrinel, A., Telatar, B., Ağikuru, T., Gözü, H., . . . Turan, S. (2010). A mutation in thyroid hormone receptor beta causing "resistance to thyroid hormone" in a neonate. *Minerva Pediatrics*, 62(4), 419-22.
- Curran, W. J. (1980). Law-medicine notes. Laetrile for the terminally ill: Supreme Court stops the nonsense. *The New England Journal of Medicine*, 302(11), 619-21. doi:10.1056/NEJM198003133021108
- Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. Journal of Chemical Information and Modeling, 54(12), 3284-301. doi:10.1021/ci500467k
- Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific Reports*, 7(42717). doi:10.1038/srep42717
- Damian, V., Sandu, A., Damian, M., Potra, F., & Carmichael, G. R. (2002). The Kinetic PreProcessor KPP -- A Software Environment for Solving Chemical Kinetics. *Computers* and Chemical Engineering, 26(11), 1567-79.
- Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. *The Clinical biochemist*, *37*(1), 3-15.

- Davignon, J. P., Trissel, L. A., & Kleinman, L. M. (1978). Pharmaceutical assessment of amygdalin (Laetrile) products. *Cancer Treatment Reviews*, 62(1), 99-104.
- De Berardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. *Cell Metabolism*, 7(1), 11-20. doi:10.1016/j.cmet.2007.10.002
- Desegaulx, M., Sirdaarta, J., Rayan, P., Cock, I. E., & McDonnell, P. A. (2015). An examination of the anti-bacterial, anti-fungal and anti-Giardial properties of macadamia nut. *Acta Horticulturae*, *1106*, 239-46. doi:10.17660/ActaHortic.2015.1106.36
- Devillers, J., & Balaban, A. T. (1999). *Topological Indices and Related Descriptors in QSAR and QSPR*. Amsterdam, Netherlands: Gordon and Breach.
- Devore, J. L. (2011). *Probability and Statistics for Engineering and the Sciences (8th ed.)*. Boston, MA, US: Cengage Learning.
- Di, L., & Kerns, E. (2008). Drug-like Properties: Concepts, Structure Design and Methods. Academic Press.
- Dimitrov, S. D., Diderich, R., Sobanski, T., Pavlov, T. S., Chankov, G., Chapkanov, A., . . . Mekenyan, O. (2016). QSAR Toolbox – workflow and major functionalities. *SAR and QSAR in Environmental Research*, 27(3), 203-19. doi:10.1080/1062936X.2015.1136680
- Do, J., Hwang, J., Seo, S., Woo, W., & Nam, S. (2008). Antiasthmatic activity and selective inhibition of type 2 helper T cell response by aqueous extract of semen armeniacae amarum. *Immunopharmacology and Immunotoxicology*, 28(2), 213-225. doi:10.1080/08923970600815253
- Doak, B. C., Over, B., Giordanetto, F., & Kihlberg, J. (2014). Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. *Chemistry & Biology*, 21(9), 1115-42. doi:10.1016/j.chembiol.2014.08.013
- Doan, T. B., Cheung, V., Clyne, C. D., Hilton, H. N., Eriksson, N., Young, M. J., ... Graham, J. D. (2020). A tumour suppressive relationship between mineralocorticoid and retinoic acid receptors activates a transcriptional program consistent with a reverse Warburg effect in breast cancer. *Breast Cancer Research volume*, 22, 122. doi:10.1186/s13058-020-01355-x
- Dral, P. O., Wu, X., Spörkel, L., Koslowski, A., & Thiel, W. (2016). Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties. *Journal of Chemical Theory and Computation*, 12(3), 1097-120. doi:10.1021/acs.jctc.5b01047
- DruLiTo, D. L. (2020, 12 23). Drug-likeness rules. Retrieved from http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
- Durak, Z. E., Büber, S., Devrim, E., Kocaoğlu, H., & Durak, I. (2014). Aqueous extract from taxus baccata inhibits adenosine deaminase activity significantly in cancerous and noncancerous human gastric and colon tissues. *Pharmacognosy magazine*, *10*(2), 214-16. doi:10.4103/0973-1296.133232
- Eatemadi, A., Aiyelabegan, H. T., Negahdari, B., Mazlomi, M. A., Daraee, H., Daraee, N., . . . Sadroddiny, E. (2017). Role of protease and protease inhibitors in cancer pathogenesis

second supplemented edition

and treatment. *Biomedicine & Pharmacotherapy*, 86, 221-31. doi:10.1016/j.biopha.2016.12.021

- Ellison, N. M., Byar, D. P., & Newell, G. R. (1978). Special report on Laetrile: the NCI Laetrile Review. Results of the National Cancer Institute's retrospective Laetrile analysis. *The New England Journal of Medicine*, 299(10), 549-52. doi:10.1056/NEJM197809072991013
- EPA, U. (2020, 10 15). Toxicity Estimation Software Tool /TEST/. Retrieved from https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
- Ertl, P., Rohde, B., & Selzer, P. (2000). Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. *Journal of Medicinal Chemistry*, 43(20), 3714-7. doi:10.1021/jm000942e
- Evans, R. M., & Mangelsdorf, D. J. (2014). Nuclear Receptors, RXR, and the Big Bang. *Cell*, 157(1), 255-66. doi:10.1016/j.cell.2014.03.012
- Femenia, A., Rossello, C., Mulet, A., & Canellas, J. (1995). Chemical Composition of Bitter and Sweet Apricot Kernels. *Journal of Agricultural and Food Chemistry*, 43(2), 356-61. doi:10.1021/jf00050a018
- Fenselau, C., Pallante, S., Batzinger, R. P., Benson, W. R., Barron, R. P., Sheinin, E. B., & Maienthal, M. (1977). Mandelonitrile beta-glucuronide: synthesis and characterization. *Science*, 198(4317), 625-7. doi:10.1126/science.335509
- Ferrari, T., & Gini, G. (2010). An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. *Chemistry Central Journal*, 4(1), 52. doi:10.1186/1752-153X-4-S1-S2
- Ferrari, T., Cattaneo, G., Gini, N., Golbamaki Bakhtyari, N., Manganaro, A., & Benfenati, E. (2013). Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR and QSAR in Environmental, 24(5), 365-83. doi:10.1080/1062936X.2013.773376
- Fifen, J. J., Nsangou, M., Dhaouadi, Z., Motapon, O., & Jaidane, N. (2011). Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid : DFT and TD-DFT studies. *Computational and Theoretical Chemistry*, 966(1-3), 232-43. doi:10.1016/j.comptc.2011.03.006
- Fjodorova, N., & Novič, M. (2014). Comparison of criteria used to access carcinogenicity in CPANN QSAR models versus the knowledge-based expert system Toxtree . *SAR and QSAR in Environmental Research*, 25(6). doi:10.1080/1062936X.2014.898687
- Fjodorova, N., Vračko, M., Novič, M., Roncaglioni, A., & Benfenati, E. (2010). New public QSAR model for carcinogenicity. *Chemistry Central Journal*, 4(1). doi:10.1186/1752-153X-4-S1-S3

FoodData. (1984/2004). FDC ID: 168462. NDB Number: 11457.

Foote, J., & Raman, A. (2000). A relation between the principal axes of inertia and ligand binding. *National Academy of Sciences*, 97(3), 978-83. doi:10.1073/pnas.97.3.978

- Fukuda, T., Ito, H., Mukainaka, T., Tokuda, H., Nishino, H., & Yoshida, T. (2003). Anti-tumor promoting effect of glycosides from Prunus persica seeds. *Biological and Pharmaceutical Bulletin*, 26(2), 271-3. doi:10.1248/bpb.26.271
- Gary, W. C., Zhengyin, Y., Wensheng, L., & Masucci, A. (2012). The IC50 Concept Revisited. *Current Topics in Medicinal Chemistry*, 12(11). doi:10.2174/156802612800672844
- Ghandi, M., Huang, F. W., & Jané-Valbuena, J. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. *Nature*, *569*, 503-8. doi:10.1038/s41586-019-1186-3
- Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. *Journal of combinatorial chemistry*, 1(1), 55-68. doi:10.1021/cc9800071
- Gidopoulos, N. I., & Wilson, S. (2003). The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State. Springer Netherlands. doi:10.1007/978-94-017-0409-0
- Gomez-Sanchez, E., & Gomez-Sanchez, C. E. (2014). The multifaceted mineralocorticoid receptor. *Comprehensive Physiology*, 4(3), 965-994. doi:10.1002/cphy.c130044
- Gordon, M. S., & Schmidt, M. W. (2005). Advances in Electronic Structure Theory: GAMESS a Decade Later. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria, *Theory and Applications of Computational Chemistry* (pp. 1167-89). Amsterdam: Elsevier. doi:10.1016/b978-044451719-7/50084-6
- Graham, D. Y. (1977). Enzyme replacement therapy of exocrine pancreatic insufficiency in man. *The New England Journal of Medicine*, 296, 1314-7. doi:10.1056/NEJM197706092962303
- Greenberg, D. M. (1980). The case against laetrile: the fraudulent cancer remedy. *Cancer*, 45(4), 799-807. doi:10.1002/1097-0142(19800215)45:4<799::aid-cncr2820450432>3.0.co;2-6
- Guo, J., Wu, W., Shen, M., Yang, S., & Tan, J. (2013). Amygdalin inhibits renal fibrosis in chronic kidney disease. *Mol Med Rep*, 7(5), 1453-7. doi:10.3892/mmr.2013.1391
- Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. *Journal of Computational Chemistry*, 17(5-6), 490-519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
- Halgren, T. A. (1996). Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. *Journal of Computational Chemistry*, 17(5-6), 553-86. doi:10.1002/(SICI)1096-987X(199604)17:5/6%3C553::AID-JCC3%3E3.0.CO;2-T
- Hall, J. M., & Greco, C. W. (2019). Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. *Cells*, 9(1), 13. doi:10.3390/cells9010013
- Hansen, K., Mika, S., Schroeter, T., Sutter, A., Laak, A., Steger-Hartmann, T., ... Müller, K. R. (2009). Benchmark data set for in silico prediction of Amesmutagenicity. *Journal of Chemical Information and Modeling*, 49(9), 2077-81. doi:10.1021/ci900161g
- Harutyunyan, G. (2014). ARMANU PRUNUS ARMENIACA: ORIGINATED IN ARMENIA. (A. Danielyan, Ed.) 21st Century, 2(16), 79-94. Retrieved from historical background of

the native land of apricot versus modern information challenges: http://www.fundamentalarmenology.am/datas/pdfs/113.pdf

- Heikkila, R. E., & Cabbat, F. S. (1980). The prevention of alloxan-induced diabetes by amygdalin. *Life Sciences*, 27(8), 659-62. doi:10.1016/0024-3205(80)90006-5
- Herbert, V. (1979). Laetrile: the cult of cyanide. Promoting poison for profit. *The American Journal of Clinical Nutrition*, 32(5), 1121–58. doi:10.1093/ajcn/32.5.1121
- Holland, J. C. (1982). Why patients seek unproven cancer remedies: a psychological perspective. *CA Cancer J Clin*, *32*(1), 10-4. doi:10.3322/canjclin.32.1.10
- Howard-Ruben, J., & Miller, N. J. (1984). Unproven methods of cancer management. Part II: Current trends and implications for patient care. *Oncology Nursing Forum*, 11(1), 67-73.
- Hu, S., Xu, Y., Meng, L., Huang, L., & Sun, H. (2018). Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. *Experimental and Therapeutic Medicine*, 16(2), 1266-72. doi:10.3892/etm.2018.6345
- Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. *Computational Statistics & Data Analysis*, 52(12), 5186-201. doi:10.1016/j.csda.2007.11.008
- Hughes, I., & Hase, T. (2010). *Measurements and their Uncertainties: A practical guide to modern error analysis.* Oxford University Press.
- Hwang, H. J., Kim, P., Kim, C. J., Lee, H. J., Shim, I., Yin, C. S., . . . Hahm, D. H. (2008). Antinociceptive effect of amygdalin isolated from Prunus armeniaca on formalin-induced pain in rats. *Biological and Pharmaceutical Bulletin*, 31(8), 1559-1564. doi:10.1248/bpb.31.1559
- Hwang, H. J., Lee, H. J., Kim, C. J., Shim, I., & Hahm, D. H. (2008). Inhibitory effect of amygdalin on lipopolysaccharide-inducible TNF-alpha and IL-1beta mRNA expression and carrageenan-induced rat arthritis. *J Microbiol Biotechnol*, 18(10), 1641-7.
- Jablonsky, J., Haz, H., Burcova, Z., Kreps, F., & Jablonsky, J. (2019). Pharmacokinetic properties of biomass-extracted substances isolated by green solvents. *Bioresources*, 14(3), 6294-303. doi:10.15376/biores.14.3.6294-6303
- Jacobsen, B. M., & Horwitz, K. B. (2012). Progesterone receptors, their isoforms and progesterone regulated transcription. *Molecular and cellular endocrinology*, 357(1-2), 18-29. doi:10.1016/j.mce.2011.09.016
- Janiszewska, M., Primi, M. C., & Izard, T. (2020). Cell adhesion in cancer: Beyond the migration of single cells. *Journal of Biological Chemistry*, 295(8), 2495-505. doi:10.1074/jbc.REV119.007759
- Jeliazkova, N., & Benfenati, E. (2020, 10). VEGA implementation of Cramer classification v. 1.0.0. Retrieved from https://www.vegahub.eu/vegahubdwn/qmrf/QMRF_CRAMER_TOXTREE.pdf
- Jiagang, D., Li, C., Wang, H., Hao, E., Du, Z., Bao, C., . . . Wang, Y. (2011). Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. *Biochemical and Biophysical Research Communications*, 411(3), 523-529. doi:10.1016/j.bbrc.2011.06.162

- Juengel, E., Thomas, A., Rutz, J., Makarevic, J., Tsaur, I., Nelson, K., . . . Blaheta, R. A. (2016). Amygdalin inhibits the growth of renal cell carcinoma cells in vitro. *International Journal* of Molecular Medicine, 37(2), 526-32. doi:10.3892/ijmm.2015.2439
- Kaczorowski, G. J., McManus, O. B., Priest, B. T., & Garcia, M. L. (2008). Ion channels as drug targets: the next GPCRs. *Journal of general physiology*, 131(5), 399-405. doi:10.1085/jgp.200709946
- Kadam, R. U., & Roy, N. (2007). Recent trends in drug-likeness prediction: A comprehensive review of In silico methods. *Indian Journal of Pharmaceutical Sciences*, 69(5), 609-15. doi:10.4103/0250-474X.38464
- Kalita, B. C., Das, A. K., Gupta, D. D., Hui, P. K., Gogoi, B. J., & Tag, H. (2018). GC-MS analysis of phytocomponents in the methanolic extract of Gynocardia odorataR.Br.-A poisonous plant from Arunachal Himalayan Region. *Journal of Pharmacognosyand Phytochemistry*, 7(1), 2458-63.
- Karabulutlu, E. Y. (2014). Coping with stress of family caregivers of cancer patients in Turkey. *Asia-Pacific Journal of Oncology Nursing*, 1(1), 55-60. doi:10.4103/2347-5625.135822
- Karakas, N., Okur, M. E., Ozturk, I., Ayla, S., Karadag, A. E., & Polat, D. Ç. (2019). Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extract and Cytotoxic Effects on Various Cancer Cell Lines. *Medeniyet medical journal*, 34(3), 297-304. doi:10.5222/MMJ.2019.87864
- Kato, S. (2000). The function of vitamin D receptor in vitamin D action. *Journal of Biochemistry*, 127(5), 717-22. doi:10.1093/oxfordjournals.jbchem.a022662
- Keijzer, R., Blommaart, P. J., Labruyère, W. T., Vermeulen, J. L., Doulabi, B. Z., Bakker, O., . . . Lamers, W. H. (2007). Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation. *Journal of Molecular Endocrinology*, 38(5), 523-35. doi:10.1677/jme.1.02125
- Khanna, V., & Ranganathan, S. (2009). Physiochemical property space distribution among human metabolites, drugs and toxins. *BMC bioinformatics*, 15. doi:10.1186/1471-2105-10-S15-S10
- Kier, L. B., & Hall, L. H. (2002). The Meaning of Molecular Connectivity: A Bimolecular Accessibility Model. Croatica Chemica Acta, 75, 371-82. doi:10.1021/ci990135s
- Klamt. (2005). COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier Science.
- Klamt, A. (2018). The COSMO and COSMO-RS solvation models. WIREs Computational Molecular Science, 8(1). doi:10.1002/wcms.1338
- Kousparou, C. A., Epenetos, A. A., & Deonarain, M. P. (2002). Antibody-guided enzyme therapy of cancer producing cyanide results in necrosis of targeted cells. *International Journal of Cancer*, 99(1), 138-48. doi:10.1002/ijc.10266
- Krakhmal, N. V., Zavyalova, M. V., Denisov, E. V., Vtorushin, S. V., & Perelmuter, V. M. (2015). Cancer Invasion: Patterns and Mechanisms. *Acta Naturae*, 7(2), 17-28.
- Kristiansen, K. (2004). Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis

second supplemented edition

approaches to receptor structure and function. *Pharmacology & Therapeutics*, *103*(1), 21-80. doi:10.1016/j.pharmthera.2004.05.002

- Kříž, K., & Řezáč, J. (2019). Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. *Journal of Chemical Information and Modeling*, 01.
- Kühne, R., Eber, R., & Schürmann, G. (2009). Chemical domain of QSAR models from atomcentered fragments. *Journal of Chemical Information and Modeling*, 49(12), 2660-9. doi:10.1021/ci900313u
- Kwon, H. Y., Hong, S. P., Hahn, D. H., & Kim, J. H. (2003). Apoptosis induction of Persicae Semen extract in human promyelocytic leukemia (HL-60) cells. Archives of Pharmacal Research volume, 26(157). doi:10.1007/BF02976663
- Kwon, Y. (2002). Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists. New York: Springer US. doi:10.1007/b112416
- Lagares, L. M., Minovski, N., & Novič, M. (2019). Multiclass Classifier for P-Glycoprotein Substrates, Inhibitors, and Non-Active Compounds. (M. V. Diudea, Ed.) *Molecules*, 24(10). doi:10.3390/molecules24102006
- Lagares, L., Minovski, N., Alfonso, A., Benfenati, E., Wellens, S., Culot, M., . . . Novič, M. (2020). Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies. *International Journal of Molecular Sciences*, 21(11), 4058. doi:10.3390/ijms21114058
- Lang, P. F., & Smith, B. C. (2003). Ionization Energies of Atoms and Atomic Ions. Journal of Chemical Education, 80(8), 938. doi:/10.1021/ed080p938
- Langmuir, I. (1917). The Shapes of Group Molecules Forming the Surfaces of Liquids. *4*, 251-7. doi:10.1073/pnas.3.4.251
- le Maire, A., Teyssier, C., Balaguer, P., Bourguet, W., & Germain, P. (2019). Regulation of RXR-RAR Heterodimers by RXR- and RAR-Specific Ligands and Their Combinations. *Cells*, 8(11), 1392. doi:10.3390/cells8111392
- le Maire, L., Alvarez, S., Shankaranarayanan, P., Lera, A. R., Bourguet, W., & Gronemeyer, H. (2012). Retinoid receptors and therapeutic applications of RAR/RXR modulators. *Current Topics in Medicinal Chemistry*, 12(6), 505-27. doi:10.2174/156802612799436687
- Leach, A. R. (2001). Molecular modelling : principles and applications. New York: Harlow.
- Lee, H. M., & Moon, A. (2016). Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells. *Biomolecules & Therapeutics*, 24(1), 62-6. doi:10.4062/biomolther.2015.172
- Lele, R. D. (2021). *HISTORY OF MEDICINE IN INDIA*. National Center of Indian Medical Heritage.
- Lellau, T. F., & Liebezeit, G. (2003). Cytotoxic and Antitumor Activities of Ethanolic Extracts of Salt Marsh Plants from the Lower Saxonian Wadden Sea, Southern NorthSea. *Pharmaceutical Biology*, 41(4), 293-300. doi:10.1076/phbi.41.4.293.15668
- Leo, A., Hansch, C., & Elkins, D. (1971). Partition coefficients and their uses. *Chemical Reviews*, 71(6), 525-616. doi:10.1021/cr60274a001

- Li, X., Li, Y., Yu, C., Xue, W., Hu, J., Li, B., ... Zhu, F. (2019). What Makes Species Productive of Anti-Cancer Drugs? Clues from Drugs' Species Origin, Druglikeness, Target and Pathway. Anti-Cancer Agents in Medicinal Chemistry, 19(2), 194-203. doi:10.2174/1871520618666181029132017
- Liao, Z. G., Ling, Y., Zhong, Y., & Ping, Q. N. (2005). The simultaneous determination of laetrile, paeoniflorin and paeonol in Jingzhi Guizhi Fuling capsule by HPLC. *Zhongguo Zhong Yao Za Zhi, 30*(16), 1252-4.
- Lipfert, L., Fischer, J. E., Wei, N., Scafonas, A., Su, Q., Yudkovitz, J., ... Reszka, A. A. (2006). Antagonist-Induced, Activation Function-2-Independent Estrogen Receptor α Phosphorylation. *Molecular Endocrinology*, 20(3), 516-33. doi:10.1210/me.2005-0190
- Lipinski, C. A., Feeney, P. J., Lombardo, F., & Dominy, B. W. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Advanced Drug Delivery Reviews*, 46(1-3), 3-26. doi:10.1016/S0169-409X(00)00129-0
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Advanced Drug Delivery Reviews*, 23(1-3), 3-25. doi:10.1016/S0169-409X(96)00423-1
- Liton, M. A., Ali, M. I., & Hossain, M. T. (2012). Accurate pKa calculations for trimethylaminium ion with a variety of basis sets and methods combined with CPCM continuum solvation methods. *Computational and Theoretical Chemistry*, 999. doi:10.1016/j.comptc.2012.08.001
- Maia, J. D., Carvalho, G. A., Mangueira Jr, C. P., Santana, S. R., Cabral, L. A., & Rocha, G. B. (2012). GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations. *Journal of Chemical Theory* and Computation, 8(9), 3072-81. doi:10.1021/ct3004645
- Makarevic, J., Rutz, J., Juengel, E., Kaulfuss, S., Reiter, M., Tsaur, I., . . . Blaheta, R. A. (2014). Amygdalin Blocks Bladder Cancer Cell Growth In Vitro by Diminishing Cyclin A and cdk2. *Plos One*, *9*(8). doi:journal.pone.0105590
- Makarević, J., Rutz, J., Juengel, E., Kaulfuss, S., Tsaur, I., Nelson, K., . . . Blaheta, R. A. (2014). Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro. *Plos One*, 9(10). doi:10.1371/journal.pone.0110244
- Makarević, J., Tsaur, I., Juengel, E., Borgmann, H., Nelson, K., Thomas, C., . . . Blaheta, R. A. (2016). Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. *Life Sciences*, 147, 137-42. doi:10.1016/j.lfs.2016.01.039
- Manganaro, A. (2020). *Carcinogenicity oral classification model (IRFMN) (version 1.0.0).* Retrieved from QMRF identifier (JRC Inventory):To be entered by JRC: https://www.vegahub.eu/vegahub-dwn/qmrf/QMRF_SFO_CLASS.pdf
- Marmolejo-Ramos, F., & Tian, T. (2010). he shifting boxplot. A boxplot based on essential summary statistics around the mean. *International Journal of Psychological Research*, 3(1), 37-45. doi:10.21500/20112084.823

- Martin, T. M., & Young, D. M. (2001). Prediction of the Acute Toxicity (96-h LC50) of Organic Compounds in the Fathead Minnow (Pimephales Promelas) Using a Group Contribution Method. *Chemical Research in Toxicology*, 14(10), 1378-85. doi:doi.org/10.1021/tx0155045
- Martin, T. M., Harten, R., Venkatapathy, S., & Young, D. M. (2008). A Hierarchical Clustering Methodology for the Estimation of Toxicity. *Toxicology Mechanisms and Methods*, 18(2), 251-66. doi:10.1080/15376510701857353
- Martin, T. M., Lilavois, C. R., & Barron, M. G. (2017). Prediction of pesticide acute toxicity using two dimensional chemical descriptors and target species classification. SAR and QSAR in Environmental Research, 28(6), 525-39. doi:10.1080/1062936X.2017.1343204
- Martin, T. M., Lilavois, C. R., & Barron, M. G. (2017). Prediction of pesticide acute toxicity using two-dimensional chemical descriptors and target species classification. SAR and QSAR in Environmental Research, 28(6), 525-39. doi:10.1080/1062936X.2017.1343204
- Martone, R., Fulginei, F. R., & Salvini, A. (2007). Comparative analysis between modern heuristics and hybrid algorithms. *COMPEL Int J for Computation and Maths in Electrical and Electronic*, 26(2).
- Mercader, A., Castro, E. A., & Toropov, A. A. (2001). Maximum Topological Distances Based Indices as Molecular Descriptors for QSPR. 4. Modeling the Enthalpy of Formation of Hydrocarbons from Elements. *International Journal of Molecular Sciences*, 2(2), 121-32. doi:10.3390/i2020121
- Mezey, P. G. (1993). Shape in chemistry: an introduction to molecular shape and topology. VCH.
- Milazzo, S., Ernst, E., Lejeune, S., Boehm, K., & Horneber, M. (2011). Laetrile treatment for cancer. *Cochrane Database of Systematic Reviews*, 9(11). doi:10.1002/14651858.CD005476.pub3
- Milazzo, S., Lejeune, S., & Ernst, E. (2007). Laetrile for cancer: a systematic review of the clinical evidence. *Supportive Care in Cancer*, *15*(6), 583-95. doi:10.1007/s00520-006-0168-9
- Miller, K. W., Anderson, J. L., & Stoewsand, G. S. (1981). Amygdalin metabolism and effect on reproduction of rats fed apricot kernels. *Journal of Toxicology and Environmental Health*, 7(3-4), 457-67. doi:10.1080/15287398109529994
- Mingos, D. P., & Wales, D. J. (1990). Introduction to cluster chemistry. Englewood Cliffs, N.J.
- Mirkin, B. (2019). Core Data Analysis: Summarization, Correlation, and Visualization. Springer International Publishing.
- Mirmiranpour, H., Khaghani, S., Zandieh, A., Khalilzadeh, O., Gerayesh-Nejad, S., Morteza, A., & Esteghamati, A. (2012). Amygdalin inhibits angiogenesis in the cultured endothelial cells of diabetic rats. *Indian Journal of Pathology and Microbiology*, 55(2), 211-4. doi:10.4103/0377-4929.97874
- Moertel, C. G., Fleming, T. F., Rubin, J., Kvols, L. K., Sarna, G., Koch, R., . . . Davignon, P. (1982). A clinical trial of amygdalin (Laetrile) in the treatment of human cancer. *The New England Journal of Medicine*, 306(4), 201-6. doi:10.1056/NEJM198201283060403

- Moertel, C. G., Fleming, T. R., Rubin, J., Kvols, L. K., Sarna, G., Koch, R., . . . Davignon, J. P. (1982). A Clinical Trial of Amygdalin (Laetrile) in the Treatment of Human Cancer. *The New England Journal of Medicine*, 306, 201-6. doi:10.1056/NEJM198201283060403
- Molinspiration: (2020, 12 29). Drug-likeness & bioactivity score. Retrieved from https://www.molinspiration.com/docu/miscreen/druglikeness.html
- Moran, C., & Chatterjee, K. (2015). Resistance to thyroid hormone due to defective thyroid receptor alpha. Best practice & research. *Clinical endocrinology & metabolism*, 29(4), 647-57. doi:10.1016/j.beem.2015.07.007
- Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, 455(1-2), 29-60. doi:10.1016/S0027-5107(00)00064-6
- Moya, C., Klamt, A., & Palomar, J. (2015). A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. *Journal of Chemical Theory and Computation*, *11*(9), 4220-5. doi:10.1021/acs.jctc.5b00601
- Mueller, W. R., Szymanski, K., Knop, J. V., & Trinajstic, N. (1990). Molecular topological index. Journal of Chemical Information and Modeling, 30(2), 160-3. doi:10.1021/ci00066a011
- Murray, J. S., & Sen, K. (1996). Molecular Electrostatic Potentials. Elsevier Science.
- Nagasawa, T., Mathew, C. D., Mauger, J., & Yamada, H. (1988). Nitrile Hydratase-Catalyzed Production of Nicotinamide from 3-Cyanopyridine in Rhodococcus rhodochrous J1. *Applied and Environmental Microbiology*, 54(7), 1766-9.
- National Center for Biotechnology Information. (2020, December 29). *National Library of Medicine*. Retrieved from https://pubchem.ncbi.nlm.nih.gov
- Newmark, J., Brady, R. O., Grimley, P. M., Gal, A. E., Waller, S. G., & Thistlethwaite, J. R. (1981). Amygdalin (Laetrile) and prunasin beta-glucosidases: distribution in germ-free rat and in human tumor tissue. *Proc Natl Acad Sci U S A*, 78(10), 6513-6. doi:10.1073/pnas.78.10.6513
- Nicolaides, N. C., Chrousos, G., & Kino, T. (updated 2020 Nov 21). *Glucocorticoid Receptor*. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK279171/
- Ohlinger, W. S., Klunzinger, P. E., Deppmeier, B. J., & Hehre, W. J. (2009). Efficient Calculation of Heats of Formation[†]. *The Journal of Physical Chemistry A*, *113*(10), 2165-75. doi:10.1021/jp810144q
- Oprea, T. I. (2000). Property distribution of drug-related chemical databases. *Journal of Computer-Aided Molecular Design*, 14(3), 251-64. doi:10.1023/a:1008130001697
- Otto, T., & Sicinski, P. (2017). Cell cycle proteins as promising targets in cancer therapy. *Nature Reviews Cancer*, *17*, 93-115. doi:10.1038/nrc.2016.138
- Ouyang, X., Zhou, S., To Su, C. T., Ge, Z., Li, R., & Kwoh, C. K. (2013). CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. *Journal of Computational Chemistry*, 34(4), 326-36. doi:10.1002/jcc.23136

- Oxtoby, D. W., Gillis, H. P., & Campion, A. (2007). *Principles of Modern Chemistry*. Thomson/Brooks Cole.
- Padilla, S., Corum, D., Padnos, B., Hunter, D., Beam, A., Houck, K., ... Reif, D. (2012). Zebrafish developmental screening of the ToxCast[™] Phase I chemical library. *Reproductive Toxicology*, 33(2), 174-87. doi:10.1016/j.reprotox.2011.10.018
- Palm, K., Stenberg, P., & Luthman, K. (1997). Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans. *Pharmaceutical Research*, 14, 568-71. doi:10.1023/A:1012188625088
- Paoletti, I., De Gregorio, V., Baroni, A., Tufano, M. A., Donnarumma, G., & Perez, J. J. (2013). Amygdalin analogues inhibit IFN-γ signalling and reduce the inflammatory response in human epidermal keratinocytes. *Inflammation*, *36*, 1316–1326. doi:10.1007/s10753-013-9670-7
- Park, H. J., Yoon, S. H., Han, L. S., Zheng, L. T., Jung, K. H., Uhm, Y. K., . . . Hong, S. P. (2005). Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. *World Journal of Gastroenterology*, 11(33), 5156-61. doi:10.3748/wjg.v11.i33.5156
- Paterni, I., Granchi, C., Katzenellenbogen, J. A., & Minutolo, F. (2014). Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. *Steroids*, 90, 13-29. doi:10.1016/j.steroids.2014.06.012
- Paul, B. K., & Guchhait, N. (2011). TD–DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction. *Journal of Luminescence*, 131(9), 1918-26. doi:10.1016/j.jlumin.2011.04.046
- Perez, J. J. (2013). Amygdalin analogs for the treatment of psoriasis. *Future Medical Chemistry*, 5(7), 799-808. doi:10.4155/fmc.13.27
- Perrin, D. D., Dempsey, B., & Serjeant, E. P. (1981). *pKa Prediction for Organic Acids and Bases*. Springer, Dordrecht. doi:10.1007/978-94-009-5883-8
- Petersilka, M., Gossmann, U. J., & Gross, E. K. (1996). Excitation Energies from Time-Dependent Density-Functional Theory. *Physical Review Letters*, 76(8), 1212. doi:10.1103/PhysRevLett.76.1212
- Petitjean, M. (1992). Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. *Journal of Chemical Information and Modeling*, 32. doi:10.1021/ci00008a012
- Pike, J. W., & Meyer, M. B. (2010). he vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). *Endocrinology and metabolism clinics* of North America, 39(2), 255-69. doi:10.1016/j.ecl.2010.02.007
- Politzer, P., & Laurence, P. R. (1985). Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. *Environmental Health Perspectives*, 61, 191-202. doi:10.1289/ehp.8561191
- Prabhu, D. S., Selvam, A. P., & Rajeswari, V. D. (2018). Effective anti-cancer property of Pouteria sapota leaf on breast cancer cell lines. *Biochemistry and biophysics reports*, 15, 39-44. doi:10.1016/j.bbrep.2018.06.004

- Prajapati, R., Singh, U., Patil, A., Khomane, K., Bagul, P., Bansal, A., & Sangamwar, A. (2013). Metrics for comparing neuronal tree shapes based on persistent homology. *Journal of Computer-aided Molecular Design*, 347-63. doi:10.1007/s10822-013-9650-x
- Priestman, T. (2012). Cancer Chemotherapy in Clinical Practice. London: Springer-Verlag.
- Qian, L., Xie, B., Wang, Y., & Qian, J. (2015). Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro. *International Journal of Clinical and Experimental Pathology*, 8(5), 5363-70.
- Raghunand, N., He, X., van Sluis, R., Mahoney, B., Baggett, B., Taylor, C. W., . . . Gillies, R. J. (1999). Enhancement of chemotherapy by manipulation of tumour pH. *British Journal of Cancer*, 80(7), 1005-11. doi:10.1038/sj.bjc.6690455
- Randic, M. (1975). Characterization of molecular branching. *Journal of the American Chemical Society*, 97(23), 6609–15. doi:10.1021/ja00856a001
- Rauf, A. (2013). A dielectric study on human blood and plasma. *International Journal of Science, Environment and Technology*, 2(6), 1396-400.
- Regan, P. T., Malagelada, J. R., DiMagno, E. P., & Gianzman, S. L. (1977). Comparative effects of antacids, cimetidine and enteric coating on the therapeutic response to oral enzymes in severe pancreatic insufficiency. *The New England Journal of Medicine*, 297, 854-8. doi:10.1056/NEJM197710202971603
- Ren, P., Chun, J., Thomas, D. G., Schnieders, M. J., Marucho, M., Zhang, J., & Baker, N. A. (2012). Biomolecular electrostatics and solvation: a computational perspective. *Quarterly Reviews of Biophysics*, 45(4), 427-91. doi:10.1017/S003358351200011X
- Ribeiro, T., Lemos, F., Preto, M., Azevedo, J., Sousa, M. L., Leão, P. N., . . . Urbatzka, R. (2017). Cytotoxicity of portoamides in human cancer cells and analysis of the molecular mechanisms of action. *PLoS ONE*, *12*(12). doi:10.1371/journal.pone.0188817
- Rossotti, F. J., & Rossotti, H. (1961). Chapter 2: Activity and Concentration Quotients. In McGraw–Hill, *The Determination of Stability Constants*.
- Rouvray, D. H. (2002). The rich legacy of half a century of the Wiener index. In R. B. King, & D. H. Rouvray, *Topology in Chemistry: Discrete Mathematics of Molecules* (pp. 16-37). Horwood Publishing.
- Sabudak, T., & Guler, N. (2009). Trifolium L.--a review on its phytochemical and pharmacological profile . *Phytotherapy research : PTR*, 23(3), 439-46. doi:10.1002/ptr.2709
- Sakthivel, K. M., Kannan, N., Angeline, A., & Guruvayoorappan, C. (2012). Anticancer activity of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica against Dalton's ascitic lymphoma induced solid and ascitic tumor model. *Asian Pacific journal of cancer prevention : APJCP*, 13(8), 3989-95. doi:10.7314/apjcp.2012.13.8.3989
- Salahuddin, S., Farrugia, L., Sammut, C., O'Halloran, M., & Porter, E. (2017). Dielectric properties of fresh human blood. *International Conference on Electromagnetics in Advanced Applications (ICEAA)*. Verona, Italy . doi:10.1109/ICEAA.2017.8065249

- Sander, R. (2015). Compilation of Henry's law constants (version 4.0) for water as solvent. *Atmospheric Chemistry and Physics, 15*, 4399-981. doi:10.5194/acp-15-4399-2015
- Sangster, J. M. (1997). Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry. Wiley.
- Scarpin, K. M., Graham, J. D., Mote, P. A., & Clarke, C. L. (2009). Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. *Nuclear receptor signaling*, 7. doi:10.1621/nrs.07009
- Scatena, R., Bottoni, P., Pontoglio, A., Mastrototaro, L., & Giardina, B. (2008). Glycolytic enzyme inhibitors in cancer treatment. *Expert Opinion on Investigational Drugs*, 17(10), 1533-45. doi:10.1517/13543784.17.10.1533
- Schürmann, G., & Klamt, A. (1993). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. *Journal of the Chemical Society, Perkin Transactions* 2, 799-805. doi:10.1039/P29930000799
- Scott, J. S., Bailey, A., Davies, R. D., Degorce, S. L., MacFaul, P. A., Gingell, H., . . . Smith, P. D. (2016). Tetrahydroisoquinoline Phenols: Selective Estrogen Receptor Downregulator Antagonists with Oral Bioavailability in Rat. *Medicinal Chemistry Letters*, 7(1), 94-9. doi:10.1021/acsmedchemlett.5b00413
- Sebaugh, J. L. (2011). Guidelines for accurate EC50/IC50 estimation. *Pharmaceutical Statistics*, 10, 128-34. doi:10.1002/pst.426
- Seigler, D. S., Pauli, G. F., Fröhlich, R., Wegelius, E., Nahrstedt, A., Glander, K. E., & Ebinger, J. E. (2005). Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virginiana, Tiquilia plicata, and Tiquilia canescens. *Phytochemistry*, 66(13), 1567-80. doi:10.1016/j.phytochem.2005.02.021
- Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. *Critical Reviews in Oncogenesis*, 18(1-2), 43-73. doi:10.1615/critrevoncog.v18.i1-2.40
- Shi, J., Chen, Q., Xu, M., Xia, Q., Zheng, T., Teng, J., . . . Fan, L. (2019). Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review. *Cancer Medicine*, 8(6), 3004-11. doi:10.1002/cam4.2197
- Shils, M. E., & Hermann, M. G. (1982). Unproved dietary claims in the treatment of patients with cancer. *Bulletin of the New York Academy of Medicine*, 58(3), 323-40.
- Shim, S. M., & Kwon, H. (2010). Metabolites of amygdalin under simulated human digestive fluids. *International Journal of Food Sciences and Nutrition*, 61(8), 770-9. doi:10.3109/09637481003796314
- Shishkovsky, K. R. (1980). Administrative law... Laetrile and other drugs to be used by the terminally ill are not exempt from the safety and effectiveness requirements of the Federal Food, Drug, and Cosmetic Act of 1938. *Fordham Urban Law Journal*, *57*(2), 364-88.

- Shoombuatong, W., Schaduangrat, N., & Nantasenamat, C. (2018). Towards understanding aromatase inhibitory activity via QSAR modeling. *EXCLI Journal*, 17, 688-708. doi:10.17179/excli2018-1417
- Sims, M. T., Abbott, L. C., Cowling, S. J., Goodby, J. W., & Moore, J. N. (2017). Principal molecular axis and transition dipole moment orientations in liquid crystal systems: an assessment based on studies of guest anthraquinone dyes in a nematic host. *Physical Chemistry Chemical Physics*(19), 813-27. doi:10.1039/C6CP05979A
- Smolensky, D., Rhodes, D., McVey, D. S., Fawver, Z., Perumal, R., Herald, T., & Noronha, L. (2018). High-Polyphenol Sorghum Bran Extract Inhibits Cancer Cell Growth Through ROS Induction, Cell Cycle Arrest, and Apoptosis. *Journal of medicinal food*, 21(10), 990-8. doi:10.1089/jmf.2018.0008
- Soares, J., Greninger, P., Yang, W., Edelman, E. J., Lightfoot, H., Forbes, S., . . . Garnett, M. (2013). Genomics of Drug Sensitivity in Cancer: a resource for therapeutic biomarker discovery in cancer cells. *Nucleic Acids Research*, 41(D1), D955-61. doi:10.1093/nar/gks1111
- Song, Y., Wu, F., & Wu, J. (2016). Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. *Journal of Hematology & Oncology*, 9, 49. doi:10.1186/s13045-016-0279-9
- Song, Z., & Xu, X. (2014). Advanced research on anti-tumor effects of amygdalin. *Journal of Cancer Research and Therapeutics*, 1, 3-7. doi:10.4103/0973-1482.139743
- Soprano, K. J., & Soprano, D. R. (2002). Retinoic Acid Receptors and Cancer. *The Journal of Nutrition*, 132(12), 3809S–13S. doi:10.1093/jn/132.12.3809S
- Spalding, B. (1991). Cancer Immunoconjugates: Will Clinical Success Lead to Commercicial Success? *Nature Biotechnology*, 701-4. doi:10.1038/nbt0891-701
- Spiegel, M. R. (1992). *Theory and Problems of Probability and Statistics*. New York: McGraw-Hill.
- Srikanth, S., & Chen, Z. (2016). Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. *Frontiers in Pharmacology*, 7, 470. doi:10.3389/fphar.2016.00470
- Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., & Willighagen, E. (2003). The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and Bioinformatics. *Journal of Chemical Information and Modeling*, 43(2), 493-500. doi:10.1021/ci025584y
- Stewart, J. (2021). Core-core repulsion integrals / MNDO modification to the core-core term. (Stewart Computational Chemistry) Retrieved from MOPAC: http://openmopac.net/manual/cc_rep_int.html
- Stewart, J. J. (1989). Optimization of parameters for semiempirical methods I. Method. *Journal* of Computational Chemistry, 10(2), 209-20. doi:10.1002/jcc.540100208
- Stewart, J. J. (2013). Optimization of parameters for semiempirical methods. *Journal of Molecular Modeling*, 19(1), 1-32. doi:10.1007/s00894-012-1667-x

- Sun, H., Chen, L. C., Cao, S., Liang, Y., & Xu, Y. (2019). Warburg Effects in Cancer and Normal Proliferating Cells: Two Tales of the Same Name. *Genomics Proteomics Bioinformatics*, 17(3), 273-286. doi:10.1016/j.gpb.2018.12.006
- Sushko, I., Novotarskyi, S., Körner, R., Pandey, A. K., Cherkasov, A., Li, J., . . . Tetko, I. V. (2010). Applicability domains for classification problems: benchmarking of distance to models for AMES mutagenicity set. *Journal of Chemical Information and Modeling*, 2094-2111. doi:10.1021/ci100253r
- Swietach, P., Vaughan-Jones, R. D., Harris, A. L., & Hulikova, A. (2014). The chemistry, physiology and pathology of pH in cancer. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 369(1638). doi:10.1098/rstb.2013.0099
- Syrigos, K. N., Rowlinson-Busza, G., & Epenetos, A. A. (1998). In vitro cytotoxicity following specific activation of amygdalin by beta-glucosidase conjugated to a bladder cancerassociated monoclonal antibody. *International Journal of Cancer*, 78(6), 712-9. doi:10.1002/(SICI)1097-0215(19981209)78:6<712::AID-IJC8>3.0.CO;2-D
- Szewczyk, M., Abarzua, S., Schlichting, A., Nebe, B., Piechulla, B., Briese, V., & Richter, D. U. (2014). Effects of extracts from Linum usitatissimum on cell vitality, proliferation and cytotoxicity in human breast cancer cell lines. *Journal of Medicinal Plant Research*, 8(5), 237-45. doi:10.5897/JMPR2013.5221
- Taha, K. F., Khalil, M., & Abubakr, M. S. (2020). Identifying cancer-related molecular targets of Nandina domestica Thunb. by network pharmacology-based analysis in combination with chemical profiling and molecular docking studies. *Journal of Ethnopharmacology*, 249. doi:10.1016/j.jep.2019.112413
- Takano, Y., & Houk, K. N. (2005). Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. *Journal of Chemical Theory and Computation*, 1(1), 70-7. doi:10.1021/ct049977a
- Thole, J. M., Kraft, T. F., Sueiro, L. A., Kang, Y. H., Gills, J. J., Cuendet, M., . . . Lila, M. A. (2006). A comparative evaluation of the anticancer properties of European and American elderberry fruits. *Journal of medicinal food*, *9*(4), 498-504. doi:10.1089/jmf.2006.9.498
- Todeschini, R., Consonni, V., Mannhold, R., Kubinyi, H., & Timmerman, H. (2008). *Handbook* of Molecular Descriptors. John Wiley & Sons, Inc.
- Todeschini, P., & Consonni, V. (2009). *Molecular Descriptors for Chemoinformatics*. Wiley-VCH. doi:10.1002/9783527628766
- Tong, Y., Li, Z., Wu, Y., Zhu, S., Lu, K., & He, Z. (2020). Lotus Leaf Extract Inhibits the Cell Migration and Metastasis of ER- Breast Cancer. Nutrition & Metabolism. doi:10.21203/rs.3.rs-26733/v1
- Toropov, A., Toropova, A., & Benfenati, E. (2020, 10). NOAEL (IRFMN/CORAL) v. 1.0.0. (G. J. Lavado, Ed.) Retrieved from https://www.vegahub.eu/vegahubdwn/qmrf/QMRF_NOAEL_IRFMN.pdf
- Toropov, A., Toropova, A., Ritano, G., & Benfenati, E. (2019). CORAL: Building up QSAR models for the chromosome aberration test. *Saudi Journal of Biological Sciences*, *26*(6), 1101-06. doi:10.1016/j.sjbs.2018.05.013

- Toropova, A. P., Toropov, A. A., Benfenati, E., Rallo, R., Leszczynska, D., & Leszczynski, J. (2017). Development of Monte Carlo Approaches in Support of Environmental Research. *Advances in QSAR Modeling*, 453-69. doi:10.1007/978-3-319-56850-8_12
- Tro, N. J. (2008). Chemistry: A Molecular Approach. Santa Barbara City College.
- Tsanov, H., & Tsanov, V. (2021). Theoretical Study of the Process of Passage of Glycoside Amides through the Cell Membrane of Cancer Cell. Anti-Cancer Agents in Medicinal Chemistry, 21(12), 1612-1623. doi:10.2174/1871520620999201103201008
- Tsanov, V., & Tsanov, H. (2020). Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product. Anti-cancer Agents in Medicinal Chemistry, 20(7), 897-908. doi:10.2174/1871520620666200313163801
- Tsanov, V., & Tsanov, H. (2022). Theoretical analysis of anticancer cellular effects of glycoside amides.
- Unger, S. H. (1987). Molecular Connectivity in Structure–activity Analysis. *Journal of Pharmaceutical Sciences*, 76(3), 269-70. doi:10.1002/jps.2600760325
- Valiña, A. L., Mazumder-Shivakumar, D., & Bruice, T. C. (2004). Probing the Ser-Ser-Lys Catalytic Triad Mechanism of Peptide Amidase: Computational Studies of the Ground State, Transition State, and Intermediate. *Biochemistry*, 43(50), 15657-72. doi:10.1021/bi049025r
- Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. *Journal of Medicinal Chemistry*, 45(12), 2615-23. doi:10.1021/jm020017n
- Veerapagu, M., Latha, G., Ramanathan, K., & Jeya, K. R. (2020). A Study on the Determination of Phenol, Flavonoid Content and Antioxidant Potential of Manihot esculenta L. Tuber. *Indian Journal of Natural Sciences*, 10(59), 18682-9.
- Vetter, J. (2000). Plant cyanogenic glycosides. *Toxicon*, 38(1), 11-36. doi:0.1016/S0041-0101(99)00128-2
- Votano, J. R., Parham, M., Hall, L. H., Kier, L. B., Oloff, S., Tropsha, A., . . . Tong, W. (2004). Three new consensus QSAR models for the prediction of Ames genotoxicity. *Mutagenesis*, 19(5), 365-77. doi:10.1093/mutage/geh043
- Wagnière, G. H. (1976). Introduction to Elementary Molecular Orbital Theory and to Semiempirical Methods. Springer-Verlag Berlin Heidelberg.
- Wang, J., & Hou, T. (2011). Recent Advances on Aqueous Solubility Prediction. Combinatorial Chemistry & High Throughput Screening, 14(5), 328-38. doi:10.2174/138620711795508331
- Wang, X., Dasari, S., Nowakowski, G. S., Lazaridis, K. N., Wieben, E. D., Kadin, M. E., . . . Boddicker, R. L. (2017). Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma. *Oncotarget*, 8(16), 26245-26255. doi:10.18632/oncotarget.15441
- Wei, Y., Xie, Q., & Ito, Y. (2009). Preparative Separation of Axifolin-3-Glucoside, Hyperoside and Amygdalin from Plant Extracts by High Speed Countercurrent Chromatography.

second supplemented edition

Journal of Liquid Chromatography & Related Technologies, 32(7), 1010-22. doi:10.1080/10826070902790983

- Welsh, I. D., & Allison, J. R. (2019). Automated simultaneous assignment of bond orders and formal charges. *Journal of Cheminformatics*, 11, 18. doi:10.1186/s13321-019-0340-0
- WHAT MAKES ARMENIA SPECIAL? (2016, August 30). Retrieved from ArmeniaTourInfo: https://www.armeniatourinfo.com/what-makes-armenia-special/
- Wu, S., Fischer, J., Naciff, J., Laufersweiler, M., Lester, C., Daston, G., & Blackburn, K. (2013). Framework for Identifying Chemicals with Structural Features Associated with the Potential to Act as Developmental or Reproductive Toxicants. *Chemical Research in Toxicology*, 26(12), 1840-61. doi:10.1021/tx400226u
- Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. *Current Opinion* in Cell Biology, 17(5), 559-64. doi:10.1016/j.ceb.2005.08.002
- Yang, D., Qiu, M., Zou, L. Q., Zhang, W., Jiang, Y., Zhang, D. Y., & Yan, X. (2012). The role of palliative chemotherapy for terminally ill patients with advanced NSCLC. *Thoracic Cancer*, 4(2), 153-160. doi:10.1111/j.1759-7714.2012.00148.x
- Yang, H. Y., Chang, H. K., Lee, J. W., Kim, Y. S., Kim, H., Lee, M. H., . . . Kim, C. J. (2013). Amygdalin suppresses lipopolysaccharide-induced expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. *Neurological Research*, 59-64. doi:10.1179/016164107X172248
- Yordanova, D., Schultz, T., Kuseva, C., Tankova, K., Ivanova, H., Dermen, I., ... Mekenyan, O. (2019). Automated and standardized workflows in the OECD QSAR Toolbox. *Computational Toxicology*, 10, 89-104. doi:10.1016/j.comtox.2019.01.006
- Young, D. C. (2001). Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. John Wiley & Sons, Inc. doi:10.1002/0471220655
- Young, D. M., Martin, T. M., Venkatapathy, R., & Harten, P. (2008). Are the Chemical Structures in your QSAR Correct? QSAR & Combinatorial Science, 27(11-12), 1337-45. doi:10.1002/qsar.200810084
- Young, K. H., Pyo, H. S., Hoon, H. D., & Hee, K. J. (2003). Apoptosis induction of persicae semen extract in human promyelocytic leukemia (hl-60) cells. Archives of Pharmacal Research, 26, 157. doi:10.1007/BF02976663
- Yulvianti, M., & Zidorn, C. (2021). Chemical Diversity of Plant Cyanogenic Glycosides: An Overview of Reported Natural Products. *Molecules*, 26(3), 719. doi:10.3390/molecules26030719
- Yusof, I., & Segall, M. D. (2013). Considering the impact drug-like properties have on the chance of success. *Drug Discovery Today*, 18(13-14), 659-66. doi:10.1016/j.drudis.2013.02.008
- Zhao, L., Zhou, S., & Gustafsson, J. Å. (2019). Nuclear Receptors: Recent Drug Discovery for Cancer Therapies. *Endocrine Reviews*, 40(5), 1207-49. doi:10.1210/er.2018-00222
- Zhou, C., Qian, L., Ma, H., Yu, X., Zhang, Y., Qu, W., . . . Xia, W. (2012). Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis. *Carbohydrate Polymers*, 90(1), 516-23. doi:10.1016/j.carbpol.2012.05.073

- second supplemented edition
- Zhou, Y., & Liu, X. (2020). The role of estrogen receptor beta in breast cancer. *Biomarker Research*, 8(39). doi:10.1186/s40364-020-00223-2
- Zhu, H., Martin, T. M., Young, D. M., & Tropsha, A. (2009). Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure. *Chemical Research in Toxicology*, 22(12), 1913-21. doi:10.1186/1752-153X-4-S1-S4
- Zhu, Y. P., Su, Z. W., & Li, C. H. (1994). Analgesic effect and no physical dependence of amygdalin. *Zhongguo Zhong Yao Za Zhi, 19*(2), 105-7.
- Zubatyuk, R., Smith, J. S., Leszczynski, J., & Isayev, O. (2019). Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network. *Science Advances*, 5(8). doi:10.1126/sciadv.aav6490
- Божанов, Е., & Вучков, И. (1973). Статистически методи за моделиране и оптимизиране на многофакторни обекти. София: "Техника".
- Бошев, Н., Полнарев, Б., Атанасов, К., Бошева, М., Занзов, И., Кръстанев, И., . . . Янев, П. (1986). Биологичните константи на човека. София: Държавно издателство "Медицина и физкултура".
- Петров, Г. (1996/2019). *Органична химия*. София: Университетско издателство СУ "Св.Климент Охридствки".

CONTENTS OF FIGURES AND TABLES

FIG.II.1.1 STRUCTURAL FORMULA AND FULL CHEMICAL NAME OF AMYGDALIN
FIG. III.3. 1 METHODOLOGICAL SCHEME FOR ACHIEVING THE FIRST GOAL - A STUDY OF WHAT EXACTLY IS THE REASON FOR THE LONG-
TERM USE OF TOXIC AMYGDALIN IN THE SOCIAL GROUP22
FIG. III.3. 2 METHODOLOGICAL SCHEME FOR REALIZATION OF THE SECOND GOAL - ANALYSIS OF MOLECULES FORMING ACTIVITY IN THE
ENVIRONMENT AROUND THE CANCER CELL AND THEIR ABILITY TO CROSS THE CELL MEMBRANE
FIG. III.3. 3 METHODOLOGICAL SCHEME FOR REALIZATION OF THE THIRD GOAL - ANALYSIS OF MODELS FOR EVALUATION OF THE OFFERED PHARMACEUTICAL FORMS
FIG. III.3. 4 METHODOLOGICAL SCHEME FOR CONDUCTING ANALYSIS OF GENERAL DRUGLIKENESS OF THE PHARMACEUTICAL FORM 29
FIG. III.3. 5 METHODOLOGICAL SCHEME FOR RESEARCH ON THE INDICATORS LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE AND THEIR INTERRELATIONS
FIG. III.3. 6 DEPENDENCE BETWEEN QED WITH UWQED AND WQED
FIG.III.3. 7 FACTORS INFLUENCING THE OVERALL ASSESSMENT WHEN CONDUCTING ANALYSIS FOR DATA OBTAINED IN NON-LABORATORY AND NON-CLINICAL METHODS
FIG. III.3. 8 RELATIONSHIP BETWEEN STAND-ALONE MODELS AND CONSENSUS MODEL IN THE ASSESSMENT OF A MOLECULAR FORM FOR MUTAGENICITY
Fig. III.3. 9 Relationship between Stand-alone models and Prolonged oral administration in the assessment of a
MOLECULAR FORM FOR CARCINOGENICITY
FIG. III.3. 10 METHODOLOGICAL SCHEME FOR ASSESSING THE TOXICITY OF THE STUDIED MOLECULAR FORM
FIG. III.3. 11 STRUCTURE FOR CONDUCTING AN ANALYSIS TO VERIFY THE CONCLUSION OF THE PART IN THE EVALUATION OF MODIFIED MOLECULAR FORMS

FIG.IV.1.1 CATALYTIC CHEMICAL HYDROLYSIS OF NITRILE TO AMIDE IN AN ACIDIC ENVIRONMENT	54
FIG.IV.1.2 SCHEMATIC DEPICTING THE PHYSIOLOGICAL RETENTION OF COBALT IN THE STOMACH	55
FIG.IV.1. 3 SCHEMATIC DIAGRAM OF THE ENZYMATIC HYDROLYSIS OF THE AMYGDALIN-NITRILE GROUP TO ITS AMIDES AND CARBOXYLIC	2
ACID	56
FIG.IV.1.4 ENZYME HYDROLYSIS OF 3-CYANOPYRIDINE TO NICOTINAMIDE AND NICOTINIC ACID	59
FIG.IV.1.5 ENZYME HYDROLYSIS OF HYDROLYZED AMYGDALIN TO AMIDE	60
FIG.IV.1. 6 CALCULATED ACTIVE FORMS OF HYDROLYZED TO THE AMINE AMYGDALIN BY TD-DFT IN AN ENVIRONMENT OF GAMESS U	JS
	61
FIG.IV.1.7 SUMMARY SCHEME OF THE THEORETICALLY CALCULATED ANTITUMOR ACTIVITY OF THE BIOLOGICALLY MODIFIED AMYGDALI	N
AND THE SITE OF THE DOSAGE FORM THROUGHOUT THE BIOCHEMICAL CYCLE	62

FIG.IV.2. 1 MULLIKEN CHANGES AND ELECTROSTATICAL POTENTIAL OF THE AMIDE DERIVATIVE OF AMYGDALIN AND ITS TWO HYDROLYTIC
FORMS IN VIVO
FIG.IV.2. 2 CORE-CORE REPULSION, COSMO AREA AND VOLUME, ELECTRONIC ENERGY, IONIZATION POTENTIAL AND TOTAL ENERGY
OF AMYGDALIN AMIDE DERIVATIVE AND ITS TWO HYDROLYTIC FORMS IN VIVO64
FIG.IV.2. 3 DIPOLE MOMENT OF AMYGDALIN AMIDE DERIVATIVE MOLECULE AND ITS TWO HYDROLYTIC FORMS IN VIVO
FIG.IV.2. 4 PKA PER ATOM AND/OR GROUP OF THE WHOLE MOLECULE IN AMIDE OF BOTH ITS HYDROLYTIC FORMS OF AMYGDALIN66
FIG.IV.2. 5 MULLIKEN CHARGES AND ELECTROSTATIC POTENTIAL OF THE CARBOXYL DERIVATIVE OF AMYGDALIN AND ITS HYDROLYTIC
FORMS IN VIVO
FIG.IV.2. 6 CORE-CORE REPULSION, COSMO AREA AND VOLUME, ELECTRONIC ENERGY, IONIZATION POTENTIAL AND TOTAL ENERGY
OF AMYGDALIN CARBOXYL DERIVATIVE AND ITS HYDROLYTIC FORMS IN VIVO
FIG.IV.2. 7 DIPOLE MOMENT OF THE CARBOXYL DERIVATIVE OF AMYGDALIN AND ITS HYDROLYTIC FORMS IN VIVO70
FIG.IV.2. 8 HYDROLYSIS OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF NITRILE (CYANO) GLYCOSIDES
FIG.IV.2. 9 SCHEMATIC REPRESENTATION OF THE TYPE OF HYDROLYSIS OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF NITRILE (CYANO)
GLYCOSIDES AROUND A PHYSIOLOGICALLY ACTIVE CANCER AND HEALTHY CELL72
FIG.IV.2. 10 FORMATION OF A COMPLEX WITH INCOMPLETE COUNTER-CHARGE BETWEEN HYDROLYSIS OF AMIDE AND CARBOXYLIC ACID
DERIVATIVES OF NITRILE (CYANO) GLYCOSIDES73

Theoretical study of the anticancer activity of glucosamidamides

FIG.IV.2. 11 SCHEME OF CHEMICAL BONDING BETWEEN BASIC AND HYDROLYZED FORMS OF AMIDE AND CARBOXYL FORMS OF NITRILE GLYCOSIDES UNDER VARIOUS CONDITIONS IN VIVO AROUND AND IN CANCER CELL
FIG.IV.3. 1 STRUCTURAL FORMULAS OF (R)-2-HYDROXY-2-(4-HYDROXYPHENYL)ACETAMIDE IN 4-(2-AMINOETHYL)PHENOL103
FIG.IV.3. 2 STRUCTURAL FORMULAS OF (2E,4Z)-3-(CARBOXYMETHYL)-2-HYDROXYHEXA-2,4-DIENEDIOIC ACID И (2E,4E)-3-
METHYLHEXA-2,4-DIENOIC ACID
FIG.IV.3. 3 STRUCTURAL FORMULAS OF (2Z,4E)-4-(2-AMINO-1-HYDROXY-2-OXOETHYLIDENE)HEX-2-ENEDIOIC ACID И BUT-1-ENE .189
FIG.IV.3. 4 STRUCTURAL FORMULA OF (2E,4Z)-3-(CARBOXYMETHYL)-2-(Λ^1 -OXIDANEYL)HEXA-2,4-DIENEDIOIC ACID201
FIG.IV.3. 5 STRUCTURAL FORMULAS OF (S)-1-HYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE, (S)-1-HYDROXYCYCLOPENT-2-ENE-1- CARBOXYLIC ACID AND BUT-1-ENE
FIG.IV.3. 6 STRUCTURAL FORMULAS OF (1S,4S)-1,4-DIHYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE, (1S,4S)-1,4-
DIHYDROXYCYCLOPENT-2-ENE-1-CARBOXYLIC ACID AND BUT-1-ENE
FIG.IV.3. 7 STRUCTURAL FORMULAS OF (1R,4R)-1,4,5-TRIHYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE AND (S)-1-
HYDROXYCYCLOPENT-2-ENE-1-CARBOXYLIC ACID, (1R,4R)-1,4,5-TRIHYDROXYCYCLOPENT-2-ENE-1-CARBOXYLIC ACID AND BUT-
1-ENE
FIG.IV.3.8 STRUCTURAL FORMULAS OF (Z)-2-((4S,6R)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETIC ACID и (2E,4E)-3-
METHYLHEXA-2,4-DIENOIC ACID
FIG.IV.3. 9 STRUCTURAL FORMULAS OF (Z)-2-((4S,6R)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE И BUT-1-ENE259
FIG.IV.3. 10 STRUCTURAL FORMULAS OF (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETIC ACID и (2E,4E)-3-
METHYLHEXA-2,4-DIENOIC ACID
FIG.IV.3. 11 STRUCTURAL FORMULAS OF (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE И BUT-1-ENE
(2E,4E)-3-METHYLHEXA-2,4-DIENOIC ACID
FIG.IV.3. 13 STRUCTURAL FORMULAS OF (Z)-2-((4R,5R,6S)-5,6-DIHYDROXY-4-METHOXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE Ν
BUT-1-ENE
FIG.IV.3. 14 STRUCTURAL FORMULAS OF (E)-2-((4R,6S)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETIC ACID И (2E,4E)-3-
METHYLHEXA-2,4-DIENOIC ACID
FIG.IV.3. 15 STRUCTURAL FORMULAS OF (E)-2-((4R,6S)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE N BUT-1-ENE329
FIG.IV.3. 16 STRUCTURAL FORMULAS OF (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETIC ACID и (2E,4E)-3-
METHYLHEXA-2,4-DIENOIC ACID
FIG.IV.3. 17 STRUCTURAL FORMULAS OF (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE И BUT-1-ENE
EVENUE A 1 SCHEMMATIC DEDDESENTATION OF THE DESCRIPTIVE DEPENDENCES OF THE INTERDEFTABLE DEDICTIONS OF SENSITIVITY TO

TABL.II.1.1 AMYGDALIN AND "METABOLIC THERAPY" REGIMENS FOR 21 DAYS	12
TABL.II.1.2 CHARACTERISTICS OF ELIGIBLE PATIENTS SUBJECTED TO CLINICAL TESTING WITH AMYGDALIN	13
TABL.II.1.3 TOXICITY OF AMYGDALIN THERAPY TESTED IN A CLINICAL SETTING	14

 TABL.II.2. 1 NATURAL NITRILE GLYCOSIDES AND THEIR MODIFIED AMIDE AND CARBOXYLIC ACID FORMS
 15

 TABL.II.3. 1 Specific antitumor mechanisms of amygdalin in different tumors
 16

TABL.III.4.1 Active pharmaceutical forms for oral use and their corresponding active anti-cancer molecu	LES OBTAINED
AFTER PASSAGE THROUGH THE CELL MEMBRANE	48

TABL.IV.1.1 COMPARATIVE ANALYSIS OF THE MOLECULAR TOPOLOGY OF PURE AMYGDALIN, ITS AMIDE AND CARBOXYL ACID	
DERIVATIVES, RESULTING FROM THE HYDROLYSIS OF ITS NITRILE GROUP	57

second supplemented edition

TABL.IV.1. 2 PARTITION COEFFICIENTS OF AMYGDALIN AND ITS HYDROLYSATES OF THE NITRILE GROUP TO AMIDE AND CARBOXYLIC ACID IN
THE 0.9% NACL PHASE IN WATER
TABL.IV.1. 3 ELECTRON ASSIGNMENT IN THE ATOMOLECULAR SYSTEM OF AMYGDALIN AND ITS HYDROLYSATES OF THE NITRILE GROUP TO
AMIDE AND CARBOXYLIC ACID
TABL.IV.1.4 MOLECULAR AND ELECTRON-CONFIGURATION PROPERTIES OF AMYGDALIN AND ITS HYDROLYSATES OF THE NITRILE GROUP
TO AMIDE AND CARBOXYLIC ACID OBTAINED BY SEMI-EMPIRICAL METHODS
TABL.IV.1. 5 TOTAL ENERGY, HEAT CAPACITY AND THERMODYNAMIC ENERGY ON 3-CYANOPYRIDINE, NICOTINAMIDE AND NICOTINIC
Acid by 310K, 1.02 bar in medium of 0.9% NACL solution in water using CPCM methodology

TABL.IV.2. 1 POLAR SURFACE AREA, MOLECULAR RADIUS AND TOPOLOGICAL DIAMETER OF AMYGDALIN AMIDE DERI	VATIVE MOLECULE
AND ITS TWO HYDROLYTIC FORMS IN VIVO	66
TABL.IV.2. 2 PRINCIPAL MOMENT, LIPINSKI'S RULE OF FIVE, LOGP, LOGS, PARTITION COEFFICIENT OF AMYGDALIN AN	VIDE DERIVATIVE 67
TABL.IV.2. 3 POLAR SURFACE AREA, MOLECULAR RADIUS AND TOPOLOGICAL DIAMETER OF CARBOXYL DERIVATIVE OF	F AMYGDALIN AND
ITS HYDROLYTIC FORMS IN VIVO	69
DATA OF FIG.IV.2. 6, FIG.IV.2. 7 AND TABL.IV.2. 4 SHALL BE INTERPRETED IN PROPORTION TO WHAT THE DATA OF	§ III. 2.1 69
TABL.IV.2. 5 PRINCIPAL MOMENT, LIPINSKI'S RULE OF FIVE, LOGP, LOGS, PARTITION COEFFICIENT OF AMYGDALIN CA	ARBOXYL
DERIVATIVE	70
TABL.IV.2. 6 ACTIVE APOPTOTIC AMIDE/CARBOXYL ACID MOLECULAR FORMS	74
TABL.IV.2. 7 NATURE AND CONCENTRATION OF ACTIVE ANTICANCER CELL MOLECULES OBTAINED AFTER CROSSING THE	E CELL MEMBRANE
BY THEIR NATURAL PRECURSORS	77

TABL.IV.3.1.1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER OF	
MEMBRANE AND RELEASE (R)-2-HYDROXY-2-PHENYLACETAMIDE	
TABL.IV.3.1. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	5
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-PHENYLACETAMIDE	81
TABL.IV.3.1. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE T	0
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-PHENYLACETAMIDE	81
TABL.IV.3.1. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PA	SS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-PHENYLACETAMIDE	82
TABL.IV.3.1. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-PHENYLACETAMIDE	83
TABL.IV.3.1. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDALIN, LUCUMIN	٩ND
Vicianin	83
TABL.IV.3.1. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDALIN,	
Lucumin and Vicianin	84
TABL.IV.3.1. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGE	DALIN,
Lucumin and Vicianin	85
TABL.IV.3.1. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDALIN, LUCUM	MIN
and Vicianin	85
TABL.IV.3.1. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN,	
Amygdalin, Lucumin and Vicianin	86
TABL.IV.3.1. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRI	Ν,
Amygdalin, Lucumin and Vicianin	86
TABL.IV.3.1. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDA	LIN,
Lucumin and Vicianin	87
TABL.IV.3.1. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDALIN,	
Lucumin and Vicianin	87
TABL.IV.3.1. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN,	
Amygdalin, Lucumin and Vicianin	88
TABL.IV.3.1. 15 IRFMN/ISSCMN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIC	GRIN,
Amygdalin, Lucumin and Vicianin	88
TABL.IV.3.1. 16 CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID	
derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin	89

TABL.IV.3.1. 17 CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID	
derivatives of Prunasin, Sambunigrin, Amygdalin, Lucumin and Vicianin	39
TABL.IV.3.1. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDALIN, LUCUMIN	Í.
and Vicianin	90
TABL.IV.3.1. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDALIN, LUCUMIN AND	
Vicianin9	1
TABL.IV.3.1. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN,	
Sambunigrin, Amygdalin, Lucumin and Vicianin9	1
TABL.IV.3.1. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN,	
Amygdalin, Lucumin and Vicianin	12
TABL.IV.3.1. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN	۱,
Amygdalin, Lucumin and Vicianin	12
TABL.IV.3.1. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN,	
Sambunigrin, Amygdalin, Lucumin and Vicianin9	13
TABL.IV.3.1. 24 ADIPOSE TISSUE: BLOOD MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN,	
Sambunigrin, Amygdalin, Lucumin and Vicianin9	94
TABL.IV.3.1. 25 TOTAL BODY ELIMINATION HALF-LIFE TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN,	
Sambunigrin, Amygdalin, Lucumin and Vicianin9	14
TABL.IV.3.1. 26 MICRONUCLEUS ACTIVITY - IN VITRO FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN,	
Sambunigrin, Amygdalin, Lucumin and Vicianin9	<i>•</i> 5
TABL.IV.3.1. 27 NOAEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PRUNASIN, SAMBUNIGRIN, AMYGDALIN, LUCUMIN	
and Vicianin	,5
TABL.IV.3.1. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PRUNASIN AND SAMBUNIGRIN 9)7
TABL.IV.3.1. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PRUNASIN AND SAMBUNIGRIN)7
TABL.IV.3.1. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF PRUNASIN AND SAMBUNIGRIN	98
TABL.IV.3.1. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF PRUNASIN AND SAMBUNIGRIN9	18
TABL.IV.3.1. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF PRUNASIN AND SAMBUNIGRIN	18

TABL.IV.3.2. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER CELL	L
MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(4-HYDROXYPHENYL)ACETAMIDE	99
TABL.IV.3.2. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(4-HYDROXYPHENYL)ACETAMIDE1	.00
TABL.IV.3.2. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO	
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(4-HYDROXYPHENYL)ACETAMIDE1	.00
TABL.IV.3.2. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(4-HYDROXYPHENYL)ACETAMIDE1	.01
TABL.IV.3.2. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(4-HYDROXYPHENYL)ACETAMIDE1	.02
TABL.IV.3.2. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF DHURRIN, TAXIPHYLLIN, PROTEACIN AND P-	
GLUCOSYLOXYMANDELO1	.02
TABL.IV.3.2.7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DHURRIN, TAXIPHYLLIN, PROTEACIN AND P-	
GLUCOSYLOXYMANDELO1	.03
TABL.IV.3.2. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-GLUCOSYLOXYMANDEL	0-,
Dhurrin and Taxiphyllin1	.04
TABL.IV.3.2. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-GLUCOSYLOXYMANDELO-, DHURRIN	N
AND TAXIPHYLLIN	.04
TABL.IV.3.2. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	.05
TABL.IV.3.2. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	.06
TABL.IV.3.2. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-GLUCOSYLOXYMANDELO-	,
Dhurrin and Taxiphyllin1	.06
TABL.IV.3.2. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-GLUCOSYLOXYMANDELO-,	
Dhurrin and Taxiphyllin1	.07

TABL.IV.3.2. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	7
TABL.IV.3.2. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	
TABL.IV.3.2. 16 CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN	-
P-GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN10	8
TABL.IV.3.2. 17 CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID	
DERIVATIVES OF PROTEACIN, P-GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	9
TABL.IV.3.2. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-GLUCOSYLOXYMANDELO-, DHURRIN	
AND TAXIPHYLLIN	9
TABL.IV.3.2. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-GLUCOSYLOXYMANDELO-, DHURRIN AND	
Taxiphyllin11	
TABL.IV.3.2. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN,	
P-GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN11	0
TABL.IV.3.2. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN11	1
TABL.IV.3.2. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	1
TABL.IV.3.2. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	2
TABL.IV.3.2. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	2
TABL.IV.3.2. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	3
TABL.IV.3.2. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	4
TABL.IV.3.2. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PROTEACIN, P-	
GLUCOSYLOXYMANDELO-, DHURRIN AND TAXIPHYLLIN	4
TABL.IV.3.2. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF DHURRIN AND TAXIPHYLLIN 11	6
TABL.IV.3.2. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF DHURRIN AND TAXIPHYLLIN 11	6
TABL.IV.3.2. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF DHURRIN AND TAXIPHYLLIN 11	
TABL.IV.3.2. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF DHURRIN AND TAXIPHYLLIN	
TABL.IV.3.2. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF DHURRIN AND TAXIPHYLLIN 11	7

TABL.IV.3.3.1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER C	ELL
MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(3-HYDROXYPHENYL)ACETAMIDE	118
TABL.IV.3.3. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	•
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(3-HYDROXYPHENYL)ACETAMIDE	118
TABL.IV.3.3.3 TABL.14 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY	
POSSIBLE TO PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(3-HYDROXYPHENYL)ACETAMIDE	.119
TABL.IV.3.3. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PAS	SS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(3-HYDROXYPHENYL)ACETAMIDE	119
TABL.IV.3.3. 5 Weighted Quantitative Estimate of Druglikeness of Chemical Molecules Potentially Possible to Pass	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(3-HYDROXYPHENYL)ACETAMIDE	120
TABL.IV.3.3. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF ZIERIN	120
TABL.IV.3.3.7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	121
TABL.IV.3.3.8 SARPy/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	121
TABL.IV.3.3. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	122
TABL.IV.3.3. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Zierin	122
TABL.IV.3.3. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	123
TABL.IV.3.3. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	123
TABL.IV.3.3. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	124
TABL.IV.3.3. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	124
TABL.IV.3.3. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN	125

second supplemented edition

TABL.IV.3.3. 16 CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN 125
TABL.IV.3.3. 17 CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN126
TABL.IV.3.3. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN 126
TABL.IV.3.3. 19 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN127
TABL.IV.3.3. 20 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN 128
TABL.IV.3.3. 21 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN 128
TABL.IV.3.3. 22 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN
TABL.IV.3.3. 23 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN
TABL.IV.3.3. 24 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN130
TABL.IV.3.3. 25 MICRONUCLEUS TOXICITY ACTIVITY – IN VITRO FOR AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN
TABL.IV.3.3. 26 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ZIERIN 131
TABL.IV.3.3. 27 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF ZIERIN 132
TABL.IV.3.3. 28 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF ZIERIN 132
TABL.IV.3.3. 29 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF ZIERIN
TABL.IV.3.3. 30 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF ZIERIN 133
TABL.IV.3.3. 31 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF ZIERIN

TABL.IV.3.4. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER CELL
MEMBRANE AND RELEASE 2-HYDROXY-2-METHYLPROPANAMIDE
TABL.IV.3.4. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-2-METHYLPROPANAMIDE
TABL.IV.3.4. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-2-METHYLPROPANAMIDE
TABL.IV.3.4.4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-2-METHYLPROPANAMIDE
TABL.IV.3.4. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-2-METHYLPROPANAMIDE
TABL.IV.3.4. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF LINAMARIN 137
TABL.IV.3.4. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 138
TABL.IV.3.4. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 139
TABL.IV.3.4. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 140
TABL.IV.3.4. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 141
TABL.IV.3.4. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES OF
LINAMARIN
TABL.IV.3.4. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBOXYL
ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 143
TABL.IV.3.4. 19 ZEBRAFISH EMBRYO AC50 at IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 20 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 144
TABL.IV.3.4. 21 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 145
TABL.IV.3.4. 22 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN
TABL.IV.3.4. 23 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 146
TABL.IV.3.4. 24 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN146
TABL.IV.3.4. 25 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN .147
TABL.IV.3.4. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VIVO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 148
TABL.IV.3.4. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LINAMARIN 148
TABL.IV.3.4. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF LINAMARIN 149
TABL.IV.3.4. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF LINAMARIN 150

Theoretical study of the anticancer activity of glucosamidamides

second	supplemente	d edition

TABL.IV.3.4. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF LINAMARIN	150
TABL.IV.3.4. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF LINAMARIN	151
TABL.IV.3.4.32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF LINAMARIN	151

TABL.IV.3.5. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCEL	R CELL
MEMBRANE AND RELEASE (R)-2-HYDROXY-2-(3-HYDROXYPHENYL)ACETAMIDE	152
TABL.IV.3.5. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PA	SS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (S)-2-HYDROXY-2-METHYLBUTANAMIDE	152
TABL.IV.3.5. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE	то
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (S)-2-HYDROXY-2-METHYLBUTANAMIDE	153
TABL.IV.3.5. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO I	PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (S)-2-HYDROXY-2-METHYLBUTANAMIDE	153
TABL.IV.3.5. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY ABLE TO OVERCO	
CANCER CELL AND RELEASE (S)-2-HYDROXY-2-METHYLBUTANAMIDE IN IT	
TABL.IV.3.5. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF LOTAUSTRALIN.	
TABL.IV.3.5.7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN	155
TABL.IV.3.5. 8 SARPy/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN.	155
TABL.IV.3.5. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN	
TABL.IV.3.5. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Lotaustralin	156
TABL.IV.3.5. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN	
TABL.IV.3.5. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN.	
TABL.IV.3.5. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN.	
TABL.IV.3.5. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN	
TABL.IV.3.5. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN	
TABL.IV.3.5. 16 DATA OF CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVE	
LOTAUSTRALIN	
TABL.IV.3.5. 17 DATA OF CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES	
Lotaustralin	159
LOTAUSTRALIN	159 160
LOTAUSTRALIN	159 160
LOTAUSTRALIN	159 160 160
LOTAUSTRALIN	159 160 160 161
LOTAUSTRALIN TABL.IV.3.5. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN TABL.IV.3.5. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN TABL.IV.3.5. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN TABL.IV.3.5. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN.	159 160 160 161 161
LOTAUSTRALIN TABL.IV.3.5. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN TABL.IV.3.5. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN TABL.IV.3.5. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN TABL.IV.3.5. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN TABL.IV.3.5. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN	159 160 160 161 161 162
LOTAUSTRALIN	159 160 160 161 161 162 162
LOTAUSTRALIN	159 160 161 161 161 162 162 163
LOTAUSTRALIN	159 160 161 161 161 162 162 163 RALIN
LOTAUSTRALIN	159 160 161 161 162 162 163 RALIN 163
LOTAUSTRALIN	159 160 161 161 161 162 163 RALIN RALIN
 LOTAUSTRALIN	159 160 161 161 162 162 163 RALIN 163 RALIN 164
 LOTAUSTRALIN. TABL.IV.3.5. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN. TABL.IV.3.5. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN. TABL.IV.3.5. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN. TABL.IV.3.5. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN. TABL.IV.3.5. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN. TABL.IV.3.5. 23 P-GLYCOPROTEIN ACTIVITY TOXICITY MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LOTAUSTRALIN	159 160 161 161 162 162 163 RALIN 163 RALIN 164 ALIN
LOTAUSTRALIN	159 160 161 161 162 163 RALIN 163 RALIN 164 ALIN 165
LOTAUSTRALIN	159 160 161 161 162 162 163 RALIN 163 RALIN 164 ALIN 165 165
LOTAUSTRALIN	159 160 161 161 162 162 163 RALIN 163 RALIN 164 ALIN 165 165
LOTAUSTRALIN	159 160 161 161 161 162 163 RALIN 163 RALIN 164 ALIN 165 165 166 167
LOTAUSTRALIN	159 160 161 161 161 162 163 RALIN 163 RALIN 165 165 165 167 167
LOTAUSTRALIN	159 160 161 161 162 162 163 RALIN 163 RALIN 165 165 165 166 167 167 168

TABL.IV.3.6. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER C	ELL
MEMBRANE AND RELEASE 2-HYDROXY-3-METHYLBUT-2-ENAMIDE	169
TABL.IV.3.6. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-3-METHYLBUT-2-ENAMIDE	169

second supplemented edition

TABL.IV.3.6. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE	то
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-3-METHYLBUT-2-ENAMIDE	170
TABL.IV.3.6. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO P.	ASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-3-METHYLBUT-2-ENAMIDE	170
TABL.IV.3.6. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	;
THROUGH THE CANCER CELL MEMBRANE AND RELEASE 2-HYDROXY-3-METHYLBUT-2-ENAMIDE	171
TABL.IV.3.6. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF ACACIPETALIN	171
TABL.IV.3.6. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	172
TABL.IV.3.6. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	172
TABL.IV.3.6. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	173
TABL.IV.3.6. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Acacipetalin	173
TABL.IV.3.6. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	174
TABL.IV.3.6. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	174
TABL.IV.3.6. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	175
TABL.IV.3.6. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	175
TABL.IV.3.6. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	176
TABL.IV.3.6. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATI	VES OF
Acacipetalin	176
TABL.IV.3.6. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARE	SOXYL
ACID DERIVATIVES OF ACACIPETALIN	177
TABL.IV.3.6. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	177
TABL.IV.3.6. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	178
TABL.IV.3.6. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF	
Acacipetalin	178
TABL.IV.3.6. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	179
TABL.IV.3.6. 22 AROMATASE ACTIVITY TOXICITY MODEL FOR AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	179
TABL.IV.3.6. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN .	180
TABL.IV.3.6. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	180
TABL.IV.3.6. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPET	ALIN
	181
TABL.IV.3.6. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPET.	ALIN
	181
TABL.IV.3.6. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF ACACIPETALIN	182
TABL.IV.3.6. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF ACACIPETALIN	183
TABL.IV.3.6. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF ACACIPETALIN	
TABL.IV.3.6. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF ACACIPETALIN	184
TABL.IV.3.6. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF ACACIPETALIN	
TABL.IV.3.6. 32 Medical Chemistry Indicators for Amide and Derivatives of Acacipetalin	
TABL.IV.3.7. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER	CELL
MEMBRANE AND RELEASE (2Z,4E)-4-(2-AMINO-1-HYDROXY-2-OXOETHYLIDENE)HEX-2-ENEDIOIC ACID	186
TABL.IV.3.7. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PAS	SS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (2Z,4E)-4-(2-AMINO-1-HYDROXY-2-OXOETHYLIDENE)HEX-2-ENEDI	OIC
ACID	186
TABL.IV.3.7. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE	то
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (2Z,4E)-4-(2-AMINO-1-HYDROXY-2-OXOETHYLIDENE)HEX-2-	
ENEDIOIC ACID	187
TABL.IV.3.7. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO P	ASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (2Z,4E)-4-(2-AMINO-1-HYDROXY-2-OXOETHYLIDENE)HEX-2-ENEDI	OIC
ACID	187

 TABL.IV.3.7. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS

 THROUGH THE CANCER CELL MEMBRANE AND RELEASE (2Z,4E)-4-(2-AMINO-1-HYDROXY-2-OXOETHYLIDENE)HEX-2-ENEDIOIC

 ACID

 188

 TABL.IV.3.7. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF TRIGLOCHININ.

 188

second supplemented edition

TABL.IV.3.7. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 11 CONSENSUS MUTAGENICITY MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DEF	IVATIVES OF
Triglochinin	
TABL.IV.3.7. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND	CARBOXYL
ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF T	RIGLOCHININ
TABL.IV.3.7. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	197
TABL.IV.3.7. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCH	ININ 198
TABL.IV.3.7. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	
TABL.IV.3.7. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIG	LOCHININ
TABL.IV.3.7. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIG	IOCHININ
TABL.IV.3.7. 27 TOXICITY OF NOAEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TRIGLOCHININ	200

TABL.IV.3.8.1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER CELL
MEMBRANE AND RELEASE (S)-1-HYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE
TABL.IV.3.8. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (S)-1-HYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE
TABL.IV.3.8.3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (S)-1-HYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDECA
TABL.IV.3.8.4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (S)-1-HYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE
TABL.IV.3.8.5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (S)-1-HYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE
TABL.IV.3.8. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A
TABL.IV.3.8.7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A
TABL.IV.3.8. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A206
TABL.IV.3.8.9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A
TABL.IV.3.8. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Deidaclin and Tetraphyllin A
TABL.IV.3.8. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND
Tetraphyllin A
TABL.IV.3.8. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A208
TABL.IV.3.8. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A
TABL.IV.3.8. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A
TABL.IV.3.8. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND
Tetraphyllin A
TABL.IV.3.8. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES OF
Deidaclin and Tetraphyllin A210

TABL.IV.3.8. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBOX	YL
ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A	210
TABL.IV.3.8. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A	211
TABL.IV.3.8. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A	212
TABL.IV.3.8. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN	N
and Tetraphyllin A	212
TABL.IV.3.8. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLII	
TABL.IV.3.8. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND	
Tetraphyllin A	213
TABL.IV.3.8.23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND	
Tetraphyllin A	214
TABL.IV.3.8. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND	
Tetraphyllin A	214
TABL.IV.3.8. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AM	١D
Tetraphyllin A	215
TABL.IV.3.8. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AI	ND
Tetraphyllin A	215
TABL.IV.3.8. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLL	
TABL.IV.3.8. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A	217
TABL.IV.3.8. 29 Water solubility of amide and carboxylic acid derivatives of Deidaclin and Tetraphyllin A	218
TABL.IV.3.8. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A	218
TABL.IV.3.8. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A	
TABL.IV.3.8. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF DEIDACLIN AND TETRAPHYLLIN A	219

TABL.IV.3.9. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Tetraphyllin B, Volkenin AND TARAKTOPHYLLIN
TABL.IV.3.9. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES OF
TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN
TABL.IV.3.9. 17 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES OF
TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN
TABL.IV.3.9. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN
TABL.IV.3.9. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN230
TABL.IV.3.9. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN
B, VOLKENIN AND TARAKTOPHYLLIN230
TABL.IV.3.9. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN
TARACIOPHYLLIN TABLIV.3.9. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B,
VOLKENIN AND TARAKTOPHYLLIN
TABLIV.3.9. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B,
Volkenin and Taraktophyllin
TABLIV.3.9. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN
AND TARAKTOPHYLLIN
TABLIV.3.9. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B,
Volkenin and Taraktophyllin
TABL.IV.3.9. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN
TABL.IV.3.9. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN
TABL.IV.3.9. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN 236
TABL.IV.3.9. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND
TARAKTOPHYLLIN
TABL.IV.3.9. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN237
TABL.IV.3.9. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND
TARAKTOPHYLLIN
TABL.IV.3.9. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF TETRAPHYLLIN B, VOLKENIN AND TARAKTOPHYLLIN

TABL.IV.3.10.1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCE	R CELL
MEMBRANE AND RELEASE (1R,4R)-1,4,5-TRIHYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE	239
TABL.IV.3.10. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO P	ASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (1R,4R)-1,4,5-TRIHYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE	239
TABL.IV.3.10.3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBL	.e to
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (1R,4R)-1,4,5-TRIHYDROXYCYCLOPENT-2-ENE-1-CARBOXAMI	de 240
TABL.IV.3.10. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO	PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (1R,4R)-1,4,5-TRIHYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE	240
TABL.IV.3.10. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PA	SS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (1R,4R)-1,4,5-TRIHYDROXYCYCLOPENT-2-ENE-1-CARBOXAMIDE	241
TABL.IV.3.10.6 Receptor activity of amide and carboxyl derivatives of Gynocardin	241
TABL.IV.3.10.7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	243
TABL.IV.3.10.8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	243
TABL.IV.3.10.9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	243
TABL.IV.3.10. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	244
TABL.IV.3.10. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	244
TABL.IV.3.10. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	245
TABL.IV.3.10.13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	245
TABL.IV.3.10. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	246
TABL.IV.3.10. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	246

second supplemented edition

TABL.IV.3.10. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIV	
OF GYNOCARDIN	
TABL.IV.3.10. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBO	OXYL
ACID DERIVATIVES OF GYNOCARDIN	.247
TABL.IV.3.10. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	.248
TABL.IV.3.10. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN.	.248
TABL.IV.3.10. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	240
GYNOCARDIN TABLIV.3.10. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	
	-
TABL.IV.3.10. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN TABL.IV.3.10. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	
TABL.IV.3.10.23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	
TABL.IV.3.10. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN TABL.IV.3.10. 25 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	
TABL.IV.3.10.25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARD	
T N/2 40 20 M	
TABL.IV.3.10. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARD	
TABL.IV.3.10. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GYNOCARDIN	.253
TABL.IV.3.10.28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF GYNOCARDIN	.254
TABL.IV.3.10.29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF GYNOCARDIN	.254
TABL.IV.3.10.30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF GYNOCARDIN	.255
TABL.IV.3.10.31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF GYNOCARDIN	.255
TABL.IV.3.10.32 Medical Chemistry Indicators for Amide and Derivatives of Gynocardin	.255
 TABL.IV.3.11. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER OF MEMBRANE AND RELEASE (Z)-2-((4S,6R)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE TABL.IV.3.11. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4S,6R)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE 	. 256 s de
TABL.IV.3.11. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE T	0
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4S,6R)-4,6-DIHYDROXYCYCLOHEX-2-EN-1- YLIDENE)ACETAMIDE	.257
TABL.IV.3.11. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PA	SS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4S,6R)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIE	DE
	.257
TABL.IV.3.11. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4S,6R)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIC	
TABL.IV.3.11. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF MENISDAURIN	
TABLIV.3.11. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF IMENISDAURIN TABL.IV.3.11. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	
TABL.IV.3.11. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN TABL.IV.3.11. 0 JSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	
TABL.IV.3.11. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN TABL.IV.3.11. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	
TABLIV.3.11. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	
TABL.IV.3.11. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN TABL.IV.3.11. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	
TABLIV.3.11. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	
TABL.IV.3.11. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	
TABL.IV.3.11. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIV OF MENISDAURIN	
OF MENISDAURIN TABL.IV.3.11. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBO	
TABL.IV.3.11. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFIVIN) FOR CARCINOGENICITY OF AMIDE AND CARBO ACID DERIVATIVES OF MENISDAURIN	
ACID DERIVATIVES OF MENISDAURIN	
TABL.IV.3.11. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	.200

TABL.IV.3.11. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF	
Menisdaurin	266
TABL.IV.3.11. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	267
TABL.IV.3.11. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	267
TABL.IV.3.11. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	268
TABL.IV.3.11. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	268
TABL.IV.3.11. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAU	JRIN
	269
TABL.IV.3.11. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAU	JRIN
	269
TABL.IV.3.11. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF MENISDAURIN	270
TABL.IV.3.11. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF MENISDAURIN	271
TABL.IV.3.11. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF MENISDAURIN	272
TABL.IV.3.11. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF MENISDAURIN	272
TABL.IV.3.11. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF MENISDAURIN	273
TABL.IV.3.11. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF MENISDAURIN	273

TABL.IV.3.12. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER CELL
MEMBRANE AND RELEASE (R)-2-HYDROXY-3-METHYLBUTANAMIDE
TABL.IV.3.12. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-3-METHYLBUTANAMIDE
TABL.IV.3.12. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO
PASS THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-3-METHYLBUTANAMIDE
TABL.IV.3.12. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-3-METHYLBUTANAMIDE
TABL.IV.3.12. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-2-HYDROXY-3-METHYLBUTANAMIDE
TABL.IV.3.12. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF EPIHETERODENDRIN 276
TABL.IV.3.12. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN 277
TABL.IV.3.12. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN
TABL.IV.3.12. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN 278
TABL.IV.3.12. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN
TABL.IV.3.12. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN279
TABL.IV.3.12. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN
TABL.IV.3.12. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN
TABL.IV.3.12. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN
TABL.IV.3.12. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF EPIHETERODENDRIN. 280
TABL.IV.3.12. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES
OF EPIHETERODENDRIN
TABL.IV.3.12. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBOXYL
ACID DERIVATIVES OF EPIHETERODENDRIN
TABL.IV.3.12. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN 282
TABL.IV.3.12. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN 283
TABL.IV.3.12. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF
Epiheterodendrin
TABL.IV.3.12. 21 CHROMOSOMAL ABERRATION TOXICITY MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN
TABL.IV.3.12. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN 284
TABL.IV.3.12. 23 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN285
TABL.IV.3.12. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN285
TABL.IV.3.12. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF
Epiheterodendrin
TABL.IV.3.12. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF
Epiheterodendrin

TABL.IV.3.12. 27 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VIVO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF	
Epiheterodendrin	-
TABL.IV.3.12. 28 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF EPIHETERODENDRIN	287
TABL.IV.3.12. 29 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF EPIHETERODENDRIN	288
TABL.IV.3.12. 30 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF EPIHETERODENDRIN	289
TABL.IV.3.12. 31 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF EPIHETERODENDRIN	289
TABL.IV.3.12. 32 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF EPIHETERODENDRIN	290
TABL.IV.3.12. 33 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF EPIHETERODENDRIN	290
TABL.IV.13. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER	
MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE	
TABL.IV.13. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PA	SS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	
TABL.IV.13. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE	TO PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	
TABL.IV.13. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO P	ASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	292
TABL.IV.13. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	5
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	293
TABL.IV.13. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF GRIFFONIN.	293
TABL.IV.13. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	295
TABL.IV.13. 8 SARPy/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	295
TABL.IV.13.9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	296
TABL.IV.13. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	296
TABL.IV.13. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	296
TABL.IV.13. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	297
TABL.IV.13. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN.	297
TABL.IV.13. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	298
TABL.IV.13. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	
TABL.IV.13. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATI	
GRIFFONIN	299
TABL.IV.13. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARE	3OXYL
ACID DERIVATIVES OF GRIFFONIN	
TABL.IV.13. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	300
TABL.IV.13. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	300
TABL.IV.13. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFO	
,	
TABL.IV.13. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	
TABL.IV.13. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	
TABL.IV.13. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	
Tabl.IV.13. 24 Toxicity at Adipose tissue: blood model amide and carboxyl acid derivatives of Griffonin	
TABLIV.13. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONI	
TABLIV.13. 25 TOTAL BODT ELIMINATION TAET THE MODEL TOXICITY OF AMIDE AND CANDOME AND DERIVATIVES OF GRIFFONI TABLIV.13. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CANDOME ACID DERIVATIVES OF GRIFFONI	
TABLIV.13. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF GRIFFONIN	
TABLIV.13. 27 NOALE METHODOLOGY FOR TOACHT OF AMIDE AND CARBOATE ACID DERIVATIVES OF GRIFTONIN TABL.IV.13. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF GRIFTONIN	
TABLIV.13. 28 EPOPHIEICITY OF AMIDE AND CARBOATER ACID DERIVATIVES OF GRIFFONIN	
TABLIV.13. 29 WATER SOLUBILITY OF AIVIDE AND CARBOATLIC ACID DERIVATIVES OF GRIFFONIN. TABL.IV.13. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF GRIFFONIN.	
TABLIV.13. 30 PHARMACORINE IIC INDICATORS OF AMIDE AND DERIVATIVES OF GRIFFONIN	
TABL.IV.13. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF GRIFFONIN TABL.IV.13. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF GRIFFONIN	
TADLITY.13. 32 IVIEDICAL CREIVISTRY INDICATORS FOR AWIDE AND DERIVATIVES OF GRIFFONIN.	507

TABL.IV.14. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER CH	
MEMBRANE AND RELEASE (Z)-2-((4R,5R,6S)-5,6-DIHYDROXY-4-METHOXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE	308
TABL.IV.14. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4R,5R,6S)-5,6-DIHYDROXY-4-METHOXYCYCLOHEX-2-EN-1-	200
TABL.IV.14. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO) PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4R,5R,6S)-5,6-DIHYDROXY-4-METHOXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	
TABL.IV.14. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PAS	S
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4R,5R,6S)-5,6-DIHYDROXY-4-METHOXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	309
TABL.IV.14. 5 WEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (Z)-2-((4R,5R,6S)-5,6-DIHYDROXY-4-METHOXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	
TABL.IV.14. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF BAUHININ	
TABL.IV.14.7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ.	
TABL.IV.14. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Bauhinin	
TABL.IV.14. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVE	
Bauhinin	
TABL.IV.14. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBO	
ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHINI	
TABL.IV.14. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	320
TABL.IV.14. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	320
TABL.IV.14. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	321
TABL.IV.14. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	321
TABL.IV.14. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF BAUHININ	322
TABL.IV.14. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF BAUHININ	323
TABL.IV.14. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF BAUHININ	
TABL.IV.14. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF BAUHININ	
TABL.IV.14. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF BAUHININ	
TABL.IV.14. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF BAUHININ	325

TABL.IV.15. 1 DATA FOR TOTAL DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS THROUGH THE CANCER CEI	L
MEMBRANE AND RELEASE (E)-2-((4R,6S)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIDE	
TABL.IV.15. 2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (R)-(E)-2-((4R,6S)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	.326
TABL.IV.15. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO	PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4R,6S)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETAMIC	DE
	.327

second supplemented edition

TABL.IV.15. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PA THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4R,6S)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETA	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4R,0S)-4,0-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETA	
TABL.IV.15. 5 Weighted Quantitative Estimate of Druglikeness of Chemical Molecules Potentially Possible to Pass	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4R,6S)-4,6-DIHYDROXYCYCLOHEX-2-EN-1-YLIDENE)ACETA	
TABL.IV.15. 6 RECEPTOR ACTIVITY OF AMIDE AND CARBOXYL DERIVATIVES OF PURSHIANIN	
TABLIV.15. 7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	
TABLIV.15.8 SarPy/IRFMN mutagenicity of amide and carboxyl acid derivatives of Purshianin	
TABL.IV.15.9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	
Tabl.IV.15. 10 KNN/Read-Across mutagenicity of amide and carboxyl acid derivatives of Purshianin	
Tabl.IV.15. 11 CONSENSUS model for mutagenicity of amide and carboxyl acid derivatives of Purshianin	
Tabl.IV.15. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	
TABL.IV.15. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	
TABL.IV.15. 14 IRFMN/Antares carcinogenicity of amide and carboxyl acid derivatives of Purshianin	
Tabl.IV.15. 15 IRFMN/ISSCAN-CGX carcinogenicity of amide and carboxyl acid derivatives of Purshianin	
TABL.IV.15. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATI	
Purshianin	
TABL.IV.15. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARB	
ACID DERIVATIVES OF PURSHIANIN	
TABL.IV.15. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	335
TABL.IV.15. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	
TABL.IV.15. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH	335
	335 IANIN
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH	335 IANIN 336
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH	335 IANIN 336 336
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	335 IANIN 336 336 337
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	335 IANIN 336 336 337 337
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	335 IANIN 336 337 337 338
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	335 IANIN 336 337 337 338 IN .338
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHANIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	335 IANIN 336 337 337 338 IN .338 IN .339
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSH TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIAN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIAN	335 IANIN 336 336 337 337 338 IN .338 IN .339 340
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHAMIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIAN TABL.IV.15. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIAN	335 IANIN 336 337 337 338 IN .338 IN .339 340 341
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHAMIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 28 LIPOPHILICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN	335 IANIN 336 337 337 338 IN .338 IN .339 340 341
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHANIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIAN TABL.IV.15. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN	335 IANIN 336 336 337 337 338 IN .338 IN .339 340 341 341
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHAMIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIAN TABL.IV.15. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF PURSHIANIN	335 IANIN 336 336 337 337 338 IN .338 IN .339 340 341 341 341 342
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHANIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF PURSHIANIN TABL.IV.15. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF PURSHIANIN	335 IANIN 336 336 337 337 338 IN .338 IN .339 340 341 341 341 342
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANI TABL.IV.15. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANI TABL.IV.15. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF PURSHIANIN TABL.IV.15. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF PURSHIANIN TABL.IV.15. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF PURSHIANIN	335 IANIN 336 336 337 337 338 IN .338 IN .339 340 341 341 341 342 342
TABL.IV.15. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHANIN TABL.IV.15. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 26 MICRONUCLEUS TOXICITY ACTIVITY MODEL – IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF PURSHIANIN TABL.IV.15. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF PURSHIANIN TABL.IV.15. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF PURSHIANIN	335 IANIN 336 336 337 337 338 IN .338 IN .339 340 341 341 341 342 342 342 342

TABL.IV.16.2 LIPINSKI'S RULE, GHOSE FILTER AND CMC-50-LIKE RULE OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	.343
TABL.IV.16. 3 DATA ON VEBER FILTER, MDDR-LIKE RULE AND BBB LIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO	PASS
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	.344
TABL.IV.16. 4 UNWEIGHTED QUANTITATIVE ESTIMATE OF DRUGLIKENESS OF CHEMICAL MOLECULES POTENTIALLY POSSIBLE TO PASS	,
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	.344
TABL.IV.16.5 Weighted Quantitative Estimate of Druglikeness of Chemical Molecules Potentially Possible to Pass	
THROUGH THE CANCER CELL MEMBRANE AND RELEASE (E)-2-((4S,5R,6R)-4,5,6-TRIHYDROXYCYCLOHEX-2-EN-1-	
YLIDENE)ACETAMIDE	.345
TABL.IV.16.6 Receptor activity of amide and carboxyl derivatives of Lithospermoside	.345
TABL.IV.16.7 CAESAR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.347
TABL.IV.16.8 SARPY/IRFMN MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.347

TABL.IV.16. 9 ISS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.348
TABL.IV.16. 10 KNN/READ-ACROSS MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.348
TABL.IV.16. 11 CONSENSUS MODEL FOR MUTAGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.349
TABL.IV.16. 12 CAESAR CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.349
TABL.IV.16. 13 ISS CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE.	.350
TABL.IV.16. 14 IRFMN/ANTARES CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.350
TABL.IV.16. 15 IRFMN/ISSCAN-CGX CARCINOGENICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.351
TABL.IV.16. 16 DATA FROM CARCINOGENICITY ORAL CLASSIFICATION MODEL (IRFMN) OF AMIDE AND CARBOXYL ACID DERIVATIVES	S OF
Lithospermoside	.351
TABL.IV.16. 17 DATA FOR CARCINOGENICITY ORAL SLOPE FACTOR MODEL (IRFMN) FOR CARCINOGENICITY OF AMIDE AND CARBOX	YL
ACID DERIVATIVES OF LITHOSPERMOSIDE	.352
TABL.IV.16. 18 CAESAR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.352
TABL.IV.16. 19 PG TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.353
TABL.IV.16. 20 ZEBRAFISH EMBRYO AC50 AT IRFMN/CORAL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF	
Lithospermoside	.353
TABL.IV.16. 21 CHROMOSOMAL ABERRATION MODEL OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.354
TABL.IV.16. 22 AROMATASE ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.354
TABL.IV.16.23 P-GLYCOPROTEIN ACTIVITY MODEL FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDI	E 355
TABL.IV.16. 24 TOXICITY AT ADIPOSE TISSUE: BLOOD MODEL AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.355
TABL.IV.16.25 TOTAL BODY ELIMINATION HALF-LIFE MODEL TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMO	OSIDE
	.356
TABL.IV.16.26 MICRONUCLEUS TOXICITY ACTIVITY MODEL - IN VITRO OF AMIDE AND CARBOXYL ACID DERIVATIVES OF	
Lithospermoside	.356
TABL.IV.16. 27 NOAEL METHODOLOGY FOR TOXICITY OF AMIDE AND CARBOXYL ACID DERIVATIVES OF LITHOSPERMOSIDE	.357
TABL.IV.16.28 LIPOPHILICITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF LITHOSPERMOSIDE	.358
TABL.IV.16. 29 WATER SOLUBILITY OF AMIDE AND CARBOXYLIC ACID DERIVATIVES OF LITHOSPERMOSIDE	.359
TABL.IV.16. 30 PHARMACOKINETIC INDICATORS OF AMIDE AND DERIVATIVES OF LITHOSPERMOSIDE	.359
TABL.IV.16. 31 MUEGGE ACTIVITY AND BIOAVAILABILITY SCORE OF AMIDE AND DERIVATIVES OF LITHOSPERMOSIDE	.360
TABL.IV.16. 32 MEDICAL CHEMISTRY INDICATORS FOR AMIDE AND DERIVATIVES OF LITHOSPERMOSIDE	.360
TABLIV.17 OPTIMAL NATURAL PRECURSORS FOR OBTAINING AN ACTIVE ANTI-TUMOR MOLECULAR FORM RELEASED INSIDE A CANCEL	
CELL AND CAUSING ITS TOXICITY	
CELL AND CAUSING ITS TOXICITY	.301
TABL.IV.18.1 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CEL	L
LINES INHERENT IN TUMORS IN THE AERODIGESTIVE TRACT	.362
TABL.IV.18. 2 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CEL	L
LINES INHERENT IN TUMORS IN THE AUTONOMIC GANGLION	.363
TABL.IV.18. 3 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CEL	_L
LINES INHERENT IN TUMORS IN THE BILIARY TRACT	.364
TABL.IV.18. 4 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CEL	_L
LINES INHERENT IN TUMORS IN THE BONE	.365
TABL.IV.18.5 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CEL	_L
LINES INHERENT IN TUMORS IN THE BREAST	.366
TABL.IV.18.6 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CEL	L

LINES INHERENT IN TUMORS IN THE CENTRAL NERVOUS SYSTEM	68
TABL.IV.18.7 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL	
LINES INHERENT IN TUMORS IN THE DIGESTIVE SYSTEM	69
TABL.IV.18. 8 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL	
LINES INHERENT IN TUMORS IN THE ENDOMETRIUM	71
TABL.IV.18.9 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL	
LINES INHERENT IN TUMORS IN THE HEMATOPOIETIC AND LYMPHOID TISSUES	71

TABL.IV.18.11 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE LARGE INTESTINE
TABL.IV.18. 12 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE LEUKEMIA
TABL.IV.18.13 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE LIVER
TABL.IV.18. 14 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE LUNG
TABL.IV.18. 15 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE LYMPHOMA
TABL.IV.18. 16 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE MYELOMA
TABL.IV.18.17 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE NEUROBLASTOMA
TABL.IV.18. 18 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE NERVOUS SYSTEM
TABL.IV.18. 19 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE OESOPHAGUS
TABL.IV.18. 20 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE OVARY
TABL.IV.18.21 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE PANCREAS
TABL.IV.18. 22 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE PLEURA
TABL.IV.18.23 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE PROSTATE
TABL.IV.18.24 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE SALIVARY GLAND
TABL.IV.18.25 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE SKIN
TABL.IV.18.26 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE SMALL INTESTINE
TABL.IV.18.27 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE SOFT TISSUE
TABL.IV.18.28 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE STOMACH
TABL.IV.18. 29 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE THYROID
TABL.IV.18.30 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE UPPER AERODIGESTIVE TRACT
TABL.IV.18.31 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE URINARY TRACT
TABL.IV.18.32 INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS BY TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE UROGENITAL SYSTEM

 TABL. VII. 1 CORRELATION DATA OF MICROCOMPONENTS IN HUMAN BLOOD THAT AFFECT THE DIGESTIBILITY AND ACTIVITY OF AMIDES

 AND CARBOXYLIC ACIDS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES
 407

second supplemented edition

ⁱ Bibl - King James Version (KJV)

ⁱⁱ Microsoft: https://www.microsoft.com

ⁱⁱⁱ Individual Academic Licenses

^{iv} GNU: General Public License - https://www.gnu.org/licenses/licenses.html#GPL

^v openSUSE: https://www.opensuse.org

vi MacOS: https://www.apple.com/macos

^{vii} VirtualBox: https://www.virtualbox.org

^{viii} Google Drive: https://drive.google.com

ix Docker-google-drive-sync: https://github.com/richardregeer/docker-google-drive-sync

^x MarvinSketch: https://chemaxon.com/products/marvin

^{xi} ACD/ChemSketch: https://www.acdlabs.com/resources/freeware/chemsketch

xii CDX (ChemDraw Exchange): http://www.cambridgesoft.com/services/documentation/sdk/chemdraw/cdx

xiii SnapPy: https://www.math.uic.edu/t3m/SnapPy/index.html

xiv Maxima, a Computer Algebra System: https://maxima.sourceforge.io

xv GAP - Groups, Algorithms, Programming: https://www.gap-system.org

^{xvi} Open Babel: *http://openbabel.org*

^{xvii} Cantera: https://cantera.org

xviii KPP© - The Kinetic PreProcessor: https://people.cs.vt.edu/~asandu/Software/Kpp

xix Avogadro: http://avogadro.cc

xx Jmol: http://jmol.sourceforge.net

xxi AutoDock Suite: https://ccsb.scripps.edu/autodock

xxii GROMACS: http://www.gromacs.org

xxiii MOPAC (Molecular Orbital PACkage): http://openmopac.net

^{xxiv} General Atomic and Molecular Electronic Structure System (GAMESS (US): https://www.msg.chem.iastate.edu/gamess

^{xxv} Department of Pharmacoinformatics, NIPER S.A.S. Nagar, Punjab, India; Drug Likeness Tool (DruLiTo) http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html

^{xxvi} Chemistry Development Kit, Open Source modular Java libraries for Cheminformatics: https://cdk.github.io/ ^{xxvii} Java | Oracle: https://www.java.com

^{xxviii} Toxicity Estimation Software Tool (TEST) | U.S. EPA: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

xxix Molinspiration Cheminformatics - https://www.molinspiration.com

^{xxx} OSIRIS Property Explorer - https://www.organic-chemistry.org/prog/peo

^{xxxi} Vega Hub - https://www.vegahub.eu

xxxii SwissADME | Swiss Institute of Bioinformatics - http://www.swissadme.ch/

xxxiii Scientific Data Analysis and Visualization | SciDAVis: http://scidavis.sourceforge.net

^{xxxiv} GNUplot - http://www.gnuplot.info

^{xxxv} PubChem - https://pubchem.ncbi.nlm.nih.gov

xxxvi US National Center for Biotechnology Information - https://www.ncbi.nlm.nih.gov

xxxvii US National Institutes of Health - https://www.nih.gov

xxxviii Royal Society of Chemistry - ChemSpider: http://www.chemspider.com

xxxix Royal Society of Chemistry - https://www.rsc.org

xl ChEBI is part of the ELIXIR infrastructure: https://www.ebi.ac.uk/chebi

xli European Bioinformatics Institute - https://www.ebi.ac.uk

xlii Open Biological and Biomedical Ontologies (OBO) Foundry - http://obofoundry.org

xliii DRUGBANK ONLINE: https://go.drugbank.com

xliv U.S. Department of Agriculture - FoodData: https://fdc.nal.usda.gov

^{xlv} Ready-made algorithms from the software product are used: Molecular Networks: www.molecular-networks.com/moses

^{xlvi} version 1.1.1 applies. - developers: Wei Shi (njushiwei@nju.edu.cn), Haoyue Tan, Qinchang Chen, Hongxia Yu ^{xlvii} Bruce Ames (1928) was an American professor of biochemistry and molecular biology at the University of California, Berkeley, and supervisor at the Children's Hospital and Research Institute in Auckland (CHORI). He works in the field of mutagenicity and has developed authorial methodologies for its evaluation, based on his study of different strains of the bacterium Salmonella. Winner of dozens of awards.

xlviii EU-funded project ANTARES - https://antaresproject.eu/

xlix Carcinogenicity Genotoxicity eXperience CGX

"Save tree" logo - https://www.clipartmax.com/middle/m2i8Z5K9K9Z5A0b1_save-tree-free-download-png-save-tree-logo/

"Bunny - cruelty free" logo - https://www.pngwing.com/en/free-png-izvhk

This book is a long-term study and analysis presented in a more scientifically popular form. It should not be cited in scientific publications. The matter is presented in a freer way in order to explain the matter. If you are interested, please quote the following three articles - they are entirely scientific and have passed all the rigor of the publisher:

Let the preferred version of reading this book be electronic. Print something really urgent on your recycled paper and printer toner!

This book is structured in a structure aimed at limiting animal testing in laboratory and preclinical settings.

Only refurbished computers, tablets and smart devices were used in the creation of this book. Good practices have also been applied to reduce energy consumption. The goal is to prevent additional carbon load in the world around us.