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Abstract. Prescriptive maintenance has recently attracted a lot of sci-
entific attention. It integrates the advantages of descriptive and predic-
tive analytics to automate the process of detecting non nominal device
functionality. Implementing such proactive measures in home or indus-
trial settings may improve equipment dependability and minimize op-
erational expenses. There are several techniques for prescriptive mainte-
nance in diverse use cases, but none elaborates on a general methodology
that permits successful prescriptive analysis for small size industrial or
residential settings. This study reports on prescriptive analytics, while as-
sessing recent research efforts on multi-domain prescriptive maintenance.
Given the existing state of the art, the main contribution of this work is
to propose a broad framework for prescriptive maintenance that may be
interpreted as a high-level approach for enabling proactive buildings.

Keywords: Prescriptive maintenance · Time series analysis · Proactive
buildings

1 Introduction

Prescriptive maintenance (PsM) is a type of data analytics that supports mak-
ing better judgments by analyzing raw data. It takes into account information
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about potential conditions or scenarios, available resources, previous and present
performance, and recommends a plan of action that optimizes equipment main-
tenance. It may be used to make decisions across any time horizon, from the
present to the long term. It uses Machine Learning (ML) to comprehend and
advance from the data it collects, evolving as it goes. ML and Internet of Things
(IoT) enable the processing of massive amounts of data, which are now avail-
able. PsM software solutions automatically adjust to make use of new or extra
data as it becomes available, in a process that is exhaustive and faster than that
afforded by human skills.

To be effective, PsM requires the training of a ML model using past sensor
and service data. The more high-quality information supplied, the more accurate
the ML model will be in detecting more maintenance requirements and failure
signals, whilst providing fewer false positives. Before feeding data to the ML
algorithm, it may be necessary to clean it. Sensor readings, for example, may
need to be updated to account for changes in calibration or to standardize how
various faults are recorded by human operators. When training a PsM algorithm,
higher-level knowledge about an organization may be submitted to the ML algo-
rithm. This enables the PsM software to analyze critical factors like maintenance
costs and manufacturing downtime. Anomaly identification, residual usable life
assessment and optimal algorithmic and metrics selection are common issues
that impede PsM attempts.

Because of the equipment they employ, most systems are linked to signals,
which are not always time series. Predictive maintenance (PdM) gets data from
condition monitoring. Then, using complex algorithms, it detects a possible fail-
ure. A misalignment, for example, will be detected by vibration analysis around
three months before it causes a breakdown. Nonetheless, asset managers must
take action. They must analyze facts, make a decision, and develop a work order.
In such situation, PsM would generate and submit a work order to technicians
to repair the misalignment. It does not require asset managers’ interaction and
maintains equipment on its own. This results in increased availability and pro-
ductivity, as well as the capacity to do remote maintenance.

Moreover, PsM offers the same advantages as PdM, but goes a step fur-
ther. In general, once customized to meet the needs of a use case, it leads to
i) less unplanned downtime and higher productivity as a result of maintenance
optimization, ii) higher profitability as a result of higher productivity, iii) more
virtual collaboration as data is available remotely, and finally, iv) digital PsM
enables significant prospects for scalability.

This work examines PsM and proposes a framework that envisions practical
implications that can be conceptualized within the context of proactive build-
ings. The goal is to predict and prescribe actions for minimizing operational
costs and downtime of home appliances as a high-level approach (considering
high data granularity). We believe that the proposed framework can facilitate
processes supporting feature data requirements and system architecture for en-
abling prescriptive analytics in household and small-scale industrial solutions,
while posing as an all around generic solution for modeling and enabling PsM.
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The remainder of this article is structured as follows: Section 2 showcases
related work, while Section 3 analyzes the developed concepts/methodology of
the proposed PsM framework. The paper concludes with Section 4, discussing
final thoughts, implications and future prospects.

2 Related work

This section introduces different types of maintenance analytics and reviews
recent attempts in PsM in a multi domain manner.

Electric utilities cover a wide geographic range of assets. They have been
migrating from time-based maintenance planning to establishing a proactive
and intelligent asset health management approach to address the conflicting
constraints of decreasing customer downtimes, fulfilling regulatory standards,
and managing increasing infrastructure. An advanced analytics strategy tries to
model asset health and network dependability by projecting asset aging, deter-
mining the remaining lifespan, and computing network resilience. The analytics
use data from business asset management, sophisticated metering infrastructure,
weather systems, and other sources. The outcomes include a health score and
risk ranking, as well as a proposed ideal maintenance approach based on cost
limitations. [1].

Big data analytics is quickly developing as a critical IoT endeavor aimed at
giving valuable insights and assisting with optimal decision making despite time
limitations. Prescriptive analytics seeks to make judgments that are adaptable,
automated, limited, time-dependent, and optimum. Estimations, on the other
hand, present major issues, due to the uncertainty resulting from improper user
input, noisy data, and the non-stationarity of real-world data feeds. A suggested
method solves sensor-driven learning issues linked to uncertainty arising from
time dependent characteristics, such as user input, sensor noise, and gives esti-
mates that lead to more trustworthy prescriptions. [2].

One of the primary advantages of the railroads’ digital transformation is
the ability to improve asset management efficiency via the use of information
modeling and decision support systems. Tracking circuits of an Italian urban
railway network are used to demonstrate an actual railway signaling use case,
covering from field data collecting through decision support and asset status.
The acquired knowledge is then used to completely automate the prioritization
of asset management actions using an optimization logic [3] and operational
limitations. The goal is to improve i) maintenance activity scheduling, ii) service
dependability, and iii) resource utilization and possession times while avoiding
(or reducing) contractual fines and delays. [4].

Nowadays, maintenance management methodologies are being turned into
automated knowledge-based decision support systems. PriMa, which consists of
four layers, is proposed. These are i) data management, ii) a predictive data
analytics toolset, iii) a recommendation and decision support dashboard, and
iv) an overarching layer for semantic-based learning and reasoning. As a result,
two functional capabilities in a real-world production system are enhanced, i)
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efficiently processing large amounts of multi-modal and heterogeneous data, and
ii) effectively producing decision support measures and suggestions for improving
and optimizing upcoming scheduled maintenance, thereby reducing production
downtime. [5].

The digital revolution has had an influence on industrial processes and main-
tenance models, resulting in new needs, difficulties, and possibilities for ensuring
and enhancing equipment utilization and process stability. A model is proposed
that i) aids in the implementation of a PsM strategy and the assessment of
its maturity level, ii) enables the integration of data-science techniques to pre-
dict future events, and iii) specifies intervention fields to achieve a higher target
maturity condition and thus greater predictive accuracy. [6].

PsM planning is a critical facilitator of intelligent, highly adaptable manu-
facturing processes. Traditional maintenance procedures are insufficient to meet
today’s production requirements due to rising complexity. Multimodal data anal-
ysis and simulation techniques are used in an unique method to analyze his-
torical data, such as quality of product, machine malfunction, and production
planning. Validation includes real-world applications in the automobile manu-
facturing field, where recognized data associations and real-time machine data
are used to forecast system problems and provide fixes [7].

A dynamic maintenance plan is described that takes into account the amount
of deterioration and aging, as well as the system failure rate. It is commonly
expected that repair would always bring positive impact in the health of the
system. Nevertheless, in the case of locomotive wheel-sets, restoration decreases
the system age while increasing the deterioration levels. After conducting a de-
pendability analysis it is observed that the best maintenance plan is achieved by
reducing the long-run cost rate as a function of the repair cycle and dynamically
determining the appropriate inspection time. [8].

An end-to-end PsM approach that incorporates maintenance analysis, equip-
ment, and operational data with predictive solutions and feedback to create
actionable insights is offered. Workforce scheduling, supply chain optimization,
field-replaceable unit control, process efficiency, and knowledge management are
among the features used. The implementation has been validated in several
datasets, including the data integration, feature reduction/selection, filling miss-
ing data, and noise removal stages. It detects faults at the individual equipment
and fleet levels before offering a mechanism for full repair solutions, such as ser-
vice staff scheduling and equipment downtime control. The findings result in an
extendable PsM equipment maintenance architecture that achieves significantly
decreased unexpected equipment downtime at an optimal cost. [9].

Another framework is presented for achieving optimal future-failure aware-
ness and safety-conscious production and maintenance plans while taking system
complexity and resource allocation into account. Utilizing equipment condition
data, ensembles of nonlinear support vector machine classification models were
used to forecast the timing and probability of future equipment breakdown. To
develop optimal processes and maintenance schedules, multi-objective optimiza-
tion of predicted profit and a safety metric were also employed. Ensemble models
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had an average accuracy and an F1-score of 0.987 and they were 3% more ac-
curate and sensitive than individual classifiers, and the Pareto-optimal process
and maintenance schedules were established as equally acceptable alternative
options for decision making. [10].

One of the primary issues in smart manufacturing is interpreting information
and deriving insights from data. A use case in the steel industry takes advantage
of recent advances in ML in PdM and PsM analytics by utilizing corporate and
operational data to assist operators on the shopfloor. Recurrent Neural Networks
are used for predictive analytics, and Multi-Objective Reinforcement Learning
is used for prescriptive analytics [11].

PsM is also used in the aviation sector finding application in a tire pressure
indicator system, with the goal of lowering operating costs and boosting oper-
ational stability. However, research has been confined to calculating remaining
usable lifespan while ignoring the influence on surrounding processes, changes in
the aims of the associated stakeholders, and so on. The maturity level of the con-
dition monitoring system must be considered when evaluating the potential of a
fault diagnosis and failure prognosis system, including its implications on neigh-
boring maintenance procedures. A PsM strategy is proposed by modeling the
many stakeholders engaged in aircraft and line maintenance operations, as well
as their functional connections. The findings are validated using an automated
condition monitoring system that generates discrete-events and an agent-based
simulation setup based on one-month’s flight plan data [12].

Moreover, the aviation business is under increased competition to reduce op-
erational costs, while features such as sustainability and customer experience are
critical for differentiating from rivals. Aircraft maintenance accounts for about
20% of the total cost of airline operations. Consequently, maintenance providers
must reduce their cost fraction and contribute to a more dependable and sus-
tainable aircraft operation. The primary objective is to reduce costs while im-
proving aircraft availability. A framework is established for the use case of an
Airbus A320 tire pressure measuring task, allowing the optimization target for
the proposed approach to be adjusted to integrate performance attributes other
than the often used financial indicators [13].

In the PsM use case of a chemical complex system and a cooling water
system, there is the possibility for anomalous operations and an unwanted in-
creased occurrence of process safety events. A study proposes a multi-feature
based paradigm for process control that is safety-aware, maintenance-aware, and
disruption-aware. For fault detection, it employs ensemble classification using
ML classifiers. Also, mixed integer nonlinear programming for integrated safety-
aware production and maintenance scheduling, and hybrid multi-feature model
predictive control for fault-tolerant set point tracking. In terms of fault detection
accuracy, sensitivity, and specificity, the findings reveal that the ensemble clas-
sifier beats the individual classifiers. The designed controllers can alter control
actions based on process disruption data. [14].

The high equipment intensity and complexity of semiconductor manufactur-
ing processes results in severe facility availability requirements in this competi-
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tive sector. A conceptual approach that enables PsM in the use case of etching
equipment for semiconductor production addresses such issues. ML methods
forecast time-to-failure periods, whereas Bayesian Networks identify the core
cause of a malfunction. When these procedures are combined, prescriptions for
maintenance planning routines are generated, while system availability is in-
creased. [15].

PsM is also used in protective coating systems against steel corrosion for
tower components of big onshore wind turbines. The inspection, condition mon-
itoring, and maintenance of such systems is an intensive and time-consuming
task that necessitates a significant amount of human labor. The notion of a dig-
ital twin is introduced, with the initial guiding principle being an on-site virtual
twin for producing reference regions for condition monitoring. The integration of
an online picture annotation and processing tool, a maintenance strategy, cor-
rosive resistance characteristics, structural load indicators, and sensor data is
described in this study [16].

The state of the art in PsM finds applications in a variety of use cases.
These include, but are not limited to energy sector and electric utilities, IoT and
sensors, railway networks and circuit tracking, Industry 4.0 with deterioration,
aging and equipment downtime, steel industry operations, aviation and the tire
pressure measuring task, chemical complex systems with water cooling systems,
semiconductor etching equipment and protective coating systems.

3 Framework proposal

This section proposes a framework for prescriptive maintenance in proactive
buildings, as depicted in Fig. 1. It consists of three main components, i) the
IoT data storage that gathers all IoT device data into a central database, ii)
a decision support system that implements the prescriptive maintenance en-
gine, anomaly detection, failure diagnosis and suggests prescriptions and iii) the
knowledge extraction that handles the graphical user interface of the proposed
framework offering functionalities, such as device health monitoring, options for
maintenance and maintenance scheduling.

3.1 Data warehousing

The proposed approach will be implemented in various and heterogeneous build-
ings situated in four European countries: Greece, Spain, Germany and the Nether-
lands. The provided datasets will vary based on the actual, historical or fore-
casted [17] user energy habits, activities and also the climate. Indicatively, dif-
ferent climate zones result in different heating, cooling or ventilation systems
and technologies.

Specifically, in Greece and Spain, due to high temperatures during the sum-
mer, Air Conditioning (AC) or Heating, Ventilation and Air Conditioning (HVAC)
systems are more likely to exist compared to Germany and Netherlands. Fur-
thermore, there are buildings that have a central heating system (e.g., central
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Fig. 1. Overview of framework architecture

heat pump), while others have a heating system per apartment. A summary of
the data that will be used is presented in Table 1.

3.2 Anomaly Detection

Anomalies are identified by detecting uncommon observations that differ con-
siderably from the given dataset [18]. Recognizing non-standard device behavior
is seen as a major duty in the energy business. Small-scale residential and in-
dustrial environments can benefit from anomaly detection on device condition,
maintenance needs, and unavailability, which can lead to lower infrastructure
costs.

Furthermore, anomaly detection is widely used in data pre-processing [19] to
remove outliers from records. This is a procedure that is being carried out for
a variety of reasons. For example, once anomalies are eliminated, data metrics,
such as the mean and standard deviation become more accurate, but also data
presentation may be improved. When implementing a supervised learning task,
removing anomalous data usually results in a statistically significant increase in
accuracy. Anomalies are typically the most essential findings to be uncovered in
IoT [20].

There are numerous methods for detecting irregularities in a number of ap-
plication scenarios, including prescriptive appliance maintenance. These may
include machine and deep learning approaches such as Support Vector Machine
(SVM), Convolutional Neural Networks (CNN), Long Short Term Memory Net-
works (LSTM), CNN-autoencoder, LSTM-autoencoder and more as well as their
respective outcomes measured using a variety of common metrics such as Preci-
sion, Recall, F1 Score and more.
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Table 1. Overview of the data warehousing

Greece Spain Germany Netherlands

Building structure concrete concrete brick brick

Domestic hot water solar system
combined with
electricity

decentralized-
local electric
boiler or heat
pump

centralized
from the build-
ing boiler
room

decentralized-
local electric
boiler or heat
pump

Infrastructure electricity,
heating, wa-
ter system,
internet and
cable

electricity,
water sys-
tem, central
heating sys-
tem, HVAC,
internet and
cable

electricity,
heating, wa-
ter system,
internet and
cable

electricity,
heating, water,
internet and
cable

Home appliances television,
fridge, AC,
water heater,
oven, mi-
crowave, wash-
ing machine,
dishwasher
and dryer

television,
fridge, electric
water heater,
oven, stove,
HVAC splits,
dish washer,
washing ma-
chine and
dryer

television,
fridge, electric
stove, washing
machine

fridge, electric
heater, electric
oven, washing
machine and
dryer

Electrical vehicle two charging
spots for elec-
tric vehicles

N/A N/A N/A

3.3 Failure diagnosis and prescriptions

Initially, an error is recognized in the device’s regular behavior as a result of a
specific problem. This error is classified to specific faults through a diagnostics
process and then prescriptions are sent to the user. Such failures and recom-
mended prescriptions are indicatively presented for widely-used home appliances
(Table 2). The devices include faults (diagnosis) and course of action (prescrip-
tions) for common household appliances like the fridge, the washing machine
and the AC.

3.4 Knowledge extraction

Knowledge extraction comes as a software-as-a-service implementation fostered
by a graphical user interface that offers the following services. i) Device health
monitoring, ii) device-specific options for maintenance, and iii) maintenance
schedule monitoring. Generally, Knowledge Extraction and Application (KEA)
methods intend to analyze all gathered information, data, models and methods
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Table 2. Failure diagnosis and prescriptions for widely-used home appliances

Device Diagnosis Prescription

Fridge -Freezer is not cold enough
-Unit is cycling too often
-Frost buildup
-Refrigerator is freezing food

-Check compressor and clean
any dust
-Set the temperature higher or
remove the dust buildup or de-
bris around the condenser coils
-Inspect the damper door for air
leakage
-Replace the thermostat

Washing machine -Washing machine moves around
-Washing machine is noisy
-Draining issues/ Washing ma-
chine does not fill with water

-Level washing machine to the
ground, check suspension rods
-Remove items from the washing
drum or contact a technician
-Check the filter for blockages
-Locate the hoses and check for
blockages or kinks

AC -Refrigerant leaks
-Low performance
-Cycle constantly or behave er-
ratically
-Drainage issues

-Contact a technician
-Contact a technician for main-
tenance
-Thermostat sensor problem
-Check the condensate drain and
clean it

to facilitate the decision making. KEA improves all available information and
data by contextualizing information and knowledge. The result is an automated
maintenance for proactive buildings. Taking into consideration infrastructures’
current and historical information is the the first step towards knowledge extrac-
tion.

Having a record of the devices’ normal consumption pattern and behaviour
under certain circumstances will facilitate detecting any anomalies and diag-
nosing any potential health device problems. Device health monitoring intends
to keep a check on the devices behaviour and performance while detecting any
perplexing motifs. Consequently, home appliances and devices are meant to con-
stantly operate and perform well over the years. Proper devices’ maintenance
will help the devices to extend their life-span. As a result, device-specific options
for maintenance will alert the owner to take immediate actions that will main-
tain a smooth operation. Finally, a report about scheduled maintenance ensures
that periodic maintenance actions will occur.

4 Conclusion

In reality, PsM is even more proactive than PdM. PdM forecasts when a failure
is likely to occur so that repair may be scheduled ahead of time. PsM seeks to
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prevent particular types of failure completely. This paper investigates the state
of the art in PsM reporting on multi-domain use cases and conceives a theoretical
framework that enables PsM for proactive buildings that may also be considered
as microgrids [21].

This work sets the grounds for the deployment and operation of proactive
residential buildings. It will implement and test a prescriptive and proactive
building energy management system that will learn and will be self-managed,
-monitored and -optimized regarding the building operation. This research will
focus on delivering supervised and unsupervised ML technologies capable of
detecting and predicting the potential malfunctions in the building appliances,
and to recommend appropriate actions.

At the current status of framework implementation limitations can be at-
tributed to the fact that this research does not consider data granularity [22]
due to the absence of open data sources for experimenting with the conceived
approach. The absence of such details renders the conception of the PsM frame-
work for proactive buildings, a theoretical approach. Therefore, an analytical
and comparative analysis regarding the options of open dataset is not possi-
ble. Also, appropriate data gathering and extraction of features are beneficial in
enhancing algorithm performance for classic ML algorithms, however for Deep
Learning algorithms, deeper network architecture and larger dimensional feature
vectors are more essential for achieving better metric evaluation scores.

PsM can detect capital expenditure requirements considerably sooner than
human perception would. PsM tools, for example, can act as a digital testing
environment, particularly when combined with a digital twin architecture, allow-
ing the consequences of adding or replacing equipment to be simulated before
making a purchase. This enables asset managers to arrange purchases and acqui-
sitions more intelligently, decreasing both appliance downtime and operational
expenses.

To sum up, this paper acts a as concrete baseline for experimenting with
real data for generating prescriptions for proactive buildings. The main outcome
of this work conceptualizes a theoretical framework as a PsM tool that enables
building pro-activeness. It poses as a generic solution when engaging in PsM and
considering building assets. The aim is to improve this study investigating the
following aspects.

– Continue tracking the growth of PsM and analytics with a focus on house-
hold appliances. Improve the implement the conceived PsM framework by
addressing constraints and extending our understanding of the data granu-
larity, that is necessary for more informed prescriptions.

– Improve the proposed PsM framework by further automating the process of
outputting prescriptions so that it may function as a stand-alone program
with only the necessary input datasets.

– Examine and integrate environmental Key Point Indicators (KPIs) such as
energy bills, water bills, purchase records, emissions to air, emissions to wa-
ter, emissions to land, and resource usage while offering appliance prescrip-
tions.
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– Elevate the proposed PsM framework’s business viewpoint by addressing
additional practical applications as well as expanding the evaluation to small
scale industrial setups.
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