
ODIN: pluggable meta-annotations and metrics
for the diagnosis of classification and localization

Rocio Nahime Torres1, Federico Milani1, and Piero Fraternali1

Politecnico di Milano
Piazza Leonardo da Vinci, 32, Milano, Italy

{rocionahime.torres, federico.milani, piero.fraternali}@polimi.it

Abstract. Machine Learning (ML) tasks, especially Computer Vision
(CV) ones, have greatly progressed after the introduction of Deep Neural
Networks. Analyzing the performance of deep models is an open issue, ad-
dressed with techniques that inspect the response of inner network layers
to given inputs. A complementary approach relies on ad-hoc metadata
added to the input and used to factor the performance into indicators
sensitive to specific facets of the data. We present ODIN an open source
diagnosis framework for generic ML classification tasks and for CV ob-
ject detection and instance segmentation tasks that lets developers add
meta-annotations to their data sets, compute performance metrics split
by meta-annotation values, and visualize diagnosis reports. ODIN is ag-
nostic to the training platform and input formats and can be extended
with application- and domain-specific meta-annotations and metrics with
almost no coding. It integrates a rapid annotation tool for classification
and object detection data sets. In this paper, we exemplify ODIN through
CV tasks, but the tool can be used for generic ML classification.

Keywords: computer vision · metrics · evaluation · diagnosis

1 Introduction

In ML the availability of data sets and open challenges allows the creation of
baselines essential for progress. Benchmarks rely on standard metrics to compare
alternative methods. However, the metrics used for assessing the end-to-end
performance with a black-box approach may not be the most adequate ones
for understanding the behavior of an architecture and for optimizing it for a
certain data set or task. The analysis of performance can be pursued in two
ways. On one side, model interpretation techniques aim at “opening the box” to
assess the relationship between the input, the inner layers and the output. For
example attention models capture the essential region of the input that have most
impact on the inference [31]. On the other hand, it is possible to associate the
images with meta-annotations, i.e., annotations that do not contribute to model
training but can be exploited for understanding performance. Such performance-
driven meta-annotations enable the computation of task- and data set-specific
metrics that may help the diagnosis. As an example of meta-annotations used

2 R. N. Torres et al.

to fine tune standard metrics, the MS COCO data set [15] differentiates the
Average Precision (AP) metric based on the size of the detected object (small,
medium or large), permitting researchers to focus their improvement on the
sub-classes where they expect the most gain. The work in [9] is a pioneering
effort to exploit meta-annotations in the evaluation of detectors. The described
method and tool help developers evaluate the impact on performance of selected
dimensions of the data (object size, aspect ratio, visibility of parts, viewpoint) or
of the errors (occlusion, wrong localization, confusion with other objects and with
background). In [28] we followed the line of [9] and implemented a preliminary
version of ODIN, a tool supporting the diagnosis of errors in object detection
and instance segmentation components allowing the plug-in of meta-annotation
types and metrics. In this paper, we extend the work in [28] with novel metrics
and analysis reports and expand the analysis to classification, in addition to
object detection and instance segmentation. The contribution of our work can
be summarized as follows:

– We present ODIN, a tool for error diagnosis applicable to generic ML classi-
fication tasks and to CV object detection and instance segmentation tasks.

– We exploit the plug&play architecture of ODIN and add a broad set of off-
the-shelf metrics and reports, also for classification tasks.

– We extend the user interface supporting the editing of annotations and meta-
annotations (Fig. 1) to classification tasks, in addition to localization ones.
The new User Interface (UI) can be used not only for meta-annotation editing
but also for the creation of classification and object detection data sets.

– We add confidence calibration [7] as a novel type of analysis.

– We showcase the use of ODIN in the diagnosis of two classification scenarios.

– We release the code publicly1. ODIN is developed in Python, integrates di-
rectly with the MS COCO data set and is agnostic to the training platforms.

2 Related Work

Deep learning models are typically used and evaluated as black-boxes. Perfor-
mance analysis exploits standard metrics (Accuracy, Precision, Recall, F1-Score
or Average Precision) implemented off-the-shelf in most evaluation frameworks.
Several works [18,10,21,20] explain the standard metrics and discuss issues and
best practices. The standard metrics asses a model end-to-end and thus the prob-
lem arises of how to analyse its behavior to diagnose weaknesses and improve
representation power and inference accuracy. The investigation of model behav-
ior is pursued with two complementary approaches. One line of research aims
at improving model interpretability, by studying the internal representations of
deep models and their relation to the input [32]. An alternative approach is to
study how the properties of the input samples influence performance. The latter
approaches aim at factoring out performance indicators based on the properties

1 https://github.com/rnt-pmi/odin

https://github.com/rnt-pmi/odin

ODIN diagnosis framework 3

of the input samples and at identifying the characteristics of the inputs with
greatest impact on performance.

A first step towards the diagnostic use of objects properties is found in the
MS COCO data set, where the computation of mean Average Precision (mAP) is
differentiated based on object size: mAPsmall, mAPmedium and mAPbig. This dis-
tinction can help diagnose problems and apply proper techniques, e.g. multi-scale
object detection [5], to improve localization ability. The work in [9] introduces
a more general approach to analyse errors in object detectors. The proposed
framework exploits diagnosis-oriented metadata (called meta-annotations, in this
paper) that can affect the model accuracy. The authors employ a fixed set of
such meta-annotations: occlusion, size, shape, aspect ratio, and parts visibility.
They show how decomposing the standard metrics into sub-metrics associated
to a meta-annotation value helps understand model failures and focus redesign
where the margin of improvement is higher. In [25] the authors present a di-
agnostic tool tailored to the study of pose estimation errors. The tool analyzes
the influences of fixed object characteristics (e.g., visibility of parts, size, as-
pect ratio) on the detection and pose estimation performance and enables the
study of the impact of different types of pose-related False Positives. In [1] the
focus is on the localization of temporal actions in videos. The diagnosis method
and tool allow False Positive (FP) and False Negative (FN) analyses and the
estimation of the sensitivity of mAP-based metric to six action characteristics:
context size, context distance, agreement, coverage, length, and the number of
instances. In [19] the authors apply the original diagnostic methodology of [9] to
the case of semantic segmentation but do not provide a public implementation
of their toolkit. REVISE (REvealing VIsual biaSEs) [29] is a tool that permits
the investigation of bias in image data sets along three dimensions: object-based
(size, context, or diversity), gender-based, and geography-based (location). The
set of properties is fixed and the tool aims at revealing biases in the visual data
sets rather than at supporting the diagnosis of errors by models, addressing data
set curators rather than model builders. TIDE [2] is a tool for error diagnosis
in object detection and instance segmentation applicable across data sets and
output prediction files. The focus is on the finer classification of detection and
segmentation error types and on the provision of compact error summaries and
meaningful impact reports. Unlike ODIN, TIDE purposely avoids resorting to
meta-annotations of the input. Finally, the most recent version of the object de-
tection evaluation toolkit by Padilla et al. [22] generalizes the previous version:
it makes the framework independent of the input formats, adds novel object de-
tection metrics and bounding box formats, and provides a novel spatio-temporal
metric for object detection in video.

In some critical ML applications, where the output of the model is used to
make complex and risky decisions, the reliability of predictions is crucial. This
property can be investigated by assessing the extent to which the predicted
probability estimates of outcomes reflect the true correctness likelihood, a pro-
cess called confidence calibration [7,13]. Confidence calibration is not normally

4 R. N. Torres et al.

employed in current neural model design and validation practices, where output
confidence values are simply cut-off at a threshold to decide the output class.

ODIN aims at generalizing and integrating into a unique solution the previ-
ous approaches to error diagnosis for neural models. It supports classification,
object detection and instance segmentation, allows the addition of custom meta-
annotations and metrics, and includes a wide range of off-the shelf metrics and
analysis reports. It combines error impact sensitivity and confidence calibration
analysis. It can be used to study both model performance and data set bias. In
[28], we presented a preliminary version developed along the line of [9], which
featured support for instance segmentation tasks, adapting the input to the most
common data set formats and providing an easy-to-use Python implementation.
The version presented in this paper extends our previous work [28] by: 1) adding
support for classification tasks in addition to object detection and instance seg-
mentation thus making ODIN applicable to generic ML classification problems;
2) increasing the number of metrics available off-the-shelf; 3) integrating a novel
type of analysis for confidence calibration, supporting the evaluation of the con-
fidence error; 4) integrating a GUI for input annotation so to provide a one stop
solution spanning all phases from training set preparation to model evaluation.

To the best of our knowledge no other tool offers such a complete set of
functions for dissecting the performance of ML and CV models.

3 The ODIN Error Diagnosis Framework

The ODIN framework supports the development of (image and generic) classifi-
cation, object detection and instance segmentation models by enabling designers
to add application-specific meta-annotations to data sets, evaluate standard met-
rics on inputs and outputs grouped by meta-annotation values, assess custom
metrics that exploit meta-annotations, evaluate the confidence calibration error,
and visualize a variety of diagnostic reports.

3.1 Metrics

ODIN supports both standard metrics for (image) classification, object detection
and instance segmentation assessment and their restriction to specific properties
expressed by the meta-annotation values. Developers can run all metrics, or a
subset thereof, for a single class or a set of classes. The values of all metrics are
reported using diagrams of multiple types, which can be visualized and saved.
Table 1 summarizes the implemented metrics for each task.

Normalization The metrics that depend on the number of true positives TP
(e.g., precision, average precision, accuracy, recall) can be defined in two variants:
with and without normalization [9]. Normalization copes with class unbalance.
The number of TP is affected by the size of a class as follows. If Tc is the fraction
of objects detected with confidence of at least c and Nj is the size of class j, then
TP = Tc ·Nj . Thus, for the same detection rate, the metrics that depend on TP
grow with Nj , which may be undesirable if classes are unbalanced. Normalization

ODIN diagnosis framework 5

Table 1: Metrics implemented for Binary/Single Label Classification, Multi Label
Classification, Object Detection and Instance Segmentation

Metric / Analysis Binary SL Class. ML Class. Obj. Det. Ins. Seg.

Base Metrics

Accuracy X X X - -
Precision X X X X X
Recall X X X X X
Average Precision X X X X X
ROC AUC X X X - -
Precision Recall AUC X X X X X
F1 Score AUC X X X X X
F1 Score X X X X X
Custom X X X X X

Curves
Precision Recall X X X X X
F1 Score X X X X X
ROC X X X - -

Confusion Matrix X X X - -
Metric per Property Value X X X X X
Property Distribution X X X X X
Sensitivity and Impact Analysis X X X X X
False Positives Analysis - X X X X
FP, TP, FN, TN Distribution - X X X X
Calibration Analysis X X X X X

Base Report
Total value X X X X X
Per-category value X X X X X
Per-property value X X X X X

replaces Nj with a constant N , which represents the size that each class would
have in balanced conditions (nobs/nclasses). Normalization is optional and can
be enabled both class-wise and for specific meta-annotation values.

Thresholding Some of the curves supported by ODIN require computing values
of the corresponding metric for different threshold values. A threshold t defines
the confidence value above which a prediction is considered positive. For object
detection and instance segmentation, a threshold tIoU applies to the Intersection
over Union (IoU) value between the proposals and ground truth objects.

Accuracy represents the fraction of correct predictions of a model (Eq. 1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision, Recall, PR curve, PR AUC and Average Precision The pre-
cision and recall metrics have the usual definition (Eq. 2). The PR curve plots
the precision vs recall at different thresholds and can be computed for all classes,
per class, or on a subset of the classes [23].

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(2)

6 R. N. Torres et al.

Average Precision (AP) summarizes the PR curve as a single value, i.e., the
precision averaged for recall values from 0 to 1, equivalent to the Area Under
the PR Curve. The Interpolated AP approximation used in PASCAL VOC [6]
is computed as the sum of the maximum precision values for recall greater than
the current sampling value, weighted by the recall delta (Eq. 3 and 4).

1∑
r=0

(rn+1 − rn) pinterpol(r) (3)

with
pinterpol(r) = max

r̃:r̃≥rn+1

p(r̃) (4)

where p(r̃) is precision at recall r̃.

F1 Score, F1 Curve, F1 AUC The F1 score is the harmonic mean of Precision
and Recall (Eq. 5). The F1 Curve plots the F1 score over all threshold values.
The area under such curve defines the F1 AUC metric [16].

F1Score = 2 · p · r
p + r

(5)

ROC Curve, ROC AUC The Receiver Operating Characteristic (ROC) Curve
plots the tradeoff between True Positive Rate (TPR) and False Positive Rate
(FPR) (Eq. 6). The area under the curve summarizes it into a single value (ROC
AUC) [26].

TPR =
TP

TP + FN
,FPR =

FP

FP + TN
(6)

Confusion Matrix presents TN, FN, TP, FP in a matrix form where position
(i, j) contains the number of samples in group i predicted as group j.

Custom metrics ODIN has a “plug&play” architecture so that adding new
metrics requires extending the Analyzer class and providing the wrapper method
that calls the code of the metrics.

3.2 Analysis Reports

ODIN supports several types of analysis based on the metrics described in Sec-
tion 3.1. The user can restrict the analysis to a subset of the classes, to the
value of a meta-annotation (henceforth called property) or to specific metrics.
An example of property is object size with values small, medium and large.

Property Distribution Data set bias can be analysed by visualizing the dis-
tribution of property values over the whole data set and over individual classes.

Metrics per property The values of a metric can be disaggregated by class
and then by property value. For example, the metric M can be computed and
visualized for the class car and then for the property values small, medium and
large. The class mean value is reported too.

ODIN diagnosis framework 7

Property sensitivity and impact Given a metric, its value is computed lim-
ited to the subset of the input data corresponding to each property value. The
maximum and minimum values are reported. The difference between the max-
imum and minimum value highlights the sensitivity of the metrics w.r.t. the
property. The difference between the maximum value and the overall value of
the metrics suggests the impact of the property on the specific metrics.

FP, TP, FN, TN Distribution The distribution of False Positives, True Pos-
itive, False Negatives and True Negatives by class can be reported.

False Positives Analysis The per-class analysis of errors is supported. For de-
tection and segmentation the FP errors are based on: confusion with background
(B), poor localization (L), confusion with similar classes (S) and confusion with
other objects (O) [28]. For classification we included: 1) Confusion with input
samples without annotated class (W). 2) Confusion with similar classes based on
a user-defined class similarity relation (S). 3) Confusion with non similar classes
(G). The percentage of predictions that fall into each error type is reported along
with the absolute improvement obtained by removing the FP of each type.

Calibration Analysis It relies on the confidence histogram and on the reli-
ability diagram [4]. Both plots have the confidence divided into buckets (e.g.,
0-0.1, 0.11-0.2, ..., 0.91-1) on the abscissa. The confidence histogram shows the
percentage of positive predicted samples that fall into each confidence range.
The reliability diagram indicates, for each confidence range, the average accu-
racy of the positive samples in that range. When a classifier is well-calibrated,
its probability estimates can be interpreted as correctness likelihood, i.e., of all
the samples that are predicted with a probability estimate of 0.6, around 60%
should belong to the positive class [7]. ODIN reports the Expected Calibration
Error (ECE) (Eq. 7) and the Maximum Calibration Error (MCE) (Eq. 8)

ECE =

M∑
m=1

Bm
n

acc(Bm)− conf(Bm) (7)

MCE = maxmε(1..M)|acc(Bm)− conf(Bm)| (8)

where n is the number of samples in the data set, M is the number of buckets
(each of size 1/M) and Bm denotes the set of indices of observations whose
prediction confidence falls into the interval m.

Base Report tabulates the chosen metrics: total, per-class and per-property
value. The total shows both the micro- and macro-averaged values: the first
computes the value by counting the total TP, FP and FN; the latter computes
the metrics for each class and then performs an unweighted mean.

3.3 Annotator

Meta-annotations can be automatically extracted (e.g., image color space) or
manually provided. Meta-annotation editing is supported by a Jupyter Notebook
(Figure 1) that given the data samples (e.g., images) and the meta-annotation

8 R. N. Torres et al.

Fig. 1: Interface of the meta-annotation editor. The user can navigate between
the images to: add new annotations, reset the current annotations or download
the current image.

values allows the developer to iterate on the samples and select the appropriate
value, which is saved in the chosen evaluation format. The following example
shows the code needed to create, for a classification data set, a meta-annotation
session for a custom property (Evidence). The code declares the paths to the
inputs and outputs (lines 1-2), specifies the task type (line 4), instantiates the
data set (line 6), creates a custom visualization (lines 8-16) and a custom vali-
dation function (lines 18-19), declares the properties to annotate (with property
type, values, optional message) (line 21), creates an instance of the annotator
(line 23), with an optional custom display function (if not set, the default visu-
alization is used) and the optional validation function (useful to guide the user).
Finally it starts the annotator (line 24). Similar code is used to instantiate an
editor for a detection or segmentation task.

1 dataset_gt = '../gt.json'

2 images_path ='../images'

3

4 classific_type = TaskType.CLASSIFICATION_BINARY

5

6 my_dataset = DatasetClassification(dataset_gt, classific_type,

observations_abs_path=images_path, for_analysis=False)↪→

7

8 def custom_display_function(obs_record):

9 print(f"This is image {obs_record['file_name']}")

ODIN diagnosis framework 9

10 path_img = os.path.join(images_path, obs_record['file_name'])

11

12 img = Image.open(path_img) # read img from path and show it

13 plt.figure(figsize=(10, 10))

14 plt.axis('off')

15 plt.imshow(img)

16 plt.show()

17

18 def validate_function(observation_record):

19 return 'Evidence' in observation_record

20

21 properties = {"Evidence": (MetaPropertiesType.UNIQUE, ["Low",

"Medium", "High"], "How evident is this site?")}↪→

22

23 my_annotator = AnnotatorClassification(my_dataset, properties,

custom_display_function=custom_display_function,

validate_function=validate_function)

↪→

↪→

24 my_annotator.start_annotation()

Data set generation In addition to editing meta-annotations, ODIN also sup-
ports the creation of a classification or object detection data set. The annota-
tor can be configured to associate training labels to data samples and to draw
bounding boxes over images and label them. The resulting data set is saved in
a standard format and can be analysed with the illustrated diagnosis functions.

Data set visualizer A GUI realized as a Jupyter Notebook enables the inspec-
tion of the data set. The visualization can be executed on all the samples, limited
to the samples of a class, limited to the samples with a certain meta-annotation
value, and limited to the samples of a class with a given meta-annotation value.

4 ODIN in action

This section exemplifies the use of ODIN for the evaluation of: 1) a binary
classifier of aerial images for predicting the presence of illegal landfills and 2)
a multi-label classifier of painting images based on their iconography elements
(e.g., Christian Saints).

Illegal landfills For each image the presence or absence of a suspicious site is
predicted. Over 1,000 geographical coordinates of illegal waste dumps were pro-
vided by experts, each position associated with the evidence level (low, medium,
high) and the extension level (low, medium, high). Other 2,000 coordinates were
randomly chosen in the same region as negative samples. The evidence and ex-
tension meta-annotations are only present for the positive samples. For each lo-
cation, an image was extracted with the size randomly sampled from three scales
(600, 800 or 1,000 pixels) to provide a different amount of context around the cen-
ter position. The scale constitutes an automatically extracted meta-annotation
available for all samples. Given the application, we focus the illustration on the

10 R. N. Torres et al.

most relevant metric: recall. Initially, prediction was realized with ResNet-50
[8]. Figure 2 shows the distribution of the scale property among the test images
(left) and plots the recall value variation with the scale value (middle). The
analysis reveals sensitivity of recall to the scale. Based on this observation, a
second model was trained using the same ResNet-50 as backbone augmented
with Feature Pyramid Network links [14,24]. The results of such a model show
that the sensitivity to the scale reduces (right).

Fig. 2: Distribution of scale property and the analysis of recall for this property.

Figure 3 compares the sensitivity and impact on recall of the three meta-
annotations for the ResNet-50+FPN classifier. Now the scale is the least sensitive
property whereas the extension has the largest impact; it thus becomes the focus
of the next improvement cycle.

Fig. 3: Distribution of evidence and extension (left). Impact and sensitivity of
meta-annotations on recall in ResNet-50+FPN architecture (right).

The predictions are used by local authorities to scan a large territory. Given
the operational cost of field inspections, assessing the quality of the probability
estimates is important. Figure 4 shows the confidence histogram and the relia-
bility diagram. In most cases, the model is moderately more confidence than it

ODIN diagnosis framework 11

should be, except in the 0.4-0.5 bucket, where the over-confidence is the highest,
giving an MCE of 56. Yet this bin has a small effect on the ECE (7.01) given the
low amount of samples in this range, as can be seen in the confidence histogram.

Fig. 4: Confidence histogram and reliability diagram.

ArtDL The ArtDL data set, presented in [17], exemplifies the multi-class multi-
label classification case. It comprises 42,279 painting images in 10 classes related
to the iconography of Christian Saints. Predictions are made with a trained
ResNet-50 model on 1,864 test images made publicly available. Three meta-
annotations are used: the color space and the source collection, which determine
a great variability in the image quality, and the number of characters depicted
in the paintings, which describe the complexity of the scene. All properties are
acquired automatically: the source collection is set during the content crawling
phase, the color space is found by post-processing the images and the number
of characters is counted by extracting the estimated poses from the images with
OpenPose [3]. The number of characters is divided into three ranges (0-1, 2-4,
5+). Figure 5 shows the distribution of the three properties in the data set.

Figure 6 shows the analysis of the #characters property. For most classes,
the F1 score deteriorates as the complexity of the scene increases. As an exam-
ple, the F1-Score of Saint Jerome is ∼ 83% when he is the only element in a
painting and it drops to ∼ 43% when one to three other characters are present.
Saint Dominic and Saint Anthony of Padua share a similar behaviour. For other
classes, such as Virgin Mary or Saint Sebastian, the performance drop is rather
limited. This is explained by the fact that those two characters are associated
with very distinctive visual elements, e.g., Baby Jesus for Virgin Mary or the
arrows for Saint Sebastian; such strong symbols make them recognizable even
when they appear in a crowded scene or in a polyptych.

Figure 7 shows the distribution of FP predictions over all classes and the
FP analysis of two classes: Anthony of Padua and Mary Magdalene. For both

12 R. N. Torres et al.

Fig. 5: Distribution of the color, source and #characters in the ArtDL test set.
For each property, the distribution of values is reported, e.g., 37.8% of image are
RGB and 43.4% of images contain 2 to 4 characters.

Fig. 6: Analysis of the people property on the ArtDL data set for the F1-Score
metric. For each class, the performance calculated on the specific property value
is reported. As expected, complex scenes, i.e. images depicting many figures,
lead to a decrease of model performance.

classes, most errors occur when predicting images that contain similar classes
(S), respectively Saint Francis of Assisi and Virgin Mary, whereas the confu-
sion with unlabeled images (W) is irrelevant. The same analysis also shows the
performance gain for the F1-score if the FP errors are mitigated, e.g., a ∼ 7%
improvement for Mary Magdalene if she is not confused with Virgin Mary.

The analysis shown in Figures 6 and 7 suggests the application of Fine-
Grained Visual Categorization (FGVC) techniques, such as attention aware data
augmentation [11,12] or specific attention modules [27,30], to deal with the simi-
larity between classes. These methods should help the model focus on the subtle
iconographic symbols that make each class unique, overcoming the issues ex-
posed by the FP analysis.

5 Conclusions and Future Work

In this paper, we have described a framework for the analysis of errors and the vi-
sualization of a variety of diagnostic reports in ML and CV tasks. The illustrated
work extends a previous preliminary version that focused only on object detec-
tion [28] and limited the off-the-shelf analysis to the Average Precision metric.

ODIN diagnosis framework 13

Fig. 7: FP distribution across classes (left) and FP analysis for two classes (right).
In the FP analysis, the distribution and impact of the errors are reported.

Now ODIN supports also classification tasks, implements all the most common
metrics, and assists with an automatically generated interface the association of
arbitrary meta-annotations to the input data also for classification. In addition,
an annotator GUI is provided to create a data set from scratch, for both object
detection and classification. A new type of analysis, confidence calibration, has
been added too. Performance analysis can be focused on standard or custom
metrics and on arbitrary subsets of the input characterized by critical values of
the meta-annotations. We have illustrated the output on two different settings,
scene classification for remote sensing (illegal landfills) and multi-label image
classification for cultural heritage (Christian Iconography), explaining how the
analysis reports provide insight useful for improvement. For space reasons, other
metrics available in ODIN (e.g., Pre/Rec curve, ROC curve, confusion matrix)
were not illustrated.

ODIN is implemented in Python and released as open source. Its plug&play
architecture permits the addition of novel meta-annotations and custom metrics
with minimal coding effort. Our future work will concentrate on extending the
library of metrics implementations with further classes for specific applications,
e.g., human pose detection and temporal series analysis. In addition, we will
add support for the automatic extraction of specific types of meta-annotations
from images, such as the geographical coordinates, date and time of acquisition,
lighting conditions, etc.. We also plan to integrate the analysis of attention, by
computing the position and extent of the CAM [33] w.r.t. to the object bounding
box or segmentation mask, with the final goal of supporting the optimization of
weakly supervised models.

Acknowledgements This work is partially supported by the project “PRE-
CEPT - A novel decentralized edge-enabled PREsCriptivE and ProacTive frame-
work for increased energy efficiency and well-being in residential buildings”
funded by the EU H2020 Programme, grant agreement no. 958284.

14 R. N. Torres et al.

References

1. Alwassel, H., Heilbron, F.C., Escorcia, V., Ghanem, B.: Diagnosing error in tem-
poral action detectors. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 256–272 (2018)

2. Bolya, D., Foley, S., Hays, J., Hoffman, J.: Tide: A general toolbox for identifying
object detection errors. arXiv preprint arXiv:2008.08115 (2020)

3. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Real-
time multi-person 2d pose estimation using part affinity fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2019)

4. DeGroot, M.H., Fienberg, S.E.: The comparison and evaluation of forecasters. Jour-
nal of the Royal Statistical Society: Series D (The Statistician) 32(1-2), 12–22
(1983)

5. Deng, Z., Sun, H., Zhou, S., Zhao, J., Lei, L., Zou, H.: Multi-scale ob-
ject detection in remote sensing imagery with convolutional neural net-
works. ISPRS Journal of Photogrammetry and Remote Sensing 145, 3–
22 (2018). https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.04.003,
https://www.sciencedirect.com/science/article/pii/S0924271618301096,
deep Learning RS Data

6. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2),
303–338 (Jun 2010). https://doi.org/10.1007/s11263-009-0275-4, https://doi.

org/10.1007/s11263-009-0275-4

7. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: International Conference on Machine Learning. pp. 1321–1330.
PMLR (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

9. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In:
European conference on computer vision. pp. 340–353. Springer (2012)

10. Hossin, M., Sulaiman, M.: A review on evaluation metrics for data classification
evaluations. International Journal of Data Mining & Knowledge Management Pro-
cess 5(2), 1 (2015)

11. Hu, T., Qi, H., Huang, Q., Lu, Y.: See better before looking closer: Weakly su-
pervised data augmentation network for fine-grained visual classification. arXiv
preprint arXiv:1901.09891 (2019)

12. Imran, A., Athitsos, V.: Domain adaptive transfer learning on visual attention
aware data augmentation for fine-grained visual categorization. In: International
Symposium on Visual Computing. pp. 53–65. Springer (2020)

13. Kumar, A., Sarawagi, S., Jain, U.: Trainable calibration measures for neural net-
works from kernel mean embeddings. In: International Conference on Machine
Learning. pp. 2805–2814. PMLR (2018)

14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection (2017)

15. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. pp. 740–755.
Springer International Publishing, Cham (2014)

16. Lipton, Z.C., Elkan, C., Naryanaswamy, B.: Optimal thresholding of classifiers to
maximize f1 measure. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.)

https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.04.003
https://www.sciencedirect.com/science/article/pii/S0924271618301096
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4

ODIN diagnosis framework 15

Machine Learning and Knowledge Discovery in Databases. pp. 225–239. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

17. Milani, F., Fraternali, P.: A data set and a convolutional model for iconography
classification in paintings (2020)

18. Monteiro, F.C., Campilho, A.C.: Performance evaluation of image segmenta-
tion. In: International Conference Image Analysis and Recognition. pp. 248–259.
Springer (2006)

19. Nekrasov, V., Shen, C., Reid, I.: Diagnostics in semantic segmentation. arXiv
preprint arXiv:1809.10328 (2018)

20. Novaković, J.D., Veljović, A., Ilić, S.S., Papić, Ž., Milica, T.: Evaluation of classi-
fication models in machine learning. Theory and Applications of Mathematics &
Computer Science 7(1), 39–46 (2017)

21. Padilla, R., Netto, S.L., da Silva, E.A.: A survey on performance metrics for object-
detection algorithms. In: 2020 International Conference on Systems, Signals and
Image Processing (IWSSIP). pp. 237–242. IEEE (2020)

22. Padilla, R., Passos, W.L., Dias, T.L., Netto, S.L., da Silva, E.A.: A comparative
analysis of object detection metrics with a companion open-source toolkit. Elec-
tronics 10(3), 279 (2021)

23. Raghavan, V., Bollmann, P., Jung, G.S.: A critical investigation of recall and pre-
cision as measures of retrieval system performance. ACM Transactions on Infor-
mation Systems (TOIS) 7(3), 205–229 (1989)

24. Rahimzadeh, M., Attar, A., Sakhaei, S.M.: A fully automated deep learning-based
network for detecting covid-19 from a new and large lung ct scan dataset. medRxiv
(2020)

25. Redondo-Cabrera, C., López-Sastre, R.J., Xiang, Y., Tuytelaars, T., Savarese, S.:
Pose estimation errors, the ultimate diagnosis. In: European Conference on Com-
puter Vision. pp. 118–134. Springer (2016)

26. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, f-score and roc: A
family of discriminant measures for performance evaluation. vol. Vol. 4304, pp.
1015–1021 (01 2006). https://doi.org/10.1007/11941439 114

27. Sun, G., Cholakkal, H., Khan, S., Khan, F., Shao, L.: Fine-grained recognition:
Accounting for subtle differences between similar classes. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 34, pp. 12047–12054 (2020)

28. Torres, R.N., Fraternali, P., Romero, J.: Odin: An object detection and instance
segmentation diagnosis framework. In: European Conference on Computer Vision.
pp. 19–31. Springer (2020)

29. Wang, A., Narayanan, A., Russakovsky, O.: Revise: A tool for measuring and
mitigating bias in visual datasets. In: European Conference on Computer Vision.
pp. 733–751. Springer (2020)

30. Zhang, F., Li, M., Zhai, G., Liu, Y.: Multi-branch and multi-scale attention learning
for fine-grained visual categorization. In: International Conference on Multimedia
Modeling. pp. 136–147. Springer (2021)

31. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-
down neural attention by excitation backprop. Int. J. Comput. Vision 126(10),
1084–1102 (Oct 2018). https://doi.org/10.1007/s11263-017-1059-x, https://doi.
org/10.1007/s11263-017-1059-x

32. Zhang, Q.s., Zhu, S.C.: Visual interpretability for deep learning: a survey. Frontiers
of Information Technology & Electronic Engineering 19(1), 27–39 (2018)

33. Zhou, B., Khosla, A., A., L., Oliva, A., Torralba, A.: Learning Deep Features for
Discriminative Localization. CVPR (2016)

https://doi.org/10.1007/11941439_114
https://doi.org/10.1007/s11263-017-1059-x
https://doi.org/10.1007/s11263-017-1059-x
https://doi.org/10.1007/s11263-017-1059-x

	ODIN: pluggable meta-annotations and metrics for the diagnosis of classification and localization

