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How is climate stress and other 
uncertainties affecting water resources 

and the people relying on them?

What drives fundamental 
change in human-

environmental systems? 

How are human systems interacting 
with each other and with 

environmental systems across scales?

Main Research Questions



Today’s lecture
• How do we study systems? 
• Why use simulations?
• Types of simulation approaches 
• Basics of optimization
• Optimization for simple models
• Optimization for complex models



Ways to study a system

System

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

How would climate change affect 
this lake?
How would nearby development 
affect this lake?
How should we be 
managing/protecting this lake?
How can we know our actions will 
be effective? 

Dove Lake, Australia



Ways to study a system

System
Experiment with actual system

Dove Lake, Australia

Alter the lake physically and see 
what happens 

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

Pros: 
Our findings are certainly valid

Cons: 
Changes might be too 
expensive/disruptive/irreversible
Questions might be about the future



Ways to study a system

System

Experiment with a model of a system

Experiment with actual system

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

Pros: 
Cheaper, not affecting actual system
Allows us to ask future/hypothetical questions

Cons:
Imperfect representation of actual system
Are we modeling the right things?
Are we modeling things right?A ‘surrogate’ for the real system



Ways to study a system

System

Experiment with a model of a system

Physical model

Experiment with actual system

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

https://www.science.org/doi/10.
1126/science.322.5906.1316

Pros: 
Closest analogs of real systems

Cons:
Impractical, costly, site availability

http://www.iisd.org/ela/

https://www.science.org/doi/10.1126/science.322.5906.1316
http://www.iisd.org/ela/


Ways to study a system

System

Experiment with a model of a system

Physical modelMathematical model

Experiment with actual system

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

Carpenter et al. (1999) https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

How can we use this to 
answer the questions we 
are interested in? 

https://doi.org/10.1890/1051-0761(1999)009%5b0751:MOEFLS%5d2.0.CO;2


Ways to study a system

Analytical solution

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

Carpenter et al. (1999) https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

Solve for different values to understand dynamics
Works best:
Simple models with tractable 
solutions

Struggles:
Complex systems with complex models

https://doi.org/10.1890/1051-0761(1999)009%5b0751:MOEFLS%5d2.0.CO;2


Complex systems with complex models
Most systems have multiple 
interacting components

Each component may be 
modeled very differently, 
especially when humans are 
involved

Things get more complex 
when we are also looking at 
systems across scales

Kibler et al. (2018). https://doi.org/10.5751/ES-10542-230425

https://doi.org/10.5751/ES-10542-230425


Ways to study a system

System

Experiment with a model of a system

Physical modelMathematical model

Analytical solution

Simulation

Experiment with actual system

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

In complex systems, with 
intractable solutions, we rely 
on numerical evaluations



Simulation is one of the most widely used 
techniques in scientific and industrial applications:

• Designing and analyzing manufacturing systems
• Evaluating logistics requirements and supply chains 
• Designing and operating transportation systems such as airports, 

freeways, ports, and subways
• Evaluating designs for service organizations such as call centers, 

fast-food restaurants, hospitals, and post offices
• Understanding dynamics of physical, biological, environmental, and 

social systems
• Assessing alternative policies

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.



Types of simulation approaches

Static Deterministic Continuous

Dynamic Stochastic Discrete



Types of simulation approaches

Deterministic Continuous

Dynamic Stochastic Discrete

A static model is one which contains no internal 
history of either input values previously applied, 
values of internal variables, or output values.
An example is a function that maps an input variable 
to a dependent variable. 

Static

Examples: structural load, mechanical stress 



Types of simulation approaches

Static Deterministic Continuous

Stochastic DiscreteDynamic

A dynamic model simulates the time-dependent 
behavior of systems, i.e., when a system evolves 
over time.

Examples: nutrient loading, atmospheric dynamics, 
traffic patterns



Types of simulation approaches

Static Continuous

Dynamic Stochastic Discrete

Deterministic
A deterministic 
model does not 
contain any 
probabilistic (i.e., 
random) 
components. Every 
model simulation 
always results in the 
same exact output.

Examples: chemical 
reactions, unit 
conversions, 
accounting 
calculations



Types of simulation approaches

Static Deterministic Continuous

Dynamic DiscreteStochastic

A stochastic model 
contains at least 
some probabilistic 
(i.e., random) 
components. Each 
model simulation 
might result in a 
different output.

Examples: bus 
schedules, market 
fluctuations, election 
results, weather



Types of simulation approaches

Static Deterministic

Dynamic Stochastic Discrete

Continuous
A continuous model is one for which the 
state variables change continuously with 
respect through time.

Examples: a plane flying through the sky, a 
tank filling with water



Types of simulation approaches

Static Deterministic

Dynamic Stochastic

Continuous
A discrete model is one for which the state 
variables change instantaneously at 
separated points in time.

Examples: customers per day, switches 
between states “on/off”

Discrete



Types of simulation approaches

Static Deterministic

Dynamic Stochastic

Continuous

Discrete

Few systems in practice are entirely 
discrete or entirely continuous, especially 
when looking at different scales. 

Depending on the kind of change we’re 
interested in, or the questions we are 
asking we can choose to model a system 
as either discrete or continuous.



Break for questions



Today’s lecture
• How do we study systems? 
• Why use simulations?
• Types of simulation approaches 
• Basics of optimization
• Optimization for simple models
• Optimization for complex models



Ways to study a system

System

Experiment with a model of a system

Physical modelMathematical model

Experiment with actual system

Law, A. M.: Simulation modeling and analysis. McGraw-Hill, Boston, Mass., 2007.

Carpenter et al. (1999) https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

How can we use this to 
answer the questions we 
are interested in? 

https://doi.org/10.1890/1051-0761(1999)009%5b0751:MOEFLS%5d2.0.CO;2


Questions and model use

Descriptive – “What has happened/is happening?” 
Describe and interpret system behavior

Predictive – “What would happen if…?”
Fill in missing information
Use established system relationships to predict new outcomes

Prescriptive – “What should we do?”
Independent variables are under control of decision maker
Model solutions tell the decision maker what actions to take

25



Focusing on objectives (goals) and constraints

• If I want to achieve goal X, what should I do?
• What is the “best” action (or set of actions) to take?
• What are the limits of what we can achieve in this system?
• What are the tradeoffs across different system objectives?

26



Basic terms of optimization problems

Carpenter et al. (1999) https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

Objective Function

Decision variables Constraints

Objective Function: Describes our goal(s) for the 
system (e.g., Profit = 5 x P1 + 10 x P2)

Decision variables: System components we can 
control (e.g., P1, P2, …, Pn)

Constraints: Restrictions on the system 
(e.g., P1 + 2 x P2 <3)

https://doi.org/10.1890/1051-0761(1999)009%5b0751:MOEFLS%5d2.0.CO;2
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Let’s demonstrate basic principles of optimization 
with a linear programming example

Betty owns a factory that produces leather and plastic suitcases at a cost of $50 each.
She earns $150 and $100 for each leather and plastic suitcase sold, respectively.
It takes Betty’s factory 15 and 10 hours to make one leather and plastic suitcase
respectively.
Betty has 1566 labor hours available.
Her factory only has 250 suitcase handles available. Leather suitcases need 1, plastic 
suitcases need 2.

What should Betty do to maximize her profits?



Linear programming example

1. Identify variables that can be changed (decision variables)

29

0. Understand the problem

2. Define objective

3. Identify constraints that limit our choices (e.g. relationships among variables, non-negativity, etc.)

How many leather and plastic suitcases 
should Betty produce to get max profit?

1. How many leather suitcases to make (X1)
2. How many plastic suitcases to make (X2)

Maximize Profit = ($150-$50) X1 + ($100-$50) X2

15X1+10X2 ≤ 1566
1X1+2X2 ≤ 250 X1 , X2 ≥ 0



Linear programming example
Maximize Profit: ($150-$50) X1 + ($100-$50) X2
Subject to: 15X1+10X2 ≤ 1566

1X1+2X2 ≤ 250
X1 , X2 ≥ 0

Any choice of values of (X1, X2) is called a solution.
A solution satisfying all the constraints is a feasible solution. 
The set of all feasible solutions is called the feasible region. 
A solution in the feasible region that maximizes the objective 
function is called an optimal solution.



Feasible region
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-100
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300
X1 ≥ 0 

X1

X2

15X1+10X2 ≤ 1566

1X1+2X2 ≤ 250

X2 ≥ 0



Feasible region

0-100 100 200 300

-100

100

200

300
X1 ≥ 0 

X1

X2

15X1+10X2 ≤ 1566

1X1+2X2 ≤ 250

X2 ≥ 0

Any (X1, X2) within 
these bounds is a 

feasible solution



Feasible region

0-100 100 200 300
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100
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X1

X2

15X1+10X2 ≤ 1566

1X1+2X2 ≤ 250

X2 ≥ 0

100X1 + 50X2



Feasible region

0-100 100 200 300

-100

100

200

300
X1 ≥ 0 

X1

X2

15X1+10X2 ≤ 1566

1X1+2X2 ≤ 250

X2 ≥ 0

Optimal solution will be at one 
of the corner points, calculate 

using 100X1 + 50X2



Depending on the type of problem, different 
optimization methods might (not) be appropriate

•All model functions are linearLinear programming

•Model includes multiple objectivesGoal programming

•Decision variables must be integersInteger programming

•Any of the model functions is non-linearNon-linear 
programming

* This is a non-exhaustive list of mathematical programming approaches



Particular challenges introduced by non-linearity

1. The optimal solution is NOT necessarily on the boundary of the 
feasible region. 
To solve nonlinear programming models we need to consider all 
solutions in the feasible region.

Sarker, R., Mohammadian, M., Yao, X. (Eds.), 2002. Evolutionary Optimization, 
International Series in Operations Research & Management Science. Springer US.



Particular challenges introduced by non-linearity

1. The optimal solution is NOT necessarily on the boundary of the 
feasible region. 
To solve nonlinear programming models we need to consider all 
solutions in the feasible region.

2. A local maximum (or minimum) need not be a global maximum (or 
minimum). It is hard to guarantee that a local max is also a global 
max, because we cannot linearly interpolate between two points. 

Sarker, R., Mohammadian, M., Yao, X. (Eds.), 2002. Evolutionary Optimization, 
International Series in Operations Research & Management Science. Springer US.



Particular challenges introduced by non-linearity

1. The optimal solution is NOT necessarily on the boundary of the 
feasible region. 
To solve nonlinear programming models we need to consider all 
solutions in the feasible region.

2. A local maximum (or minimum) need not be a global maximum (or 
minimum). It is hard to guarantee that a local max is also a global 
max, because we cannot linearly interpolate between two points. 

Sarker, R., Mohammadian, M., Yao, X. (Eds.), 2002. Evolutionary Optimization, 
International Series in Operations Research & Management Science. Springer US.

There is several different algorithms but no 
single algorithm can address all kinds of 

problems. 
Most nonlinear programming algorithms can 

get ”trapped” at a local maximum, with no way 
to guarantee that it is the global maximum.



Complex systems also face other complications

• Uncertainty and stochasticity 
• Many objectives for which we haven’t perfectly articulated 

preferences
• Large number of decision variables and management options

In complex systems, it is more common to use (multi-
objective) optimization methods that use many 

simulations of how the system would perform with 
various alternative designs and operating procedures



Multi-objective optimization

It has been applied in many fields 
of science, including engineering, 
economics and logistics where 
optimal decisions need to be 
taken in the presence of trade-
offs between two or more 
conflicting objectives.

https://blog.flexis.com/this-for-that-inventory-
management-and-trade-offs-in-todays-supply-chain

Addresses optimization problems involving more than 
one objective function to be optimized simultaneously. 

https://en.wikipedia.org/wiki/Multi-objective_optimization



Multi-objective optimization
For most multi-objective 
optimization problems, 
no single solution exists 
that simultaneously 
optimizes each 
objective. 

In that case, the 
objective functions are 
said to be conflicting. 

https://www.mathworks.com/matlabcentral/fileexchange/66588-multi-
objective-optimization-algorithm-for-expensive-to-evaluate-function

https://en.wikipedia.org/wiki/Multi-objective_optimization



Multi-objective optimization
Used not just for finding 
‘optimal’ solutions:
• Understand range of 

representative/possible 
solutions
• Identify conflicts between 

objectives
• Quantify tradeoffs between

objectives
• Navigate alternative decision-

maker preferences on the 
objectives

https://www.mathworks.com/matlabcentral/fileexchange/66588-multi-
objective-optimization-algorithm-for-expensive-to-evaluate-function

https://en.wikipedia.org/wiki/Multi-objective_optimization



Difference from Goal Programming*

A priori

•‘from what is before’
•Objective preference is 

articulated before
searching for solutions

•Preferences are used to 
weigh objectives in a 
utility function  

A posteriori

•‘from what comes after’
•Objective preference is 

articulated after
searching for solution

•Preferences can be used 
to navigate the identified 
solutions

* and similar a priori approaches



General criticisms of a priori approaches 

• Strong assumption of expertise and familiarity with the 
problem to articulate preferences
• Hard to know what you prefer before you know what you can 

get
• Limit the solution space without knowledge of what all options

look like
• Different stakeholders in a system might have different 

preferences



Multiobjective Evolutionary Algorithms

Use mechanisms inspired by 
biological evolution 
(reproduction, mutation, 
selection, etc.) to evolve a set 
of candidate solutions towards 
the Pareto front. 

https://www.mathworks.com/matlabcentral/fileexchange/66588-multi-
objective-optimization-algorithm-for-expensive-to-evaluate-function



Multiobjective Evolutionary Algorithms

A solution is 
called nondominated (or 
Pareto optimal) if none of the 
objective functions can be 
improved in value without 
degrading some of the other 
objective values.

https://www.mathworks.com/matlabcentral/fileexchange/66588-multi-
objective-optimization-algorithm-for-expensive-to-evaluate-function



Multiobjective Evolutionary Algorithms

We can use the set of non-
dominated solutions to assess 
tradeoffs and conflicts between our 
objectives:
• Small increases in Cost initially 

result in big Error decreases
• Further decreases in Error require 

big increases in Cost

Slide credit: Patrick Reed (CEE 5980– Decision Analysis) Kollat, J.B., Reed, P., 2007 
https://doi.org/10.1016/j.envsoft.2007.02.001

https://doi.org/10.1016/j.envsoft.2007.02.001


Multiobjective Evolutionary Algorithms

Kollat, J.B., Reed, P., 2007 
https://doi.org/10.1016/j.envsoft.2007.02.001

With the inclusion of additional 
objectives, we can make 
similar explorations across 
multiple goals we might have 
for the system. 

https://doi.org/10.1016/j.envsoft.2007.02.001


Visual analytics are central to such analyses 

https://www.hindawi.com/journals/complexity/2020/4170453/
https://doi.org/10.1016/j.advwatres.2016.04.006

https://www.hindawi.com/journals/complexity/2020/4170453/
https://doi.org/10.1016/j.advwatres.2016.04.006


Topics for discussion

• How do we balance between 
modeling the right things and 
modeling things right?
• How do such choices affect the

decisions we (can) make?
• What kinds of decision problems do 

you face in your work? What are the 
opportunities or limitations to use 
these methods?



Thank you! Here’s some useful links:
• Open source Multiobjective Evolutionary Algorithms and other tools: 

http://moeaframework.org/
• Open source Python Package for MO optimization and other cool 

stuff (including visualization tools): https://github.com/Project-
Platypus
• Useful blog with practical tutorials on multiobjective optimization: 

http://waterprogramming.wordpress.com/

• Personal website: https://www.hadjimichael.info/
• Email me to say hi: hadjimichael@psu.edu

http://moeaframework.org/
https://github.com/Project-Platypus
http://waterprogramming.wordpress.com/
https://www.hadjimichael.info/


Additional Useful Reading
• Hillier, F.S., and G.J. Lieberman (2001). Introduction to Operations 

Research, 7th ed., McGraw-Hill, Burr Ridge, IL.
• Law, A. M.: Simulation modeling and analysis. McGraw-Hill, 

Boston, Mass., 2007.
• Römer, A.C. (2021). Simulation-Based Optimization. In: 

Simulation-based Optimization of Energy Efficiency in Production. 
Forschung zur Digitalisierung der Wirtschaft | Advanced Studies in 
Business Digitization . Springer Gabler, Wiesbaden. 
https://doi.org/10.1007/978-3-658-32971-6_2
• Sarker, R., Mohammadian, M., Yao, X. (Eds.), 2002. Evolutionary 

Optimization, International Series in Operations Research & 
Management Science. Springer US.

https://doi.org/10.1007/978-3-658-32971-6_2

