Derivatives of 7H-5, 6-Dihydro-6-oxo-s-triazolo-(3, 4-b)-1, 3, 4-thiadiazine

S. SOMASEKHARA, R. K. THAKKAR & G. F. SHAH

Sarabhai Research Centre, Baroda

Received 2 November 1971

In the course of our work on heterocyclic systems, we wanted to investigate the pharmacological potentialities of the sparsely-studied heterocyclic system, s-triazolo-(3,4-b)-1,3,4-thiadiazine^{1,2}.

4-Amino-3-mercapto-1,2,4-triazole derivatives required for this work were all prepared by reported methods^{3,4}. The 3-mercapto-1,2,4-triazole derivatives were condensed with ethyl chloroacetate, ethyl-2-chlorophenylacetate and ethyl-2-chloro-2-phenylpropionate to obtain the 3-carbethoxymethylmercapto-1,2,4-triazole derivatives listed in Table 1. The condensation of 3-mercapto-1,2,4-triazoles with ethyl chloroacetate and ethyl 2-chlorophenylacetate proceeded smoothly in refluxing ethanol in presence of anhydrous potassium carbonate. The condensation of 3-mercapto-1,2,4-triazoles with ethyl 2-chloro-2-phenylpropionate had, however, to be carried out in refluxing ethanol in presence of one equivalent of sodium ethoxide.

TABLE 1

Analytical data of derivatives of 4-amino-3-carbethoxymethylmercapto-1,2,4-triazole

No.	\mathbf{R}_1	\mathbf{R}_2	$\mathbf{R_3}$	m.p. °C	Nitrogen $\%$	
					Found	Required
1	2-Chlorophenyl	н	\mathbf{H}	99-100	17.92	17.92
2	4-Chlorophenyl	\mathbf{H}	н	180	17.85	17.92
3	3-Methylphenyl	Ħ	\mathbf{H}	112-13	18,93	19.18
4	4-Methylphenyl	\mathbf{H}	\mathbf{H}	169-70	18.89	19.18
5	4-Pyridyl	н	\mathbf{H}	182-83	25.26	25.09
6	Phenyl	C_6H_5	н	130-31	15.64	15.81
7	4-Chlorophenyl	C_6H_5	н	177-78	14.11	14.42
8	3-Methylphenyl	C_6H_5	н	146-47	15.37	15.22
9	4-Methylphenyl	C_6H_5	н	169-70	15.33	15.22
10	Phenyl	C_6H_5	$\mathbf{CH}^{\mathbf{d}}$	139-40	15.52	15.22
11	4-Chlorophenyl	C_6H_5	CH_3	14243	13.74	13.92
12	4-Methylphenyl	C_6H_5	CH_3	135-36	14.34	14,66

All melting points are uncorrected,

The cyclisation of 3-carbethoxymethyl-mercapto-1,2,4-triazole derivatives to the corresponding derivatives of 7H-5,6-dihydro-6-oxo-s-triazolo-(3,4-b)-1,3,4-thiadiazine (Table 2) could be easily accomplished by refluxing the former in absolute ethanol containing sodium ethoxide.

The compounds (Tables 1 & 2) were screened for hypnotic, anticonvulsant, analgesic and anti-inflammatory properties by standard methods⁵, using methaqualone, phenobarbital and dilantin sodium, aspirin and butazolidine respectively as standards. Except for 4amino-3-carbethoxybenzylmercapto-5-*m*-tolyl-1,2,4-triazole (Tables 1-8) which showed at 200 mg/kg level analgesic properties equivalent to those of aspirin, none of the compounds showed any significant pharmacological activities.

TABLE 2

Analytical data of 7H-5,6-dihydro-6-oxo-s-triazolo-(3,4-b)-1,3.4-thiadiazine derivatives

RI NH S R2 NH C P3

No.	R ₁	$\mathbf{R_2}$	\mathbf{R}_{3}	m.p. °Ĉ	Nitrogen %	
					Found	Required
1	2-Chlorophenyl	н	н	232-34	20.85	21.01
2	4-Chlorophenyl	н	н	236-37	20.96	21.01
3	3-Methylphenyl	н	н	205-07	22.63	22.77
4	4-Methylphenyl	\mathbf{H}	H	234-35	22.87	22.77
5	4-Pyridyl	\mathbf{H}	н	272-73	30.32	30.04
6	Phenyl	C_6H_5	н	215-17	18.36	18.18
7	2-Chlorophenyl	$C_{6}H_{5}$	н	260-61	16.50	16.35
8	4-Chlorophenyl	C_6H_3	\mathbf{H}	222-24	16.60	16.35
9	3-Methylphenyl	$C_{\theta}H_{5}$	\mathbf{H}	106-08	17.60	17.39
10	4-Methylphenyl	C_6H_5	н	206-08	17.33	17.39
11	Phenyl	$C_{6}H_{5}$	CH3	203-05	17.59	17.39
12	2-Chlorophenyl	C_6H_5	CH_3	110-12	16.10	15.71
13	4-Chlorophenyl	C_6H_5	CH ₃	256-57	15.48	15.71
14	3-Methylphenyl	C_6H_5	$\mathbf{CH}_{\mathfrak{s}}$	251-53	16.34	16.65
15	4-Methylphenyl]]	$C_{6}H_{5}$	CH ₃	243-44	16.60	16.65

All melting points are uncorrected.

EXPERIMENTAL

4-Amino-3-carbethoxymethylmercapto-5-o-chlorophenyl-1,2,4-triazole (Table 1-1): 4-Amino-3-mercapto-5-o-chlorophenyl-1,2,4-triazole (4.5 g; 0.02 mole) and anhydrous potassium carbonate (1.39 g; 0.01 mole) were refluxed and stirred for 30 min. in absolute ethanol (50 ml). Ethyl chloroacetate $(2\cdot 2 \text{ ml}; 0\cdot 02 \text{ mole})$ was then added dropwise to the reaction mixture over 10 mins. The reaction mixture was then stirred and refluxed for 3 hrs. Alcohol was then distilled off *in vacuo*. The solid residue was washed with water and then crystallised from benzene-hexane to obtain the title product in 75% yield.

4-Amino-3-(2'-carbethoxy-2'-methyl)-benzylmercapto-5-phenyl-1,2,4-triazole (Table 1-10). 4-Amino-3-mercapto-5-phenyl-1,2,4-triazole (3.85 g; 0.02 mole) was refluxed for 30 min. in absolute ethanol (80 ml) containing 0.02 mole of sodium ethoxide. Ethyl 2-chloro-2-phenylpropionate (4.25 g; 0.02 mole) in absolute ethanol (20 ml) was added to the reaction mixture over 10 min. and refluxed for 3 hrs. more. Alcohol was distilled off *in vacuo*; the solid residue was washed with water and crystallised from benzene-hexane to obtain the title product in 50% yield.

3-o-Chlorophenyl-7H-5,6-dihydro-6-oxo-s-triazole-(3,4-b)-1,3,4-thiadiazine (Table 2-1) 4-Amino-3-carbethoxymethylmercapto-5-o-chlorophenyl-1,2,4-triazole (6.25 g; 0.02 mole) was refluxed in absolute ethanol (200 ml) containing sodium ethoxide (0.04 mole) for 3 hrs. The solvent was distilled from the reaction mixture; the residue was taken in water (40 ml), filtered and acidified. The solid obtained was crystallised from benzene-hexane to obtain the title product in 60% yield.

The rest of the compounds in Tables 1 and 2 were similarly prepared. The authors wish to thank Dr. V. Srinivasan for his helpful suggestions.

REFERENCES

- G. P. Sokolov and S. Hillers, *Khim. Geterotsikl. Soedin.*, 1967, 3, 556; *Chem. Abs.*, 1968, 68, 105174^s.
- 2. G. Westphal and P. Henklein, Z. Chem., 1969, 9, 111; Chem. Abs., 1969, 70, 96771^W.
- 3. E. Hoggarth, J. Chem. Soc., 1952, 4811.
- 4. M. Kanaoka, J. Pharm. Soc., (Japan), 1956, 76, 1133.
- 5. S. Somasekhara, V. S. Dighe, G. F. Shah and S. V. Gokhale, Indian J. Pharm., 1971, 33, 24,