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Abstract: In gas chromatography–mass spectrometry-based untargeted metabolomics, metabo-
lites are identified by comparing mass spectra and chromatographic retention time with reference
databases or standard materials. In that sense, machine learning has been used to predict the retention
time of metabolites lacking reference data. However, the retention time prediction of trimethylsilyl
derivatives of metabolites, typically analyzed in untargeted metabolomics using gas chromatography,
has been poorly explored. Here, we provide a rationalized framework for machine learning-based
retention time prediction of trimethylsilyl derivatives of metabolites in gas chromatography. We
compared different machine learning paradigms, in addition to exploring the influence of the com-
putational molecular structure representation to train the prediction models: fingerprint class and
fingerprint calculation software. Our study challenged predicted retention time when using chem-
ical ionization and electron impact ionization sources in simulated and real cases, demonstrating
a good correct identity ranking capability by machine learning, despite observing a limited false
identity filtering power in cases where a spectrum or a monoisotopic mass match to multiple can-
didates. Specifically, machine learning prediction yielded median absolute and relative retention
index (relative retention time) errors of 37.1 retention index units and 2%, respectively. In addition,
fingerprint class and fingerprint calculation software, as well as the molecular structural similarity
between the training and test or real case sets, showed to be critical modulators of the prediction
performance. Finally, we leveraged the structural similarity between the training and test or real
case set to determine the probability that the prediction error is below a specific threshold. Overall,
our study demonstrates that predicted retention time can provide insights into the true structure of
unknown metabolites by ranking from the most to the least plausible molecular identity, and sets the
guidelines to assess the confidence in metabolite identification using predicted retention time data.

Keywords: retention time; retention index; GC-MS; metabolomics; machine-learning

1. Introduction

Beyond the historical application of metabolomics for biomarker discovery, metabolomics
is now being recognized for its potential for mechanism elucidation [1] or the discovery
of bioactive metabolites [2]. Although limited in metabolite coverage compared to liquid
chromatography–mass spectrometry (LC–MS), gas chromatography coupled to mass spec-
trometry (GC–MS) is a widely used analytical platform in untargeted metabolomics for
volatile and semi-volatile metabolite measurement thanks to the robustness of the capillary
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columns used in GC, its relatively simple maintenance, the highly reproducible electron
impact (EI) source or the “softness” of the chemical ionization (CI) source [3].

Currently, molecular identification is one of the most important limitations in
metabolomics [4,5]. The metabolomics standards initiative (MSI) guidelines state that
a specific metabolite in an experimental sample is identified when two orthogonal prop-
erties (e.g., retention time (RT) and mass spectra (MS)) match to those of an authentic
pure standard analyzed under identical analytical conditions [6]. Thus, RT is routinely
used in both liquid or gas chromatography coupled to mass spectrometry for metabolite
identification. However, not all the molecules have commercially available pure standards
and alternatives to generate RT data for commercially unavailable metabolites are needed.

The molecule’s RT depends on multiple variables, including the column type and
length, phase ratios or temperature program, among others [7]. However, the robustness
of the capillary columns has facilitated the adoption of a retention index (RI) calibration
method. RI data are available in libraries and databases and encode the metabolites’
relative retention time differences to a set of reference standards such as n-alkanes or
fatty acid methyl esters (FAMEs). These standards are co-injected with the experimental
samples, but methods that bypass the need for reference standard co-injection –using
instead naturally occurring metabolites for calibration– also exist [8]. Thus, RI data enable
confident metabolite annotation by comparison of observed with expected RI.

Despite the utility of RI, few RI databases exist, being the NIST the most comprehen-
sive existing library to date. To overcome this limitation, machine learning (ML) strategies
have been designed to generate RI for any given molecule [9–11]. These strategies have been
focused on RI prediction of volatile molecules, of relevance in many fields including toxicol-
ogy, pathology, biomarker discovery or plant extracts and metabolome research [10,12,13].
This can be mainly attributed to the availability of large RI data in the NIST library since
large datasets -from which an ML model can learn- are necessary to train and build accurate
ML models [14,15]. However, in GC–MS-based metabolomics, compounds in samples are
typically derivatized. Derivatization is required to make metabolites more volatile while
protecting them from thermal degradation from high GC–MS temperatures [16]. The most
widely adopted derivatization protocol in metabolomics uses trimethylsilylation [17,18]
which removes acidic protons from hydroxyl-, carboxyl-, amino- or thiol- groups [19].
Although the NIST database covers the RI for a large number of molecules, only a small
fraction corresponds to trimethylsilyl (TMS) derivatives of metabolites. Overall, RI pre-
diction of TMS derivatives of metabolites has been poorly studied despite its potential
application to routine metabolomics experiments.

To predict RI using ML, two overarching aspects of the prediction model have to be
considered, being the first the type of ML approach (e.g., support vector machines (SVM),
random forest (RF), deep learning (DL), to name the most popular ones), and the second,
the model input (e.g., molecular descriptors, fingerprints, or a different type of representa-
tion). Molecular descriptors are a popular model input [20]. However, they provide a large
number of data, sometimes redundant or highly correlated, which hampers the accurate
learning by ML models. Encoding notation for molecular structures such as fingerprints
(FPs)- generated using specialized software—have shown their power to predict RI values,
overcoming the limitation of choosing the suitable molecular descriptors [21–23]. However,
there are multiple free and commercial software for FP calculation, which adds another
aspect to be considered.

Here we introduce an optimized ML model for RI prediction (relative RT) of TMS
metabolite derivatives, trained using the Golm Metabolome Database (GMD), a specialized
metabolomics library covering up to 1410 TMS metabolite derivatives. Our study compared
different popular machine learning techniques as well as types of FPs and FP calculation
software. To show the relevance of RI prediction in clinical metabolomics, we applied
our RI prediction model for metabolite identification in a comparative analysis of plasma
samples from patients with ulcerative colitis (UC) and healthy controls.
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2. Methods
2.1. Fingerprint Calculation and Dataset Generation

There exists several types of molecular FP classes, reviewed elsewhere [24], depending
on the method employed to transform the molecular structure into a bit string. We gener-
ated different classes of FP with different software types (see Table S1 and Supplementary
Materials) using the molecular structures with SMILES representation contained in the
GMD using derivatized metabolites with TMS. Out of the total 1410 compounds contained
in the database we generated FPs for 1159 compounds. We discarded those compounds
with incomplete information in the database (e.g., lacking SMILES) or when it was not
possible to generate FP representation with some of the software types employed.

2.2. Machine Learning Model Training and Test

All the analyses were performed in the R environment (version 4.0) using packages
freely available in the CRAN repository. Deep Neural Network (DNN) as well as Con-
volutional Neural Network (CNN) algorithms were deployed with R implementation of
Keras (version 2.3), e1071 (version 1.7) was used to implement SVM algorithm with linear
(SVM-Lin) and polynomial (SVM-Poly) kernel. Finally, a RF model was assembled with
randomForest (version 4.6). Model parameters are described in Supplementary Materials.

Each model was iteratively evaluated with 20 random splits of the data preserved
across models, randomized as a training set with 75% of the metabolites employed to train
each of the models and a test set with 25% of the compounds intended to validate the
models (Figure 1). This ensured that almost every considered compound was evaluated
in both training and test sets and allowed us to evaluate if similarity levels across com-
pounds in different datasets affect the prediction accuracy. ML models benefit from certain
transformations, including 10 factor scaling [25]. RI values were multiplied by 10 since this
increased prediction accuracy by the models. The R scripts to reproduce the results are
available at https://github.com/smdecripan/RIpred, accessed on 1 March 2022.

Figure 1. Workflow for RI prediction. The histogram shows the number of TMS groups of metabolites
in GMD. Multiple fingerprint classes were generated from metabolites in GMD and metabolites were
randomly split in training and test sets generating 20 different sets to train and test the ML models.

https://github.com/smdecripan/RIpred
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2.3. GC-MS Plasma Analysis

Details on metabolite extraction and GC-ToF-MS analysis can be found in the Supple-
mentary Materials. GC–MS raw data (mzXML files) has been deposited in the Metabolights
repository with accession number MTBLS2841. After GC–MS analysis, raw data were
converted to mzXML file using Proteowizard [26] and processed by eRah (V1.1.2). eRah
output consisted of a set of experimental deconvolved spectra and RI, that was matched to
metabolite reference spectra and RI data from GMD. Empirical RI values were determined
by using naturally occurring metabolites in samples (identified using standard materi-
als) as internal RI reference as described elsewhere [8], to avoid the need for reference
standard co-injection and to prevent cluttering chromatograms with unnecessary peaks
that can otherwise mask potential metabolite peaks [8]. We manually identified a total
of 62 metabolites, covering the entire RT range (min 5 to 20), using reference standards
materials when available or by RI/MS comparison with reference data in GMD (<1% RI
error and >80% of spectral similarity). This manual inspection consisted in discarding those
cases where spectral and RI similarity among candidates was too ambiguous to assign the
correct identity without standard addition or isotopically labeled standard co-injection
techniques [4]. Metabolites showing high spectral similarity to reference data but with RI
errors above 1% were confirmed using pure standard materials.

3. Results
3.1. TMS Derivatives of Metabolites RI Prediction via Machine Learning Models

It has been shown that similar molecular structures have a similar RT and that
ML-based prediction has difficulties trying to predict these differences among similar
molecules [27,28]. In GC–MS-based metabolomics, the same metabolite can be observed
multiple times with different TMS derivative groups (Figure 1). These molecules will have
a similar RI as they share a common molecular substructure. We first studied RI differences
among the same metabolites with different TMS groups to explore how their structural
similarity could affect the ML’s ability to accurately predict the RI for those metabolites.
Figure 2a,b shows the RI relation between the same metabolite with 1 and 2 TMS groups
and 2 and 3 TMS groups. Other pairwise comparisons (e.g., 0TMS vs. 1TMS, or 1, 2
or 3TMS with 4TMS) were not performed due to the lack of data in GMD. Metabolites
with 2 TMS groups showed a 6.05% RI increase compared to their 1 TMS counterparts,
and metabolites with 3 TMS groups showed a 5.35% RI increase compared to their 2 TMS
counterparts (Figure 2c,d). As shown in Figure 2a,b, there is a linear relation among the RI
of molecules with 1 and 2 TMS groups and 2 and 3 TMS groups. By using a simple linear
regression we can determine the RI of metabolites with 2 TMS or 3 TMS knowing the RI of
their counterpart with one TMS group less, and vice versa. This simple prediction yielded
median errors of 2.79% and 2.64% for 1 to 2 TMS and 2 to 3 TMS, respectively.

Due to machine learning models flexibility several models and strategies have been
proposed to predict RI values. The first models that gained popularity included artificial
neural networks (ANNs), multiple linear regression (MLR), SVM, or RF [21,29–31]. The de-
velopment of databases containing RI data and the increase of computational resources
allowed the implementation of more complex models such as CNN or DL [10,12,32]. We
studied the performance of different types of machine learning algorithms with different
configurations, yielding a total of five ML models: SVM algorithm with linear (SVM-Lin)
and polynomial (SVM-Poly) kernel, DNN, CNN and RF (Figure 1) (see Section 2 and
Supplementary Materials for details on models construction and parameters).
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Figure 2. (a) RI of derivatized metabolites with 1TMS vs. 2TMS, (b) RI of derivatized metabolites with
2TMS vs. 3TMS, and box plots showing the corresponding relative prediction errors as determined
by linear regression. Dashed black lines are the identity functions and the dashed red lines are the
regression lines. (c) Prediction error for each ML model and (d) FP class. p-value < 0.001 from a
paired Wilcoxon rank tests (n = 5800) is shown as ***. Outliers are not shown (all panels).

We used molecular FP–a computational molecular representation–as ML model input.
There is a wide range of molecular FPs and FP calculation software. Therefore, we aimed at
exploring whether the FP class or software has an influence on prediction accuracy. We
used four different FP calculation software, including the commercial Dragon 7.0 (Kode
Chemoinformatics, Pisa, Italy) or open-source tools like RDKit [33], OpenBabel [34] and
ChemFP [35], to calculate seven types of popular FP configurations (combining FP class
and software). These included 2- and 4-diameter Extended-Connectivity Fingerprints
(ECFP) and Layered FP generated with RDKit; ECFP generated with Dragon; FP2-class FP
generated with OpenBabel; and MACCS- and PubChem-class (PB) generated with ChemFP
and OpenBabel as back-end (see Table S1 and Supplementary Materials for more details
on FP class description). We determined the best combinations of FP and ML models
after different rounds of hyperparameter optimization and testing (prediction errors are
available in Table S2). Due to limited data, we iteratively evaluated each ML model with
20 random splits of the data in training and test sets (Figure 1, see Section 2 for details).

Dragon’s FP showed the best performance independently of the ML method used.
Therefore, we compared the different ML models’ performance using Dragon’s FP. Models’
performance results, including Mean Average Error (MAE), Mean Average Percentage
Error (MAPE), Median Average Error (MdAE) and Median Average Percentage Error
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(MdAPE), are shown in Table S2. As observed in Figure 2c, both SVM with linear and
polynomial kernels (SVM-Lin and SVM-Poly) as well as DNN models using Dragon’s FP
achieved similar prediction accuracy. The difference in performance between both SVM
models was not statistically significant, but the SVM with linear kernel implementation
is more interpretable than the polynomial kernel-based model. SVM-Lin MdAE was
5 RI units lower than DNN model (Table S2) and SVM-Lin median relative errors were
statistically significant different from the median RI errors of DNN (paired Wilcoxon test,
p-value < 0.001, n = 5800). A SVM linear model is favored over DNN because simpler
models are prone to less overfitting. In that sense, we chose SVM with a linear kernel
(SVM-Lin) as the prediction model for the rest of this study, and to assess the influence
of different FP classes as input data to predict RI values (Figure 2d). Figure 2d shows
that the SVM-Lin model prediction accuracy is affected by the FP class used to represent
molecular structures. Dragon’s FP prediction results were statistically significant more
accurate than the rest of FP (paired Wilcoxon rank test, p-value < 0.001, n = 5800). Of note,
hyperparameter optimization for each FP did not yield significant accuracy improvements,
and the parameters optimized for Dragon’s FP data gave the best results over all FP classes.

3.2. Training Set Structural Similarity Influence on Prediction Performance

We aimed at assessing how metabolites included in the training set modulate the
prediction performance of the SVM-Lin model. As mentioned before, it has been shown
that similar molecular structures have a similar RT [27,28]. Specifically, it has been observed
that ML-based RT prediction performance in LC-MS depends on the similarity level of
molecules in the training set to those in the test set [15]. We explored whether this phe-
nomenon is echoed in TMS derivatives of metabolites analyzed using GC-MS. To that end,
we focused on the prediction error for those metabolites in the test set that had at least one
metabolite in the training set above a specific degree of similarity. We used the Tanimoto
similarity coefficient to measure the similarity among molecules. The Tanimoto similarity
coefficient measures how similar the two-dimensional structures of two molecules are and
it ranges from 0 (no similarity) to 1 (identical molecules). The distribution of Tanimoto score
(Figure 3a) showed a peak of identical metabolites (Tanimoto score of 1) corresponding
to stereoisomers present in GMD. Interestingly, there is a limited number of metabolites
with Tanimoto score under 0.6. The prediction error for metabolites in the test set was
divided into five groups, each group considering those metabolites in the test set that had
at least one similar metabolite in the training set within a specific similarity range (1 to
≥0.9, <0.9 to ≥0.8, <0.8 to ≥0.7, <0.7 to ≥0.6, <0.6 to 0). To allow for statistically unbiased
comparison among groups, we randomly selected the same number of metabolites for all
groups (N = 423, corresponding to the size of the smallest group, <0.6 to 0). Figure 3b,
shows the prediction error (relative error) according to the similarity scores. It can be
observed that prediction accuracy increases in accordance with the similarity of the pre-
dicted metabolites (test set) to the metabolites in the training set. We performed a pairwise
Mann–Whitney–Wilcoxon test and all pairwise comparisons showed statistically significant
differences (p-value < 0.01, Figure 3c), demonstrating that metabolite similarity among
training and test sets influences the prediction accuracy.
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Figure 3. Structural similarity influence. (a) Distribution of Tanimoto similarity of the full training set
(red) and randomly selected metabolites (blue). (b) Prediction error across similarity ranges. (c) Cu-
mulative probability functions (CPF) for the structural similarity ranges. (d) Statistical significance
for pairwise comparisons in (b): Wilcoxon test, *** for p-value < 0.001; ** for p-value < 0.01.

Given that structural similarity has a strong influence on the prediction performance,
we hypothesized that we could estimate the prediction error for a given metabolite. This
means that if we aim at predicting the RI for a specific metabolite, we can first measure the
structural similarity of this metabolite with metabolites in the training set, and, according to
this similarity, determine the likelihood of the prediction error for a given metabolite being
lower than a specific threshold [36]. To that end, we determined the cumulative probability
function (CPF) from the distribution of the observed prediction error for each structural
similarity range, as determined before (Figure 3b). The CPF describes the probability that
a variable has a value lower than a specific threshold, given an empirical distribution
(observed data). Figure 3d shows the prediction error CPF according to the structural
similarity ranges previously described. For instance, the probability of predicting an RI
with a prediction error lower than 1% for a metabolite with a structural similarity value
compressed between 1 and 0.9 is 48%. This probability is reduced to 25.8% if the similarity is
between 0.9 and 0.8, to 24.11% for a similarity between 0.8 and 0.7, to 16.3% for a similarity
between 0.7 and 0.6, and 0.11% when similarity is lower than 0.6.

3.3. Ranking and Filtering Capability of the ML Model

To show the application of predicted RI in metabolomics, we evaluated the perfor-
mance of the proposed RI prediction model for the two widely used MS ionization methods
in GC–MS, CI and EI, using GMD data as a benchmark. Multiple putative metabolite
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identities can match to an observed protonated/deprotonated ion in CI via accurate mass
search or to an observed spectrum obtained by EI via spectral comparison. We aimed to
study how predicted RI can help at filtering and ranking putative candidates in a typical
situation in metabolomics where we have multiple putative candidates that match to an
observed unknown ion or spectrum.

We first generated different training/test sets to avoid the bias induced by a particular
training/test set configuration as previously described. We initialized 20 test sets with
a specific number of randomly selected metabolites (seed metabolites). These test sets
were then expanded by including those metabolites in GMD with the same monoisotopic
mass as the initial seed metabolites for the CI case (below a 10 ppm error) or with similar
MS spectra to the seed metabolites for the EI case (80% similarity, see Supplementary
Materials for details). We will refer to metabolites with the same monoisotopic mass or
with similar spectra to the initial seed metabolites as potential interfering metabolites
(PIMs). The training sets were composed of the remaining metabolites (those not included
in each test set). To ensure that the resulting training sets covered at least 80% of the total
number of metabolites, we set the specific number of randomly selected metabolites (seed
metabolites) for the test sets to 70 and 20 metabolites for EI and CI cases, respectively. This
yielded 20 training sets for each case of different sizes covering from 83 to 87.7% of the total
number of metabolites in the CI case and 87.7 to 96.2% in the EI case. After training, we
divided all metabolites in the test set into groups composed of each seed metabolite and its
corresponding PIMs. For each group, we determined the predicted-reference RI errors for
all metabolites (seed and PIMs) using the reference RI value of the seed metabolite in GMD.
This resulted in a ranked list of candidates according to their predicted-reference RI error,
allowing us to simulate the case where a predicted RI error is used to rank all potential
candidates, replacing the experimental data in real cases with reference RI data in GMD
for simulation purposes. In that sense, we evaluated the SVM-Lin model performance
at ranking putative identities based on their predicted-reference RI error with a special
focus on the capability to rank the correct identity among the top 3 first candidates with
the lowest error.

Ranking results are shown in Figure 4a. The pie charts show the percentage of cases
in which the correct identity was ranked as the first, second or third candidate, based on
predicted-reference RI error, for cases where there were 2 (C = 2), 3 (C = 3) or 4 or more
(C ≥ 4) putative candidates in total. Results for the CI case showed that the SVM-Lin
model had a good capability at ranking the true metabolite identity as the first candidate
in up to 86.7% of the cases when there were two possible matches, and ranked the true
metabolite identity as the first and second candidate in up to 53.5% and 29.6% of the
cases, respectively, when there were three candidates. In cases where there were 4 or more
candidates, the model ranked the correct identity within the top 3 candidates in 51.4% of
the cases. For the EI case, ranking results showed a similar performance as the CI case,
with 90.6% of the metabolites ranked as the first candidate when there were two possible
matches, up to 35.7% cases as the first candidate and 42.9% as the second candidate when
there were three putative candidates, and 77.1% of the candidates correctly identified
within the top 3 candidates in cases where there were 4 or more candidates.
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Figure 4. Metabolite identity candidates ranking and filtering using predicted RI in EI and CI.
(a) Percentage of correctly identified metabolites with 2 (C = 2), 3 (C = 3), or 4 or more (C ≥ 4)
putative candidates ranked according to predicted-reference RI error. (b) Total number of metabolites
(black), number of filtered metabolites using a 3% RI threshold (gray) and candidate classification
as True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) using the
same threshold.

Next, we evaluated the SVM-Lin model performance at filtering the true identity from
all PIMs i.e., retaining as many true positive identities as possible while filtering out as many
false positive identities as possible. We aimed to filter PIMs or false positives candidates
by removing all matches with a predicted-experimental RI error above a specific filtering
threshold. To determine the best threshold, we used a receiver operating characteristic
(ROC) curve that depicts the performance of a range of filtering thresholds at discriminating
true positive, false negative, true positive or false positive identities. We calculated ROC
curves by discretizing the range of the filtering thresholds from 0 to 100% in intervals of 1%.
Subsequently, we determined the sensitivity or true positive rate (TPR) and the specificity
or false positive rate (FPR) (see Supplementary Materials for details). ROC curves for
CI and EI cases, available in Figure S1, showed area under the curve (AUC) values of
0.53 and 0.56 respectively. Based on the ROC curves, we determined an optimal filtering
threshold (RI error of 3%) that allowed reducing the total number of putative candidates
while minimizing the loss of true identities. This 3% threshold enabled assigning 61% of
the metabolites among the three first candidates with an FPR of 43% and 50% for CI and
EI cases, respectively. Figure 4b shows the distribution of true identity and the putative
candidates: in the CI case, 29.5% of the candidates were classified as true positives, 22.3%
as true negatives, 29.5% as false positives and 18.7% as false negatives; in EI case the
classification was 30.0% as true positives, 25.6% as true negatives, 25.3% as false positives
and 19.1% false negatives.

3.4. Application of the Prediction Model for Metabolite Identification in Plasma from Patients with
Ulcerative Colitis

To demonstrate the utility of our prediction model in clinical applications, we used
untargeted metabolomics to analyze a set of 25 plasma samples, consisting of 10 plasma
samples from patients with UC and 10 samples from age-, weight-, and sex-matched
healthy controls (a total of 10 males and 10 females), in addition to 5 technical replicates
of a pooled sample used as quality controls (Figure 5a). Plasma samples were analyzed
using GC-ToF-MS (see Section 2 and Supplementary Materials for details), and raw data
were processed using eRah [37]. eRah generated a list of deconvolved EI spectra that were
matched against GMD to provide the three most plausible metabolite identity candidates
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according to spectral similarity and RI error. We confirmed the identity of 62 of these EI
spectra (see Section 2 for details). Of the 62 identified EI spectra, only 44 cases had at least
two candidates with both spectral and RI reference data. All the candidates in those cases
(a total of 106 metabolites) were removed from GMD and kept as test set, and the remaining
1053 metabolites in GMD were employed to train the SVM linear model.

Figure 5b,c shows the experimental vs. reference RI and the experimental vs. predicted
RI for the cases where the identified EI spectra had at least two candidates with both
spectral and RI reference data. We compared the experimental with the predicted RI error
to assess the predicted RI accuracy. The experimental relative RI error was computed
as the relative error between the empirically calculated RI by eRah and the reference RI
from GMD (observed vs expected RI). The predicted RI error was computed as the relative
error between the empirically calculated RI by eRah and the predicted RI by the SVM
prediction model. Mean and median experimental relative RI errors were 0.52% and 0.49%,
respectively; whereas the mean and median predicted relative RI errors were 2.55% and
2%, respectively. Median and mean experimental absolute RI errors were 7.35 and 6.64 RI
units, whereas the mean and median predicted absolute RI errors were 35.6 and 25.6 RI
units, respectively.

Figure 5. Application of RT/RI prediction in plasma samples from patients with ulcerative colitis
(UC). (a) Workflow graphical representation. (b) Experimental vs. reference RI and (c) experimental
vs. predicted RI of the identified metabolites. (d) Heat-map and sample hierarchical clustering of
identified metabolites in plasma samples (M for male, F for female, CTR for control and UC for
ulcerative colitis).

Next, we focused on the model’s ability to rank the true candidate from the most to
the least plausible identity according to the RI error. Spectral similarity, the most widely
used method for ranking putative candidates in MS [38,39], ranked the true metabolite
identity the first (most similar spectra) among the three candidates in 37 out of 44 cases;
whereas in the rest of the cases (7 out of 44), the true identity was the second candidate
(second most similar spectra). Instead, the experimental and predicted RI error ranked
the true metabolite identity the first (lowest error) among the three candidates in 41 and
36 cases, respectively (Figure 5). This corresponds to an accuracy of 84% for the spectral
similarity, 93% for the experimental RI error and 82% for the predicted RI error.
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Finally, we retrieved the statistically significant differences between UC and the control
group. Figure 5d shows the heat-map and the samples hierarchical clustering built with
the 62 identified metabolites. To account for sex metabolism differences, we compared
the relative abundances of the identified metabolites in UC males with control males and
UC females with control females. Hydroxylamine was statistically significant dysregu-
lated in UC males (p-value < 0.05, t-test) whereas none of the identified metabolites were
statistically significant dysregulated in UC females. Of note, we removed all metabolites
showing a coefficient of variation greater than 20% in QC samples, following established
untargeted metabolomics data analysis guidelines [40]. Despite the pilot-study nature of
our untargeted analysis (consisting of small sample size), these results suggest a rather
distinct sex-related metabolic profile in UC.

4. Discussion

We compared different combinations of ML methods and FP classes generated by
different calculation software. Specifically, we compared SVM with DNN, CNN and RF
prediction models. The best results were obtained by an SVM model using a linear kernel
and trained with ECFP-class FPs generated with Dragon (now discontinued but replaced by
alvaDesc). SVM-based models showed similar performance whereas RF and CNN methods
yielded lower accurate predictions compared to the other methods. Previous studies
reported that RF outperformed ANN (forerunner algorithm of DNN) when trained only
with specific compound classes (polycyclic aromatic hydrocarbon [30] or sulfur organic [31]
compounds), but the structural heterogeneity of metabolites in our model could have
affected the RF ability to accurately predict RI values. CNN algorithm benefits from large
datasets, suggesting that the low number of metabolites employed to train the model might
not be enough to achieve the same performance as the other models. Interestingly, our
results showed similar prediction accuracy of CNN and RF, despite that CNN is one of
the most computationally expensive models and with a complex architecture, whereas
RF architecture is one of the simplest. Also, the FP type and calculation software used
as input for the ML model yielded different prediction performances. The use of ECPF
generated with Dragon clearly outperformed the rest of the FP classes. Both Dragon-
and RDKit-generated ECFP-class FPs presented different accuracy results, demonstrating
that model performance is strongly affected not only by the FP class but also by the FP
calculation software and consequently by the underlying calculation algorithm.

Previous studies have reported that similar molecular structures have a similar RT.
We focused on assessing whether these observations were echoed in GC–MS RI prediction.
First, the same metabolites with different TMS groups (e.g., leucine 1TMS and leucine
2TMS) share a common molecular structure. Based on the assumption that molecules
differing only by the number of TMS groups should share a similar RI difference, we used
a simple linear regression among RI values of metabolites with 1 and 2, and 2 and 3 TMS
groups (Figure 2a,b). Surprisingly, this procedure was as accurate as the SVM model trained
with certain FPs, although its use is limited to metabolites for which the RI of at least one
TMS derivative is know. The structural similarity also has an influence on the prediction
performance when using ML-based models, and is mainly modulated by the training set.
Figure 3b,c show that the prediction accuracy increases when there is at least one similar
metabolite in the training set—the more similar the structure is, the lower the prediction
error is. This demonstrates that the structural similarity between the training and test set
modulates the prediction performance. Based on these observations, it is intuitive to think
that we can estimate the expected prediction error interval based on the structural similarity
of a metabolite in real cases based on its similarity with metabolites in the training set. Thus,
we determined the probability of prediction error for a given metabolite being lower than a
specific threshold depending on the metabolite’s structural similarity to the metabolites
in the training set. We observed that the probability of obtaining a prediction error lower
than 1% is 48% but only when the structural similarity is between 90 to 100%. Using less
restrictive premises, e.g., structural similarity of at least 70% and a probability of 80%,
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the expected prediction error is lower than 5.7%. This probability estimation approach
can be used to estimate the prediction error range but its limitations include the model’s
inherent accuracy, and the fact that it takes into account the observed error of only the most
similar metabolite. A more advanced statistical approach considering the observed errors
of multiple similar molecules could provide more accurate error estimations.

We demonstrated the application of our prediction model in two GC–MS-based untar-
geted metabolomics cases: simulating a case where there are several putative candidates
with similar mass (CI) or similar spectra (EI) (Figure 4), and in a metabolite identification
case in plasma samples (Figure 5). Our results showed the potential application of pre-
dicted RI in metabolomics when multiple candidates match to a monoisotopic mass or
spectrum. Even with more than 4 putative candidates with the same molecular formula,
predicted RI values enabled ranking the correct metabolite identity among the top three
candidates (those with the lowest predicted-experimental RI error) in up to 50% of the
cases. Conversely, the prediction model showed a modest-to-poor filtering capacity as
demonstrated by the ROC curve analysis, with AUC values of 0.53 and 0.56 for the CI and
EI cases, respectively. Also, using a 3% predicted-experimental RI error filtering threshold
(as determined by ROC) we reduced the number of putative candidates to nearly half,
but at the cost of retaining a large number of false identities—nearly as many as retained
true identities—and filtering out a large number of true identities. Overall, These observa-
tions are in alignment with what has been previously observed also in large-scale liquid
chromatography RT prediction models [15].

The application in real samples allowed us to compare the differences between ex-
perimental to reference and experimental to predicted RI errors. Previous studies have
reported an absolute RI difference of 7.6 RI units when comparing reference with experi-
mental data [41]; and a relative RI error of 0.5 to 1% has been proposed as an identification
threshold [42]. Our prediction model yielded median absolute and relative errors of 37.1 RI
units and 2%, which suggest that considering only predicted RI values can not be used
for unambiguous identification but can provide insights into the true structure among
putative candidates with similar spectra by ranking from the most to the least plausible
true identity. This is of special importance to identify known metabolite structures that lack
reference spectra and RI. In these cases, putative metabolite identities could be narrowed
to the most likely by combining CI (which provides the monoisotopic mass) and predicted
RI. The model also showed a capacity at ranking the true metabolite identity among other
candidates similar to the use of reference data or the use of MS spectral data. Interestingly,
the model showed a greater capacity at ranking the true metabolite identity among other
candidates in plasma samples compared to the simulated case. This is because our sim-
ulated case takes into account all possible cases, thus including the worst-case scenario
where we observe a large number of metabolites with isomeric counterparts (Figure 3a).
Isomeric molecules share a similar RI and are more difficult to rank according to their RI.
Metabolites identified in the plasma samples largely consist of metabolites that do not have
isomeric counterparts or these counterparts are not included in the library, thus facilitating
the ranking of true candidates among a more structurally heterogeneous pool of candidates.
This also demonstrates the importance of using simulated cases to assess the generalization
power of the hypotheses and observed results in real cases.

5. Conclusions

We evaluated the accuracy of different ML models at predicting the retention time of
trimethylsilyl derivatives of metabolites in GC–MS, through the use and prediction of RI
(relative retention time). We compared five popular ML methods trained with different
molecular FPs as input data. We conclude that the model performance is affected by the
molecular FP class employed to represent the compound structure and also by the software
employed to generate these FPs. We proposed a model based on an SVM with a linear
kernel trained with ECFP-class FP generated with the Dragon software. New alternatives
like those based on graph neural networks and that bypass FP calculation could potentially
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yield better prediction accuracy [43]. Independently, the model is ultimately affected by the
structural similarity of metabolites used to train the model to those in a real case, as this is
an inherent limitation of machine learning.

Our study, that challenged predicted RI when using CI and EI ionization sources
in simulated and real cases, demonstrated a good true identity ranking capability of
our RI prediction model among all candidates, despite its modest-to-poor false identity
filtering power, which is in alignment with what has been previously observed in large-
scale RT prediction studies [15]. Also, ranking performance using predicted RI values in
experimental samples was comparable to the performance obtained when using spectral
similarity, which suggests that the combined use of both reference spectral data and
predicted RI could enhance the overall accuracy in cases where only reference spectral data
are available.

Collectively, our study provides a rationalized framework for machine learning-based
retention time or RI prediction of TMS derivatives of metabolites in GC-MS, of special
utility in cases where reference data or commercial standards are unavailable.
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