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Symmetries and local transformations of translationally invariant matrix product states
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We determine the local symmetries and local transformation properties of certain many-body states called
translationally invariant matrix product states (TIMPSs). We focus on physical dimension d = 2 of the local
Hilbert spaces and bond dimension D = 3 and use the procedure introduced in Sauerwein et al. [Phys. Rev. Lett.
123, 170504 (2019)] to determine all (including nonglobal) symmetries of those states. We identify and classify
the stochastic local operations assisted by classical communication (SLOCC) that are allowed among TIMPSs.
We scrutinize two very distinct sets of TIMPSs and show the big diversity (also compared to the case D = 2)
occurring in both their symmetries and the possible SLOCC transformations. These results reflect the variety of
local properties of MPSs, even if restricted to translationally invariant states with low bond dimension. Finally,
we show that states with nontrivial local symmetries are of measure zero for d = 2 and D > 3.

DOI: 10.1103/PhysRevA.105.032424

I. INTRODUCTION

Entanglement is a unique quantum property that is behind
most modern quantum technologies, such as quantum com-
puters [1,2], and is key to comprehend important features of
quantum many-body systems [3,4]. The relevance of entan-
glement in many different branches of science has spurred
significant research efforts to understand its properties [2].
While this has led to a clear understanding of bipartite en-
tanglement, many questions are still open in the multipartite
realm.

At the heart of entanglement theory lies the fact that en-
tanglement is a resource under local operations assisted by
classical communication (LOCC), which are the most general
operations that spatially separated parties can use to manip-
ulate a shared entangled state. Transformations of entangled
states via LOCC induce a physically meaningful partial order
on the set of entangled states: If |�〉 can be deterministically
transformed into |�〉 via LOCC, this means that |�〉 is at least
as entangled as |�〉 [2]. Furthermore, if two states cannot even
probabilistically be transformed into each other, via so-called
stochastic LOCC (SLOCC), they contain different, incompa-
rable kinds of entanglement. This entails that they may be
useful in different contexts of quantum information science
[5]. Hence, the characterization of LOCC transformations is
central in entanglement theory.

*martin.hebenstreit@uibk.ac.at
†Present address: Amazon Web Services Europe, Zurich, Switzer-

land; sauerwein.david@gmail.com
‡andras.molnar@univie.ac.at
§ignacio.cirac@mpq.mpg.de
‖barbara.kraus@uibk.ac.at

Bipartite LOCC transformations among pure states admit
a simple characterization [6,7] that led to a clear understand-
ing of bipartite entanglement and inspired a wide range of
applications [2]. A general characterization of multipartite
LOCC is still elusive. This is, among other reasons, due to
the notorious mathematical complexity of multipartite LOCC
[8], the fact that there are multipartite entangled states that
cannot even be transformed into each other via SLOCC [9]
and the exponential growth of the Hilbert space dimension as
a function of the number of constituent subsystems.

However, most multipartite (pure) states are not particu-
larly interesting from the perspective of state transformations.
On the one hand, this is because most of them cannot even
be reached in polynomial time, even if constant-size nonlocal
quantum gates are allowed [10]. On the other hand, generic
multiqudit states of N > 4 d-dimensional subsystems cannot
be transformed into nor be obtained from any inequivalent
multipartite states of the same dimensions via LOCC [11,12].1

This shows that investigations can be focused on transforma-
tions among states within a nongeneric subset of physically
relevant, i.e., naturally occurring in certain physical contexts,
multipartite quantum states.

The starting point of the investigation of entanglement is
the characterization of SLOCC classes: An N-partite state |�〉
is SLOCC equivalent to a state |�〉 if there exist local invert-
ible operators g j ( j = 1, . . . , N) such that |�〉 = ⊗N

j=1g j |�〉.
Physically this means that one can obtain |�〉 with a finite
probability (i.e., for certain measurement outcomes) by ap-
plying only local generalized measurements on the state |�〉.

1Here and in the following we do not consider local unitary trans-
formations, as they can always be applied locally and as they do not
alter the entanglement contained in the system.
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Since SLOCC-inequivalent states are not related to each other
via local operations, their entanglement, viewed as a resource
cannot be compared. This is why, in the context of entangle-
ment theory, the study of state transformations and SLOCC
classes is central [2]. Whereas in general it is impossible to
characterize the SLOCC classes for a large (N > 4) number
of constituents and there exist infinitely many classes, the
problem has been solved for various physically relevant sets of
states. For instance, SLOCC classes have been characterized
for symmetric states [13,14], i.e., those that are invariant under
permutations, or for certain tripartite (N = 3) and four-partite
(N = 4) states [9,15–17].

In Ref. [18] we presented a systematic investigation of state
transformations of translationally invariant matrix product
states (MPSs) with periodic boundary conditions. This family
of states is physically relevant, as well as mathematically
tractable. In physics, MPSs efficiently describe the ground
state of local, gapped Hamiltonians [19], as well as critical
systems. They also correspond one to one to the states that
are prepared in the context of sequential generation [20],
where one system sequentially interacts with a set of sub-
systems originally in a product state. From the mathematical
point of view, they admit an efficient description in terms of
N tripartite (fiducial) states, or a single one if the state is
translationally invariant. In Ref. [18] we showed how local
transformations and SLOCC classes of translationally invari-
ant MPSs can be characterized. We demonstrated that these
properties can be inferred from the corresponding properties
of the fiducial states and certain cyclic structures of operators
acting on these fiducial states. We showed that these properties
can be highly size dependent and revealed many interesting
features of prominent many-body states, such as the cluster
[21] and the AKLT state [22]. The methods introduced in [18]
can also be used to identify all local symmetries of MPS (not
only corresponding to global unitary operators [23,24]).2 Such
a characterization induces a classification of zero temperature
phases of matter [25–27].

Whereas we provided in [18] a complete characterization
of local symmetries and SLOCC classes of translationally
invariant MPSs with bond dimension D = 2, we extend these
results here to the case D = 3. Interestingly, this increment
leads to very different local properties of the corresponding
MPSs. This is not only seen in the local symmetries, but
also in the possible SLOCC transformations and the SLOCC
classes.

A. Outline

We summarize our results in Sec. II, where we also in-
troduce some notation. In Sec. III we discuss preliminaries.
In the subsequent sections we characterize the symmetries of
normal translationally invariant MPSs (TIMPSs) with physi-
cal dimension 2 and bond dimension D = 3. There exist six
SLOCC classes for the fiducial state in this case. We focus
on two of them featuring considerably contrasting properties.

2By local (global) symmetries we mean (in-)homogeneous symme-
tries, i.e., that a different (the same) action operates on each physical
system.

In Sec. IV we discuss a fiducial state for which only a dis-
crete number of operators g acting on the qubit give rise to a
symmetry of the state. In Sec. V we discuss a fiducial state
for which any operator g acting on the qubit may give rise
to a symmetry of the state. We characterize the symmetries
of the generated (normal) MPS for both of them. Regarding
the SLOCC classification we scrutinize on the latter SLOCC
class of the fiducial states (Sec. V). All the other classes can
be treated similarly. We show that, in contrast to MPSs with
bond dimension 2, a much larger variety of local and global
symmetries occur in this class. Whereas in general more local
symmetries imply larger SLOCC class, we show that here this
is not the case. In fact, we show that any SLOCC transforma-
tion which is possible within those states is realizable with a
global SLOCC operation. Finally, in Sec. VI we study fiducial
states represented by diagonal matrix pencil for a bond dimen-
sion D � 3. In Appendixes B to F and H we present additional
details on the concepts used, as well as proofs of claims made
in Secs. IV and V. In Appendix G we discuss symmetries of
MPSs associated to fiducial states belonging to one of the four
remaining SLOCC classes.

II. SUMMARY OF RESULTS

Before we summarize our findings, we introduce the fol-
lowing notation and basic concepts, which are needed in
order to formulate our results. MPSs are multipartite states
defined in terms of three-partite tensors. We denote the phys-
ical dimension of the MPS by d and the bond dimension by
D. Given a rank-three tensor A with respective index ranges
0, . . . , d − 1, 0, . . . , D − 1, and 0, . . . , D − 1,

A =
d−1∑
i=0

|i〉 ⊗ Ai =
d−1∑
i=0

D−1∑
α,β=0

Ai
αβ |i〉 ⊗ |α〉〈β|,

we often write

|A〉 =
d−1∑
i=0

D−1∑
α,β=0

Ai
αβ |i〉 ⊗ |α〉 ⊗ |β〉. (1)

This vector is then called the fiducial state corresponding to
the MPS tensor A. An MPS on N subsystems is then de-
fined in terms of the (in general site-dependent) tensors Ak

(k ∈ {0, . . . , N − 1}) by

|�〉 =
∑

i0,...,iN−1

tr
(
Ai0

0 · · · AiN−1
N−1

)|i0 · · · iN−1〉. (2)

If A = A0 = · · · = AN−1, the MPS is translationally invariant
(TI). In the TI case we may call |�〉 = |�(A)〉 the MPS
generated by the tensor A. In fact, A generates a whole family
of MPSs of arbitrarily large system size, N .

Let us briefly recall some concepts from entanglement
theory that are relevant for this work. Two N-partite states |ψ〉,
|φ〉 are said to be local unitary (LU) equivalent (|ψ〉 ∼LU |φ〉)
if there exists a LU operator u = u1 ⊗ · · · ⊗ uN such that
u|ψ〉 = |φ〉. If |ψ〉 can be transformed into |φ〉 via LOCC
with finite probability of success, this transformation is said
to be possible via stochastic LOCC (SLOCC) and we write
|ψ〉 → |φ〉. Note that |ψ〉 → |φ〉 holds if and only if there ex-
ists a local operator g = g0 ⊗ · · · ⊗ gN−1 such that |φ〉 = g|ψ〉
[5]. If |ψ〉 → |φ〉 and |φ〉 → |ψ〉 the two states are said to be
SLOCC equivalent. This is the case if and only if there exists
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an invertible local operator g such that |φ〉 = g|ψ〉 [9]. The
corresponding equivalence classes are called SLOCC classes.
We denote the group of local symmetries3 of a state |ψ〉 by

S|ψ〉 = {S : S|ψ〉 = |ψ〉, S = S0 ⊗ S1 ⊗ · · · },
where Si ∈ GL(di,C) and di denotes the local dimensions of
|ψ〉.

We will focus here on normal (for a definition see Sec. III)
translationally invariant MPSs (TIMPSs) with physical di-
mension d = 2 and bond dimension D = 3 and discuss the
higher bond dimensional case in Sec. VI. We study the local
symmetries of MPSs; i.e., for MPS |�〉 we characterize the
set S|�〉. Moreover, we study the SLOCC classes of MPSs.
Note that both the local symmetries as well as the SLOCC
classification might depend on the number of subsystems.

In Ref. [18] we showed that the local symmetries, possible
SLOCC transformations, and the SLOCC classes of normal
MPSs, |�(A)〉, are determined by certain cyclic structures of
operators that are solely defined by its fiducial state, |A〉. More
precisely, they are determined by the properties of the symme-
try group of the fiducial state S|A〉, which we also denote by

GA = {h = g ⊗ x ⊗ yT | h|A〉 = |A〉}, (3)

where T denotes the transpose in the standard basis. Given
GA, the only operators which can occur in a symmetry of
the normal MPSs are those which act on the qubit system,
i.e., the operators g in Eq. (3). We call these symmetries the
qubit symmetries. The symmetries of the normal MPSs are
determined by specific properties of the symmetries of the
fiducial state, so-called cycles (see [18] and Sec. III), i.e., a
series of symmetries h1, h2, . . . , hN such that ykxk+1 ∝ 1 for
all k (from here on, in an N-cycle all indices are taken mod
N). To give an example, a 2-cycle h0 = g0 ⊗ x0 ⊗ (x−1

1 )T and
h1 = g1 ⊗ x1 ⊗ (x−1

0 )T in GA leads to a symmetry g0 ⊗ g1 ⊗
g0 ⊗ g1 ⊗ · · · of the MPS |�(A)〉 for any even N . It should be
noted that the concept of cycles allows one to characterize the
full symmetry group of normal MPSs. For nonnormal MPSs,
the concept might yield only a subgroup of the symmetry
group. Whether a TIMPS is normal or not depends only on
properties of the fiducial state.

Note that if the two fiducial states generating normal MPSs
are SLOCC inequivalent, then the same holds for the MPSs.
The fiducial states corresponding to the MPS of interest (D =
3) can be divided into six distinct SLOCC classes [17]. We
focus here on two of them, which show considerably contrast-
ing properties with respect to their symmetry groups. Since
the two classes we focus on can be considered as the two
extreme cases, all the other classes can be treated similarly.
The two considered SLOCC classes of the fiducial states
are represented by (the notation used here will become clear
afterwards) the following:

(i) |M(ω)〉 = |0〉(|00〉 + ω|11〉 + ω2|22〉) + |1〉(|00〉 +
|11〉 + |22〉), where ω = ei 2π

3 (see Sec. IV)

3Note that we consider here only invertible local symmetries. That
is, we do not characterize those local operators, which annihilate
the state. In the cases investigated here, such symmetries contain
necessarily two rank one projectors.

(ii) |LLT 〉=|0〉(|01〉+|22〉)+|1〉(|00〉+|12〉), (see Sec. V).
The SLOCC class represented by some state |A〉 is given by

a ⊗ b ⊗ c|A〉, for any invertible operators a, b, c. In order to
determine both the symmetries as well as the SLOCC classes
of all MPSs which correspond to a fiducial state belonging to
the SLOCC class represented by |A〉, it suffices to consider
fiducial states of the form 1 ⊗ b ⊗ 1|A〉 only [18].

The main result of the present article is a full character-
ization of the local symmetries of normal MPSs generated
by fiducial states within these two SLOCC classes, as well
as a full characterization of SLOCC equivalence among nor-
mal MPSs corresponding to case (ii)—we outline only the
procedure for case (i), as the SLOCC classification is much
simpler in that case. In case (i), the set of qubit symmetries are
finite and unitary (in fact, they form a unitary representation
of the symmetric group S3).4 In case (ii), any operator g acting
on the qubit system, i.e., on the physical system, leads to a
symmetry of the fiducial state. Stated differently, there is as
much freedom in the qubit symmetries as there could possibly
be. A goal of this work is to illustrate how the contrasting
properties of the two considered classes of fiducial states
manifest also in the properties of the associated MPSs. We
highlight this in form of a comparison of selected properties
of the MPSs in Table I. The properties of the symmetry group
of the remaining four representatives of the fiducial states
lie between the two considered extreme cases. Note that the
symmetry groups of the fiducial states for D = 2, the GHZ
and the W state exhibiting 1- and 2-parametric qubit symme-
tries (we count complex parameters here and throughout the
remainder of the article), respectively, do not draw near the
here considered extremal cases either. This is reflected in the
properties of the generated MPSs (see Table I). The outlined
main results are accompanied by several results on nonnormal
MPSs, a discussion on bond dimension D > 3, and results on
MPSs associated to the remaining SLOCC classes of fiducial
states for D = 3 (see Secs. V E and VI and Appendix G).

Let us now discuss the results obtained for the two respec-
tive SLOCC classes of fiducial states. In case (i), |M(ω)〉, as
mentioned above, the set of qubit symmetries is finite and
unitary. This leads to finitely many local symmetries of the
corresponding MPS (for arbitrary system size). We determine
all possible local symmetries (see Table II). All minimal cy-
cles are of length 1,2,3,4,6. Furthermore, we characterize all
fiducial states in this SLOCC class which generate normal
MPSs and which lead to the symmetries presented in Table II.
Despite the fact that deciding whether a family of states is
normal or not can be cumbersome, a complete parametrization
of the corresponding fiducial states, i.e., the operators b can be
found in Appendix B.

Given that the set GA is finite it is straightforward to deter-
mine all possible SLOCC transformations. Stated differently,
it is easy to determine which pairs of fiducial states lead to
MPSs |�〉 and |�〉 such that |�〉 ∝ g0 ⊗ g1 · · · ⊗ gN−1|�〉,
where gi denote local regular matrices. We outline how this
question can be answered and how the SLOCC classification

4Note that in the case where there exist only finitely many sym-
metries, one can always chose a representative of the SLOCC class
whose symmetry is unitary.

032424-3



MARTIN HEBENSTREIT et al. PHYSICAL REVIEW A 105, 032424 (2022)

TABLE I. Highlights of the obtained results. Out of the six possible SLOCC classes for fiducial states with D = 3, we consider two
representatives with considerably contrasting properties. The representative of the class M(ω) (see left column) leads to only six different,
unitary, operators appearing as qubit symmetries. The representative of the class LLT has a symmetry group in which any operator g appears
as a qubit symmetry. Note that the properties of the remaining four representatives lie between those two extremal cases, as do fiducial states
for D = 2. We summarize and illustrate how the substantial differences in the symmetry groups lead to considerably contrasting properties in
the generated MPS regarding the exhibited symmetries and SLOCC equivalence. We also compare to properties of (D = 2)-MPS generated by
W and GHZ states (left and right bottom).

can be derived. In fact, many potential SLOCC transfor-
mations can be ruled out due to the incompatibility of the
symmetry groups of the corresponding states. Within the re-
maining cases we provide examples of states which are not
SLOCC equivalent, those which are via global transforma-
tions, and those which require nonglobal transformations.

The reason for investigating case (ii), i.e., TIMPSs which
correspond to fiducial states within the SLOCC class repre-
sented by |LLT 〉, is that the properties of the fiducial states
are in stark contrast to the previously considered case. Thus,
the properties of the corresponding MPS also can be expected
to be. In fact, in this class, the fiducial state has infinitely many
qubit symmetries. As mentioned above, actually, any operator
g acting on the physical system leads to a symmetry of the
fiducial state. This is why the study of this class is particularly
interesting. As we show, this leads to a huge variety of local
symmetries of the corresponding MPS. Any possible cycle
length actually appears, moreover, finite as well as infinite
symmetry groups emerge. Among them, we find diagonal-
izable as well as nondiagonalizable symmetries. A complete
characterization of all possible symmetries for normal MPSs
is presented in Fig. 4. Although such large symmetry groups
could lead one to believe that there are many possible SLOCC
transformations, we show that, surprisingly, the opposite is

true. All possible SLOCC transformations can be performed
via global operations, i.e., for any two states, |�〉 and |�〉,
which are SLOCC equivalent, there exists a global operator
g⊗N such that |�〉 ∝ g⊗N |�〉. Note that, in contrast to case
(i) and also the case of TIMPSs with bond dimension D = 2
MPS generated by GHZ states (see [18]), this implies that
the existence of a SLOCC transformation among two TIMPSs
does not depend on the system size. In contrast to case (i), the
characterization of the SLOCC classes is more challenging
due to the large symmetry groups. We provide a parametriza-
tion of representatives of each SLOCC class in Fig. 5. The fact
that two states are in the same SLOCC class if and only if they
are related to each other via a global operation leads to a huge
variety of SLOCC classes.

As mentioned above, only for normal MPSs does it hold
that the whole local symmetry group of the TIMPS can
be determined via the local symmetries of the correspond-
ing fiducial state. For nonnormal MPSs, the methodology of
cycles is still useful, but the determined symmetries might
form a subgroup of the symmetry group of the MPSs only.
Interestingly, in case (ii), the whole symmetry group can
also be determined for certain nonnormal MPSs. This is due
to the fact that those states correspond to permutationally
invariant states, for which the local symmetry groups are
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TABLE II. Characterization of all possible cycles in Gb [con-
sidering fiducial states 1 ⊗ b ⊗ 1|M(ω)〉], and thus, all possible
symmetries of associated normal MPSs. Cycles of lengths 1, 2, 3,
4, and 6 are possible. The third column gives the physical operators,
here we use the shorthand notation τ in place of gτ , etc. Note that
the given cycles should be understood as generators, i.e., the cycle
C3, 1 ⊗ S ⊗ 1 ⊗ S2, also comprises the cycle S ⊗ S ⊗ S2 ⊗ S2, or T τ

6

also comprises ε ⊗ ε ⊗ κ ⊗ κ , etc. In the second column, we indicate
which cycles emerge as a subgroup of the cycle at hand.

Label Subgroup(s) Cycle Length

C0 – S 1
T τ

0 – τ 1
T ε

0 – ε 1
T κ

0 – κ 1
C1 – S ⊗ S2 2
T τ

1 T τ
0 1 ⊗ τ 2

T ε
1 T ε

0 1 ⊗ ε 2
T κ

1 T κ
0 1 ⊗ κ 2

T τ
2 T τ

0 , C1 ε ⊗ κ 2
T ε

2 T ε
0 , C1 τ ⊗ κ 2

T κ
2 T κ

0 , C1 τ ⊗ ε 2
C2 C0 1 ⊗ S ⊗ S2 3
T τ

3 – 1 ⊗ τ ⊗ τ 3
T ε

3 – 1 ⊗ ε ⊗ ε 3
T κ

3 – 1 ⊗ κ ⊗ κ 3
T �

4 C0 τ ⊗ κ ⊗ ε 3
T �

4 C0 τ ⊗ ε ⊗ κ 3
T �

5 C2, C0 τ ⊗ τ ⊗ κ 3
T �

5 C2, C0 τ ⊗ τ ⊗ ε 3
C3 – 1 ⊗ S ⊗ 1 ⊗ S2 4
T τ

6 C3, T τ
0 κ ⊗ τ ⊗ ε ⊗ τ 4

T ε
6 C3, T ε

0 τ ⊗ ε ⊗ κ ⊗ ε 4
T κ

6 C3, T κ
0 ε ⊗ κ ⊗ τ ⊗ κ 4

C4 C1 1 ⊗ S ⊗ S ⊗ 1 ⊗ S2 ⊗ S2 6
T τ

7 C4, C1, T τ
2 , T τ

0 κ ⊗ τ ⊗ ε ⊗ ε ⊗ τ ⊗ κ 6
T ε

7 C4, C1, T ε
2 , T ε

0 τ ⊗ ε ⊗ κ ⊗ κ ⊗ ε ⊗ τ 6
T κ

7 C4, C1, T κ
2 , T κ

0 ε ⊗ κ ⊗ τ ⊗ τ ⊗ κ ⊗ ε 6

known [14,28,29]. Moreover, in case (ii) it turns out that cer-
tain nonnormal MPSs are well-known states, the Majumdar-
Ghosh states. We show that nonnormal MPSs show a distinct
behavior compared to normal ones (see Sec. V E). Not only
do we provide examples of nonnormal states which possess a
much larger symmetry group than the one determined by the
fiducial state, but also examples of states which are SLOCC
equivalent but cannot be transformed into each other via a
global transformation, in contrast to all normal MPSs corre-
sponding to case (ii).

A. Particularly interesting states

In this subsection we present selected fiducial states, which
generate MPSs with particularly interesting properties with
respect to their symmetry group. In light of these examples it
is evident that bond dimension D = 3 allows for much more
diverse symmetry groups than is the case for bond dimension
D = 2 [18].

For the examples presented here we use a notation to label
the fiducial states reflecting the properties of the symmetry

groups as follows. We use the notation |1/2 G(∞) Dl1,l2,...
(∞) 〉 to

label a fiducial state (primarily) according to the properties
of the symmetry group of the generated MPS. The notation
should be read in three parts: “1/2”, “G(∞)”, and “Dl1,l2,...

(∞) ”. It
should be understood as follows. The first part, “1/2”, should
read either “1”, or “2”, and indicates whether the fiducial state
belongs to the SLOCC class represented by |M(ω)〉 (in case
of “1”), or |LLT 〉 (in case of “2”). The second part, “G(∞)”,
describes the global symmetries of the generated MPS. It
should read “G” (“G∞”), in case finitely many (infinitely
many) nontrivial global symmetries are present. The third
part, “Dl1,l2,...

(∞) ”, describes the local symmetries of the MPS.
As before, the presence of the subscript ∞ indicates whether
there are finitely of infinitely such symmetries. Moreover, the
integers l1, l2, . . . are used to indicate that the local part of
the symmetry group changes depending on whether l1, l2, . . .
divide the particle number N . In case the MPS does not posses
any nontrivial local (any nontrivial global) symmetry, we sim-
ply omit the “D” (“G”) part. Clearly, the naming scheme does
not allow to unambiguously identify MPS, but it suffices to
distinguish the examples considered here.

1. Examples of fiducial states within the SLOCC
class represented by |M(ω)〉

The first example is given by the fiducial state
|1 G〉 = |012〉 + |021〉 + |101〉 + |102〉 + ω(|001〉 + |010〉 +
|110〉 + |112〉) + ω2(|002〉 + |020〉 + |120〉 + |121〉). The
corresponding tensor A read

A0 =
⎛
⎝ 0 ω ω2

ω 0 1
ω2 1 0

⎞
⎠ and A1 =

⎛
⎝ 0 1 1

ω 0 ω

ω2 ω2 0

⎞
⎠.

The generated MPS |�(A)〉 has global symmetries only. The
symmetry group is finite and unitary and given by g⊗N , where
g is any of the six operators generated by σx = (0 1

1 0) and
diag(ω, 1).

The second example is given by the fiducial state
|1 G D3〉 = |000〉 + |002〉 + |012〉 + |100〉 + |101〉 + |121〉 +
ω(|001〉+|021〉+ |022〉+|102〉+|111〉+|112〉)+ω2(|010〉 +
|011〉 + |020〉 + |110〉 + |120〉 + |122〉). The corresponding
tensor B reads

B0 =
⎛
⎝ 1 ω 1

ω2 ω2 1
ω2 ω ω

⎞
⎠ and B1 =

⎛
⎝ 1 1 ω

ω2 ω ω

ω2 1 ω2

⎞
⎠.

The corresponding MPS |�(B)〉 has the same global symme-
tries as the first example, |�(A)〉. If the particle number of the
MPS, N , is not a multiple of 3, these are the only symmetries
and the symmetry group is thus identical to the first exam-
ple. If, however, N is a multiple of 3, then additional local
symmetries emerge. Then, the symmetry group comprises 18
elements and is generated by repeating sequences (what we
will later call cycles) of g0 ⊗ g1 ⊗ g2, as well as by repeating
sequences of g0 ⊗ g2 ⊗ g1 (and translations thereof), where
g0 = σx, g1 = diag(ω, 1)σx, and g2 = diag(ω, 1)2σx.

The third example is given by the fiducial state
|1 G D2,6〉=|000〉+|002〉+|022〉 + |100〉 + |101〉 + |111〉 +
ω(|001〉+|011〉+|012〉+|102〉+|121〉+|122〉)+ω2(|010〉 +
|020〉 + |021〉 + |110〉 + |112〉 + |120〉). The corresponding
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tensor C reads

C0 =
⎛
⎝ 1 ω 1

ω2 ω ω

ω2 ω2 1

⎞
⎠ and C1 =

⎛
⎝ 1 1 ω

ω2 1 ω2

ω2 ω ω

⎞
⎠.

The generated MPS |�(C)〉 possesses the global symme-
try g⊗N for g = σx. In case of an even particle number
N , the MPS possesses local symmetries and the symme-
try group is generated by repeating sequences of g0 ⊗ g1,
where g0 = diag(ω, 1)σx and g1 = diag(ω, 1)2σx. Moreover,
in case that N is divisible by 6, additional local symmetries
emerge, repeating sequences of g0 ⊗ g1 ⊗ g2 ⊗ g3 ⊗ g4 ⊗ g5,
where g0 = g5 = diag(ω, 1)σx, g1 = g4 = σx, and g2 = g3 =
diag(ω2, 1)σx generate the symmetry group, then. This exam-
ple is particularly interesting as the MPS |�(C)〉 is SLOCC
equivalent to the previous example, |�(B)〉, for an even parti-
cle number N . However, this is not the case if N is odd. This
leads to the following possible situations:

(1) If 2 divides N , but 3 does not, then |�(B)〉 and |�(C)〉
are SLOCC equivalent and their symmetry groups are of
order 6.

(2) If both 2 and 3 divide N , then |�(B)〉 and |�(C)〉 are
SLOCC equivalent and their symmetry groups are of order 18.

(3) If 3 divides N , but 2 does not, then |�(B)〉 and |�(C)〉
are not SLOCC equivalent. Remarkably, the orders of the
corresponding symmetry groups differ. The symmetry group
of |�(B)〉 is of order 18, while the symmetry group of |�(C)〉
is of order 2.

(4) Finally, if neither 2, nor 3 divides N , then |�(B)〉 and
|�(C)〉 are not SLOCC equivalent, and again the orders of the
symmetry groups differ. The symmetry group of |�(B)〉 is of
order 6, while the symmetry group of |�(C)〉 is of order 2.

The fourth example is given by the fiducial state |1 D3〉 =
|012〉 − |021〉 + |101〉 + |102〉 + ω(|001〉 − |010〉 + |022〉 −
|110〉−|111〉+|112〉)+ ω2(|002〉 − |011〉 + |020〉 + |120〉 −
|121〉 + |122〉). The corresponding tensor D reads

D0 =
⎛
⎝ 0 ω ω2

−ω −ω2 1
ω2 −1 ω

⎞
⎠

and D1 =
⎛
⎝ 0 1 1

−ω −ω ω

ω2 −ω2 ω2

⎞
⎠.

The generated MPS |�(D)〉 does not exhibit any global sym-
metry (except the trivial symmetry); however, it does possess
local symmetries if N is a multiple of 3. Its symmetry group
then is of order 4 and is generated by repeating sequences
of g0 ⊗ g1 ⊗ g2 (and translations thereof), where g0 = 1 and
g1 = g2 = σx.

Additional possible symmetry groups [in fact, all possible
symmetry groups for normal MPSs generated by a fiducial
state that is in the SLOCC class of |M(ω)〉] are displayed
in Fig. 2. Examples of MPSs exhibiting the corresponding
symmetry groups may be easily constructed with the help of
Table II.

2. Examples of fiducial states within the SLOCC
class represented by |LLT〉

The fifth example is given by the fiducial state |2 G∞〉 =
|002〉 − |012〉 + |021〉 + |022〉 − |112〉 + |120〉. The corre-
sponding tensor E reads

E0 =
⎛
⎝0 0 1

0 0 −1
0 1 1

⎞
⎠ and E1 =

⎛
⎝0 0 0

0 0 −1
1 0 0

⎞
⎠.

The generated MPS |�(E )〉 has a one-parameter symmetry
group (counting complex parameters) of global symmetries
g⊗N , where g = (1 x

0 1) for any x ∈ C.
The sixth example is given by the fiducial state |2 Dm

∞〉 =
ei π

m |002〉 + |021〉 + |022〉 − e−i π
m |112〉 + |120〉 for some m ∈

N. The corresponding tensor F reads

F 0 =
⎛
⎝0 0 ei π

m

0 0 0
0 1 1

⎞
⎠ and F 1 =

⎛
⎝0 0 0

0 0 −e−i π
m

1 0 0

⎞
⎠.

The generated MPS |�(F )〉 has a nontrivial symmetry group
only if the particle number N is a multiple of m. Then the MPS
exhibits a one-parameter symmetry group of local symmetries

g0 ⊗ g1 ⊗ · · · , where gk = (1 xei 2kπ
m

0 1
), x ∈ C.

The seventh example is given by the fiducial state
|2 G D2

∞〉= i|002〉+ |021〉 + |022〉 + i|112〉 + |120〉 + |122〉.
The corresponding tensor G reads

G0 =
⎛
⎝0 0 i

0 0 0
0 1 1

⎞
⎠ and G1 =

⎛
⎝0 0 0

0 0 i
1 0 1

⎞
⎠.

In case of an odd particle number N , the generated MPS
|�(G)〉 has a single nontrivial symmetry g⊗N , where g = iσx.
In case of an even particle number the MPS exhibits a contin-
uous symmetry group with symmetries g0 ⊗ g1 ⊗ g0 ⊗ g1 ⊗
· · · , where g0 = (1 x

x 1) and g1 = g−1
0 for any x ∈ C \ {1}.

As an eighth example we give the well-known Majumdar-
Ghosh states, which are nonnormal MPSs possessing the
symmetry group g⊗N for any g. They appear as a particular
case within the SLOCC class of fiducial states represented
by |LLT 〉 (see Sec. V E). One such state may be obtained
considering the MPS tensor

H0 =
⎛
⎝0 0 1

0 0 0
0 1 0

⎞
⎠ and H1 =

⎛
⎝0 0 0

0 0 −1
1 0 0

⎞
⎠.

A list of all representatives of normal MPSs generated by
fiducial states within the |LLT 〉 class is presented in Fig. 5,
the emerging symmetry groups of the generated MPSs are
displayed in Fig. 4.

We briefly discuss the remaining SLOCC classes of the
fiducial states in Appendix G. Moreover, we show that for
generic fiducial states of higher bond dimension, there exists
no nontrivial local symmetry. That is the set S|�〉 = {1}, which
also implies that the SLOCC classification is trivial.
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III. PRELIMINARIES

In this section we review relevant concepts from the theory
of MPSs (Sec. III A) and of Ref. [18] (Sec. III B).

A. Matrix product states

Since injective and normal MPSs (not necessarily TI) play
a crucial role in the theory of MPS, we recall here their
definitions.

Definition 1. A MPS tensor A is injective if the following
map is injective:

X �→
∑

i

tr(XAi )|i〉.

A MPS is injective if all the defining tensors are injective. A
MPS is normal if there exists an L such that the contraction
of any L consecutive tensors are injective, i.e., the following
maps are injective:

X �→
∑

j

tr
(
XAj1

i A j2
i+1 · · · AjL

i+L−1

)| j1 · · · jL〉.

In the following we consider only MPSs with N � 2L + 1,
if not stated differently. In this case the following fundamen-
tal theorem of MPSs characterizes when two normal MPSs
generate the same state.

Theorem 1 (Fundamental Theorem of MPS [30]). Two nor-
mal MPSs given by tensors A0, . . . , AN−1 and B0, . . . , BN−1

generate the same state |�〉 iff there exist regular matrices
x0, . . . , xN−1 such that Aj

k = x−1
k B j

kxk+1 for all k and j, with
xN ≡ x0; that is, iff

|Ak〉 = 1 ⊗ x−1
k ⊗ xT

k+1|Bk〉 ∀ k. (4)

The matrices x0, . . . , xN−1 are unique up to a multiplicative
constant.

Whenever we refer to MPSs in the remainder of this paper
we refer to normal TIMPSs, if not stated differently. We call
NN,D the set of normal, TIMPSs with bond dimension D and
N � 2L + 1 sites.

B. Review of results on symmetries and local
transformations of MPSs

As mentioned before, the local symmetries of a normal
MPS, |�(A)〉, are determined by certain cyclic structures in
the symmetry group GA [see Eq. (3)] of its fiducial state, |A〉
[18]. Two operators h0, h1 ∈ GA with hi = gi ⊗ xi ⊗ yT

i can be
concatenated, denoted as h0 → h1, if y0x1 ∝ 1. A sequence
{hi}k−1

i=0 ⊆ GA of k elements in GA with

h0 → h1 → · · · → hk−1 → h0 (5)

is called a k-cycle. More explicitly, we have that the sequence
{hi}N−1

i=0 ⊆ GA of N elements in GA form a N-cycle if the
following conditions hold for any 0 � k � N − 1:

ykxk+1 ∝ 1, (6)

where all indices are taken modN . We showed the following
theorem.

Theorem 2 ([18]). The local (global) symmetries of
�(A) ∈ NN,D are in one-to-one correspondence with the N-
cycles (1-cycles) in GA.

The symmetry of the state corresponding to the cycle
h0 → h1 → · · · → hN−1 → h0 is g0 ⊗ · · · ⊗ gN−1. Hence,
one solely has to determine GA and find all N-cycles in
this set to characterize the local symmetries of |�(A)〉. In
fact, this yields the symmetries of all states in the family of
normal MPSs generated by A. In practice, it is sufficient to
characterize all minimal cycles of GA from which all others
can be obtained by concatenation. For example, a 3-cycle can
always be concatenated with itself to an N-cycle if 3 divides
N . A symmetry of the form g⊗N is called global. The global
symmetries are defined in terms of 1-cycles, and thus require
that there is a regular x such that g ⊗ x−1 ⊗ xT |A〉 = |A〉 [18].
If g is unitary, this reduces to the well-known characteriza-
tion of global unitary symmetries of MPS [23,24]. However,
minimal cycles of length N > 1 yield local symmetries of the
TIMPS |�(A)〉 that are not global and that are generally not
considered.

We often consider fiducial states 1 ⊗ b ⊗ 1|A〉. The con-
catenation conditions [see Eq. (6)] then read

ykbxk+1b−1 ∝ 1. (7)

In order to characterize SLOCC transformations among
normal MPSs, one first notices that the corresponding fidu-
cial states need to be SLOCC equivalent. We considered in
Ref. [18] the set

GA,B = {h = g ⊗ x ⊗ yT | h|A〉 = |B〉}.
As in the case of GA we can define k-cycles on GA,B. Using

the notation A
N→ B if the N-partite MPS |�(A)〉 can be trans-

formed via local operations into the N-partite MPS |�(B)〉,
we proved the following theorem in Ref. [18].

Theorem 3 ([18]). A
N→ B with local (global) transforma-

tions iff there exists an N-cycle (1-cycle) in GA,B.
In this theorem the operators which transform A to B are

not necessarily regular. Here we focus on SLOCC transfor-
mations, i.e., on invertible matrices on the physical (as well
as the virtual) systems. As shown in [18], in order to solve
the problem of SLOCC equivalence (and also the symme-
tries), it is sufficient to consider fiducial state of the form
|Ab〉 = 1 ⊗ b ⊗ 1|A〉, where |A〉 denotes a representative of
the SLOCC class of the fiducial states. Let us briefly recall
the reason for that. First, it is clear that the two fiducial states
corresponding to SLOCC-equivalent normal TIMPSs must be
SLOCC equivalent. Second, g⊗N |�(A)〉 is obviously SLOCC
equivalent to |�(A)〉 and therefore the operator on the qubit
system does not need to be taken into account. And, third, due
to the fundamental theorem (see Theorem 1), an operator on
the third system can be mapped to an operator on the second.
Clearly, the same argument applies when considering local
symmetries.

According to Theorem 3, two normal TIMPSs correspond-
ing to the fiducial states |Ab〉, |Ac〉, respectively, are SLOCC
equivalent iff there exists an N-cycle in GAb,Ac (or, equiv-
alently, in GAc,Ab). Using that GAb,Ac = (1 ⊗ c ⊗ 1)GA(1 ⊗
b−1 ⊗ 1) the existence of such a cycle can be formulated in
terms of the symmetries of the fiducial state representing the
SLOCC class as follows. The operators h0, h1 ∈ GA, with hi =
gi ⊗ xi ⊗ yT

i , are called (b → c)-concatenatable, if y0bx1 ∝ c.

In this case we write h0
b→c−−→ h1. A sequence {hi}k−1

i=0 ⊆ GA is
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called a (b → c)-k-cycle if

h0
b→c−−→ h1

b→c−−→ · · · b→c−−→ hk−1
b→c−−→ h0. (8)

Stated explicitly, {hi}N−1
i=0 ⊆ GA is a (b → c)-N-cycle if the

following concatenation rules are fulfilled for any k such that
0 � k � N − 1:

ykbxk+1 ∝ c, (9)

where all indices are taken modN .
As in the case of symmetries it might be possible that GA,B

contains only k-cycles with k � 2. Then |�(A)〉 → |�(B)〉
holds only if k divides N and the corresponding SLOCC
operator is not global, i.e., not of the form g⊗N . Note that
Theorem 3 was used in [18] to characterize all SLOCC classes
of normal MPSs.

C. The fiducial states of TIMPS with physical dimension d = 2
and bond dimension D = 3

As we reviewed above, the symmetries and the SLOCC
classes of TIMPSs can be characterized by considering sets of
operators, which are determined by the three-partite fiducial
states.

The fiducial states of TIMPSs with physical dimension d
and bond dimension D are d × D × D states. We focus on the
case d = 2 and D = 3 and discuss extensions of the results
presented here in the Appendixes. For d = 2 (and arbitrary D)
the SLOCC classes have been determined using the theory of
matrix pencils (MPs) [17,31,32]. Since this theory is also well
suited to determine the symmetries of the states, we briefly
review it here. To the three-partite state given in Eq. (1) we
associate the homogeneous matrix polynomial (MP),

PA ≡ P(A0,A1 ) ≡ μA0 + λA1, (10)

where μ, λ are complex variables and A0, A1 ∈ CD×D′
. In

Ref. [31] Kronecker showed that for each MP PA there exist
regular matrices independent of λ and μ, B and CT , such
that BPACT is in a block-diagonal form, called the Kronecker
canonical form (KCF), such that each block is one of the
following:

(1) A k × l matrix Zk,l with all 0 entries
(2) A matrix Lk of size k × (k + 1) of the form

Lk =

⎛
⎜⎜⎝

λ μ

λ μ
. . .

λ μ

⎞
⎟⎟⎠

(3) A matrix LT
k of size (k + 1) × k, where L is defined in

the previous point
(4) A matrix Nk of size k × k of the form

Nk =

⎛
⎜⎜⎝

λ μ

λ μ
. . .

λ

⎞
⎟⎟⎠

(5) A matrix Mk (x) of size k × k of the form

Mk (x) =

⎛
⎜⎜⎝

μx + λ μ

μx + λ μ
. . .

μx + λ

⎞
⎟⎟⎠,

where x is an arbitrary complex number.
This block-diagonal form of the MP is unique up to a

permutation of the blocks. We will denote the block-diagonal
form with a direct sum notation: for example, if the KCF of
the MP contains one block of Lk and one block of LT

k , then
we write Lk ⊕ LT

k for the KCF. The MP is said to be regular if
only blocks of type M and N appear in it. If type-N block(s)
appear in the KCF of the MP, then it is said to have infinite
eigenvalues; the numbers x appearing in the type-M blocks
are called the finite eigenvalues of the MP. For two MPs PA1

and PA2 the equation PA1 = BPA1C
T holds for some regular

λ,μ-independent matrices B,C if and only if the two matrix
pencils have the same KCF (up to permutation of the blocks);
in this case the two MPs are said to be strictly equivalent. The
KCF together with the results presented in [17,32] can be used
to determine both the SLOCC classes of the states as well as
the symmetries of the state, as we will show in the following.

As shown in [17] there is always an operation on the qubit
that transforms a 2 × D × D state A into a state whose MP
has only finite eigenvalues [17]. Furthermore, the operation
on the qubit cannot change the structure of the MP, but only
its eigenvalues.

More precisely, the action of

w =
(

α β

γ δ

)
∈ GL(2,C)

on the qubit changes the eigenvalues of the resulting MP from
{xi} to

x′
i = αxi + β

γ xi + δ
.

Using all that, it is then easy to see that the six SLOCC
classes of 2×3×3 systems are represented by the following
states:

(i) |M(ω)〉=|0〉(|00〉+ω|11〉+ω2|22〉)+|1〉(|00〉+|11〉+
|22〉), with corresponding MP M1(1) ⊕ M1(ω) ⊕ M1(ω2),
i.e., a MP with three distinct eigenvalues.

(ii) |D〉 = |0〉(D ⊗ 1) (|00〉 + |11〉 + |22〉) + |1〉(|00〉 +
|11〉 + |22〉), with D a diagonal matrix with degenerate
eigenvalues, which corresponds to a MP with degenerate
eigenvalues [disregarding biseparable states, there must be
one eigenvalue with degeneracy 1 and one eigenvalue with
(algebraic and geometric) multiplicity 2].

(iii) |J〉 = |0〉(J ⊗ 1)(|00〉 + |11〉 + |22〉) + |1〉(|00〉 +
|11〉 + |22〉), with J a nondiagonalizable matrix in Jordan
normal form, which corresponds to a MP with degenerate
eigenvalues (this case comprises three distinct SLOCC
classes).

(iv) |LLT 〉 = |0〉(|01〉 + |22〉) + |1〉(|00〉 + |12〉), with
MP L1 ⊕ LT

1 . In this case the MP does not have any
eigenvalue.

We will mainly focus here on the cases (i) and (iv) and will
discuss the symmetries of the remaining cases in Appendix G.
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Let us already mention here that in order to determine the
symmetries in cases (i)–(iii), one first has to ensure that the
eigenvalues are at most permuted by the action on the qubit
and then choose the operators x, y such that the state is again
transformed into KCF.5 This leads to the following lemma
(see [17]).

Lemma 1. Let |A〉 be a 2 × D × D state with only finite
eigenvalues, {xi}l

i=1. Then GA is characterized as follows.
For an invertible matrix g ∈ GL(C, 2) acting on the qubit,
with

g =
(

α β

γ δ

)
, (11)

there exist invertible matrices x, y ∈ GL(C, D) acting on the
qudits such that g ⊗ x ⊗ yT ∈ GA iff there exists a permutation
σ ∈ S(l ) of the eigenvalues {xi}l

i=1 such that

αxi + β

γ xi + δ
= xσ (i) ∀i (12)

and such that σ permutes only eigenvalues of matching mul-
tiplicities (i.e., xi and xσ (i) have coinciding size signatures for
all i).

Let us from now on refer to g ∈ GL(C, 2) in g ⊗ x ⊗ yT ∈
GA as a qubit symmetry and to x, y as qudit symmetries.
From Lemma 1 we have that for a given fiducial state, A, the
qubit symmetry can be easily determined via Eq. (12). The
corresponding qudit symmetry x and y can then be computed
as explained above (see, e.g., Ref. [33]).

In case the MP does not possess any eigenvalue [see case
(iv)], it has been shown in [32] that for any operator g there
exist operators x, y such that g ⊗ x ⊗ yT ∈ GA.

Note that the symmetry group of the fiducial state (as of
any state) is generated by symmetries of the form 1 ⊗ B ⊗ C
as well as by symmetries g ⊗ Bg ⊗ Cg, for predefined opera-
tors Bg and Cg.

In the subsequent sections we will use the results reviewed
here to determine the symmetries of the fiducial states, which
we then use to determine the symmetries and the SLOCC
classes of the corresponding TIMPS.

IV. SYMMETRIES AND SLOCC CLASSES
OF THE TIMPS �(M(ω))�(M(�))

We first determine the symmetries of the fiducial state
using MP theory and then use the results summarized above
to determine the symmetries of the corresponding MPS. As
mentioned before, a representative of this SLOCC class is the
state |M(ω)〉 = |0〉(|00〉 + ω|11〉 + ω2|22〉) + |1〉(|00〉 +
|11〉 + |22〉), where ω = e

i2π
3 . The corresponding MP

reads

P = M1(1) ⊕ M1(ω) ⊕ M1(ω2)

=
⎛
⎝μ + λ 0 0

0 ωμ + λ 0
0 0 ω2μ + λ

⎞
⎠.

5Such a transformation is then always possible.

Let us remark that an alternative representative is the state
|0〉(|11〉 + |22〉) + |1〉(|00〉 + |11〉). We consider the alterna-
tive representative when discussing normality in Appendix C,
as it leads to a more sparsely populated tensor A. Here we will
stick to the representative |M(ω)〉 though, because the group
structure of the local symmetries of the generated TIMPS will
look more natural for this representative.

A. Symmetries of the fiducial state

In this subsection we discuss the symmetries of the fiducial
state |M(ω)〉.

As any symmetry of the form 1 ⊗ B ⊗ C must fulfill
that BPCT ∝ P (see Sec. III), we obtain for any such
symmetry (choosing a convenient normalization) that B =
diag(1, B11, B22) and C = diag(1, 1/B11, 1/B22).

The MP has three distinct eigenvalues, 1, ω, and ω2. It
follows that there is a discrete set of six operators g appearing
as the first local operator in the symmetries of the fiducial
state. These operators correspond to all possible permutations
of the eigenvalues of the MP. We will index these operators by
σ ∈ S3, where σ describes the permutation of the eigenvalues.
We will use the notation σ = (

0 1 2
σ (0) σ (1) σ (2)) = (σ (0), σ (1), σ (2)).

Moreover, we use permutation matrices

Pσ =
∑

i

|σi〉〈i|.

Defining

g(0,1,2) = 1, g(0,2,1) =
(

0 1
1 0

)
,

g(2,1,0) =
(

0 ω2

1 0

)
, g(1,0,2) =

(
0 ω

1 0

)
,

g(2,0,1) =
(

ω 0
0 1

)
, g(1,2,0) =

(
ω2 0
0 1

)
(13)

we find symmetries g ⊗ Bg ⊗ Cg of |M(ω)〉 for

g = gσ ,

Bg = P−1
σ D−1

σ , (14)

CT
g = Pσ ,

where σ ∈ S3, and

Dσ =
{
1 if σ is even,
diag(1, ω, ω2) if σ is odd.

We will refer to σ ∈ {(0, 2, 1), (2, 1, 0), (1, 0, 2)} (odd per-
mutations) as transpositions and to σ ∈ {(1, 2, 0), (2, 0, 1)}
(even permutations that are not the identity) as cyclic permu-
tations of length 3. The symmetry group of the state |M(ω)〉
is given by (see Sec. III)

g ⊗ BgB ⊗ CgC. (15)

We will use these symmetries to determine the local sym-
metries of the corresponding (normal) TIMPS. As mentioned
above, to determine then the TIMPSs which are SLOCC
equivalent it is sufficient to consider the fiducial states of the
form 1 ⊗ b ⊗ 1|M(ω)〉. The tensor Ab associated to this state
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reads

A0
b =

⎛
⎝ b00 b01 b02

ωb10 ωb11 ωb12

ω2b20 ω2b21 ω2b22

⎞
⎠, A1

b = b. (16)

The corresponding symmetries are obviously of the form

g ⊗ bBgBb−1 ⊗ CgC.

B. Local symmetries of the TIMPS |�(M(ω))〉
Let us now characterize the symmetries of normal TIMPSs

generated by 1 ⊗ b ⊗ 1|M(ω)〉. To ease notation, we denote
the local symmetry group of this fiducial state by Gb through-
out this whole section. As explained in the preliminaries, to
identify the symmetries of the TIMPS, we first characterize
all possible N-cycles (gσk )N−1

k=0 in Gb. After identifying all
possible cycles, we characterize all normal TIMPSs (i.e., all
b) admitting each of the identified cycles.

Using the symmetry of the representative |M(ω)〉, x =
BgB, y = (CgC)T [see Eq. (15)] and inserting in the concatena-
tion conditions for 1 ⊗ b ⊗ 1|M(ω)〉 [see Eq. (7)] we obtain

bP−1
σk+1

Bk+1D−1
σk+1

b−1 ∝ P−1
σk

Bk, (17)

where Bk are arbitrary diagonal matrices stemming from the
symmetries of the form 1 ⊗ B ⊗ C, and Pσk as well as Dσk

stem from the symmetries g ⊗ Bg ⊗ Cg as in Eq. (14).
Note that Eq. (17) comprises a similarity transformation

among so-called monomial matrices, which are also called
generalized permutation matrices. These are (invertible) ma-
trices that can be written as a product of a permutation matrix
and a diagonal matrix. In the following, we use the Fourier

transform F =
(1 1 1

1 ω ω2

1 ω2 ω

)
, as well as Fourier transforms

acting on subspaces F01 =
(1 1 0

1 −1 0
0 0 1

)
(F02 and F12 analo-

gously).
Observation 1. Let Pσ be a permutation matrix of di-

mension 3 and D = diag(d0, d1, d2), di ∈ C \ {0}. Then the
eigenvalues and eigenvectors of Pσ D can be determined as
follows:

(1) If σ is trivial, the eigenvalues are the entries of D and
the eigenvectors are the computational basis vectors.

(2) If σ is a 3-cycle, the eigenvalues read d , dω, dω2,
where d = (d0d1d2)1/3. The eigenvectors are given by D̃F
with D̃ = diag(d̃0, d̃1, d̃2), where d̃ may be determined via the
recurrence relation d̃σ (i) = d̃idi/d .

(3) Finally, if σ is the transposition (0,2,1), the eigenval-
ues read d0 and ±√

d1d2, and similarly for the remaining
transpositions. The eigenvectors are given by D̃F12 with D̃ =
diag(1,

√
d2,

√
d1), and similarly for the remaining transposi-

tions.
As an immediate consequence, considering Eq. (17), we

observe that if σk is a transposition for some k, then σl cannot
be a three-cyclic permutation for any l (and vice versa), due
to the mismatch in the eigenvalues of the right-hand side and
the left-hand side of Eq. (17).

Observation 2. Any cycle in Gb involving a transposition,
σk , cannot involve a cyclic permutation of length 3, σl , and
vice versa.

Proof. We make use of Observation 1. Let us assume that
Pσk is a transposition. Then, two eigenvalues of P−1

σk
Bk differ

by multiplication with −1. However, if Pσl is a cyclic permuta-
tion of length 3, then any pair of eigenvalues of P−1

σl
Bl differs

by multiplication with ω = ei 2π
3 (or ω2). Suppose without loss

of generality (w.l.o.g.) that l > k and that σq is identity for
q ∈ {k + 1, . . . , l − 1} (one may always find such a sequence
within any potential cycle involving a transposition as well as
a cyclic permutation of length 3). Recall that Dσq = 1 unless
σq is a transposition. Then, due to Eq. (17), the eigenvalues
of P−1

σk
Bk and P−1

σl
Bl must coincide (up to a common scaling

factor), leading to a contradiction. �
In Appendix A we prove the following lemma excluding

nontrivial cycles of a certain form. Later we will resort to this
lemma in order to exclude nontrivial cycles in a much broader
scope.

Lemma 2. Any cycle in Gb involving gk = gk+1 = 1 for
some k must be trivial, i.e., gk = 1 for all k.

In the following, we will make use of the group structure
of the symmetries. Obviously, whenever S1 and S2 are symme-
tries of a state, then also S1S2 is. As we consider TIMPSs, we
additionally have that S1T S2T −1 is a symmetry of the MPS,
where T denotes the translation operator. Using Theorem 2,
this structure carries over to cycles: If Gb exhibits an N-cycle
with qubit symmetries g0, . . . , gN−1, there must also exist
an N-cycle with qubit symmetries g0g1, g1g2, . . . , gN−1g0,
etc. Subsequently, we will also deal with situations in which
we have partial information about a cycle. Given a string
of operators g0, . . . , gN−1, we denote by substring any list
of operators which consecutively appear within the string
g0, . . . , gN−1. With the considerations above, one may easily
convince oneself of the following. Given a string of operators
g0, . . . , gk and the promise that one may append operators
gk+1, . . . , gN−1 in order to obtain the qubit symmetries of
an N-cycle in Gb, the string g0gl , g1gl+1, . . . gkgl+k can also
be completed to be the qubit symmetries of an N-cycle in
Gb (by appending the string gk+1gk+l+1, . . . gN−1gN−1+l ; re-
member that all indices are taken modN). In the following,
it will be helpful to call the set of all such element-wise
products of substrings the set of generated substrings. Us-
ing Lemma 2, these considerations us to make the following
observation.

Observation 3. A given string of operators g0, . . . , gN−1,
which contains the substring A, B,C as well as the substring
A, B, D for some operators A, B,C, D such that C �= D, cannot
form an N-cycle in Gb.

More generally, the same holds if A, B,C and A, B, D are
generated substrings of g0, . . . , gN−1.

Proof. The proof is by contradiction. Suppose that
g0, . . . , gN−1 forms an N-cycle in Gb, and A, B,C, D are such
as in the statement of the observation. Due to the group struc-
ture, there must also exist an N-cycle described by a string
of operators g′

0, . . . , g′
N−1 containing A−1A, B−1B,C−1D as a

substring. Due to Lemma 2, C−1D = 1, which contradicts the
assumption C �= D. �

We are now in the position to characterize all possible
nontrivial cycles within Gb. For brevity we use the follow-
ing shorthand notation for permutations: τ = (0, 2, 1), ε =
(1, 0, 2), κ = (2, 1, 0) (transpositions), and S =�= (1, 2, 0),
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S2 =�= (2, 0, 1) (cyclic permutations of length 3). We assign
labels T τ/ε/κ/�/�

0 , . . . , T τ/ε/κ/�/�
7 and C0, . . . ,C4 to specific

cycles as in Table II (“T ” indicating that the cycle involves
transpositions, and “C” indicating that the cycle involves
cyclic permutations of length 3. The superindex differentiates
between subgroups that are of a similar structure, e.g., T τ

1
refers to the 2-cycle τ ⊗ 1, while T ε

1 refers to the 2-cycle
ε ⊗ 1).

Theorem 4. The possible N-cycles g0, . . . , gN−1 in Gb are
given by T τ/ε/κ/�/�

0 , . . . , T τ/ε/κ/�/�
7 and C0, . . . ,C4 as in

Table II and have lengths N ∈ {1, 2, 3, 4, 6}.
Proof. It turns out that the necessary conditions for a string

of operators forming a cycle as given in Lemma 2 and Ob-
servations 2 and 3 are very restrictive. In fact, all strings
of operators satisfying the conditions may be exhaustively
enumerated. We will now argue why this is the case and, in the
course of that, provide such an enumeration. Consider the fol-
lowing tree exploration protocol. Starting from N = 1, strings
of operators g0, . . . , gN−1 of increasing length N are generated
by appending operators to the previously considered strings of
length N − 1 (and thus, a tree is formed). A string (branch) is
discarded if it, or any of its generated substrings, violates the
conditions in Lemma 2 or Observations 2 and 3. Moreover,
one may stop further exploring a branch once the substring
consisting of the last two operators gN−2, gN−1 has appeared
previously as a substring within the considered branch. The
reason for this is that the only possibility to continue from
there on (without violating conditions in Lemma 2 or Ob-
servations 2 and 3) is repeating the sequence starting from
the first appearance of the substring gN−2, gN−1 over and over
again. Whenever, in some branch, this point is reached, one
then either has obtained a candidate for an N-cycle, if the
sequence gN−2, gN−1 coincides with g0, g1, or one discards the
string (and abandons the branch), otherwise, as in the latter
case it is impossible to close the cycle. Since the number of
operators to choose from is finite (in fact, six), this is guar-
anteed to happen at a finite N .6 One may also skip exploring
a branch whenever the currently considered string contains a
substring that has been considered already. For instance, if all
branches starting with g0, g1 = τ, ε have been handled, then
one may skip investigating the branch g0, g1, g2 = τ, τ, ε, as
all possibly emerging cycles will have been identified already.

Following this procedure, one obtains candidates7 for
cycles as in Table II as well as the following additional can-
didates: 1 ⊗ S (C̃0), 1 ⊗ S ⊗ S (C̃1), 1 ⊗ S ⊗ S ⊗ S2 ⊗ 1 ⊗
S2 ⊗ S2 ⊗ S (C̃�

2 ), 1 ⊗ S ⊗ S2 ⊗ S2 ⊗ 1 ⊗ S2 ⊗ S ⊗ S (C̃�
2 ),

τ ⊗ τ ⊗ ε ⊗ ε ⊗ κ ⊗ κ (T̃ �
0 ), T̃ �

0 analogously, ε ⊗ ε ⊗ τ ⊗
ε ⊗ κ ⊗ κ ⊗ τ ⊗ κ (T̃ τ,�

1 ), and T̃ ε,�
1 , T̃ κ,�

1 , T̃ τ,�
1 , T̃ ε,�

1 , T̃ κ,�
1

analogously. Note that any T̃0 has C̃0 as a subgroup and
moreover, any T̃1 has some C̃2 as a subgroup. Finally, it is
straightforward to show that for C̃0, C̃1, and C̃2, there does not
exist any b satisfying the concatenation conditions in Eq. (17).

6A very naive bound would be N � 62 + 2 = 38 using that a string
of length N has N − 1 substrings of length 2 and there exist 62

distinct strings of length 2. Much better bounds can be obtained
though.

7Recall that one obtains strings of operators that satisfy necessary
conditions for forming an N cycle for some MPS.

FIG. 1. Illustration of the group structure of the cycles for nor-
mal MPSs generated by the fiducial states 1 ⊗ b ⊗ 1|M(ω)〉. The
depicted labels correspond to the cycles as given in Table II. A line
connecting two labels indicates that the symmetry group associated
to the higher elevated cycle is a subgroup of the symmetry group
associated to the cycle below.

This shows that C̃�/�
i and T̃ τ/ε/κ/�/�

i cannot be cycles, in
contrast to the cycles shown in Table II. �

Before we characterize the b possessing the cycles men-
tioned in the theorem, a few remarks are in order. First, note
that some of the identified cycles lead to symmetry groups
that are subgroups of the symmetry group corresponding to
another of the identified cycles, as indicated in the second
column of Table II. Thus, e.g., it is not possible to find b
such that the fiducial state exhibits the 2-cycle T τ

1 but not T τ
0 .

We illustrate the emerging group structure in Fig. 1. However,
we will see later that not every combination of cycles that is
compatible with the group structure is actually possible. We
will see, e.g., that there does not exist a b exhibiting C3, but
not any of T τ/ε/κ

6 .
Second, note that we have not restricted our attention to

TIMPSs that are normal, so far. In particular, the charac-
terization of allowed cycles in Theorem 4 holds for normal
as well as for nonnormal TIMPSs. Recall that in case of
normal TIMPSs, a characterization of cycles yields a full
characterization of the symmetries of the TIMPSs, while non-
normal MPSs might possess additional symmetries, which
are not captured by the study of cycles. Thus, Table II
exhaustively lists all the possible symmetries of normal
MPSs and moreover, it exhaustively lists those symmetries
of nonnormal MPSs, that may be identified via the study of
cycles. In the following we will focus on normal TIMPSs
though. We observe that b of a certain form cannot be
normal.

Observation 4. If b is such that in any row or column i, the
entry bii is the only nonvanishing entry, or if b is a generalized
permutation matrix, then the TIMPS generated by 1 ⊗ b ⊗
1|M(ω)〉 is nonnormal.
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Proof. Let us first consider the case that b is such that in
any row or column i, the entry bii is the only nonvanishing
entry. Note that this property is retained when taking products
of matrices of such a form. Moreover, note that if b is of such
a form, then both A0

b and A1
b as in Eq. (16) are of this form

too. Hence, it is impossible to find more than seven linearly
independent products of A0

b and A1
b and the tensor Ab cannot

be normal.
Let us now consider the case that b is a generalized per-

mutation matrix, b = Pσ D. Then any product of A0
b and A1

b
comprising L factors can be written as Pσ L D̃ for some diagonal
D̃ (as A0,1

b = bA0,1 and A0,1 is diagonal). Hence, for any L
it is impossible to find more than three linearly independent
products of A0

b and A1
b with L factors. Hence, the tensor Ab

cannot be normal. �
Thus, in the following we restrict our attention to b which

are not of the form given in the observation. In fact, as
we will see (see also Observation 5), the remaining b’s
are either normal or Gb does not exhibit any nontrivial
cycles.

With Theorem 4, it is now a straightforward calculation
to characterize all b, for which the Gb exhibits any specific
cycle listed in Table II. To this end, one considers Eq. (17)
for σk given by the considered cycle. One may then utilize
Observation 1 in order to determine b. We present a full
characterization of those b (disregarding b of the form given
in Observation 4) for which Gb exhibits nontrivial cycles (see
Table II) in Table III in Appendix B. Let us display with
examples the calculation for the cycle C0. We use Eq. (17)
with N = 1, σ0 = S and obtain

bP−1
S B0D−1

S b−1 ∝ P−1
S B0. (18)

Since DS = 1, making use of Observation 1 we have
P−1

S B0D−1
S = P−1

S B0 = D̃F diag(1, ω, ω2)(D̃F )−1 with D̃ =
diag(1,

B(0)
22

3
√

B(0)
11 B(0)

22

2 ,
1

3
√

B(0)
11 B(0)

22

). Due to the uniqueness of the

spectral decomposition we then have

b = D̃FPσ̃ diag(x0, x1, x2)F−1D̃−1

= D̃ diag(1, ω, ω2)lF diag(x0, x1, x2)F−1D̃−1

for some xi ∈ C, l ∈ {0, 1, 2}, and some even permutation
σ̃ . Here the additional permutation matrix Pσ̃ comes from
the fact that the proportionality factor in Eq. (18) allows us
to cyclically permute the eigenvalues. Equivalently, we may
write

b = D diag(1, ω, ω2)l

⎛
⎝b0 b1 b2

b2 b0 b1

b1 b2 b0

⎞
⎠D−1,

where b0, b1, b2 ∈ C, l ∈ {0, 1, 2}, and D is an arbitrary di-
agonal matrix. Let us remark that the diagonal matrix D is
actually irrelevant. More precisely, the fiducial states 1 ⊗ b ⊗
1|M(ω)〉 and 1 ⊗ c ⊗ 1|M(ω)〉 give rise to the same TIMPS,
if c = DbD−1 for any diagonal D, due to the Fundamental
Theorem (Theorem 1) and the symmetries of the seed state.8

8This may also be easily seen by noting that such b and c are
related by a (b → c) 1-cycle as in Eq. (9) with g = 1 for any diagonal
matrix D.

It is straightforward to perform the calculation for all cy-
cles, leading to the results in Table III in Appendix B. We find
that there are continuous families of b’s leading to the cycles
C0, T τ,ε,κ

0 , C1, T τ,ε,κ
1 , T τ,ε,κ

2 , T τ,ε,κ
3 , and T �,�

4 , while there is
a discrete number of b’s leading to the cycles C2, T �,�

5 , C3,
T τ,ε,κ

6 , C4, and T τ,ε,κ
7 .

While we defer details on the concrete parametrizations of
the sets of operators b for which Gb exhibits the respective
cycles to Appendix B, the relations among these sets are im-
portant in order to know which different symmetry groups can
occur simultaneously. Hence, we will discuss these relations
in the following. Let us denote the set of b’s leading to a
certain cycle, say, T τ

0 , by b(T τ
0 ), etc. Obviously, the families

of b’s satisfy relations imposed by the group structure of the
cycles mentioned above (see Fig. 1), e.g., b(T τ

1 ) must be a
subset of b(T τ

0 ). Note, however, that it is not guaranteed that
for every possible combination of cycles, which is compatible
with the group structure, there exists a b such that Gb exhibits
this combination of cycles. On the contrary, additional set-
theoretic restrictions emerge, which one may not immediately
conclude from the group structure of the cycles. We display
all the relations within an Euler diagram in Fig. 2.

In Observation 4, we have given a few conditions on b
under which the generated TIMPS is not normal. In contrast
to that, we find that any b such that (s.t.) Gb possesses non-
trivial cycles and s.t. b does not satisfy one of the mentioned
conditions for nonnormality, is actually normal.

Observation 5. All b s.t. there exist nontrivial cycles in Gb

(see Table III) are normal with injectivity length L = 4, 5, or
6, unless b fulfills the prerequisites of Observation 4.

We present a proof of the observation, as well as additional
details on proving normality in general, in Appendix C.

As a consequence, except for b satisfying the conditions
in Observation 4, the characterization of cycles directly yields
the symmetries of the generated TIMPS. Figure 2 hence shows
all possible (nontrivial) symmetries of normal TIMPSs gener-
ated by fiducial states of the type 1 ⊗ b ⊗ 1|M(ω)〉 and hence
for any normal TIMPSs corresponding to a fiducial state in
the SLOCC class of |M(ω)〉. For any given normal b, the
symmetry group of the generated TIMPS may be determined
by comparing b with the results in Table III in Appendix B.
Conversely, in order to decide whether there exists a normal
TIMPS (generated by some 1 ⊗ b ⊗ 1|M(ω)〉) possessing a
desired symmetry group, one may simply look at Fig. 2 and
see whether the corresponding intersection is nonempty. If it
exists, then an appropriate b may be constructed with the help
of Table III in Appendix B.

C. SLOCC classification

Since we are dealing here with finitely many symmetries,
it is straightforward to determine the SLOCC classes of the
TIMPSs. Whereas we will determine all the classes with in-
finitely many symmetries in the subsequent section, we will
only outline here the procedure and discuss some examples.

To this end, we consider the concatenation conditions
presented in Eq. (9). To determine for instance all (b → c)
1-cycles, we have to consider only one equation, namely,

bP−1
σ BD−1

σ ∝ P−1
σ Bc,
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TABLE III. Characterization of all b leading to nontrivial cycles for normal MPSs generated by the fiducial states 1 ⊗ b ⊗ 1|M(ω)〉. The
first four columns coincide with Table II. The fifth column shows a parametrization (possible alternative parametrizations) of the set of all
normal b’s s.t. Gb exhibits the respective cycles. Parameter choices such that b becomes a generalized permutation matrix must be excluded
in order to have normality. The last column indicates the effective (complex) dimension of the respective sets (“—” indicates discrete sets).
The matrix D appearing in the fifth column is always an arbitrary diagonal matrix. As explained in Sec. IV, D is actually irrelevant for the
generated MPS. See Fig. 2 for set-theoretic relations between all the displayed parametrized sets.

Label Subgroup(s) Cycle N b No. parameters

C0 – S 1 D diag(1, ω, ω2)l

⎛
⎝b00 b01 b02

b02 b00 b01

b01 b02 b00

⎞
⎠D−1,

where b00, b01, b02 ∈ C, l ∈ {0, 1, 2}

2

T τ
0 – τ 1 D diag(1, ω, ω2)

⎛
⎝−b00 −b01 −b01

b01 b11 b12

b01 b12 b11

⎞
⎠D−1, or

D diag(1, ω, ω2)

⎛
⎝ b00 b01 ib01

−b01 −b11 −b12

ib01 b12 −b11

⎞
⎠D−1,

where b00, b01, b11, b12 ∈ C

3

T ε
0 – ε 1 D diag(1, ω, ω2)

⎛
⎝ b00 b01 b02

b01 b00 b02

−b02 −b02 −b22

⎞
⎠D−1, or

D diag(1, ω, ω2)

⎛
⎝ b00 b01 b02

−b01 b00 ib02

b02 −ib02 b22

⎞
⎠D−1,

where b00, b01, b02, b22 ∈ C

3

T κ
0 – κ 1 D diag(1, ω, ω2)

⎛
⎝ b00 b01 b02

−b01 −b11 −b01

b02 b01 b00

⎞
⎠D−1,

where b00, b01, b02, b11 ∈ C

3

C1 – S ⊗
S2

2 D diag(1, ω, ω2)

⎛
⎝b00 b01 b02

b01 b02 b00

b02 b00 b01

⎞
⎠D−1, or

D diag(1, ω, ω2)

⎛
⎝b00 b01 b02

b01 −b02 −b00

b02 −b00 b01

⎞
⎠D−1, or

D diag(1, ω, ω2)

⎛
⎝ b00 b01 b02

−b01 −b02 −ib00

b02 ib00 ib01

⎞
⎠D−1

where b00, b01, b02 ∈ C

2

T τ
1 T τ

0 1 ⊗ τ 2 D diag(1, ω, ω2)

⎛
⎝ 0 b01 b01

−b01 −b11 b11

−b01 b11 −b11

⎞
⎠D−1,

where b01, b11 ∈ C

1

T ε
1 T ε

0 1 ⊗ ε 2 D diag(1, ω, ω2)

⎛
⎝−b00 b00 −b02

b00 −b00 −b02

b02 b02 0

⎞
⎠D−1,

where b00, b02 ∈ C

1

T κ
1 T κ

0 1 ⊗ κ 2 D diag(1, ω, ω2)

⎛
⎝ b00 b01 −b00

−b01 0 −b01

−b00 b01 b00

⎞
⎠D−1,

where b00, b01 ∈ C

1

T τ
2 T τ

0 , C1 ε ⊗ κ 2 D diag(1, ω, ω2)

⎛
⎝ b00 b01 b01

−b01 −ib01 b00

−b01 b00 −b01

⎞
⎠D−1, or

D diag(1, ω, ω2)

⎛
⎝ b00 b01 −ib01

−b01 ib01 −ib00

−ib01 ib00 ib01

⎞
⎠D−1,

where b00, b01 ∈ C

1
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TABLE III. (Continued.)

Label Subgroup(s) Cycle N b No. parameters

T ε
2 T ε

0 , C1 τ ⊗ κ 2 D diag(1, ω, ω2)

⎛
⎝−b00 −b01 −ib00

−b01 −b00 −ib00

ib00 ib00 −b01

⎞
⎠D−1, or

D diag(1, ω, ω2)

⎛
⎝ b00 b01 −b00

−b01 b00 −ib00

−b00 ib00 ib01

⎞
⎠D−1,

where b00, b01 ∈ C

1

T κ
2 T κ

0 , C1 τ ⊗ ε 2 D diag(1, ω, ω2)

⎛
⎝ b00 ib00 b02

−ib00 b02 −ib00

b02 ib00 b00

⎞
⎠D−1, or

D diag(1, ω, ω2)

⎛
⎝b00 −ib00 b02

ib00 −b02 −ib00

b02 ib00 b00

⎞
⎠D−1,

where b00, b02 ∈ C

1

C2 C0 1 ⊗
S ⊗
S2

3 D diag(1, ω, ω2)l

⎛
⎝ 1 1 ωm

ωm 1 1
1 ωm 1

⎞
⎠D−1,

where l ∈ {0, 1, 2}, m ∈ {1, 2}

–

T τ
3 – 1 ⊗

τ ⊗ τ

3 D diag(1, ω, ω2)

⎛
⎝ 0 b01 b01

−b01 −b11 b11

b01 −b11 b11

⎞
⎠D−1,

where b01, b11 ∈ C

1

T ε
3 – 1 ⊗

ε ⊗ ε

3 D diag(1, ω, ω2)

⎛
⎝b00 −b00 b02

b00 −b00 −b02

b02 b02 0

⎞
⎠D−1,

where b00, b02 ∈ C

1

T κ
3 – 1 ⊗

κ ⊗ κ

3 D diag(1, ω, ω2)

⎛
⎝ b00 b01 b00

−b01 0 b01

−b00 b01 −b00

⎞
⎠D−1,

where b00, b01 ∈ C

1

T �
4 C0 τ ⊗

κ ⊗ ε

3 D diag(1, ω, ω2)

⎛
⎝ b00 b01 b00ω

m

b00ω
m b00 b01

b01 b00ω
m b00

⎞
⎠D−1,

where b00, b01 ∈ C, m ∈ {0, 1, 2}

1

T �
4 C0 τ ⊗

ε ⊗ κ

3 D diag(1, ω, ω2)

⎛
⎝ b00 b00ω

m b02

b02 b00 b00ω
m

b00ω
m b02 b00

⎞
⎠D−1,

where b00, b01 ∈ C, m ∈ {0, 1, 2}

1

T �
5 C2, C0 τ ⊗

τ ⊗ κ

3 D diag(1, ω, ω2)m+1

⎛
⎝ 1 1 ωm

ωm 1 1
1 ωm 1

⎞
⎠D−1,

where m ∈ {1, 2}

–

T �
5 C2, C0 τ ⊗

τ ⊗ ε

3 D diag(1, ω, ω2)2m+1

⎛
⎝ 1 1 ωm

ωm 1 1
1 ωm 1

⎞
⎠D−1,

where m ∈ {1, 2}

–

C3 – 1 ⊗
S ⊗
1 ⊗
S2

4 D diag(1, ω, ω2)l

⎛
⎝1 1 1

1 ωm ω2m

1 ω2m ωm

⎞
⎠D−1,

where l ∈ {0, 1, 2}, m ∈ {1, 2}

–

T τ
6 C3, T τ

0 κ ⊗
τ ⊗

ε ⊗ τ

4 D diag(1, ω, ω2)

⎛
⎝1 1 1

1 ωm ω2m

1 ω2m ωm

⎞
⎠D−1,

where m ∈ {1, 2}

–
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TABLE III. (Continued.)

Label Subgroup(s) Cycle N b No. parameters

T ε
6 C3, T ε

0 τ ⊗
ε ⊗

κ ⊗ ε

4 D diag(1, ω, ω2)2m+1

⎛
⎝1 1 1

1 ωm ω2m

1 ω2m ωm

⎞
⎠D−1,

where m ∈ {1, 2}

–

T κ
6 C3, T κ

0 ε ⊗
κ ⊗

τ ⊗ κ

4 D diag(1, ω, ω2)m+1

⎛
⎝1 1 1

1 ωm ω2m

1 ω2m ωm

⎞
⎠D−1,

where m ∈ {1, 2}

–

C4 C1 1 ⊗
S ⊗
S ⊗
1 ⊗
S2 ⊗

S2

6 D diag(1, ω, ω2)l

⎛
⎝ 1 1 ωm

1 ωm 1
ωm 1 1

⎞
⎠D−1,

where l ∈ {0, 1, 2}, m ∈ {1, 2}

–

T τ
7 C4, C1, T τ

2 ,
T τ

0

κ ⊗
τ ⊗
ε ⊗
ε ⊗

τ ⊗ κ

6 D diag(1, ω, ω2)m+1

⎛
⎝ 1 1 ωm

1 ωm 1
ωm 1 1

⎞
⎠D−1,

where m ∈ {1, 2}

–

T ε
7 C4, C1, T ε

2 ,
T ε

0

τ ⊗
ε ⊗
κ ⊗
κ ⊗

ε ⊗ τ

6 D diag(1, ω, ω2)2m+1

⎛
⎝ 1 1 ωm

1 ωm 1
ωm 1 1

⎞
⎠D−1,

where m ∈ {1, 2}

–

T κ
7 C4, C1, T κ

2 ,
T κ

0

ε ⊗
κ ⊗
τ ⊗
τ ⊗

κ ⊗ ε

6 D diag(1, ω, ω2)

⎛
⎝ 1 1 ωm

1 ωm 1
ωm 1 1

⎞
⎠D−1,

where m ∈ {1, 2}

–

which immediately lets one construct all c connected to a
given b via an (b → c) 1-cycle. Stated differently, normal
TIMPSs corresponding to the fiducial states 1 ⊗ b ⊗ 1|M(ω)〉
and 1 ⊗ c ⊗ 1|M(ω)〉 respectively are related to each other
via a global operation iff b and c fulfill the equation above.

For 2-cycles one would proceed as follows. First, one con-
siders the necessary condition

bP−1
σ1

D−1
σ1

B−1
1 B0Dσ0 Pσ0 b−1 ∝ P−1

σ0
B−1

0 B1Pσ1 . (19)

Obviously, the tools utilized throughout this section so far
are applicable here. Once g0 and g1 satisfy the necessary
conditions for some given b, all c connected to b via the
(b → c) 2-cycle given by g0, g1 may be straightforwardly
characterized.

Let us remark that an obvious necessary condition for
SLOCC equivalence of two states |ψ〉 and |φ〉 is that their
symmetry group must be compatible, i.e., S|ψ〉 equals S|φ〉 up
to conjugation. For the MPSs considered here this must be
a conjugation by some tensor product of gσ as in Eq. (13).
Thus, not only the order of the full symmetry group must
coincide, in fact, but also the number of symmetries involving
transpositions as well as the number of symmetries involving
cyclic permutations of length 3 must be retained each. This

immediately rules out SLOCC equivalence among many of
the families of b’s as in Fig. 2.

Let us conclude with some examples. It may be easily
verified that the MPSs associated to the family b(T τ

i ) are
SLOCC equivalent to some MPSs associated to the family
b(T ε

i ) and b(T κ
i ) (and vice versa) for any i ∈ {0, 1, 2, 3, 6, 7}.

This is witnessed by the (b → c) 1-cycles given by gε , or
gκ , respectively. Moreover, for even N , any MPS generated
by some fiducial state belonging to b(C0) ∩ b(T τ

0 ) ∩ b(T ε
0 ) ∩

b(T κ
0 ) is SLOCC equivalent to some MPS associated to

b(C1) ∩ b(T κ
0 ) ∩ b(T κ

2 ) and vice versa. This is witnessed by
the (b → c) 2-cycle 1 ⊗ κ . Conversely, there exist examples
in b(C0) which are not related to any b in b(C1) despite com-
patibility of the stabilizer.

V. SYMMETRIES AND SLOCC CLASSES
OF THE TIMPS |�(LLT )〉

In this section we discuss MPSs generated by fiducial
states that are represented by |LLT 〉 = |0〉(|01〉 + |22〉) +
|1〉(|00〉 + |12〉). First, we present the symmetries of the
fiducial states. Then we characterize the symmetries of nor-
mal MPSs, which, in contrast to the previous section, are
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FIG. 2. (a) Set-theoretic sketch (Euler diagram) of b’s leading
to nontrivial cycles in Gb [considering the fiducial state 1 ⊗ b ⊗
1|M(ω)〉]. The sketch illustrates the inclusion relations and intersec-
tions between the different sets of b’s leading to certain cycles as
labeled in Table II. Let us point out a few of them. For instance, one
sees that the set b(C3) is a union of the (pairwise) nonintersecting
sets b(T τ

6 ), b(T ε
6 ), and b(T κ

6 ), and each of b(T σ
6 ) is a subset of b(T σ

0 )
for σ ∈ {τ, ε, κ}. This illustrates that, e.g., there does exist a b s.t.
Gb exhibits the three cycles T τ

6 , T τ
0 , and C3, but there does not

exist any b leading to the cycle C3 only. We find that b(T τ
0 ), b(T ε

0 ),
b(T κ

0 ), and b(C0) intersect. However, the three sets b(T τ
i ), b(T ε

j ), and
b(T κ

k ) are disjoint for any i, j, k ∈ {1, 2, 3, 6, 7}. In fact, b(T τ,ε,σ
3 ) are

completely isolated in the sense that they do not intersect with any
other family. The set b(T σ

1 ) is a subset of b(T σ
0 ) (for σ ∈ {τ, ε, κ}),

but does not intersect with any other family. Note that the sketch
does not correctly represent the geometry or sizes of the sets. As
explained in the paper, the diagram gives as a complete characteriza-
tion of symmetries of all normal TIMPSs generated by fiducial states
1 ⊗ b ⊗ 1|M(ω)〉. While some of the displayed inclusion relations
follow immediately considering the group structure of the cycles as
in Fig. 1, additional relations reveal themselves only considering the
full characterization of b as in Table III. An instance of the latter case
would be one of the example mentioned above—the fact that there
exists no b s.t. Gb possesses the cycle C3, but does not possess any of
the cycles T τ

6 , T ε
6 , and T κ

6 . (b) Detailed view of an aspect of (a).

potentially infinitely many. In the course of that, we give a
characterization of those fiducial states that generate normal
MPSs. Finally, we characterize SLOCC equivalence among
normal MPSs. We conclude with a few remarks on some
nonnormal MPSs generated by fiducial states represented by
|LLT 〉.

The MP corresponding to |LLT 〉 reads

P = L1 ⊕ LT
1 =

⎛
⎝λ μ 0

0 0 λ

0 0 μ

⎞
⎠.

Note that the tensor A corresponding to |LLT 〉 is simply given
by A0 = P|μ=1,λ=0 and A1 = P|μ=0,λ=1.

A. Symmetries of the fiducial state

The symmetries of the state |LLT 〉 are special in the sense
that any invertible operator acting on the first site forms a local
symmetry of |LLT 〉 with appropriate operators acting on the
remaining two sites. That is, for any operator g on the qubit,
there exist 3×3 matrices, which are uniquely determined by
g, Bg, and Cg such that g ⊗ Bg ⊗ Cg is a symmetry of the state.
Moreover, as mentioned above, any symmetry of |LLT 〉 can
be written as a product of one symmetry of the form g ⊗ Bg ⊗
Cg and symmetries of the form 1 ⊗ B ⊗ C. For

g =
(

α β

γ δ

)
it is easy to show that

Bg = 1

det(g)

⎛
⎝det(g) 0 0

0 α −β

0 −γ δ

⎞
⎠,

CT
g = 1

det(g)

⎛
⎝ α −γ 0

−β δ 0
0 0 det(g)

⎞
⎠.

The symmetries of the form 1 ⊗ B ⊗ C are given by

B =
⎛
⎝1 B01 B02

0 B11 0
0 0 B11

⎞
⎠,

CT = 1

B11

⎛
⎝B11 0 −B01

0 B11 −B02

0 0 1

⎞
⎠,

where we use the normalization B00 = 1. The symmetries of
|LLT 〉 are thus given by

g ⊗ BgB ⊗ CgC

for any g ∈ GL(2,C), B00, B01, B02, B11 ∈ C.
Clearly, the symmetries of 1 ⊗ b ⊗ 1|LLT 〉 are given by

g ⊗ b BgB︸︷︷︸
x

b−1 ⊗ CgC︸︷︷︸
yT

, (20)

using the notation x and y for symmetries of the representative
as introduced in Sec. III. We denote the local symmetry group
of this fiducial state by Gb throughout this whole section. The
tensor Ab associated to 1 ⊗ b ⊗ 1|LLT 〉 reads

A0
b =

⎛
⎝0 b00 b02

0 b10 b12

0 b20 b22

⎞
⎠ and A1

b =
⎛
⎝b00 0 b01

b10 0 b11

b20 0 b21

⎞
⎠.

Let us now introduce the following parametrization for any
3×3 operators b with b20 = 1 (it will become clear later that
b20 �= 0 is required in order to obtain normal MPSs) in terms
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of a matrix T and a vector v, as well as two complex numbers
b00, b10,

b =
⎛
⎝b00

b10

1

⎞
⎠.

⎛
⎝ 1

v1 − b00

v0 − b10

⎞
⎠T

− det T

(
σxT −1σz

0

)
. (21)

It may be easily verified that for a given b, T and v may be
obtained via

T =
(

b02 − b00b22 b10b22 − b12

b01 − b00b21 b10b21 − b11

)
, (22)

v =
(

b10 + b22

b00 + b21

)
. (23)

Note that det b = det T . Despite the fact that this parametriza-
tion might seem a bit arbitrary, we will see that it is
particularly useful to characterize the local symmetries and
the SLOCC classes of TIMPSs corresponding to fiducial
states of the form 1 ⊗ b ⊗ 1|L1 ⊗ LT

1 〉

B. Concatenation conditions

To obtain a physical symmetry, (normal) MPSs need to
fulfill the conditions given in Eq. (7), which we restate here,

ykbxk+1b−1 ∝ 1 ∀ k ∈ {0, . . . , N − 1},
or equivalently,

bxk+1b−1 ∝ y−1
k ∀ k ∈ {0, . . . , N − 1},

where all indices are taken modN and xk, yk are such that gk ⊗
xk ⊗ yT

k is a symmetry of the fiducial state for all k.
Since the symmetries of the fiducial state are given in

Eq. (20), explicit expressions are obtained for xk+1 and y−1
k

using the normalization B(k)
00 = 1 as well as det gk = 1 for all

k:

xk+1 =

⎛
⎜⎝

1 B(k+1)
01 B(k+1)

02

0 αk+1B(k+1)
11 −βk+1B(k+1)

11

0 −γk+1B(k+1)
11 δk+1B(k+1)

11

⎞
⎟⎠,

y−1
k =

⎛
⎜⎝

δk γk γkB(k)
02 + δkB(k)

01

βk αk αkB(k)
02 + βkB(k)

01

0 0 B(k)
11

⎞
⎟⎠. (24)

Let us denote the eigenvalues of gk by χk and 1/χk . We use
the convention |χk| � 1 and additionally in case |χk| > 1 (i),
we choose Im χk > 0, or Im χk = 0 and Re χk > 0, while in
case |χk| = 1 (ii) we choose both Re χk � 0 and Im χk � 0.
We denote the domain of χk by D and show a sketch of D in
Fig. 3. This normalization may be achieved by ordering the
eigenvalues appropriately and by a freedom of multiplying gk

by −1 which still remains after fixing det gk = 1. For each gk

we then consider the Jordan decomposition

gk = SkJkS−1
k , (25)

where either Jk = diag(χk, 1/χk ) (in case gk is diagonaliz-
able), or Jk = (1 1

0 1) (in case gk is not diagonalizable, here
χk = 1).

As a simple necessary condition, we see that the set of
eigenvalues of xk+1 must match the set of eigenvalues of y−1

k

FIG. 3. Sketch of the domain of χk , D. D comprises complex
numbers in the upper half of the complex plane which have absolute
value larger than or equal to one, excluding the negative real axis and,
moreover, excluding numbers with negative real part whose absolute
value equals 1. The imaginary unit i is included in D.

up to a common proportionality factor. The eigenvalues read9

σ (xk+1) = {
1, B(k+1)

11 χk+1, B(k+1)
11 /χk+1

}
,

σ
(
y−1

k

) = {
B(k)

11 , χk, 1/χk
}
.

Let us remark here that considering the concatenation con-
ditions, it is immediately clear that for any g, one can find an
MPS that has the global symmetry g⊗N . The reason for that is
that the concatenation condition (bx0b−1 ∝ y−1

0 , in case of a
global symmetry, i.e., 1-cycle) reduces to matching the set of
eigenvalues (up to a common proportionality factor).10 For all
matrices g it is possible to find a proportionality factor and a
choice of B11 such that the eigenvalues match.

C. Local symmetries of the TIMPS |�(LLT )〉
In this subsection, we present a characterization of the

symmetries of normal MPSs generated by 1 ⊗ b ⊗ 1|�0〉 and
also discuss some of the nonnormal MPSs. Certain details of
the derivation will be deferred to Appendix E.

Let us right away distinguish between the two cases b20 =
0 and b20 �= 0. In the former case, b20 = 0, the generated MPS
cannot be normal as we will see in Observation 7. However,
despite the fact that the fundamental theorem does not apply,
actually much can be said about the symmetries of the corre-
sponding MPS as we show in the following observation.

Observation 6. N-qubit MPSs associated to 1 ⊗ b ⊗
1|LLT 〉 with b20 = 0 are either SLOCC equivalent to |0〉⊗N ,
|GHZN 〉, or they possess only global symmetries.

Let us remark here that using b = 1, i.e., using the seed
state |LLT 〉 as fiducial state gives rise to an MPS that is a
product state.

Proof. In order to prove the observation, we consider the
definition of an MPS as in Eq. (2) and note that for b20 = 0 it
holds that

tr{Aj1 Aj2 · · · AjN } = b| j|
22bN−| j|

21 + b| j|
00bN−| j|

10 ,

9Note that eigenvalues may coincide and that xk , y−1
k may be not

diagonalizable, even though gk is diagonalizable.
10This can be easily seen choosing B0

01 = B0
02 = 0 and B0

11 = 0.
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where j = ( j1, . . . , jN ) ∈ {0, 1}N and | j| denotes the Ham-
ming weight of j. In particular, the expression in Eq. (25)
does not depend on the order of the operators Ajl . Thus, the
MPS is, for b20 = 0 not only translationally invariant, but
actually invariant under any particle permutation. A permu-
tation invariant N-qubit state is either SLOCC equivalent to
|0〉⊗N , |GHZN 〉, or |WN 〉,11 or the state is what was called
nonexceptionally symmetric [34], meaning that all its sym-
metries are of the form S⊗N [14,28,29]. In the former cases,
the symmetries of the MPS are well known, and in the latter
case (by definition of nonexceptionally symmetric states) the
MPS possesses global symmetries only. �

We will focus on the case b20 �= 0 for the remainder of
this section. For simplicity, in the following we will assume
b20 = 1, as an overall scaling factor within b is irrelevant.
Note, however, that b20 �= 0 is not a sufficient condition to
have normal MPSs. In fact, normality additionally depends
on v as in Eq. (23), as the following observation shows. We
prove the observation in Appendix D (see also Appendix C
for a few general remarks on proving normality).

Observation 7. N-qubit MPSs associated to 1 ⊗ b ⊗
1|LLT 〉 are normal if and only if b20 �= 0 and v �= 0.

We keep this fact in mind, however, in the following we
will continue without narrowing down the considered set of
fiducial states any further and postpone a more detailed dis-
cussion on normality to Sec. V E.

Let us now analyze the concatenation equations in
more depth. The (2,0)-matrix element of the concatenation
condition with proportionality factors λk , bxk+1 − λk y−1

k b =
0, reads b20(1 − B(k)

11 λk ) = 0. Since b20 = 1, this matrix el-
ement thus fixes the proportionality factors. We then obtain
equality of the following two sets of eigenvalues as necessary
condition: {

B(k)
11 , B(k)

11 B(k+1)
11 χk+1, B(k)

11 B(k+1)
11 /χk+1

}
= {

B(k)
11 , χk, 1/χk

}
. (26)

Particularly interesting are the trace and the determinant of the
matrix equation in the concatenation condition, i.e., the sum
and the product of the elements in the two sets in Eq. (26).
One obtains (

B(k)
11

)2(
B(k+1)

11

)2 = 1,

B(k)
11 B(k+1)

11 (χk+1 + 1/χk+1) = χk + 1/χk .

Considering the chosen normalization, this implies that the
sets of eigenvalues of gk must coincide for all k, i.e., χk = χl

for all k, l . We will thus drop the index k in χk , in the follow-
ing. If χ �= i, i.e., if trgk does not vanish, then B(k)

11 B(k+1)
11 = 1

for all k. Considering a cycle of odd length, one moreover has
that either B(k)

11 = 1 for all k, or B(k)
11 = −1 for all k. To see

this, note that using B(k)
11 B(k+1)

11 = 1 recursively yields B(k)
11 =

1/B(k)
11 . In the case that trgk = 0, we have only B(k)

11 B(k+1)
11 =

±1 instead. We summarize these findings in the following
observation.

11Note that the W-state is not representable by a TIMPS of bond
dimension three.

Observation 8. Suppose that g0, . . . , gN−1 is an N-cycle
in Gb. Then the eigenvalues of gk , χ , and 1/χ coincide for
all k. If χ �= i, we have B(k)

11 B(k+1)
11 = 1. If χ = i, we have

B(k)
11 B(k+1)

11 = ±1 in Eq. (24).
Building on the observations above and making use of

T and v as in Eqs. (22) and (23), we derive the following
theorem, which gives necessary and sufficient conditions for
g0, . . . , gN−1 forming an N-cycle in Gb. We prove the theorem
in Appendix E. Note that, as we will see below, this leads
to a rich variety of situations involving 1-cycles as well as
N-cycles, diagonalizable gk as well as nondiagonalizable gk

and single cycles, as well as continuous families of cycles.
Theorem 5. g0, . . . , gN−1 is an N-cycle in Gb

12 if and only
if there exist B(k)

11 ∈ C such that for all k ∈ {0, . . . , N − 1},

gk+1 = 1

B(k)
11 B(k+1)

11

T gkT −1, (27)[
gk − B(k)

11 1
]
v = 0, (28)

B(k)
11 B(k+1)

11 =
{±1 if χ = i

1 otherwise . (29)

With the help of the conditions provided in Theorem 5,
the N-cycles in Gb may be determined for any given b with
b20 = 1. In the following, we describe the procedure to do
so. We defer the details on the derivation of the procedure
to Appendix E. Recall that the considered family of b’s also
involves nonnormal MPSs. For this reason, we have formu-
lated the theorem in terms of cycles in Gb, although for normal
MPSs the theorem directly characterizes the symmetries of the
associated MPS.

First, one calculates the matrix T according to Eq. (22) as
well as the vector v according to Eq. (23). The symmetries
will be completely determined by T and v, which, as we
would like to stress here again, are merely properties of b.
Let us denote the similarity transformation bringing T into its
Jordan normal form (JNF) J by R, i.e., we have T = RJR−1.
We now distinguish two cases. We have the case that T is
diagonalizable and the case that T is not diagonalizable. In the
latter case, we obtain only trivial cycles if v �= 0 and T v �∝ v.
In contrast to that, Gb exhibits a one-parametric family of
1-cycles with g = R(1 η

0 1)R−1 for any η ∈ C if T v ∝ v (or
v = 0).

Let us now discuss the case that T is diagonalizable. We
now distinguish two further cases depending on whether there
exists an m ∈ N such that T m ∝ 1, or not. In case such an
m does not exist, we distinguish several subcases depending
on v. If v = 0 we obtain a one-parametric family of 1-cycles
with g = R(χ 1/χ )R−1 for any χ ∈ C \ {0}. In contrast, if

T v �∝ v, but T 2v ∝ v we obtain a single 1-cycle with g =
R(i

−i)R
−1. We obtain only trivial cycles for all other v. Note

that a generic b falls into this category.
Let us now discuss the case that there exists an m ∈

N such that T m ∝ 1. In this case, we may write T ∝

12Recall that we consider here b20 = 1. We have dealt with the case
b20 = 0 in Observation 6.
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R(ei rπ
m

ei rπ
m

)R−1 for some r ∈ {0, . . . , m − 1}. Again, we dis-

tinguish several subcases depending on the vector v. First,
let us consider the case that v = 0. In this case we obtain
a rich set of cycles in Gb. Actually, we obtain m-cycles
with gk = T kg0T −k for any g0. This is effectively a three-
parametric family of cycles including both instances in which
the gk are diagonalizable, as well as instances in which gk

are not diagonalizable. In case m is even, in addition to
that a one-parametric family of m/2-cycle emerges. There

we have gk = R( 0 iηei 2k(2r+1)π
m

i/ηe−i 2k(2r+1)π
m 0

)R−1, for any y ∈ C \
{0}. Note that trgk = 0. Let us now discuss the case that we
have a nonvanishing v with T v ∝ v. In this case we obtain
an effectively one-parametric m-cycle of nondiagonalizable

cycles with gk = S0(1 ei 2krπ
m

0 1
)S−1

0 , where S0 = (v, w) for any

w ∈ C2. In other words, g0 may be chosen as any nondi-
agonalizable matrix whose eigenvector is given by v, the
remaining matrices are then determined. Let us now discuss
the case that we have a nonvanishing v with T v �∝ v, but
T 2v ∝ v. Note that this implies T 2 ∝ 1. In this case, we
obtain cycles with diagonalizable gk . The eigenvectors of
each gk are given by v and T v. We obtain global cycles, in
which the eigenvalues of g are ±i. Moreover, in case of an
even particle number, we obtain 2-cycles with g1 = g−1

0 and
a freely choosable eigenvalue χ �= 0,±i. Finally, in case of
a nonvanishing v with T 2v �∝ v we obtain no nontrivial cy-
cles. This completes the characterization of cycles within Gb

considering the fiducial states 1 ⊗ b ⊗ 1|LLT 〉. We present a
summary of the findings in terms of a flowchart in Fig. 4.

Let us conclude with remarking that for any specified T
and v, there is a two-parametric family of b’s (with b20 = 1)
leading to the specified T , v, as in Eq. (21). Thus, it is possible
to construct a b possessing any desired symmetry presented in
Fig. 4 using the appropriate T and v. Moreover, for normal
MPSs, Theorem 5 characterizes all possible symmetries.

D. SLOCC classification

In order to identify the different SLOCC classes emerging
within the normal MPSs associated to |LLT 〉, we consider
(b → c) cycles within the symmetry group of the fiducial
state. More precisely, we study the relation

ykbxk+1 ∝ c for all k ∈ {0, . . . , N − 1} (30)

in order to decide whether the MPS generated by 1 ⊗ b ⊗
1|LLT 〉 and 1 ⊗ c ⊗ 1|LLT 〉 are SLOCC equivalent to each
other. As shown in [18] (see also Sec. III and Sec. IV), they are
SLOCC equivalent to each other iff it is possible to identify
an N-cycle (or an M-cycle, where M divides the total particle
number N). We will first characterize 1-cycles. Then we will
introduce a (nonunique) standard form for b and c up to global
SLOCC operations. Finally, we complete the classification by
considering nonglobal operations. Note that we characterize
the (b → c) cycles for all b, c with b20, c20 �= 0; however, we
keep in mind that certain such b, c lead to nonnormal MPSs.
We present the SLOCC classification in the flowchart shown
in Fig. 5, following the same structure as in Fig. 4.

Recall that two states |ψ〉 and |φ〉 can only be SLOCC
equivalent if their symmetry group is compatible, i.e., S|ψ〉

equals S|φ〉 up to conjugation. This immediately shows that,
e.g., states belonging to box IV cannot be SLOCC equivalent
to states belonging to box V in Fig. 4. However, this neces-
sary condition is not strong enough to reveal anything about
SLOCC equivalence between, e.g., states belonging to boxes
V and VI within the figure yet.

1. Global SLOCC operations and standard form

As a first step, we investigate (b → c) 1-cycles, which
allows us to characterize equivalence of normal MPSs under
global operations. For normal MPSs, stated differently, we
characterize here all b for which there exists an operator g
such that |�b(LLT )〉 = g⊗N |�c(LLT )〉 for a given c. Using
the symmetry of the fiducial state [see Eq. (20)] this leads to
the following. A (b → c) 1-cycle exists if

b ∝ x−1cy−1,

where

x−1 =
⎛
⎝δ γ B02γ + B01δ

β α B02α + B01β

0 0 B11

⎞
⎠,

y−1 = 1

B11

⎛
⎝B11 −(B02γ + B01δ) −(B02α + B01β )

0 δ β

0 γ α

⎞
⎠,

where α, β, γ , δ, B11, B01, B02 ∈ C such that det g = 1, where
g = (α β

γ δ ). We use the parametrization and normalization of
b and c as in Eq. (21) and write

b = b

[
Tb, vb,

(
b10

b00

)]
and similarly for c. We obtain all b that are connected to c via
a (b → c) 1-cycle through

b = b

[
1

B2
11

gTcg−1,
1

B11
gvc,

1

B11
g

(
c10 + B02

c00 + B01

)]
(31)

for g with det g = 1 and B11, B01, B02 ∈ C. Here g is the global
physical operation relating the two MPSs. Note that even
g = 1 leads to a freedom in b, which is due to symmetries
of the fiducial state that have the form 1 ⊗ B ⊗ C. Note also
that in Eq. (31) we have equality and not proportionality
as b20 = c20 = 1 fixes the proportionality factor to 1. Note
further that Eq. (31) allows us to easily identify global LU-
invariant quantities.

We introduce a standard form for b, c up to global opera-
tions (1-cycles). It then suffices to study SLOCC equivalence
for MPSs associated to b, c which are in standard form in order
to provide a full characterization of SLOCC equivalence. We
choose the following standard form:

b = b[Tb, vb, 0],

where Tb is in JNF, det Tb = 1. Moreover, we use the same
convention for the ordering and possible sign flip of the
eigenvalues as earlier in this section. More precisely, for diag-
onalizable Tb we write Tb = diag(σb, σ

−1
b ), where σb ∈ D (see

Fig. 3). Note that the standard form is not unique as we may
flip the direction of v via a sign change in B11 and, moreover,
special forms of Tb such as Tb = 1 leave even more freedom

032424-19



MARTIN HEBENSTREIT et al. PHYSICAL REVIEW A 105, 032424 (2022)

FIG. 4. Flowchart showing the characterization of the symmetries of all normal MPSs generated by 1 ⊗ b ⊗ 1|LLT 〉, i.e., for any b
with b20 �= 0 (w.l.o.g. b20 = 1) and v �= 0 (shaded rectangles with solid contour); cf. Observation 7. For any such b, the symmetries of the
corresponding MPS may be determined by calculating T and v as in Eqs. (22) and (23) and then following the procedure described in the
paper, which is shown in the flowchart. Additionally, the flowchart also shows the cycles in Gb obtained for nonnormal MPSs generated by b
such that b20 = 1 and v = 0 (shaded rectangles with dashed contour). Note that for nonnormal MPSs the symmetry group might be larger than
displayed, as the utilized methods may fail to identify the full symmetry group (and yield a subgroup instead). Here “no sym.” indicates that
the corresponding MPS possesses only the trivial symmetry. Generic b belong to box VI, as indicated in the flowchart.
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FIG. 5. Summary of the SLOCC classification of all normal MPSs generated by 1 ⊗ b ⊗ 1|LLT 〉 (shaded rectangles with solid contour)
plus partial results on SLOCC classes of some nonnormal MPSs (shaded rectangles with dashed contour). We display the number of SLOCC
classes corresponding to each type and give representatives for every SLOCC class (we count complex parameters). To simplify the presentation
not all redundancies in the representatives of the continuous SLOCC families are avoided. Redundancy may be removed straightforwardly
though. The flowchart is following the same structure as the one in Fig. 4, in particular, the displayed type labels agree. Note that additional
nonnormal MPSs that have not been identified as SLOCC equivalent might in fact be equivalent. The displayed nonnormal MPSs vanish in
case of odd N .
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to choose the direction of v. Let us stress here that b with
coinciding T and nonvanishing v whose directions coincide,
but whose norms differ, lead to MPSs that share the same
symmetry group, but are not necessarily related by a global
SLOCC operation. Clearly, if b and c which are connected by
a (b → c) 1-cycle are in standard form, we necessarily have
that Tc = Tb.

For normal tensors, the characterization of (b → c) 1-
cycles allows us to characterize equivalence of the associated
MPSs under global SLOCC operations (for nonnormal ten-
sors, additional MPSs might turn out to be equivalent, which
are not identified as equivalent by considering (b → c) cycles)
[18]. Due to the considerations of (b → c) 1-cycles above,
we obtain such a characterization as stated in the following
lemma.

Lemma 3. Consider fiducial states 1 ⊗ b ⊗ 1|LLT 〉 and
1 ⊗ c ⊗ 1|LLT 〉 which correspond to normal MPSs (i.e.,
b20 = c20 = 1 and additionally vb, vc �= 0). Then, the MPSs
are related via a global SLOCC operation if and only if
there exists a g ∈ SL(2,C) such that vb ∝ gvc and Tb =

vT
b vb

(gvc )T gvc
gTcg−1.

Proof. The statement follows from the considerations of
(b → c) 1-cycles above. �

2. Nonglobal SLOCC operations

Let us now also take nonglobal SLOCC operations into
account. Considering

b ∝ x−1
k cy−1

k+1,

and imposing that both b and c are in standard form, we obtain
B(k)

01 = B(k)
02 = 0 for all k and

b = b

[
1

B(k)
11 B(k+1)

11

gk+1Tcg−1
k ,

1

B(k+1)
11

gk+1vc, 0

]
, (32)

where we use the normalization det gk = 1. We obtain as a
simple necessary condition for having an N-cycle

T N
b = ±gkT N

c g−1
k (33)

for all k (with a positive sign in case of even N , ± in case of
odd N).

Using Eqs. (32) and (33) it is straightforward to estab-
lish that within Fig. 5 fiducial states that belong to different
boxes do allow for a (b → c) cycle (see Observation 10 in
Appendix F).

Let us now complete the characterization of (b → c) cy-
cles. In the case that T N

c �∝ 1, considering Eq. (33), the
standard form for Tb, Tc, and the uniqueness of the Jordan
decomposition straightforwardly leads to the fact that all gk

must be in JNF (special care needs to be taken in case tr Tc =
0). Then, using Eq. (32) in addition, a tedious calculation
shows that gk = g for all k. However, the case T N

c ∝ 1 is
more involved as in this case, the condition in Eq. (33) is
not helpful. Let us thus take intermediate steps in completing
the characterization of (b → c) cycles. To this end, we will
introduce two lemmas, which we prove in Appendix F. It
is obvious that whenever we have b and c in standard form
allowing for a (b → c) 1-cycle, it holds that Tb = Tc. The first
lemma shows that the same is true for (b → c) N-cycles if
vb �= 0, vc �= 0.

Lemma 4. Consider b and c in standard form which cor-
respond to normal MPSs (i.e., b20 = c20 = 1 and additionally
vb, vc �= 0). If there exists a (b → c) N-cycle, then Tb = Tc.

Building on Lemma 4, the next lemma shows that when-
ever such b and c are connected by a (b → c) N-cycle, there
also exists a (b → c) 1-cycle.

Lemma 5. Consider b and c which correspond to nor-
mal MPSs (i.e., b20 = c20 = 1 and additionally vb, vc �= 0).
If there exists a (b → c) N-cycle, then, there also exists a
(b → c) 1-cycle.

We are now in the position to state simple necessary and
sufficient conditions for SLOCC equivalence of normal MPSs
generated by fiducial states within the LLT class.

Theorem 6. Consider fiducial states 1 ⊗ b ⊗ 1|LLT 〉 and
1 ⊗ c ⊗ 1|LLT 〉 which correspond to normal MPSs (i.e.,
b20 = c20 = 1 and additionally vb, vc �= 0). Then the MPSs
are SLOCC equivalent if and only if they are related via a
global operation, i.e., there exists a g ∈ SL(2,C) such that

vb ∝ gvc and Tb = vT
b vb

(gvc )T gvc
gTcg−1.

Let us remark here that the operator g in the theorem is
such that g⊗N transforms one state into the other.

Proof. The statement of the theorem follows directly from
Lemma 5 together with the considerations on global SLOCC
operations [(b → c) 1-cycles] in Lemma 3. �

A straightforward consequence of the theorem is that
SLOCC equivalence of the considered MPSs is not particle-
number dependent, in spite of all the variety within their
(N-dependent) symmetry group. Note that this is not true in
general; see, e.g., the SLOCC classes for MPSs with bond
dimension D = 2 that are generated by fiducial states within
the GHZ class [18].

3. Representatives and parametrization of SLOCC classes

Due to Theorem 6 we have that two MPSs are SLOCC
equivalent iff they are related by a global transformation.
Here we parametrize all SLOCC classes by introducing a
more precise standard form for the various b’s, i.e., the fidu-
cial states. This standard form is then also useful to obtain
representative MPSs for the different SLOCC classes. The
resulting representatives of the SLOCC classes are presented
in the flowchart in Fig. 5. This completes the characteriza-
tion of all SLOCC classes of TIMPSs corresponding to the
fiducial states which are SLOCC equivalent to the |LLT 〉
state.

As mentioned before (see Observation 10 in Appendix F)
SLOCC-equivalent normal TIMPSs must belong to the same
box in Fig. 4. We obtain the parametrization of the SLOCC
classes by introducing a precise standard form of all opera-
tors b corresponding to the individual boxes. To this end we
consider the operators b and c which have the same standard
form as given above. We have seen that T may be brought into
Jordan normal form, and normalized to determinant 1. Let us
now further specify T and the vector v for the various cases
(boxes).

Let us first consider the scenario that Tb and Tc are not di-
agonalizable in more detail. Due to the chosen standard form,
we then have Tb = Tc = (1 1

0 1). Moreover, due to Tb ∝ gTcg−1
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we have that

g = ±
(

1 β

0 1

)
.

Note that these are the only global transformations, which
map normal MPSs with fiducial states 1 ⊗ b ⊗ 1|LLT 〉, with
b such that Tb is nondiagonalizable and in standard from into
each other. We hence have that b and c (in standard form)
such that Tb and Tc are not diagonalizable lead to MPSs that
are SLOCC related if and only if

vb =
(

vb,0

vb,1

)
= ±

(
vc,0 + βvc,1

vc,1

)
for some β ∈ C. In order to take into account this freedom,
we amend the definition of the standard form of b by addi-
tionally requiring that either v ∝ (1, 0)T , or v ∝ (0, 1)T (or
v = 0). Then, we have that b and c in standard form with
nondiagonalizable Tb, Tc correspond to MPSs that are related
by a global SLOCC operation if and only if vb = ±vc. The
standard form for b may now be used to obtain MPSs that are
representatives for the present SLOCC classes. Contemplating
the characterization of symmetries, we have that there is a 1-
parametric13 family of SLOCC classes exhibiting a nontrivial
global symmetry with vb ∝ (1, 0)T (the proportionality fac-
tor is the free complex parameter). More precisely, all states
which belong to the SLOCC class can be transformed into
the standard form with vb = ±x(1, 0)T , and they belong to
different SLOCC classes for different values of x ∈ C.

Supposing v �= 0, these classes correspond to box IIb in
Fig. 4. Moreover, we find a one-parametric family with trivial
symmetry group for v ∝ (0, 1)T , v �= 0, which corresponds to
box V. More precisely, all states with vc = ±x(β, 1)T belong
to the SLOCC class with vb = x(0, 1)T for arbitrary β ∈ C
and fixed x ∈ C.

Let us now discuss the case that Tc and Tb are diagonal-
izable, i.e., Tc = Tb = diag(σ, 1/σ ) for some σ ∈ C. In the
case that σ = 1, the MPSs are SLOCC equivalent if and
only if there exists a g with det g = 1 such that vb = gvc.
We thus choose the standard form v = (1, 0)T . For σ = i,
we obtain a (b → c) 1-cycle if and only if there exists an
g = diag(α, 1/α) such that vb = ±gvc, or vb = ±igσxvc. For
σ �= 1, i, we obtain a (b → c) 1-cycle if and only if there
exists an g = diag(α, 1/α) such that vb = ±gvc. In case we
have T v ∝ v, we thus choose the standard form such that
either v = (1, 0)T , or v = (0, 1)T . Otherwise, we choose the
standard form v = (v1, 1/v1)T for v1 ∈ C \ {0}. Due to these
considerations, there is a two-parametric family of SLOCC
classes corresponding to box VI in Fig. 4 (one free parameter
within T plus one free parameter within v). For the remaining
boxes containing normal MPSs, i.e., boxes IV, VII, and VIII,
let us suppose that T m ∝ 1 for some fixed m. Then there is
a discrete number of possible T s, namely, �m/2� + 1 (see
Fig. 3). For a fixed m, there are exactly m different SLOCC
classes corresponding to box IV, as for each of the �m/2� + 1
possible T ’s we either have v = (1, 0)T , or v = (0, 1)T , ex-
cept for T = 1 and T = diag(−i, i), where these possibilities

13Recall that we count complex parameters.

are equivalent and we hence choose v = (1, 0)T . Particularly
interesting will be the subfamily corresponding box IV for
which m = N , as this subfamily encompasses all type-IV
MPSs with nontrivial symmetry group. Due to the reasoning
above, there are exactly N of them. Finally, there are one-
parametric families of SLOCC classes corresponding to boxes
VII and VIII, respectively, with the free parameter stemming
from v. We summarize these findings in Fig. 5 following the
same structure as in Fig. 4, which displays the corresponding
symmetries.

E. Nonnormal MPSs

We have seen in Observation 7 that an MPS associated
to b is normal if and only if b20 = 1 and vb �= 0. In Ob-
servation 6 we have analyzed (nonnormal) MPSs associated
to b with b20 = 0. In this section, we discuss the remaining
nonnormal MPSs, i.e., MPSs generated by b such that b20 = 1
and v = 0, i.e., the three boxes I, IIa, and III in Fig. 4. In
particular, we present nonnormal MPSs belonging to box I
and show that the symmetries determined in this section might
indeed only be subgroups of the whole symmetry group for
nonnormal MPSs. Moreover, we show that the fact that any
possible SLOCC transformation among normal MPSs can be
performed with a global transformation is no longer true for
nonnormal MPSs.

Note that for any odd particle number N we have
|�(Ab)〉 = 0, i.e., the MPS vanishes. Considering the def-
inition of MPSs [see Eq. (2)], this can be easily seen as
follows. If v = 0, then both A0

b and A1
b are matrices of the

form
(0 0 ·

0 0 ·
· · 0

)
, where “·” indicates an arbitrary (vanishing

or nonvanishing) entry. This form is retained by any product
of matrices of such a form, which comprises odd factors (see
also Appendix D). In particular, the trace vanishes and thus
|�(Ab)〉 = 0. Conversely, it may be straightforwardly verified
that |�(Ab)〉 �= 0 for any even N � 4 (unless det b = 0). In the
following, we hence consider even N � 4.

Let us first consider MPS associated to diagonalizable T
as in box (I) in Fig. 4. and consider the particularly inter-
esting case m = N . In standard form, we then have T =
diag(ei rπ

N , e−i rπ
N ) for r ∈ {0, . . . , N

2 }. Considering only global
(b → c)-cycles these different states appear to be inequiva-
lent. Note, however, that the premises of Lemmas 4 and 5
(which stated that this suffices to conclude that the associated
MPS are inequivalent) are not fulfilled, as v = 0. Indeed, addi-
tional equivalences become apparent taking nonglobal (b →
c)-cycles into account. More precisely, considering Eq. (32)
and gk = diag(e−i rkπ

N , ei rkπ
N ) and B(k)

11 = 1 for k ∈ {0, . . . , N −
1}, we find that all T = diag(ei rπ

N , e−i rπ
N ) for even r are equiv-

alent to T = 1. For odd r this construction does not work due
to a sign mismatch in B(k)

11 B(k+1)
11 in Eq. (32). Instead, those

can be shown to be equivalent to T = diag(i,−i) = iσz using
gk = diag(e−i (r−N/2)kπ

N , ei (r−N/2)kπ

N ). Thus, there are (at most) two
SLOCC classes within box I for m = N . The two represen-
tative MPSs associated to T = 1 and T = iσz are in fact the
Majumdar-Ghosh states [35]

|ψ−〉0,1 . . . |ψ−〉N−2,N−1 ± |ψ−〉1,2 . . . |ψ−〉N−1,0,

032424-23



MARTIN HEBENSTREIT et al. PHYSICAL REVIEW A 105, 032424 (2022)

where + (−) corresponds to T = 1 (T = iσz), respectively.
Note that g⊗N is a symmetry of |�(Ab)〉 for any g. Thus,
the study of cycles (see Fig. 4) clearly has revealed only a
subgroup of the symmetry group, as may be expected for
nonnormal tensors.

VI. FIDUCIAL STATES FOR A BOND DIMENSION D > 3
CORRESPONDING TO DIAGONAL MATRIX PENCILS

We discuss here the generic case of fiducial states with
bond dimension larger than 3 (see also Sec. III). The fiducial
states correspond to diagonal MPs [32], i.e., we have

|A〉 = |0〉A|�+
D〉BC + |1〉A(D ⊗ 1)|�+

D〉BC, (34)

where D = diag(x1, . . . , xD), with x1, . . . , xD being the eigen-
values of the corresponding MP. Its symmetries are of the
form

g ⊗ P−1
σ D−1

g D̃ ⊗ P−1
σ D̃−1,

where g = (α β

γ δ ) is such that the set of eigenvalues of the
pencil is mapped into itself (see Sec. III).

Depending on the eigenvalues of the diagonal MP, i.e., the
entries of D, we have either (1) the eigenvalues are such that
the linear fractional transformation given in Eq. (12) exists or
(2) no such transformation exists (which is the generic case).

In case (2), which is the generic case, the fiducial state
has only the trivial qubit symmetry, which implies that the
corresponding TIMPS has only the trivial symmetry. More-
over, any TIMPS which corresponds to a fiducial state which
is in such a SLOCC class has only the trivial symmetry. In
case (1) nontrivial symmetries exist. A simple example of
such a state14 would be the fiducial state given in Eq. (34)
with xk = ωk , where ω = ei 2π

D . In general we have that in this
case, g is such that for all i ∈ {1, . . . , D}, xi �→ xσ (i) for some
permutation σ . Moreover, Dg = diag(γ x1 + δ, . . . , γ xD + δ),
and Pσ = ∑

i |σ (i)〉〈σ |, and D̃ is an arbitrary invertible diag-
onal matrix (see equation above). Then, it is immediate that
1 ⊗ b ⊗ 1|A〉 has the symmetries

g ⊗ bP−1
σ D−1

g D̃b−1 ⊗ P−1
σ D̃−1 = S ⊗ bxb−1 ⊗ yT ,

where the r.h.s. is standard MPS notation for symmetries of
the fiducial state.

We outline in the following how all the symmetries of the
corresponding TIMPS can be determined. As in Sec. IV one
would start out by solving the concatenation condition [see
Eq. (7)]. More precisely, in order to determine the physical
symmetry of the MPS we have to identify the N-cycles within
the symmetry group of the fiducial state. That is, we solve the
following concatenation rules:

ykbxk+1b−1 ∝ 1 for k ∈ {0, . . . , N − 2},
y0bxN−1b−1 ∝ 1.

14Using the theory of Möbius transformations [44] one might
derive necessary and sufficient conditions on the fiducial states to
possess nontrivial symmetries.

For |Ab〉 as fiducial state, this condition is equivalent to

bP−1
σk+1

D−1
gk+1

D̃k+1b−1 ∝ P−1
σk

D̃k .

Thus, we can derive as a necessary condition that
bP−1

σk+1
D−1

gk+1
D̃k+1b−1 must be similar to P−1

σk
D̃k . This implies

that these matrices must have the same eigenvalues. Matrices
of the form Pσ D, where Pσ is a permutation matrix and D is a
diagonal matrix, are called generalized permutation matrices
[36]. It turns out that their eigenvalues are easy to calculate,
as the following lemma shows.

Lemma 6 (Eigenvalues of monomial matrices). Let Pσ be
a permutation matrix and D a diagonal matrix. Then the
eigenvalues of Pσ D can be determined as follows. Assume σ

decomposes into l distinct cycles π1, . . . , πl . Let di denote
the length(πi )-th root of the product of the entries of D as-
sociated with the cycle πi. Then the eigenvalues of Pσ D are

(d1ei 2kπ
length(π1 ) )length(π1 )−1

k=0 ∪ . . . ∪ (dle
i 2kπ

length(πl ) )length(πl )−1
k=0 .

Proof. Let us fix a cycle πi and restrict Pσ D to the subspace
spanned by the basis elements that πi does not leave invariant.
This matrix then has characteristic polynomial λlength(πi ) −
d length(πi )

i = 0, and thus its eigenvalues are as stated in the
lemma. �

Using now these necessary conditions for the existence of
a cycle, similar tools as the ones presented in Sec IV can
be utilized to determine all symmetries of the corresponding
TIMPS.

VII. ENTANGLEMENT AND LOCC TRANSFORMATIONS

Before concluding, let us briefly discuss the implication
of the results derived here in the context of entanglement
theory. As mentioned in the introduction, if a state, |�〉
can be transformed deterministically via LOCC into some
other state |�〉, then E (|�〉) � E (|�〉) for any entanglement
measure E . Hence, LOCC transformations induce a partial
order on the set of entangled states. As shown in [37–39]
local symmetries play an important role in characterizing all
possible LOCC transformations among pure states. Since we
have characterized all the local symmetries of the TIMPS, it
is straightforward to determine possible LOCC transforma-
tions (at least in case the number of symmetries is finite).
To give a simple example a TIMPS |�〉 can be transformed
deterministically into a state h1 ⊗ 1 ⊗ 1 ⊗ · · · |�〉, where h1

is determined by the symmetries of |�〉. More precisely, if the
symmetries are unitary symmetries on (at least) all but one
system, system 1, then the above mentioned transformation
is possible if and only if there exists a finite set of probabili-
ties {pk} and symmetries gk such that

∑
k pk (gk

1)†h†
1h1gk

1 ∝ 1.
Recall that the symmetry group of an MPS may depend on
the particle number N . In drastic cases, an MPS may exhibit
the trivial symmetry group for certain N , while the symmetry
group is nontrivial for other N . A simple example would be
the MPS �1 D3 from Sec. II A. Thus, it can be easily seen
that whether |�〉 can be transformed deterministically into
a state h1 ⊗ 1 ⊗ 1 ⊗ . . . |�〉 via LOCC may depend on the
particle number N . Another assertion concerning reachability
of states under LOCC is possible due to knowing the full
symmetry group of a TIMPS. Namely, TIMPSs which possess
nontrivial global symmetries, but no local symmetries, such
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as �G fin from Sec. II A, are not reachable from any other state
via an LOCC protocol involving a finite number of rounds of
classical communication [34].

In case a deterministic transformation is not possible, one
might study the maximal success probability of transforming
one TIMPS into another. We denote by P(ψ → φ) the max-
imal success probability for transforming ψ to φ. It has been
shown in [40] that P(ψ → φ) = minμ μ(ψ )/μ(φ), where μ

denotes an arbitrary entanglement monotone. For a generic set
of states, this minimum can be easily determined. This set is
defined as the union of all SLOCC classes which possess a
representative whose single party reduced state is completely
mixed (critical state) and whose stabilizer is trivial. It has been
shown that this set is a full measure set in case of a homoge-
neous system, i.e., where all local dimensions coincide [12].
For those generic multipartite states, we have [11]

P(ψ → φ) = ||φ||2
||ψ ||2

1

λmax(G−1H )
,

where G = g†g, H = h†h, and ψ = gψs, φ = hψs, with ψs the
critical representative of the SLOCC class and g and h are
local operators. Here λmax denotes the maximal eigenvalue.
Note that the maximal success probability can be easily de-
termined as G and H are local operators. Note that for these
states it is also possible to determine so-called SLOCC paths
along which one state can be transformed optimally into the
other [41]. Furthermore, for these states a complete set of
entanglement monotones, which can be easily computed, is
known [41]. Clearly all these results apply to TIMPSs which
belong to the above mentioned full-measured set.

VIII. CONCLUSION

We studied the symmetries of TIMPSs with bond di-
mension D = 3 and showed that they are in strong contrast
to TIMPSs with bond dimension D = 2. Depending on the
SLOCC class of the underlying fiducial state, very different
symmetry and entanglement properties (regarding SLOCC
classes) occur. We illustrate the rich variety of states by pre-
senting TIMPSs with particular symmetry groups.

In a future project it will be interesting to investigate how
the stabilizer groups and SLOCC classes presented here re-
late to the results on the classification of phases of matter
presented in [25,26]. Furthermore, the relaxation of locality
in (S)LOCC as presented in [42] might reveal a more coarse-
grained structure of the SLOCC classes presented here.
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APPENDIX A: PROOF OF LEMMA 2 CONCERNING
MPSS WITH FIDUCIAL STATE 1 ⊗ b ⊗ 1|M(ω)〉

Let us assume w.l.o.g. that g1 = g2 = 1. In order to prove
the lemma it suffices to show that Eq. (17) implies g0 = 1, as
then the argument may be iterated in order to show gk = 1 for
all k.

Let us now show that g0 = 1. Since g1 = g2 = 1, Eq. (17)
for k = 1 reads

bB2b−1 ∝ B1. (A1)

Since Eq. (A1) displays a similarity transformation and both
B2 and B1 are diagonal, we have that B2 ∝ P̃B1P̃−1 for some
permutation matrix P̃. Let us now distinguish three cases
depending on the degeneracies of the eigenvalues of B1. In
case B1 ∝ 1, considering Eq. (17) for k = 0 immediately
yields P−1

σ0
B0 ∝ 1 and thus g0 = 1. Let us now consider the

case that all the eigenvalues of B1 are nondegenerate. Then,
due to the uniqueness of the spectral decomposition [see
Observation 1 for spectral decompositions of the matrices
involved in Eq. (A1)], b must be a monomial matrix too. Using
this fact in Eq. (17) for k = 0 shows that P−1

σ0
= 1.

Let us finally consider the case that B1 has two distinct
eigenvalues with multiplicities one and two, respectively. Let
us assume w.l.o.g. that the degenerate subspace is spanned
by |0〉, |1〉. Then, due to Eq. (A1) and the uniqueness of the
spectral decomposition, bP̃ must be block-diagonal in the
subspace spanned by {|0〉, |1〉} and |2〉. Let us now consider
Eq. (17) for k = 0. If P̃|2〉 = |2〉, then b commutes with B1,
and thus P−1

σ0
= 1 follows immediately. If P̃|2〉 �= |2〉, then

considering Eq. (17) for k = 0 shows that σ0 ∈ {1, (1, 0, 2)}.
This can be seen as follows. The left-hand side of Eq. (17)
for k = 0 reads bB1b−1 = (bP̃)(P̃−1B1P̃)(bP̃)−1. Combining
the fact that P̃−1B1P̃ is diagonal with the block-diagonal
structure of (bP̃) shows that the right-hand side of Eq. (17)
for k = 0 must have the same block-diagonal structure and
thus σ0 ∈ {1, (1, 0, 2)}. Let us now argue that the case σ0 =
(1, 0, 2) cannot occur. To this end, let us assume σ0 = (1, 0, 2)
and show that this leads to a contradiction. Let us consider
Eq. (17) for k = N − 1 and rewrite the left-hand side as
(bP̃)(P̃−1P−1

(1,0,2)P̃)D(bP̃)−1 for some diagonal D. Due to the
right-hand side of Eq. (17), (bP̃)(P̃−1P−1

(1,0,2)P̃)D(bP̃)−1 must
be a monomial matrix, which is only possible if b is a mono-
mial matrix (this can be seen by considering the last row and
column of the matrix expression). However, if b is a mono-
mial matrix, then Eq. (17) for k = 0 implies that P−1

σ0
= 1

(a diagonal matrix conjugated by a monomial matrix remains
diagonal), which is a contradiction. This completes the proof
of the lemma.

APPENDIX B: CHARACTERIZATION OF CYCLES
CONSIDERING FIDUCIAL STATES 1 ⊗ b ⊗ 1|M(ω)〉

In this Appendix we present Table III providing details on
normal TIMPSs generated by fiducial states 1 ⊗ b ⊗ 1|M(ω)〉
(see Sec. IV). The table lists all possible cycles and pro-
vides parametrizations for all normal fiducial states 1 ⊗ b ⊗
1|M(ω)〉 s.t. Gb exhibits the respective cycles. See Sec. IV
for the methods required to derive the table, as well as an
exemplary calculation for the cycle C0.
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APPENDIX C: PROOF OF OBSERVATION 5 CONCERNING
THE NORMALITY OF MPS GENERATED BY FIDUCIAL

STATES 1 ⊗ b ⊗ 1|M(ω)〉
In this Appendix we prove Observation 5, which concerns

the normality of fiducial states 1 ⊗ b ⊗ 1|M(ω)〉. Before we
do so, let us make a few general remarks on the matter.

Recall that a fiducial state 1 ⊗ b ⊗ 1|A〉 is normal if and
only if for some fixed L, it is possible to build products of
A0

b and A1
b comprising L factors, which form a basis for all

D × D matrices (see Sec. III). It suffices to consider L up
to a certain upper bound depending on the bond dimension
D [43]. For any concrete choice of b it is simple to decide
normality. To this end, one may proceed as follows. First,
one calculates all possible products of A0

b and A1
b of length L

leading to 2L D × D matrices. Then, one rearranges the matrix
entries in order to form D2-dimension vectors, which are then
used as columns of a D2 × 2L matrix M. Obviously, the tensor
is normal if rk M = D2 and it is nonnormal if rk M < D2,
hence, normality may be decided by computing the rank15 of
M. Deciding normality of a continuous family of b’s is more
involved, though. Which products of A0

b and A1
b one needs to

consider in order to obtain a basis will typically depend on the
parameter choices in b. It is still comparably simple to show
that a family of b’s is normal for generic parameter choices.
To this end, one may construct the matrix M as above and
then consider the determinant of a submatrix of M obtained by
selecting D2 columns of M, which will be some polynomial
in the entries of b. In case the obtained polynomial is not
identically zero, this shows that the MPS is normal for generic
parameter choices. However, as mentioned above, typically
there will be certain particular parameter choices for which the
polynomial vanishes. In order to prove that the whole family
leads to normal MPSs, one thus often needs to consider addi-
tional submatrices of M (and their determinants) and show
that the obtained polynomials do not have a common root
(additionally assuming det b �= 0).

We now make a small observation concerning the fact
that an MPS is normal if and only if any SLOCC-equivalent
MPS is, which is an immediate consequence of the concepts
introduced in [18].

Observation 9. A (not necessarily TI) fiducial state gk ⊗
1 ⊗ 1|A〉 is normal with injectivity length L for any g1 · · · gN

if and only if |A〉 is.
Let us also recall Observation 4, which we have proven

in the main text. According to Observation 4, fiducial states
1 ⊗ b ⊗ 1|M(ω)〉 are not normal if b is a generalized per-
mutation matrix, or such that in any row or column i, bii is
the only nonvanishing entry. Let us now restate and prove
Observation 5.

Observation 5 . All b s.t. there exist nontrivial cycles in Gb

(see Table III) are normal with injectivity length L = 4, 5, or
6, unless b fulfills the prerequisites of Observation 4.

Proof. We use the parametrizations for b as given in Ta-
ble III. We first argue that in order to prove the observation, it

15In order to circumnavigate numeric imprecisions, one may, e.g.,
compute the singular values of M and make sure that D2 of them are
sufficiently different from 0.

suffices to prove the statement for only some of the families of
b’s in Table III. We will then argue that it will be convenient to
change the considered representative from 1 ⊗ b ⊗ 1|M(ω)〉
to 1 ⊗ b ⊗ 1|M1(0) ⊕ M1(1) ⊕ M1(∞)〉. For each of the rel-
evant families, we then proceed as discussed above.

In order to prove the observation it suffices to consider
b(C0), b(C1), b(C3), b(T τ,ε,κ

0 ), and b(T τ,ε,κ
3 ), as all other rel-

evant families are subfamilies of the mentioned ones (see
Fig. 1). Moreover, it suffices to prove the statement for b(T τ

0 )
and b(T τ

3 ) instead of all the families b(T τ,ε,κ
0 ) and b(T τ,ε,κ

3 ).
The reason for this is that the families are SLOCC equiv-
alent to the families b(T τ

0 ) and b(T τ
3 ), respectively, via a

global operation. Due to Observation 9, normality is retained
under an SLOCC operation. Thus, we need to show the
statement of the observation for the families b(C0), b(C1),
b(C3), b(T τ

0 ), and b(T τ
3 ) only. In order to do so, we pro-

ceed as outlined in the discussion above Observation 9.
Recall that the matrix D within the parametrizations for b
within Table III does not alter the generated MPS, we will
hence disregard D in the following. Note that the repre-
sentative for the fiducial state |M(ω)〉 is SLOCC equivalent
to |M1(0) ⊕ M1(1) ⊕ M1(∞)〉. While using the former rep-
resentative was more convenient in the main text, as the
physical operators constitute a more natural representation
of the symmetric group, the latter representative will be
more convenient here, as the tensor A is more sparsely
populated in that case. Note that |M(ω)〉 ∝ (1 ω2

ω ω2 ) ⊗
diag(1,−ω2, ω) ⊗ 1|M1(0) ⊕ M1(1) ⊕ M1(∞)〉. Thus, 1 ⊗
b ⊗ 1|M(ω)〉 is normal if and only if 1 ⊗ b′ ⊗ 1|M1(0) ⊕
M1(1) ⊕ M1(∞)〉 is for b′ = diag(1,−ω2, ω)b. Moreover,
note that b is of the form given in Observation 4 if and only if
b′ is. Thus, it suffices to prove the statement of the observation
considering the tensor

A0
b′ =

⎛
⎝0 b′

01 b′
02

0 b′
11 b′

12
0 b′

21 b′
22

⎞
⎠, A1

b′ =
⎛
⎝b′

00 b′
01 0

b′
10 b′

11 0
b′

20 b′
21 0

⎞
⎠, (C1)

where b′ is given by the parametrizations of the families b(C0),
b(C1), b(C3), b(T τ

0 ), and b(T τ
3 ) as in Table III, multiplied with

diag(1,−ω2, ω) from the left. Let us now show the statement
for the individual families. In the following we simply write b
instead of b′.

Let us start considering the family b(C3). Since this is a
discrete family, it is straightforward to show that the corre-
sponding fiducial states are normal with L = 4. To this end, it
suffices to construct the matrix M as described above Obser-
vation 9 and verify that it has rank 9.

Let us now come to the continuous families. For each of
these families, we will provide several alternative choices of
nine products of A0

b and A1
b comprising L factors. Then, for

each parameter choice within the considered family of b’s, at
least one of the alternatives will provide a basis for all 3×3
matrices (for generic parameter choices, all of the alternatives
do). Before we provide the concrete choices, a few remarks
are in order. First, note that the provided choices are by far
not unique and, moreover, there might exist choices such that
less than the provided number of alternatives suffice to show
normality. Second, note that if nine operators {Oi}i form a
basis of 3×3 matrices, then so do the operators {XOi}i for
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any invertible X . Here it is advantageous to consider products
of A0

b and A1
b multiplied by b−1 from the left instead of the

mere products, such as b−1A0
bA1

bA0
bA0

b or b−1A0
bA0

bA1
bA1

b instead
of A0

bA1
bA0

bA0
b or A0

bA0
bA1

bA1
b. The reason for this is that due

to the form of A0 = |1〉〈1| + |2〉〈2| and A1 = |0〉〈0| + |1〉〈1|,
we obtain matrices with only four nonvanishing entries and it
becomes much simpler to identify independent ones.

Let us start with considering the family b(T τ
3 ). Here

it actually suffices to consider a single choice of nine
products of the operators A0

b, A1
b of length L = 4, which

turn out to be linearly independent for all b within the
considered family. Considering {A0

bA0
bA0

bA0
b, A0

bA0
bA0

bA1
b,

A0
bA0

bA1
bA1

b, A0
bA1

bA0
bA1

b, A0
bA1

bA1
bA0

b, A0
bA1

bA1
bA1

b, A1
bA0

bA1
bA0

b,

A1
bA0

bA1
bA1

b, A1
bA1

bA1
bA1

b}, it may be easily verified that
the determinant of the corresponding 9×9 matrix reads
−2048b16

01b11
11. In order to have an invertible b we have

b01 �= 0 and b11
11 �= 0. Hence, the given operator products

are linearly independent (and thus form a basis for all 3×3
matrices) for all b within the considered family.

Let us now consider the family b(C0). We consider
the following alternative sets of products with L = 4:
{A0

bA0
bA0

bA0
b, A0

bA0
bA0

bA1
b, A0

bA1
bA0

bA0
b, A1

bA1
bA0

bA1
b, A1

bA1
bA1

bA1
b,

A1
bA0

bA0
bA0

b, A1
bA0

bA1
bA0

b, A1
bA1

bA0
bA0

b, A1
bA1

bA1
bA0

b}, {A0
bA0

bA1
bA0

b,

A0
bA0

bA1
bA1

b, A0
bA1

bA1
bA0

b, A1
bA0

bA0
bA1

b, A1
bA0

bA1
bA1

b, A1
bA0

bA0
bA0

b,

A1
bA0

bA1
bA0

b, A1
bA1

bA0
bA0

b, A1
bA1

bA1
bA0

b}, {A0
bA0

bA0
bA0

b, A0
bA0

bA0
bA1

b,

A0
bA0

bA1
bA0

b, A1
bA0

bA0
bA1

b, A1
bA1

bA1
bA1

b, A1
bA0

bA0
bA0

b, A1
bA0

bA1
bA0

b,

A1
bA1

bA0
bA0

b, A1
bA1

bA1
bA0

b}, {A0
bA0

bA0
bA0

b, A0
bA0

bA0
bA1

b, A0
bA0

bA1
bA0

b,

A0
bA1

bA0
bA1

b, A0
bA1

bA1
bA0

b, A1
bA0

bA1
bA0

b, A1
bA0

bA0
bA0

b, A1
bA0

bA0
bA1

b,

A1
bA1

bA0
bA1

b}, as well as two with L = 6, {A0
bA0

bA0
bA0

bA0
bA0

b,

A0
bA0

bA0
bA0

bA0
bA1

b, A0
bA0

bA0
bA0

bA1
bA0

b, A0
bA0

bA0
bA1

bA0
bA0

b,

A0
bA0

bA1
bA0

bA0
bA1

b, A0
bA1

bA0
bA0

bA1
bA0

b, A1
bA0

bA0
bA0

bA0
bA0

b,

A1
bA0

bA0
bA0

bA0
bA1

b, A1
bA1

bA1
bA1

bA1
bA1

b}, {A0
bA0

bA1
bA0

bA0
bA1

b, A0
bA0

b
A1

bA0
bA1

bA0
b, A0

bA0
bA1

bA0
bA1

bA1
b, A0

bA1
bA0

bA0
bA1

bA0
b, A0

bA1
bA0

bA0
bA1

bA1
b,

A0
bA1

bA0
bA1

bA0
bA1

b, A1
bA1

bA0
bA1

bA0
bA0

b, A1
bA1

bA0
bA1

bA0
bA1

b, A1
bA1

bA0
bA1

b
A1

bA0
b}, which certify normality as outlined above. As the

corresponding determinants are lengthy expressions, we
abstain from displaying them here. Note that although b’s
within the considered family are generically normal with
L = 4, there indeed exist examples that are normal with
injectivity length L = 6 (but not for a smaller L).

Let us now consider the family b(C1). We consider
the following two alternative sets of products with L = 4:
{A0

bA0
bA0

bA0
b, A0

bA0
bA1

bA0
b, A0

bA1
bA0

bA0
b, A0

bA1
bA0

bA1
b, A0

bA1
bA1

bA0
b,

A1
bA0

bA0
bA0

b, A1
bA0

bA0
bA1

b, A1
bA0

bA1
bA0

b, A1
bA1

bA1
bA1

b}, {A0
bA0

bA0
bA0

b,

A0
bA0

bA0
bA1

b, A0
bA0

bA1
bA0

b, A0
bA1

bA1
bA0

b, A0
bA1

bA0
bA1

b, A1
bA0

bA0
bA0

b,

A1
bA0

bA0
bA1

b, A1
bA1

bA0
bA1

b, A1
bA1

bA1
bA1

b}, as well as the fol-
lowing three alternative sets of products with L = 6:
{A0

bA0
bA0

bA0
bA0

bA0
b, A0

bA0
bA0

bA0
bA0

bA1
b, A0

bA0
bA0

bA0
bA1

bA1
b, A0

bA0
bA0

bA1
b

A1
bA1

b, A0
bA0

bA1
bA1

bA0
bA0

b, A0
bA1

bA1
bA0

bA0
bA0

b, A1
bA0

bA0
bA0

bA0
bA0

b,

A1
bA0

bA0
bA0

bA0
bA1

b, A1
bA1

bA1
bA1

bA1
bA1

b}, {A0
bA0

bA0
bA0

bA0
bA0

b, A0
bA0

b
A0

bA0
bA0

bA1
b, A0

bA0
bA0

bA0
bA1

bA1
b, A0

bA0
bA1

bA1
bA0

bA0
b, A0

bA1
bA1

bA0
bA0

bA0
b,

A1
bA0

bA0
bA0

bA0
bA0

b, A1
bA0

bA0
bA0

bA0
bA1

b, A1
bA1

bA0
bA1

bA1
bA0

b, A1
bA1

bA0
b

A1
bA0

bA1
b}, {A0

bA0
bA1

bA0
bA0

bA1
b, A0

bA0
bA1

bA0
bA1

bA0
b, A0

bA0
bA1

bA0
bA1

bA1
b,

A0
bA1

bA0
bA0

bA1
bA0

b, A0
bA1

bA0
bA0

bA1
bA1

b, A0
bA1

bA0
bA1

bA0
bA1

b, A1
bA1

bA1
bA1

b
A1

bA1
b, A1

bA1
bA1

bA1
bA1

bA0
b, A1

bA1
bA1

bA1
bA0

bA0
b}, which certify

normality as outlined above.
Let us now consider the family b(C1). We consider

the following two alternative sets of products with L = 4:
{A0

bA0
bA0

bA0
b, A0

bA0
bA0

bA1
b, A0

bA0
bA1

bA0
b, A0

bA0
bA1

bA1
b, A0

bA1
bA0

bA0
b,

A0
bA1

bA0
bA1

b, A1
bA0

bA0
bA0

b, A1
bA0

bA1
bA0

b, A1
bA0

bA1
bA1

b}, {A0
bA0

bA0
bA0

b,

A0
bA0

bA0
bA1

b, A0
bA0

bA1
bA1

b, A0
bA1

bA0
bA1

b, A0
bA1

bA1
bA0

b, A1
bA0

bA0
bA0

b,

A1
bA1

bA0
bA0

b, A1
bA1

bA0
bA1

b, A1
bA0

bA1
bA0

b}, {A0
bA0

bA0
bA0

b, A0
bA0

bA0
bA1

b,

A0
bA0

bA1
bA0

b, A0
bA1

bA0
bA0

b, A0
bA1

bA1
bA0

b, A1
bA0

bA0
bA0

b, A1
bA0

bA0
bA1

b,

A1
bA1

bA0
bA1

b, A1
bA1

bA1
bA1

b}, as well as the following
three alternative sets of products with L = 5:
{A0

bA1
bA1

bA0
bA0

b, A0
bA1

bA1
bA1

bA0
b, A0

bA1
bA1

bA1
bA1

b, A1
bA0

bA0
bA0

bA0
b,

A1
bA0

bA0
bA0

bA1
b, A1

bA0
bA0

bA1
bA1

b, A0
bA0

bA0
bA0

bA0
b, A0

bA0
bA0

bA1
bA1

b, A0
bA0

b
A1

bA1
bA0

b}, {A0
bA0

bA1
bA0

bA0
b, A0

bA0
bA1

bA0
bA1

b, A0
bA0

bA1
bA1

bA0
b, A0

bA1
bA0

b
A0

bA1
b, A0

bA1
bA0

bA1
bA0

b, A0
bA1

bA1
bA0

bA0
b, A1

bA0
bA0

bA1
bA0

b, A1
bA0

bA0
bA1

bA1
b,

A1
bA0

bA1
bA0

bA0
b}, as well as the following three al-

ternative sets of products with L = 6: {A0
bA0

bA0
bA0

b
A0

bA1
b, A0

bA0
bA1

bA0
bA1

bA0
b, A0

bA0
bA1

bA0
bA1

bA1
b, A0

bA1
bA0

bA0
bA1

bA0
b, A0

b
A1

bA0
bA0

bA1
bA1

b, A0
bA1

bA0
bA1

bA0
bA1

b, A1
bA1

bA0
bA1

bA0
bA0

b, A1
bA1

bA0
b

A1
bA0

bA1
b, A1

bA1
bA0

bA1
bA1

bA0
b}, and {A0

bA0
bA0

bA0
bA0

bA0
b, A0

bA0
bA0

bA0
b

A0
bA1

b, A0
bA0

bA0
bA0

bA1
bA1

b, A0
bA0

bA0
bA1

bA1
bA0

b, A0
bA0

bA1
bA1

bA0
bA0

b,

A0
bA1

bA1
bA0

bA0
bA0

b, A1
bA0

bA0
bA0

bA0
bA0

b, A1
bA0

bA0
bA0

bA0
bA1

b, A1
bA0

bA0
bA0

b
A1

bA1
b}, which certify normality as outlined above. Within

the considered family there indeed exist examples that are
normal with injectivity lengths L = 4, L = 5, and L = 6,
respectively. �

APPENDIX D: PROOF OF OBSERVATION 7 CONCERNING
THE NORMALITY OF MPS GENERATED BY FIDUCIAL

STATES 1 ⊗ b ⊗ 1|LLT〉
In this Appendix we restate and prove Observation 7,

which characterizes the normality of MPSs generated by fidu-
cial states 1 ⊗ b ⊗ 1|LLT 〉.

Observation 7. N-qubit MPSs associated to 1 ⊗ b ⊗
1|LLT 〉 are normal if and only if b20 �= 0 and v �= 0.

Proof. We will first show that the tensor cannot be normal
if b20 = 0. We will then parametrize b in terms of T , v, b00

and b10 as in Eq. (21). Making use of Observation 9 we will
argue that it suffices to consider b of a restricted form. We will
then show that the tensor cannot be normal if v = 0. Finally,
we will show that b is normal with injectivity length L = 4 if
v �= 0.

Let us now show that b20 = 0 leads to nonnormal MPSs.
For b20 = 0, we obtain

{
A0

b, A1
b

} =
⎧⎨
⎩
⎛
⎝0 b00 b02

0 b10 b12

0 0 b22

⎞
⎠,

⎛
⎝b00 0 b01

b10 0 b11

0 0 b21

⎞
⎠
⎫⎬
⎭. (D1)

However, products of matrices of the form
( · · ·

· · ·
0 0 ·

)
remain

of the same form (here, “·” denotes entries with arbitrary
values). Hence, A0

b and A1
b cannot generate all matrices.

Let us now consider b such that b20 �= 0. We choose w.l.o.g.
b20 = 1. As mentioned above, we now parametrize b in terms
of T , v, b00, and b10. We now make use of the fact that any
obtained MPS is SLOCC equivalent to an MPS associated to
some b with T10 = 0, b00 = 0, and b10 = 0 (see Sec. V D).
Thus, it suffices to consider the normality of MPSs for such b
in order characterize the normality for all remaining b due to
Observation 9.

Let us now consider the case v = 0. Note that in this case

both A0
b and A1

b are matrices of the form
(0 0 ·

0 0 ·
· · 0

)
. It may

be easily verified that any product of matrices of such a form
comprising an odd number of factors is again of this form.
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Moreover, any product comprising an even number of factors

is of the form
( · · 0

· · 0
0 0 ·

)
. Hence, such b cannot lead to normal

tensors or MPSs.
Let us now consider the case v �= 0. Here we distinguish

the two subcases v1 �= 0 and v1 = 0. In both cases we consider
nine products of A0

b and A1
b comprising four factors and show

that the products are linearly independent. Let us first consider
the case v1 �= 0. In this case, we find that the nine products

{
A0

bA0
bA1

bA0
b, A0

bA1
bA1

bA0
b, A0

bA1
bA1

bA1
b,

A1
bA0

bA0
bA1

b, A1
bA0

bA1
bA0

b, A1
bA0

bA1
bA1

b,

A1
bA1

bA0
bA1

b, A1
bA1

bA1
bA0

b, A1
bA1

bA1
bA1

b

}
(D2)

are linearly independent and thus form a basis for all 3×3
matrices. This may be easily verified by, e.g., considering
the determinant of a 9×9 matrix M whose columns are
constructed by rewriting the nine matrices in Eq. (D2) as nine-
dimensional vectors. We obtain det M = −T 7

00T 6
11v

10
1 , which

is nonvanishing for v1 �= 0 (note that T00, T11 �= 0 in order to
have det b �= 0).

In case v1 = 0 we instead consider the products

{
A0

bA0
bA0

bA1
b, A0

bA1
bA0

bA0
b, A0

bA1
bA0

bA1
b,

A0
bA1

bA1
bA0

b, A1
bA0

bA0
bA0

b, A1
bA0

bA0
bA1

b,

A1
bA0

bA1
bA0

b, A1
bA1

bA0
bA0

b, A1
bA1

bA0
bA1

b

}
. (D3)

Constructing M as above and using v1 = 0 we obtain det M =
−T 11

00 T 5
11v

4
0 . Since v �= 0 and thus v0 �= 0, the matrices in

Eq. (D3) form a basis for all 3×3 matrices. This completes
the proof. �

APPENDIX E: DERIVATION OF THE SYMMETRIES
OF MPS GENERATED BY 1 ⊗ b ⊗ 1|LLT〉

In this Appendix we provide details on the derivations of
the symmetries of MPSs generated by 1 ⊗ b ⊗ 1|LLT 〉. In
particular, we provide the proof of Theorem 5, and we derive
the procedure of deciding the symmetries for a given b as in
the flowchart presented in Fig. 4.

For readability we recite Theorem 5 here.

Theorem 5. g0, . . . , gN−1 is an N-cycle in Gb
16 if and only

if there exist B(k)
11 ∈ C such that for all k ∈ {0, . . . , N − 1},

gk+1 = 1

B(k)
11 B(k+1)

11

T gkT −1, (E1)[
gk − B(k)

11 1
]
v = 0, (E2)

B(k)
11 B(k+1)

11 =
{±1 if x = i

1 otherwise . (E3)

Proof. In the main text, Eq. (E3) has already been proven
to be a necessary condition; see Observation 8. Let us now
prove that Eq. (E1) is a necessary condition. To this end, let
us consider again the concatenation condition as in Eq. (24)
with the normalizations discussed in the main text. Note also
that, as discussed in the main text, due to b20 �= 0, the pro-
portionality factor within Eq. (24) is fixed to 1/B(k)

11 . It may
be easily seen that the condition is equivalent to the following
vector equation:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δk −γk 0 0
−δkb21 −γkb21 B(k)

11 b00 0
−δkb22 −γkb22 0 B(k)

11 b00

−βk −αk 0 0
−βkb21 −αkb21 B(k)

11 b10 0
−βkb22 −αkb22 0 B(k)

11 b10

0 0 B(k)
11 0

0 0 0 B(k)
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

B(k)
01

B(k)
02

B(k+1)
01

B(k+1)
02

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(B(k)
11 − δk )b00 − γkb10

B(k)
11 B(k+1)

11 (αk+1b01 − γk+1b02) − δkb01 − γkb11

B(k)
11 B(k+1)

11 (−βk+1b01 + δk+1b02) − δkb02 − γkb12

(B(k)
11 − αk )b10 − βkb00

B(k)
11 B(k+1)

11 (αk+1b11 − γk+1b12) − βkb11 − αkb11

B(k)
11 B(k+1)

11 (−βk+1b11 + δk+1b12) − βkb02 − αkb12

B(k)
11

(
(αk+1B(k+1)

11 − 1)b21 − B(k+1)
11 γk+1b22

)
B(k)

11

(
(δk+1B(k+1)

11 − 1)b22 − B(k+1)
11 βk+1b21

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(E4)

Considering this form of the equation, one easily obtains the
following set of necessary conditions that are independent of
B01 and B02:

16Recall that we consider here b20 = 1. We have dealt with the case
b20 = 0 in Observation 6.

γk (b11 − b10b21) + δk (b01 − b00b21) − B(k)
11 B(k+1)

11 [αk+1(b01 − b00b21) + γk+1(b02 − b00b22)] = 0,

γk (b12 − b10b22) + δk (b02 − b00b22) + B(k)
11 B(k+1)

11 [βk+1(b01 − b00b21) + δk+1(b02 − b00b22)] = 0,
(E5)

αk (b11 − b10b21) + βk (b01 − b00b21) − B(k)
11 B(k+1)

11 [αk+1(b11 − b10b21) + γk+1(b12 − b10b22)] = 0,

αk (b12 − b10b22) + βk (b02 − b00b22) + B(k)
11 B(k+1)

11 [βk+1(b11 − b10b21) + δk+1(b12 − b10b22)] = 0,

which are equivalent to Eq. (E1) for T as in Eq. (22), which
proves that Eq. (E1) is a necessary condition.

Let us now also prove that Eq. (E2) is a necessary condi-
tion. To this end, let us again consider Eq. (E4) and assume
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that g0, . . . , gN−1 satisfy Eq. (E1). It may be easily verified
that then, the remaining conditions within Eq. (E4) read⎛

⎜⎜⎜⎝
−δk −γk

−βk −αk

1 0

0 1

⎞
⎟⎟⎟⎠
(

B(k)
01

B(k)
02

)

=

⎛
⎜⎜⎝

−(B(k)
11 − δk )b00 + γkb10

βkb00 − (B(k)
11 − αk )b10

−(αkB(k)
11 − 1)b21 + B(k)

11 γkb22

B(k)
11 βkb21 − (δkB(k)

11 − 1)b22

⎞
⎟⎟⎠ (E6)

for all k. Eq. (E6) has a solution (B(k)
01 , B(k)

02 )T for all k if and
only if Eq. (E2) is satisfied for all k.

Finally, note that if all of the conditions in the theorem are
satisfied, then the concatenation condition given in Eq. (24) is
satisfied. This completes the proof of the theorem. �

Let us briefly discuss the condition given in Eq. (E1).
Considering an N-cycle, in particular, it implies that gk =
T N gkT −N if trgk �= 0 (x �= i), or N is even. To see this,
we have used Eq. (E1) iteratively; moreover, we have
used that x �= i implies that B(q)

11 B(q+1)
11 = 1 for all q, and

that for an even N we have that
∏N−1

q=0 (B(q)
11 )2 = 1. If

N is odd and trgk = 0 (x = i) instead, we obtain gk =
±T N gkT −N , i.e., an additional sign freedom emerges. In the
former case, we obtain equivalently [T N , gk] = 0. This con-
dition is satisfied if and only if either [T, gk] = 0, or T ∝
R diag(1, ei 2rπ

N )R−1 for some r ∈ {0, . . . , N − 1} and some
matrix R (as then T N = 1). Note that [T, gk] = 0 implies
a global symmetry, gk = g. Considering a minus sign in-
stead, g0 = −T N g0T −N , we additionally obtain solutions of
the form T = S0D̃H diag(1, ei (2r+1)π

N )HD̃−1S−1
0 for some r ∈

{0, . . . , N − 2} and some diagonal matrix D̃, where H denotes
the Hadamard matrix.

In the following discussion, let us now also take the con-
dition in Eq. (E2) into account. One possibility to satisfy this
condition is to have b00 = −b21 as well as b10 = −b22. Then
v = 0 and Eq. (E2) is obviously satisfied for all k. The second
possibility is that all gk share a common eigenvector, v, corre-
sponding to the eigenvalue B(k)

11 , respectively. We will see that
this second option limits the symmetries of the MPS severely.
To this end, first note that B(k)

11 must equal one of the eigen-
values of gk , x or 1/x. Moreover, using Eq. (E2) for k + 1,
inserting gk+1 as in Eq. (E1) and using (B(k+1)

11 )2 = 1/(B(k)
11 )2

yields another useful condition,

T

[
gk − 1

B(k)
11

1

]
T −1v = 0. (E7)

In other words, for each k, the eigenvectors of gk are given by
v and T −1v, corresponding to the eigenvalues B(k)

11 and 1/B(k)
11 ,

respectively. One more notable consequence is that consid-
ering once more Eq. (E1) one obtains that either T v ∝ v,
or T v �∝ v and T 2v ∝ v (here we assumed gk �∝ 1 to disre-
gard trivial solutions). In the former case we must have that
1/B(k)

11 = B(k)
11 = 1/x = x = 1. Thus, only nondiagonalizable

gk are possible. In the latter case we have alternating symme-
tries with gk+1 = g−1

k for all k (we obtain a global symmetry

in case x = i). Having established these useful facts, we are
now in the position to derive the process for determining all
cycles in Gb for a given b.

Deriving the process depicted in Fig. 4, which determines
the cycles in Gb for a given b

We will now derive the process of determining the cycles
for a given b with b20 = 1 as depicted in Fig. 4. The first
step is to calculate T and v for the given b. We now consider
the Jordan decomposition of T , T = RJR−1, where J is the
JNF of T . Depending on whether T is diagonalizable, we now
distinguish two cases.

Let us first deal with the case that T is not diagonalizable.
Suppose we haven an N-cycle g0, . . . , gN−1. Then, the only
possibility to fulfill Eq. (E1) is that [T, gk] = 0. To see this,
consider a consequence of Eq. (E1), gkT N g−1

k = 1∏
k (B(k)

11 )2
T N ,

which shows that
∏

k (B(k)
11 )2 = 1. Thus, we have [T N , gk] = 0.

From this, [T, gk] = 0 follows. It immediately follows that
only global symmetries are possible, as gk+1 ∝ gk due to
Eq. (E1). Moreover, using [T, g] = 0 we obtain that for all
potential symmetries, g = R(1 y

0 1)R−1 for any y ∈ C. It yet
remains to consider Eq. (E2). Recall that both v and T v are
eigenvectors of g. As g is not diagonalizable in the currently
considered case, we must have T v ∝ v (or v = 0). This leads
to another case distinction. If T v �∝ v, then we have no non-
trivial cycles. However, if T v ∝ v, then with g as given above,
all conditions in Theorem 5 are satisfied. Thus, in this case we
obtain the one-parametric family of global symmetries given
above. This completes the case that T is not diagonalizable
and is shown in the left branch of Fig. 4.

Let us now discuss the case that T is diagonalizable. We
now additionally distinguish the case that there exists an
m ∈ N such that T m ∝ 1 from the case that there does not
exist such an m. Let us first discuss the latter case. Sim-
ilarly to before, we suppose that we have an N-cycle and
obtain g0T N g−1

0 = 1∏
k (B(k)

11 )2
T N . We must have

∏
k (B(k)

11 )2 = 1,

because otherwise T 2N ∝ 1, contradicting the assumption.
Thus, we obtain [g0, T N ] = 0, which implies [g0, T ] = 0, as
T N �∝ 1. Hence, we have global symmetries only and more-
over, g = R diag(x, 1/x)R−1 for any x ∈ C \ {0}. If v = 0 the
conditions in Theorem 5 are satisfied and one indeed obtains
the mentioned one-parametric family of global symmetries.
Let us now consider the case v �= 0. Note that if T v ∝ v both
eigenvalues of g coincide, which leads to trivial cycles only
(recall that g must be diagonalizable). Recall that T 2v ∝ v
is a necessary condition to have nontrivial cycles. Thus, only
the case T v �∝ v and T 2v ∝ v remains. Note, however, that if
T 2v = λv for some λ ∈ C, then also T 2T v = λT v. As v and
T v are linearly independent, this implies that T 2 = λ1, which
is contradicting the assumption that T N �∝ 1 for any N ∈ N.
Hence, in case v �= 0 we have a trivial symmetry only.

Let us finally discuss the case that T is diagonalizable
and moreover, there is an m ∈ N such that T m ∝ 1. In this

case one can write T ∝ R(
ei rπ

m

e−i rπ
m

)R−1 for some r ∈ N.

If v = 0, we first obtain the same global symmetries as in case
T m �∝ 1, g = R diag(x, 1/x)R−1 for any x ∈ C \ {0}. More-
over, we obtain m-cycles of the form gk = T kg0T −k for any
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g0, which (taking normalization into account) effectively con-
stitutes a three-parametric family of nonglobal symmetries.
Thus, in this case we have diagonalizable as well as non-
diagonalizable symmetries. In case m is even, additionally
certain m/2-cycles emerge, which stem from the fact that in
case x = i, we may have g0 = −T m/2g0T m/2. As discussed
earlier, this admits solutions g0 = S0 diag(i,−i)S−1

0 such

that T = S0D̃H diag(ei (2r+1)π
m , e−i (2r+1)π

m )HD̃−1S−1
0 for some r ∈

{0, . . . , m − 2} and some diagonal matrix D̃. It may be eas-
ily verified that this leads to the one-parametric family of

m/2-cycles with gk = R( 0 iyei 2k(2r+1)π
m

i/ye−i 2k(2r+1)π
m 0

)R−1 for y ∈
C \ {0}. Let us now discuss the case that v �= 0, in which
additional restrictions must be satisfied. Let us first discuss
the subcase T v ∝ v. Recall that in this subcase, only cycles
with nondiagonalizable gk are possible (disregarding trivial
cycles). We thus write g0 = S0(1 1

0 1)S−1
0 , where S0 = (v, w)

with a freely choosable generalized eigenvector w ∈ C2. One
then obtains the remaining matrices forming an m-cycle gk =
S0(1 e

2krπ
m

0 1
)S−1

0 for k ∈ {0, . . . , m − 1}. Thus, in this case we

obtain an effectively one-parametric family of nondiagonaliz-
able, nonglobal symmetries. Let us now discuss the remaining
subcases. As v such that T 2v �∝ v do not allow for any non-
trivial cycle, actually the only subcase that remains open is
the case that T v �∝ v, but T 2v ∝ v. Note that in this case we
have T 2 ∝ 1. Clearly, all gk must be diagonalizable, because
each gk possesses the two linearly independent vectors v and
T v as eigenvectors. It may be easily seen that a global sym-
metry with eigenvectors v and T v and eigenvalues given by
±i satisfies the conditions given in Theorem 5. Considering
cycles with gk such that x �= i, one obtains that gk+1 = g−1

k , as
the vectors v and T v correspond to the eigenvalues x and 1/x
in an alternating manner. Thus, one obtains a one-parametric
family of 2-cycles with a freely choosable x ∈ C \ {0,±i}.
Clearly, however, for an odd particle number only the global
symmetry with x = i remains.

APPENDIX F: DETAILS ON THE SLOCC
CLASSIFICATION OF �(LLT ) AND

PROOFS OF LEMMAS 4 AND 5

In this Appendix, we first provide details on the character-
ization of (b → c) cycles for fiducial states |LLT 〉. We first
state and prove Observation 10. We then use the observation
in order to prove Lemmata 4 and 5, which lead to the SLOCC
classification of normal MPSs (Theorem 6), as explained in
the main text.

From Eq. (33) it follows that Tb and Tc are either both
diagonalizable, or both nondiagonalizable and we may deal
with SLOCC equivalence for these two cases separately. By
considering Eq. (32) one straightforwardly obtains a few fur-
ther necessary conditions for having an (b → c) N-cycle.
First, vb = 0 if and only if vc = 0. Second, for any k ∈ N it
holds that T k

b vb ∝ vb if and only if T k
c vc ∝ vc. To see this,

suppose that T k
c vc ∝ vc and consider

T k
b vb ∝ gkTcg−1

k−1gk−1Tc · · · Tcg−1
0 g0vc = gkT k

c vc

∝ gkvc ∝ vb. (F1)

Third, there exists an mb such that T mb
b ∝ 1 if and only if

there exists an mc such that T mc
c ∝ 1. To see this, suppose

that there exists an mc such that T mc
c ∝ 1. Then consider

T Nmc
b , where N is the particle number. Due to Eq. (33) we

have T Nmc
b ∝ gkT Nmc

c g−1
k ∝ 1. Thus, we have T mb

b ∝ 1 with
mb = Nmc. Note, however, that we do not necessarily have
T mb

b ∝ 1 for mb = mc. We present a simple counterexample
below. Finally, let us remark that if Tcvc �∝ vc, then we have
that for any m ∈ N, T m

c ∝ 1 if and only if T m
b ∝ 1 (with the

same m). This can be seen as follows. Suppose that T m
c ∝

1. Then we have T m
c vc ∝ vc. As discussed above we thus

have T m
b vb = λvb for some λ ∈ C. Furthermore, we have that

T m
b Tbvb = λTbvb. As vb and Tbvb are linearly independent by

the assumption, we have that T m
b = λ1. Let us summarize all

of the discussed properties in the following observation.
Observation 10. Consider b and c such that there exists an

(b → c) N-cycle.17 Then we have
(i) Tb is diagonalizable if and only if Tc is.
(ii) vb = 0 if and only if vc = 0.
(iii) For any k ∈ N we have T k

b vb ∝ vb if and only if
T k

c vc ∝ vc.
(iv) There exists an mb ∈ N such that T mb

b ∝ 1 if and only
if there exists an mc ∈ N such that T mc

c ∝ 1.
(v) If Tcvc �∝ vc, then for any m ∈ N we have T m

b ∝ 1 if
and only if T m

c ∝ 1.
We formulate the observation in terms of cycles rather than

SLOCC equivalence of MPS as the considered family of b, c
encompasses nonnormal instances; cf. the discussion below
Theorem 5. With this observation, we have established that
normal MPSs belonging to different boxes within Fig. 4 are
SLOCC inequivalent (even though they may have compatible
symmetry group).

In Observation 10 we have shown that if there is a
(b → c) cycle and T mc

c ∝ 1 for some mc, then T mb
b ∝ 1 for

some mb. However, in the discussion above the observa-
tion we have mentioned that we do not necessarily have
T mb

b ∝ 1 for mb = mc. Here we present a simple counterex-
ample illustrating this. Consider c such that vc = 0 and
Tc = diag(ei π

mc , e−i π
mc ), i.e., T mc

c ∝ 1. Then b with vb = 0 and

Tb = diag(ei( 2
N + 1

mc
)π , e−i( 2

N + 1
mc

)π ) gives rise to an SLOCC-
equivalent MPS. This can be easily seen by writing Tb =
gk+1Tcg−1

k , where gk = diag(ei 2kπ
N , e−i 2kπ

N ). Suppose that N is
odd, moreover, mc and N are coprime. Then mb = Nmc is the
smallest integer such that T mb

b ∝ 1, in particular, T mc
b �∝ 1.

Lemma 4. Consider b and c in standard form which cor-
respond to normal MPSs (i.e., b20 = c20 = 1 and additionally
vb, vc �= 0). If there exists a (b → c)N-cycle, then Tb = Tc.

Proof. In order to prove the lemma, we distinguish several
cases, namely, nondiagonalizable and diagonalizable Tc and,
moreover, Tc such that T m

c ∝ 1 for some m and Tc such that
T m

c �∝ 1 for all m. We show the statement of the lemma for
each of these cases separately.

Let us first consider nondiagonalizable Tc. Due to Observa-
tion 10 and the chosen standard form for T we have Tb = Tc =
(1 1
0 1). The statement is hence trivial for nondiagonalizable

T .

17Recall that we are considering b20 = c20 = 1.
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Let us now consider diagonalizable Tb, Tc. Consider first
the case that there exists no mc such that T mc

c ∝ 1. Due to
Observation 10, the same must hold for Tb. Considering the
standard form for T we may write Tc = diag(σc, σ

−1
c ) and

Tb = diag(σb, σ
−1
b ). Using Eq. (33) we necessarily have that

either σ N
b = ±σ N

c , or σ N
b = ±σ−N

c (with a positive sign in
case of even N). Note that the latter case is only possi-
ble if |σc| = 1. Thus, σb = ei qπ

N σc or σb = ei qπ

N σ−1
c for some

q ∈ {0, . . . , 2N − 1} in case of odd N and σb = ei 2qπ

N σc or
σb = ei 2qπ

N σ−1
c for some q ∈ {0, . . . , N − 1} in case of even

N . Moreover, using Eq. (33) we obtain that either gk =
diag(αk, 1/αk ) for all k, or gk = diag(αk, 1/αk )σx for all k,
respectively.18 Due to the assumption we have vc �= 0. Due to
Eq. (32) we have

B(k)
11

B(k+1)
11

g−1
k gk+1vc = vc, (F2)

and due to the considerations above we moreover have

g−1
k gk+1 = B(k+1)

11 B(k)
11 diag

(
ei qπ

N , e−i qπ

N
)

(F3)

for q ∈ {0, . . . , 2N − 1}. Thus, (B(k)
11 )2 diag(ei qπ

N , e−i qπ

N )vc =
vc. Hence, either q = 0, which implies Tb = Tc (Tb = T −1

c
is not possible due to the chosen standard form), or vc is
proportional to a standard basis vector, i.e., an eigenvector
of Tc. In the latter case we have (B(k)

11 )2 = e±i qπ

N with coin-
ciding sign for all k. As we are considering T in standard
form (det Tb = det Tc = 1), we have (B(k)

11 )2(B(k+1)
11 )2 = 1. We

thus obtain ei 2qπ

N = 1 and in further consequence σb = ±σc, or
σb = ±σ−1

c . Hence, Tb = Tc due to the standard form.
Let us now consider the case that there exists an mc such

that T mc
c ∝ 1. Here we distinguish two subcases. First, if

T N
c �∝ 1, then the same conclusions as for the case T mc

c �∝
1 for any mc ∈ N can be drawn. Second, if T N

c ∝ 1, then
Eq. (33) does not yield a constraint. In particular, it does not
imply that gk must be of either diagonal or counter-diagonal
form. Thus, in the following, we deal with this case separately.
Due to Eq. (32) we have

gk =
(

k−1∏
i=0

B(i)
11

)(
k∏

i=1

B(i)
11

)
T k

b g0T −k
c (F4)

for all k. We now consider 1
B(k)

11

gkvc = 1
B(0)

11

g0vc [an implication

of Eq. (32)]. Inserting Eq. (F4) we obtain the condition⎛
⎝(k−1∏

i=0

B(i)
11

)2

T k
b g0T −k

c − g0

⎞
⎠

︸ ︷︷ ︸
Mk

vc = 0. (F5)

As (B(l )
11 B(l+1)

11 )2 = 1 for any l , the product in Eq. (F5) equals 1
for any even k. As T N

c , T N
b ∝ 1 and due to the standard form

18Let us remark that in case vc = 0 we also have vb = 0 and any σb

as in the main text indeed leads to an SLOCC-equivalent MPS, which

can be seen by considering gk = diag(e−i kqπ
N , ei kqπ

N )σ b
x and B(k)

11 =
(−1)k i, where b ∈ {0, 1} for odd N and gk = diag(e−i 2kqπ

N , ei 2kqπ
N )σ b

x

and B(k)
11 = 1 for even N . Hence, there is a one-parametric family of

SLOCC classes corresponding to box III in Fig. 4.

we have Tb = diag(ei
qbπ

N , e−i
qbπ

N ) and Tc = diag(ei qcπ

N , e−i qcπ

N )
for some qb, qc ∈ {0, . . . , �N/2�}. Due to Eq. (F5) we have
det Mk = 0 for any k. Moreover, due to the definition of Mk

we have that

det Mk = 2 − 2

(
α0δ0 cos

kπ (qb − qc)

N

−β0γ0 cos
kπ (qb + qc)

N

)
(F6)

for any even k. We have

∑
k∈{2,4,...,2(N−1)}

det Mk =
⎧⎨
⎩

2N qb �= qc

0 qb = qc ∈ {0, N
2 }

−2Nβ0γ0 qb = qc �∈ {0, N
2 }

.

(F7)

Note that we deliberately also sum over k that are larger than
N , we use N + l ≡ l for l ∈ {0, . . . , N − 1}. As Mk must be
singular for any k this shows that qc = qb and hence Tc = Tb.
This completes the proof of the lemma. �

Lemma 5. Consider b and c which correspond to nor-
mal MPSs (i.e., b20 = c20 = 1 and additionally vb, vc �= 0). If
there exists a (b → c)N-cycle, then there also exists a (b → c)
1-cycle.

Proof. We prove the statement separately for the case of
nondiagonalizable Tc, diagonalizable Tc such that T N

c ∝ 1 and
diagonalizable Tc such that T N

c �∝ 1. We make use of the fact
that Tb = Tc due to Lemma 4 in all of the cases.

Let us start by considering nondiagonalizable Tc. Due to
Eq. (32) we have gk+1 ∝ TcgkT −1

c . From the condition in
Eq. (33) it follows that [gk, Tc] = 0. Thus, gk+1 ∝ gk for all k
and the statement of the lemma follows for nondiagonalizable
Tc.

Let us now consider the case that Tc is diagonalizable and
T N

c �∝ 1. Recall that due to the considered standard form of
c, Tc is diagonal. Due to Eq. (33) we have that gk is either
diagonal or counterdiagonal. Using gk+1 ∝ TcgkT −1

c we have
that gk+1 ∝ gk and the statement of the lemma follows for the
considered Tc.

Let us finally consider the case that Tc is diagonalizable and
T N

c ∝ 1. Note that if Tc ∝ 1 we have gk+1 ∝ TcgkT −1
c ∝ gk

and the statement of the lemma follows trivially. In the follow-
ing we thus assume Tc �∝ 1. We will make use of the relation(

T 2
c g0T −2

c − g0
)
vc = 0, (F8)

which may be derived as in the proof of Lemma 4. We now
distinguish several subcases. We first consider the subcase that
Tcvc ∝ vc. We either have that vc ∝ (1, 0)T , or vc ∝ (0, 1)T .
Suppose that vc ∝ (1, 0)T . Note that we are considering c cor-
responding to box IV in Fig. 4. Considering gk+1 ∝ TcgkT −1

c
and g0vc ∝ gkvc for any k we have that g0vc ∝ T k

c g0T −k
c vc ∝

T k
c g0vc. Considering k = 1 and using Tc �∝ 1 we have that

g0vc must be proportional to a standard basis vector. Thus,
either α0 = 0 or γ0 = 0. Unless T 2

c ∝ 1 we must have γ0 = 0
due to Eq. (F8). Due to the fact that the symmetry group of
the considered fiducial states possesses an N-cycle yielding a
symmetry as displayed in box IV in Fig. 4, there must as well
exist an (b → c) N-cycle with physical operators g′

0, g′
1, . . .,

where g′
0 = g0(1 z

0 1) for any z ∈ C. Choosing z = −β0/α0
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(z = −δ0/γ0) if γ0 = 0 (α0 = 0), we obtain a (b → c) N-
cycle with g′

0 = (α0 0
0 δ0

) (g′
0 = ( 0 β0

γ0 0 )), respectively. Recall

that the latter case can only occur if T 2
c ∝ 1, which implies

Tc = diag(i,−i) due to the chosen standard form. As g′
k+1 ∝

Tcg′
k+1T −1

c we hence have that g′
k+1 ∝ g′

0 for all k. Thus,
we have an (b → c) 1-cycle. The proof works similarly if
vc ∝ (0, 1)T , instead.

Let us now consider the subcase that Tcvc �∝ vc and T 2
c ∝

1, i.e., we are considering c corresponding to box VII in
Fig. 4. It will be convenient to introduce S = (vc, T vc) and
write g0 = S(α0,S β0,S

γ0,S δ0,S
)S−1. Note that TcS ∝ Sσx. Thus, the

condition g0vc ∝ g1vc ∝ Tcg0T −1
c vc yields σx(β0,S, δ0,S )T ∝

(α0,S, γ0,S )T . Thus, we have g0 = S(α0,S λγ0,S

γ0,S λα0,S
)S−1 for some

λ ∈ C. Note that the considered subcase can occur only
in the case of even N . Thus, we may utilize the 2-cycles
displayed in box VII in Fig. 4 in order to conclude that
there must exist another (b → c) N-cycle with g′

0, g′
1, . . .

such that g′
0 = S(α

′
0,S γ ′

0,S
γ ′

0,S α′
0,S

)S−1. Now, as g′
k+1 ∝ Tcg′

kT −1
c =

Sσx(α
′
k,S γ ′

k,S
γ ′

k,S α′
k,S

)σxS−1, we have g′
k ∝ g′

0 for all k. Thus, there
exists a (b → c) 1-cycle.

Let us finally consider the subcase that Tcvc �∝ vc and
T 2

c �∝ 1, i.e., we are considering c corresponding to box VIII

in Fig. 4. As T 2
c �∝ 1, Eq. (F8) yields ( 0 β0

γ0 0 )vc = 0. As vc

is not an eigenvector of Tc, i.e., not proportional to a standard
basis vector, this yields β0 = 0 and γ0 = 0, i.e., g0 is diagonal.
As gk+1 ∝ TcgkT −1

c and Tc is diagonal too, we have gk ∝ g0

for all k. Thus, there exists a (b → c) 1-cycle. This completes
the proof of the lemma.

APPENDIX G: SYMMETRIES OF THE TIMPS
CORRESPONDING TO THE REMAINING FOUR

SLOCC CLASSES OF THE FIDUCIAL STATE

We briefly discuss here the four remaining SLOCC classes
of the fiducial states. The subsequent subsections are all
structured in the same way. We present the symmetries of
the fiducial states and the concatenation rules, which would
then, analogously to the derivation in the main text, allow
us to determine the symmetries, SLOCC transformations, and
SLOCC classes of the corresponding TIMPS. Instead of com-
pletely characterizing here all the symmetries (and SLOCC
classes), we just highlight some particularly interesting sym-
metries, which do not occur in the cases studied in the main
text. The notation used for the representatives refer to the
value and the degeneracy of the eigenvalues of the correspond-
ing MP (see also Sec. III).

1. TIMPS corresponding to the fiducial states
represented by M3(0)

We consider here the SLOCC class of the fiducial state
which is represented by the state by |M3(0)〉 = |0〉(|01〉 +
|12〉) + |1〉(|00〉 + |11〉 + |22〉).

The MP reads

P = M3(0) =
⎛
⎝λ μ 0

0 λ μ

0 0 λ

⎞
⎠. (G1)

a. Symmetries of the fiducial state

As before, the symmetries of the fiducial state can be
straight forwardly determined using the corresponding MP (or
directly from the state). Symmetries of the form 1 ⊗ B ⊗ C
read

B =
⎛
⎝1 B01 B02

0 1 B01

0 0 1

⎞
⎠,

CT =
⎛
⎝1 −B01 B2

01 − B02

0 1 −B01

0 0 1

⎞
⎠. (G2)

The symmetries involving the physical symmetry g can be
easily determined using Eq. (12). As the MP possesses the
eigenvalue 0, we have β = 0. Moreover, w.l.o.g. we choose
the normalization δ = 1. Hence, any physical symmetry can
be chosen to be lower triangular. For any given g the corre-
sponding matrices Bg,Cg can then easily be determined and
we obtain

g =
(

α 0
γ 1

)
,

Bg =
⎛
⎝1/α 0 0

0 1 −γ

0 0 α

⎞
⎠,

CT
g =

⎛
⎝α −γ 0

0 1 0
0 0 1/α

⎞
⎠. (G3)

The symmetry group of the state |M3(0)〉 is thus given by

g ⊗ BgB ⊗ CgC. (G4)

As shown in [18] (see also Sec. III), symmetries and
SLOCC transformations between TIMPSs generated by any
fiducial state within the SLOCC class of the representative
|M3(0)〉 can be determined by focusing on the states of the
form 1 ⊗ b ⊗ 1|M3(0)〉. The tensor A associated to 1 ⊗ b ⊗
1|M3(0)〉 reads

A0 =
⎛
⎝0 b00 b01

0 b10 b11

0 b20 b21

⎞
⎠, A1 =

⎛
⎝b00 b01 b02

b10 b11 b12

b20 b21 b22

⎞
⎠. (G5)

b. Concatenation rules

As explained in the main text, the symmetries of the MPS
corresponding to a particular fiducial state can be determined
by the corresponding concatenation rules. In case of the
fiducial state 1 ⊗ b ⊗ 1|M3(0)〉 the concatenation rules read
bxkb−1 ∝ y−1

k , where

xk+1 =

⎛
⎜⎝1/αk+1 B(k+1)

01 /αk+1 B(k+1)
02 /αk+1

0 1 B(k+1)
01 − γk+1

0 0 αk+1

⎞
⎟⎠,

yk =

⎛
⎜⎝1/αk (B(k)

01 + γk )/αk (B(k)
02 + B(k)

01 γk )/αk

0 1 B(k)
01

0 0 αk

⎞
⎟⎠.

(G6)
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Observe that the matrices involved in Eq. (G6) are upper
triangular. Thus, the diagonal elements are the eigenvalues
of the matrices. As the determinant of the matrices on both
sides equals 1, the proportionality factor must be a third root
of unity and it follows that either αk+1 = αk , or αk+1 = 1/αk .
Note that all eigenvalues are distinct as long as αk �= ±1.
Similar tools as presented in the main text can be used to
determine all the symmetries and to identify the normal MPSs
corresponding to fiducial states in this SLOCC class. One
finds, apart from global symmetries for instance 2-cycles.

2. TIMPS corresponding to the fiducial states represented
by M2(0) ⊕ M1(0)

The SLOCC class we consider here is represented by the
fiducial state by |M2(0) ⊕ M1(0)〉 = |0〉(|01〉) + |1〉(|00〉 +
|11〉 + |22〉). The corresponding MP

P = M2(0) ⊕ M1(0) =
⎛
⎝λ μ 0

0 λ 0
0 0 λ

⎞
⎠ (G7)

has an eigenvalue zero.

a. Symmetries of the fiducial state

Analogously to before we determine the symmetries by
symmetries of the form 1 ⊗ B ⊗ C, which are given by
(choosing a convenient normalization)

B =
⎛
⎝1 B01 B02

0 1 0
0 B21 B22

⎞
⎠,

CT =
⎛
⎝1 −B01 + B02B21

B22
−B02

B22

0 1 0
0 −B21

B22
1/B22

⎞
⎠. (G8)

and symmetries of the form g ⊗ Bg ⊗ Cg. In the case consid-
ered here they are given by

g =
(

α 0
γ 1

)
,

Bg =
⎛
⎝1 0 0

0 α 0
0 0 1

⎞
⎠,

CT
g =

⎛
⎝1 −γ /α 0

0 1/α 0
0 0 1

⎞
⎠. (G9)

As before we chose w.l.o.g. the normalization δ = 1. Note
that, as in the previously considered case, the MP has a single
eigenvalue, 0, and thus we have β = 0 in g. The symmetry
group of the state |M2(0) ⊕ M1(0)〉 is thus given by

g ⊗ BgB ⊗ CgC. (G10)

The tensor A associated to 1 ⊗ b ⊗ 1|M2(0) ⊕ M1(0)〉
reads

A0 =
⎛
⎝0 b00 0

0 b10 0
0 b20 0

⎞
⎠, A1 =

⎛
⎝b00 b01 b02

b10 b11 b12

b20 b21 b22

⎞
⎠. (G11)

b. Concatenation rules

For the fiducial state 1 ⊗ b ⊗ 1|M2(0) ⊕ M1(0)〉 the con-
catenation rules read bxkb−1 ∝ y−1

k , where

xk+1 =
⎛
⎝1 B(k+1)

01 B(k+1)
02

0 αk+1 0
0 B(k+1)

21 B(k+1)
22

⎞
⎠, (G12)

y−1
k =

⎛
⎝1 B(k)

01 + γk B(k)
02

0 αk 0
0 B(k)

21 B(k)
22

⎞
⎠. (G13)

The symmetries can be worked out similarly to the main
text. To give an example, one finds for b given by

b =
(

b00 b01 b02
0 b11 b12
1 b21 −b00 − b11

)
with b12 �= 0. (G14)

Three-cycles with α2 = 1/(α0α1) for arbitrary
α0, α1 ∈ C \ {0}. Moreover, γk = tr{b−1 det b}

b12
(αk − 1) =

b2
00+b02+b00b11+b2

11+b12b21

b12
(αk − 1).

3. TIMPS corresponding to the fiducial states represented
by M2(0) ⊕ M1(∞)

Here we consider the SLOCC class of fiducial states repre-
sented by |M2(0) ⊕ M1(∞)〉=|0〉(|01〉 + |22〉)+|1〉(|00〉 +
|11〉).

The corresponding MP reads

P = M2(0) ⊕ M1(∞) =
(

λ μ 0
0 λ 0
0 0 μ

)
. (G15)

It has two distinct eigenvalues, 0 and ∞.

a. Symmetries of the fiducial state

Symmetries of the form 1 ⊗ B ⊗ C (choosing a convenient
normalization) read

B =
(

1 B01 0
0 1 0
0 0 B22

)
,

CT =
(

1 −B01 0
0 1 0
0 0 1/B22

)
. (G16)

The MP has two distinct eigenvalues, 0 and ∞. Thus, in
order to satisfy Eq. (12) we have β = γ = 0 for any symmetry
on the physical system, g. W.l.o.g. we normalize g such that
δ = 1. For a particular g one can then easily determine a
particular Bg,Cg, such that g ⊗ BgB ⊗ Cg is a symmetry. The
operators are given by

g =
(
α 0
0 1

)
,

Bg =
(

1/α 0 0
0 1 0
y0 0 1/α

)
,

CT
g =

(
α 0 0
0 1 0
0 0 1

)
. (G17)
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The symmetry group of the state |M2(0) ⊕ M1(∞)〉 is thus
given by

g ⊗ BgB ⊗ CgC. (G18)

The tensor A associated to 1 ⊗ b ⊗ 1|M2(0) ⊕ M1(∞)〉
reads

A0 =
⎛
⎝0 b00 b02

0 b10 b12

0 b20 b22

⎞
⎠, A1 =

⎛
⎝b00 b01 0

b10 b11 0
b20 b21 0

⎞
⎠. (G19)

b. Concatenation rules

The concatenation rules are given by bxkb−1 ∝ y−1
k , where

xk+1 =
⎛
⎝1/αk+1 B(k+1)

01 /αk+1 0
0 1 0
0 0 B(k+1)

22 /αk+1

⎞
⎠,

y−1
k =

⎛
⎝1/αk B(k)

01 /αk 0
0 1 0
0 0 B(k)

22

⎞
⎠. (G20)

c. Symmetries of the MPS

In this class particularly interesting symmetries occur,
which we will present examples here.

Considering for instance b = (
0 b01 −b12b21
0 0 b12
1 b21 0

) leads to N-

cycles such that αk+1α
2
k αk−1 = 1 for all k. Now, αk may be

expressed in terms of α0 and α1 as follows. For even k we
have αk = 1

αk−1
0 αk

1
and for odd k we have αk = αk−1

0 αk
1. It

may be easily verified that for odd N , one obtains only three
nontrivial global symmetries with αk = α such that α4 = 1,
i.e., α ∈ {±1,±i}. In contrast to that, for even N we ob-
tain only a less stringent condition, (α0α1)N = 1. Thus, we
have N-cycles with arbitrary α0 ∈ C, α1 = 1/α0ei 2rπ

N for some

r ∈ {0, . . . , N − 1}, and then αk = {α0e−i 2rkπ
N for even k

1
α0

ei 2rkπ
N for odd k

. Inter-

estingly, the eigenvalues of gk do not coincide (up to rescaling)
for all k.

Another interesting symmetry occurs for instance for b =
(
b00 −b2

00 b02
1 −b00 0
0 b21 0

).

We find 4-cycles with α2 = 1/α0 and α3 = 1/α1 and also
2-cycles with α1 = 1/α0 and 1-cycles with α0 = −1.

4. TIMPSs corresponding to the fiducial states represented
by M1(0) ⊕ M1(0) ⊕ M1(∞)

The representing fiducial state of this SLOCC class
is |M1(0) ⊕ M1(0) ⊕ M1(∞)〉 = |0〉|22〉 + |1〉(|00〉 + |11〉).
The corresponding MP reads

P = M1(0) ⊕ M1(0) ⊕ M1(∞) =
⎛
⎝λ 0 0

0 λ 0
0 0 μ

⎞
⎠. (G21)

The MP has (as in the previous case) two distinct eigenval-
ues, 0 and ∞. However, the degeneracy is different compared
to the case studied before.

a. Symmetries of the fiducial state

Symmetries of the form 1 ⊗ B ⊗ C are given by

B =
⎛
⎝B00 B01 0

B10 B11 0
0 0 B22

⎞
⎠, CT = B−1. (G22)

In the following we use the normalization B22 = 1.
Symmetries involving g (and choosing a proper normaliza-

tion) are of the following simple form:

g =
(

α 0
0 1

)
, Bg =

⎛
⎝1 0 0

0 1 0
0 0 1/α

⎞
⎠, Cg = 1. (G23)

As the MP now has two distinct eigenvalues, 0 and ∞,
we have β = γ = 0 in g. The symmetry group of the state
|M1(0) ⊕ M1(0) ⊕ M1(∞)〉 is thus given by

g ⊗ BgB ⊗ C. (G24)

The tensor A associated to 1 ⊗ b ⊗ 1|M1(0) ⊕ M1(0) ⊕
M1(∞)〉 reads

A0 =
⎛
⎝0 0 b02

0 0 b12

0 0 b22

⎞
⎠, A1 =

⎛
⎝b00 b01 0

b10 b11 0
b20 b21 0

⎞
⎠. (G25)

b. Concatenation rules

As in all the previous cases the symmetries of the
corresponding MPS can be determined by solving the con-
catenation rules, which are given in this case by bxkb−1 ∝ y−1

k ,
where

xk+1 =

⎛
⎜⎝B(k+1)

00 B(k+1)
01 0

B(k+1)
10 B(k+1)

11 0

0 0 1/αk+1

⎞
⎟⎠,

y−1
k =

⎛
⎜⎝B(k)

00 B(k)
01 0

B(k)
10 B(k)

11 0

0 0 1

⎞
⎟⎠. (G26)

APPENDIX H: TABLE COMBINING RESULTS ON THE
SYMMETRY GROUP AND THE SLOCC CLASSIFICATION

OF THE TIMPS �(LLT )

In this Appendix we show Table IV, which summarizes the
results on the symmetry groups and SLOCC classes of MPSs
corresponding to fiducial states in the LLT class.
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TABLE IV. Summary of the symmetries (cycles in Gb) and SLOCC classification of all normal MPS generated by 1 ⊗ b ⊗ 1|LLT 〉 (first
part) plus partial results on SLOCC classes of some nonnormal MPS (second part of the table). The “type” corresponds to the labels displayed
in Fig. 4. Note that for nonnormal MPS the symmetry group might be larger than displayed, as the utilized methods may fail to identify the
full symmetry group, but yield a subgroup instead. Similarly, additional nonnormal MPS that have not been identified as SLOCC equivalent
might in fact be equivalent. The displayed nonnormal MPS vanish in case of odd N . As in Fig. 4, by m we denote a number such that T m ∝ 1

(if such a number exists) and write T ∝ R(
ei rπ

m

e−i rπ
m

)R−1, r ∈ {0, . . . , N − 1} for some matrix R and r ∈ {0, . . . , �m/2�}.

Type Normal No. symmetries Cycles No. SLOCC classes Representatives

IIb Yes 1-parametric 1-cycle: g = R

(
1 y
0 1

)
R−1 for

any y ∈ C

1-parametric T =
(

1 1
0 1

)
, v = (x, 0)T ,

x ∈ C \ {0}
IV Yes 1-parametric (m

divides N), 1
(else)

m-cycle:

gk = S0

(
1 ei 2krπ

m

0 1

)
S−1

0 ,

where S0 = (v, w) for any
w ∈ C2

m considering a fixed ma T =
(

ei rπ
m 0

0 e−i rπ
m

)
for

r ∈ {1, . . . , � m−1
2 �},

v ∈ {(1, 0)T , (0, 1)T }. Moreover,
T ∈ {1, iσz} (T = 1) for even

m (odd m), respectively, and
v = (1, 0)T

V Yes 1 (trivial) None 1-parametric T =
(

1 1
0 1

)
, v = (0, x)T ,

x ∈ C \ {0}
VI Yes 1 (trivial) None 2-parametric, generic T =

(
σ 0
0 1/σ

)
, σ ∈ D s.t.

σ n �= 1 for any n ∈ N,
v = (1, 0)T , v = (0, 1)T , or
v = (v1, 1/v1)T , v1 ∈ C \ {0}

VII Yes 1-parametric (even
N), 2 (odd N)

2-cycle: g0 s.t. g0v ∝ v,
g0T v ∝ T v with any

x ∈ C \ {0, i}, g1 = g−1
0 . 1-cylce:

g0 as above, but with x = i.

1-parametric T =
(

i 0
0 −i

)
,

v = (v1, 1/v1)T , v1 ∈ C \ {0}

VIII Yes 1 (trivial) None 1-parametric T =
(

ei sπ
m 0

0 e−i sπ
m

)
for

s ∈ {0, . . . , �m/2�},
v = (v1, 1/v1)T , v1 ∈ C \ {0}

I No 3-parametric 1-cycle: g = R

(
x

1/x

)
R−1

for any x ∈ C \ {0}. m-cycle:
gk = T kg0T −k for any g0.
m/2-cycle:

gk = R

(
0 iz

i/z 0

)
R−1,

z = yei 2k(2r+1)π
m for any

y ∈ C \ {0}

2 (even N) T ∈ {1, iσz}, v = 0

IIa No 1-parametric 1-cycle: g = R

(
1 y
0 1

)
R−1 for

any y ∈ C

1 (even N) T =
(

1 1
0 1

)
, v = 0

III No 1-parametric 1-cycle: g = R

(
x

1/x

)
R−1

for any x ∈ C \ {0}
1-parametric (even N) T =

(
σ 0
0 1/σ

)
, v = 0,

σ ∈ C \ {0} s.t. there exists no
m ∈ N s.t. σ m = ±1

aNote that there exist exactly m different pairs of r and v in the most right column. However, the SLOCC classes corresponding to e.g. m = 2
would also be counted in the case of m = 4 (as T 2 ∝ 1 implies T 4 ∝ 1).

032424-35



MARTIN HEBENSTREIT et al. PHYSICAL REVIEW A 105, 032424 (2022)

[1] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2010).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[3] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entan-
glement in many-body systems, Rev. Mod. Phys. 80, 517
(2008).

[4] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[5] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V.
Thapliyal, Exact and asymptotic measures of multipartite pure-
state entanglement, Phys. Rev. A 63, 012307 (2000).

[6] M. A. Nielsen, Conditions for a Class of Entanglement Trans-
formations, Phys. Rev. Lett. 83, 436 (1999).

[7] G. Vidal, Entanglement of Pure States for a Single Copy,
Phys. Rev. Lett. 83, 1046 (1999).

[8] E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A.
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