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Talk Outline
• Introduction

• CRays at IceCube

• Previous Composition Analysis at IceCube

• New Composition Parameters

• Muon-Spread Dependent Parameters

• Muon Number Dependent Parameter

• Muon Energy-Deposit Dependent Parameters

• Graph Neural Networks

• Message Passing in GNNs

• Improving Previous Architecture
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CR Analysis @ IceCube

PC: IceCube/NSF

Not a IceCube Simulation
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Previous Work
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.100.082002


Scope for Improvement
• Focus only on per-event based composition 
analysis

• Invent newer composition-sensitive parameters

• Focus on in-ice deposit (primarily muon-deposit)

• Use and Improve SOTA Deep Learning Methods 
for composition-analysis

• Use full in-ice footprint for composition analysis 
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New Composition Parameters

=
σ𝐶ℎ𝑎𝑟𝑔𝑒𝑖 ∗ 𝑟𝑖

σ𝑟𝑖

x-axis : Proxy for Energy ; y-axis : Impact Parameter 

- Help understand shower attenuation in-ice and a dynamic parameter

- Possibly help in understanding photon propagation in-ice

- Ongoing work

- Good Separation Between Primaries
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New Composition Parameters

- Uses IceTop and In-Ice info. 

Muons are the most promising candidates for cosmic-ray composition analysis

- Proxy for muon-to-electron number ratio
- Motivated by work of KASCADE-Grande (arXiv:1306.6283)

https://arxiv.org/abs/1306.6283v1
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- Uses In-Ice info. 

- Captures local stochastic-deposits 

in-ice, primarily by muons.

- Good separation between primaries

- Uses In-Ice info. 

- Captures the rate of in-ice charge 

deposit.

- Good separation between primaries



Improving ML Method
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Using In-Ice Signal Footprint

Current Implementation at IceCube

Moving Away from CNNs

Credits: M. Huennefeld (arXiv:2101.11589)

Credits: IceCube-Gen2( arXiv:2008.04323)

https://arxiv.org/abs/2101.11589v2
https://arxiv.org/abs/2008.04323v1
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Update

=

1 Iteration per Node

Set as Input → Permutationally Invariant
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Learning on Graphs

𝐺 = 𝑉, 𝐸
Defined by set of nodes (V) and set of edges (E) between the nodes

- Neighborhood and Connectivity & permutational invariance of Node Labelling

Undirected :  Facebook Friends … ; Directed : Citation Graph … ; Bidirectional : Twitter Follows

- Other Attributes

- Node Features

- Edge Features
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Other Material

- paraskoundal.com/dlcp21

- My ML & AI Paper List

- My Twitter (Paras Koundal)

https://pos.sissa.it/410/
https://pos.sissa.it/410/
https://paraskoundal.com/dlcp21
https://paraskoundal.com/readinglist
https://twitter.paraskoundal.com/


Spatio-temporal Cleaning of 

pulses around the track

DOMs = Nodes

Node Features = Spatio-temporal 

measurements ; charge and others

Generate Edges between nodes;

kNN/

Weighted/

Dynamic

Input for 

Graph Neural Network

Pre-engineered Features

(Primarily Mass-dependent)

Primary Mass 

Prediction

GNNs at IceCube (for CR Analysis)
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Nodes = Spatio-temporal and Charge Features

Edges = Each node connected to each other, weighted 

by Gaussian-kernel with learnable width
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Previous Results @ ICRC,2021

Features used in previous 

publication

Simple Graph Aggregation:
Weighted Mean of neighbors 

Primary Mass 

Estimate 

(ln(A))

- Ignored True-Composition Spectrum:

- Simulations follow approximately E-1 

power law. However, real spectrum 

decays much faster. Moreover, we 

already have some prior knowledge 

about variation of composition with 

energy.

- Equal number of  elements were 

taken (for work in next slides too) -

Focus is to improve  per-event 

based composition estimate.
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Previous Results @ ICRC,2021

https://pos.sissa.it/395/323
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Issues Resolved with Previous Work

- Minor Issues Resolved

- Adding More Mass-Dependent Features

- Correcting Feature normalizations

- Inherently introduced simplification for training – Using 

PyTorch

- Batch Size (subset of training data) = 1 graph

- For Better Generalization: BS (not too big , not 

too small)  

- Graph architecture was over-simplified

- Number of nodes were made equal

- Now: Flexibility of choice.

- Message aggregate and update in graph was over-simplistic →

Generalized to implement any architecture

- Now: k-nn connection (can choose between based on 

feature-vector or spatial coordinates)

- For global-aggregation: Flattened-mean was used

- Now: Implement any SOTA global-aggregation

Major Update

- Global Features also included in graph message-passing framework

- Global attributes are same features shared over all nodes  

- Small Dataset
- CR-MC Simulations are limited.

- Simulations are costly. 

- Working Solution for increasing dataset size: Randomly drop (.1% % & .2% ) in-ice DOMs to increase data 5-fold

- Speculation - Our in-ice track and energy reconstructions are resilient to these changes : Will be tested in future 

- Food for Thought – Change introducing hadronic-interaction model dependence.



Date of  Publication: 18 June 2021

Date of  Publication: 22 Feb 2017

» » » » » »

» » » » » » 

Signal to Graph
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Concatenation

Regressed Value

FC
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3 Layers

Layer 1
ConCat (Global(MaxPool, 

SumPool)) 

Layer 2
ConCat (Global(MaxPool, 

SumPool)) 

Layer 3
ConCat (Global(MaxPool, 

SumPool)) 

Sum (ConCat 1, ConCat 2, ConCat 3)

Major Update
- New Graph Message-Passing framework

- Adapted from the work “Hierarchical Multi-View Graph Pooling with 

Structure Learning”

- Improvement in Graph pooling (or downsampling) to learn 

hierarchical representations

- Attention mechanism utilized to generate robust node ranks.

- Preserve the underlying graph topological information, using a 

structure learning mechanism.
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Adapted from DOI:  

10.1109/TKDE.2021.3090664

*3

https://arxiv.org/abs/1609.02907
https://doi.org/10.1109/TKDE.2021.3090664
https://ieeexplore.ieee.org/document/9460814
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Results
- Target Variable: 1+ln(A)

- Major Improvements for all Primary Types

- Maximum at True value

- Shift towards lighter elements for H and He

- Shift towards heavier for O and Fe

- Loss:

- Adaptive Learning rate

- Very Gradual decrease in error

- No-overfitting most of the times
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Prediction Error : Binned over Energy
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Transfer Your Learning

Model 1

Model 2

Traditional Machine Learning Model 1

Model 2

Transfer Machine Learning

Knowledge 
Transfer

Bottom Image: Borrowed from kdnuggets.com



20

Transfer Learning @ IceCube

Choose Pre-Trained Model

Adam Optimizer
BS = 36; Reducing LR on Plateau
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Transfer Learning @ IceCube

Lamb Optimizer
BS = 36; Reducing LR on Plateau

Date of  Publication: 3 Jan 2020

- The validation loss of the finetuned transferred-

learned model is already lower than the training 

loss of the previous model. Hopefully, 

improvement if  future.
- Caution: Do, I see signs of overfitting

https://arxiv.org/abs/1904.00962
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Graph Level Prediction
GNNs adapt the learning structure of MLPs as well as CNNs. The aggregate and 

update step of GNNs is similar to convolution layers of CNN. To make a graph-level 

prediction, we need to find a permutation-invariant graph-level aggregation method. 

Global Max(/Mean) Pooling

Global Sum Pooling

Global Sort Pooling

Attention Based Pooling

FC

Issues & Status of Current GNNs 

- Oversmoothing: CNNs excel by their ability to use deeper architectures to 

improve accuracy. However, GNNs face with loss(or accuracy) saturation once 

the number of layers increase.

- Currently, the number of standard-datasets and correspondingly methods are 

limited in GNN.

- In most of the standard datasets, node number variation is small (not true for 

this analysis). 

- To capture structural info, for smooth-graphs with big 

node number variation, clearly global max/mean 

pooling will not be very useful. Same for sort-pooling.

- Sum-pooling is size-dependent. However, not well 

suited for inverse problems.

- Attention Based Methods: Newer methods. Not very 

much explored.

- The input-from GNN 

message-passing 

can’t be huge: Curse 

of dimensionality.  

Aggregate 
and Update



Conclusion and Outlook

- New cosmic-ray composition analysis seem promising.

- Overall Improvement in Cosmic-Ray Composition using 

Graph Neural Network

- Improvement over full-energy range
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- Future: PointNet++, Removing learning from graphs 

(arXiv:1905.04579)

https://arxiv.org/abs/1905.04579

