```
In[1]:=
       (*
        * This file contains examples for the functionality of the package Calligraphs.wl
        * Authors: Georg Grasegger, Boulos El Hilany, Niels Lubbes
        *)
       (*
In[2]:=
```

```
* WARNING: Most of the functions do not check whether the input is suitable.
* If not, the output is not suitable either.
* If you are uncertain what a suitable input for some FUNCTION is, check: ?FUNCTION
*)
```

Setup

```
SetDirectory[NotebookDirectory[]];
In[3]:=
In[4]:=
       (*
       * The packages Calligraphs.wl and LamanGraphs.wl need to be loaded.
       * Calligraphs.wl can be downloaded from https://doi.org/10.5281/zenodo.6421148
       * LamanGraphs.wl should be downloaded from [1]
       * https://doi.org/10.5281/zenodo.1245506
       * and stored in the same folder containing this file.
       * Run this cell to load the two packages.
       *)
      Get["LamanGraphs.wl"]
      Get["Calligraphs.wl"]
In[6]:=
       (*
```

```
* Calligraphs.wl was tested with Mathematica 12.1.
* For some older versions a workaround might be needed (see section on input data).
*)
```

Basics

```
In[7]:=
       (*
        * The main purpose of the package is to compute the number of realizations
        * of a minimally rigid graph.
        * A graph in this package can always be given as a set of edges.
        * Edges can either be a given by two element lists {v1,v2}
        ∗ or by Mathematica edges v1→v2
        *)
       graph={\{1,4\}, \{1,5\}, \{1,6\}, \{2,3\}, \{2,5\}, \{2,6\}, \{3,4\}, \{3,6\}, \{4,5\}\};
       RealizationCountCS[graph]
```

```
24
```

```
In[9]:=
```

(* Lists of minimally rigid graphs can be found in [3] *)

Out[14]= True

In[18]:=	<pre>(* * The class of a calligraph {G,e,v}, * where G is a minimally rigid graph minus one edge, e is an edge of the graph * and v a vertex of G that is not part of e. * Note that this is a more general description of the calligraph than in the paper. *) csplit1 cclass1=CalligraphClass[csplit1] csplit2 cclass2=CalligraphClass[csplit2]</pre>
	$\{\{\{1, 3\}, \{2, 4\}, \{3, 4\}, \{3, 7\}, \{4, 7\}, \{1, 2\}\}, \{1, 2\}, 7\}$
	{ 6 , 2 , 2 }
	$\{\{\{1, 2\}, \{1, 5\}, \{2, 6\}, \{5, 6\}, \{5, 7\}, \{6, 7\}\}, \{1, 2\}, 7\}$
	{ 6 , 2 , 2 }
ln[22]:=	<pre>(* * The product of the two classes yields the realization count. *) ClassProduct[cclass1,cclass2] RealizationCountCS[graph]</pre>
	56

Out[23]= 56

Simple Calligraphs

Example from Paper

Dut[40]= 200 192

Input Data

In[41]:=	<pre>(* * Most functions of the package can deal with graphs being represented by * lists of edges, where edges are given as two-element lists. * However, the functions also take Mathematica's Graph and UndirectedEdge * This might be needed for some older versions of Mathematica. *)</pre>	data types
In[42]:=	<pre>cg={{{1,2},{1,3}},{1,2},3} CalligraphClass[cg] gcg=ListToCGraph[cg] CalligraphClass[gcg]</pre>	
Out[42]=	$\{\{\{1, 2\}, \{1, 3\}\}, \{1, 2\}, 3\}$	
Out[43]=	{1, 1, 0}	
Out[44]=	$\{\{1 \leftrightarrow 2, 1 \leftrightarrow 3\}, 1 \leftrightarrow 2, 3\}$	
Out[45]=	$\{1, 1, 0\}$	
In[46]:=	<pre>graph={{1,4},{1,5},{1,6},{2,3},{2,5},{2,6},{3,4},{3,6},{4,5}} RealizationCountCS[graph] ggraph=Graph[graph] RealizationCountCS[ggraph]</pre>	
	$\{\{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 3\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 6\}, \{4, 5\}\}$	
Out[47]=	24	
Out[49]=	24	

Advanced

In[50]:=	(*	
	 * We can ask the algorithm to use splits * for which the two calligraphs have a vertex count that is as close as possible * with the disadvantage that we first need to find all splits * and then choose the best one. 	2,
	 * We see that for the current example this causes too much overhead * (i.e. more time is needed for the search than saved by using a possibly better 	r spli
	<pre>RealizationCountCS[pex]//Timing RealizationCountCS[pex,SplittingAlgorithm->FindBalancedCalligraphicSplit]//Timi</pre>	ng
	{5.95313, 200192}	
	{ 7.625 , 200192}	
In[52]:=	(*	
	* We can use the balanced splitting only for larger graphs, if we want.	
	RealizationCountCS[pex,	
	SplittingAlgorithm->FindBalancedThresholdCalligraphicSplit,	
] //Timing	
	RealizationCountCS[pex,	
	BalanceThreshold->16	
]//Timing	
	{6.0625, 200192}	
	{6.23438, 200192}	
In[54]:=	(*	
	* The fallback algorithm is used when the input graph is not splittable and * when there is a small number of vertices.	
	* We can decide the threshold on the vertex count	
	* for which the fallback algorithm is used. * The default is 6	
	*)	
	RealizationCountCS[pex]//Timing	
	{5.79688, 200 192}	
	<i>{</i> 6.375, 200192 <i>}</i>	

ln[56]:=	<pre>(* * We can turn on error messages to see why an input is not a calligraph. *) ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{1,3},5} CalligraphQ[ncg,ShowMessages->True] ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{1,2},0}; CalligraphQ[ncg,ShowMessages->True] ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{3,5},5}; CalligraphQ[ncg,ShowMessages->True]</pre>	
	$\{\{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}, \{1, 3\}, 5\}$	
	•••• CalligraphQ::notanedge: Position 2 in {{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, {1, 3}, 5} is not an edge in the graph. False	
	•••• CalligraphQ::notavertex: Position 3 in {{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, {1, 2}, 0} is not a vertex of the graph. False	
	•••• CalligraphQ::notacgraph: The input is not a calligraph since the vertex lies in a common minimally rigid subgraph with the edge.	
	False	
10=1	<pre>* For getting constructed examples of splittable graphs * we can glue two minimally rigid graphs. * Different gluing results in possibly different * number of realizations of the new graph. * By default it is gluing on the first edge from each of the graphs and * takes all possible vertices as a moving vertex. *) graph={{1,4},{1,5},{1,6},{2,3},{2,5},{2,6},{3,4},{3,6},{4,5}}; GlueGraphs[graph,graph,VertexLabels->"Name"] RealizationCountCS/@%</pre>	
	$\left\{\begin{array}{c}1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	
	$\begin{bmatrix} 2 & 8 & 5 \\ 4 & 9 & 0 \\ 3 & 7 & 6 \\ 6 & 8 & 7 \\ 6 & 8 & 7 \\ 6 & 8 & 7 \\ 6 & 8 & 7 \\ 7 & 6 & 7 \\ 6 & 7 & 6 \\ 7 & 6 & 7 \\ 7 & 7 & 6 & 7 \\ 7 & 7 & 7 & 7 \\ 7 & 7 & 7 & 7 \\ 7 & 7 &$	

In[65]:=

```
(* If the input are not calligraphs we get an error in CalligraphUnion. *)
cg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{1,2},5};
ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{3,5},5};
CalligraphUnion[cg,ncg]
```

.... CalligraphUnion::notacg: Input {{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, {3, 5}, 5} is not a calligraph.

References

In[68]:=	(* [1]	J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho.
	*	An algorithm for computing the number of realizations of a Laman graph, 2018
	*	doi: 10.5281/zenodo.1245506
	*	Implementing [2]
	* [2]	J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho.
	*	The number of realizations of a Laman graph.
	*	<code>SIAM</code> Journal on Applied Algebra and Geometry, 2 $(\texttt{1})$:94–125, 2018
	*	doi: 10.1137/17M1118312
	* [3]	J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho.
	*	The number of realizations of all Laman graphs with at most 12 vertices
	*	Dataset, doi:10.5281/zenodo.1245517
	*)	