
In[1]:= (*

* This file contains examples for the functionality of the package Calligraphs.wl

* Authors: Georg Grasegger, Boulos El Hilany, Niels Lubbes

*)

In[2]:= (*

* WARNING: Most of the functions do not check whether the input is suitable.

* If not, the output is not suitable either.

* If you are uncertain what a suitable input for some FUNCTION is, check: ?FUNCTION

*)

Setup

In[3]:= SetDirectory[NotebookDirectory[]];

In[4]:= (*

* The packages Calligraphs.wl and LamanGraphs.wl need to be loaded.

* Calligraphs.wl can be downloaded from https://doi.org10.5281zenodo.6421148

* LamanGraphs.wl should be downloaded from [1]

* https://doi.org10.5281zenodo.1245506

* and stored in the same folder containing this file.

* Run this cell to load the two packages.

*)

Get["LamanGraphs.wl"]

Get["Calligraphs.wl"]

In[6]:= (*

* Calligraphs.wl was tested with Mathematica 12.1.

* For some older versions a workaround might be needed see section on input data.

*)

Basics

In[7]:= (*

* The main purpose of the package is to compute the number of realizations

* of a minimally rigid graph.

* A graph in this package can always be given as a set of edges.

* Edges can either be a given by two element lists {v1,v2}

* or by Mathematica edges v1v2

*)

graph={{1,4},{1,5},{1,6},{2,3},{2,5},{2,6},{3,4},{3,6},{4,5}};

RealizationCountCS[graph]

Out[8]= 24

In[9]:= (* Lists of minimally rigid graphs can be found in [3] *)

In[10]:= (*

* For small graphs like above a previous algorithm is used see [1,2].

* The procedure of splitting a mnimally rigid graph into calligraphs starts

* whenever the number of vertices is high enough.

*)

graph={{1,2},{1,3},{1,5},{2,4},{2,6},{3,4},{3,7},{4,7},{5,6},{5,7},{6,7}};

Graph[graph,VertexLabels->"Name"]

MinimallyRigidGraphQ[graph]

RealizationCountCS[graph]

Out[11]=

1

2

3

4

5

67

Out[12]= True

Out[13]= 56

In[14]:= (*

* For a minimally rigid graph we can check whether it has a non-trivial

* calligraphic split.

* Note that, internally this check actually determines the extistence of

* a calligraphic split by finding one.

*)

SplittableGraphQ[graph]

Out[14]= True

2 CalligraphsExamples.wl

In[15]:= (*

* The output of splitting algorithms are in terms of {E,e,v},

* where E is a set of edges, e is the edge representing the anchor

* and v is the moving vertex.

* Calligraphic splits can be visualized easily.

*)

{csplit1,csplit2}=FindCalligraphicSplit[graph]

VisualizeSplit[%]

Out[15]= {{{{1, 3}, {2, 4}, {3, 4}, {3, 7}, {4, 7}, {1, 2}}, {1, 2}, 7},

{{{1, 2}, {1, 5}, {2, 6}, {5, 6}, {5, 7}, {6, 7}}, {1, 2}, 7}}

Out[16]=

1

2

3

4

7,

1

2

5

6

7

In[17]:= (*

* The more or less inverse operation of a calligraphic split

* is the union of two calligraphs.

* Note that the vertices do not need to be different but the moving vertex

* and the anchor need to be specified in the calligraph as before.

*)

CalligraphUnion[csplit1,csplit2]

Out[17]=

1

2

312

413

7

CalligraphsExamples.wl 3

In[18]:= (*

* The class of a calligraph {G,e,v},

* where G is a minimally rigid graph minus one edge, e is an edge of the graph

* and v a vertex of G that is not part of e.

* Note that this is a more general description of the calligraph than in the paper.

*)

csplit1

cclass1=CalligraphClass[csplit1]

csplit2

cclass2=CalligraphClass[csplit2]

Out[18]= {{{1, 3}, {2, 4}, {3, 4}, {3, 7}, {4, 7}, {1, 2}}, {1, 2}, 7}

Out[19]= {6, 2, 2}

Out[20]= {{{1, 2}, {1, 5}, {2, 6}, {5, 6}, {5, 7}, {6, 7}}, {1, 2}, 7}

Out[21]= {6, 2, 2}

In[22]:= (*

* The product of the two classes yields the realization count.

*)

ClassProduct[cclass1,cclass2]

RealizationCountCS[graph]

Out[22]= 56

Out[23]= 56

Simple Calligraphs

In[24]:= (*

* Simple calligraphs

*)

cgraphL={{{1,2},{1,3}},{1,2},3};

VisualizeCalligraph[cgraphL]

cgraphR={{{1,2},{2,3}},{1,2},3};

VisualizeCalligraph[cgraphR]

cgraphC={{{1,2},{1,3},{2,3},{3,4}},{1,2},4};

VisualizeCalligraph[cgraphC]

Out[25]=
12 3

Out[27]=
1 2 3

Out[29]=

1

2

3 4

4 CalligraphsExamples.wl

In[30]:= (*

* We can check whether a given graph together with an edge

* and a vertex is indeed a calligraph.

* Calligraphs can be visualized.

* Note that the result is not a calligraph as a data format.

*)

cg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{1,2},5};

VisualizeCalligraph[cg]

CalligraphQ[cg]

cg2={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{2,1},5};

CalligraphQ[cg2]

CalligraphQ[cgraphL]

CalligraphQ[cgraphR]

CalligraphQ[cgraphC]

Out[31]=

1

2
3

4

5

Out[32]= True

Out[34]= True

Out[35]= True

Out[36]= True

Out[37]= True

CalligraphsExamples.wl 5

Example from Paper

In[38]:= (*

* This example cannot be computed in reasonable time with the fallback algorithm

* but it can be computed with the algorithm from this package.

*)

pex={{1,2},{1,3},{1,4},{1,5},{1,11},{2,3},{2,4},{2,10},{2,17},{3,6},{4,8},

{5,6},{5,7},{6,8},{7,8},{7,9},{7,12},{8,9},{9,12},{10,12},{10,14},{11,12},

{11,15},{11,16},{12,13},{12,15},{13,14},{13,17},{14,17},{15,16},{16,17}}

Graph[pex,

VertexLabels->"Name",

VertexCoordinates->{{0,0},{2,0},{0.4,0.5},{1.2,0.9},{0.4,1.2},{0.6,1.2},

{0.4,1.6},{1.2,1.4},{0.9,1.6},{1.4,1.6},{0,2},{0.4,2},

{0.9,2},{1.4,2},{0,2.5},{0.4,2.5},{2,2.5}}

]

RealizationCountCS[pex]

Out[38]= {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 11}, {2, 3}, {2, 4}, {2, 10},

{2, 17}, {3, 6}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}, {7, 9}, {7, 12},

{8, 9}, {9, 12}, {10, 12}, {10, 14}, {11, 12}, {11, 15}, {11, 16},

{12, 13}, {12, 15}, {13, 14}, {13, 17}, {14, 17}, {15, 16}, {16, 17}}

Out[39]=

1 2

3

4

5 6

7

8

9 10

11 12 13 14

15 16 17

Out[40]= 200 192

6 CalligraphsExamples.wl

Input Data

In[41]:= (*

* Most functions of the package can deal with graphs being represented by

* lists of edges, where edges are given as two-element lists.

* However, the functions also take Mathematica's Graph and UndirectedEdge data types.

* This might be needed for some older versions of Mathematica.

*)

In[42]:= cg={{{1,2},{1,3}},{1,2},3}

CalligraphClass[cg]

gcg=ListToCGraph[cg]

CalligraphClass[gcg]

Out[42]= {{{1, 2}, {1, 3}}, {1, 2}, 3}

Out[43]= {1, 1, 0}

Out[44]= {{1 2, 1 3}, 1 2, 3}

Out[45]= {1, 1, 0}

In[46]:= graph={{1,4},{1,5},{1,6},{2,3},{2,5},{2,6},{3,4},{3,6},{4,5}}

RealizationCountCS[graph]

ggraph=Graph[graph]

RealizationCountCS[ggraph]

Out[46]= {{1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, {3, 6}, {4, 5}}

Out[47]= 24

Out[48]=

Out[49]= 24

CalligraphsExamples.wl 7

Advanced

In[50]:= (*

* We can ask the algorithm to use splits

* for which the two calligraphs have a vertex count that is as close as possible,

* with the disadvantage that we first need to find all splits

* and then choose the best one.

* We see that for the current example this causes too much overhead

* i.e. more time is needed for the search than saved by using a possibly better split

*)

RealizationCountCS[pex]//Timing

RealizationCountCS[pex,SplittingAlgorithm->FindBalancedCalligraphicSplit]//Timing

Out[50]= {5.95313, 200 192}

Out[51]= {7.625, 200 192}

In[52]:= (*

* We can use the balanced splitting only for larger graphs, if we want.

*)

RealizationCountCS[pex,

SplittingAlgorithm->FindBalancedThresholdCalligraphicSplit,

BalanceThreshold->6

]//Timing

RealizationCountCS[pex,

SplittingAlgorithm->FindBalancedThresholdCalligraphicSplit,

BalanceThreshold->16

]//Timing

Out[52]= {6.0625, 200 192}

Out[53]= {6.23438, 200 192}

In[54]:= (*

* The fallback algorithm is used when the input graph is not splittable and

* when there is a small number of vertices.

* We can decide the threshold on the vertex count

* for which the fallback algorithm is used.

* The default is 6.

*)

RealizationCountCS[pex]//Timing

RealizationCountCS[pex,BaseDeg->8]//Timing

Out[54]= {5.79688, 200 192}

Out[55]= {6.375, 200 192}

8 CalligraphsExamples.wl

In[56]:= (*

* We can turn on error messages to see why an input is not a calligraph.

*)

ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{1,3},5}

CalligraphQ[ncg,ShowMessages->True]

ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{1,2},0};

CalligraphQ[ncg,ShowMessages->True]

ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{3,5},5};

CalligraphQ[ncg,ShowMessages->True]

Out[56]= {{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, {1, 3}, 5}

CalligraphQ::notanedge: Position 2 in {{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, {1, 3}, 5} is not an edge in the graph.

Out[57]= False

CalligraphQ::notavertex: Position 3 in {{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, {1, 2}, 0} is not a vertex of the graph.

Out[59]= False

CalligraphQ::notacgraph: The input is not a calligraph since the vertex lies in a common minimally rigid subgraph with

the edge.

Out[61]= False

In[62]:= (*

* For getting constructed examples of splittable graphs

* we can glue two minimally rigid graphs.

* Different gluing results in possibly different

* number of realizations of the new graph.

* By default it is gluing on the first edge from each of the graphs and

* takes all possible vertices as a moving vertex.

*)

graph={{1,4},{1,5},{1,6},{2,3},{2,5},{2,6},{3,4},{3,6},{4,5}};

GlueGraphs[graph,graph,VertexLabels->"Name"]

RealizationCountCS/@%

Out[63]=
1

23

4

5

6

7
8

9
,

1

2

3

4 5

6

7

8

9 ,

1

2

3

4

5

67

8

9 ,

1

2 3

45

6 7
8

9 ,

1

2

3

4

5

67

8

9

Out[64]= {192, 288, 288, 256, 288}

CalligraphsExamples.wl 9

In[65]:= (* If the input are not calligraphs we get an error in CalligraphUnion. *)

cg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{1,2},5};

ncg={{{1,2},{1,4},{2,3},{3,4},{3,5},{4,5}},{3,5},5};

CalligraphUnion[cg,ncg]

CalligraphUnion::notacg: Input {{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, {3, 5}, 5} is not a calligraph.

References

In[68]:= (* [1] J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho.

* An algorithm for computing the number of realizations of a Laman graph, 2018

* doi: 10.5281zenodo.1245506

* Implementing [2]

* [2] J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho.

* The number of realizations of a Laman graph.

* SIAM Journal on Applied Algebra and Geometry, 21:94–125, 2018

* doi: 10.113717M1118312

* [3] J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho.

* The number of realizations of all Laman graphs with at most 12 vertices

* Dataset, doi:10.5281zenodo.1245517

*)

10 CalligraphsExamples.wl

