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Canonical Conditions for K/2 Degrees of Freedom
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and Shlomo Shamai (Shitz) , Life Fellow, IEEE

Abstract— We present a condition for 1/2 degree of freedom
for each user in constant K-user single-antenna interference
channels. This condition is sufficient for all and necessary for
almost all channel matrices. Moreover, it applies to all channel
topologies, i.e., to fully-connected channels as well as channels
that have individual links absent, reflected by corresponding
zeros in the channel matrix. Moreover, it captures the essence of
interference alignment by virtue of being expressed in terms of a
generic injectivity condition that guarantees separability of signal
and interference. Finally, we provide codebook constructions
achieving 1/2 degree of freedom for each user for all channel
matrices satisfying the condition we identified.

Index Terms— Interference channels (ICs), degrees of freedom
(DoF), self-similar distributions, additive combinatorics, Rényi
information dimension.

I. INTRODUCTION

CADAMBE and Jafar [1], [2] proposed a signaling
scheme—known as interference alignment—that exploits

time-frequency selectivity to achieve K/2 degrees of freedom
(DoF) in K-user single-antenna interference channels (ICs).
In [3] and [4] it was shown that K/2 DoF can also be achieved
in ICs with constant channel matrix, i.e, in the absence of
channel selectivity. Gou et al. [5] furthermore demonstrated
that even in the finite-state compound constant channel setting
K/2 DoF can be achieved. Wu et al. [6] developed a general
formula for the number of DoF in single-antenna ICs, extended
to vector ICs in [7]. This formula can, however, be difficult
to evaluate as it is expressed in terms of Rényi information
dimension [8]. Building on the work by Wu et al. [6] and a
breakthrough result in fractal geometry by Hochman [9], Stotz
and Bölcskei [10] derived a DoF-formula for single-antenna
ICs with constant channel matrix which is exclusively in terms
of Shannon entropy. Based on this formula, the present paper
establishes a necessary and sufficient condition for 1/2 DoF
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for each user in constant K-user single-antenna ICs. This con-
dition captures the essence of interference alignment by virtue
of being expressed in terms of a generic injectivity condition
that guarantees separability of signal and interference.

Relation to Prior Work: It was shown in [11] that the
number of DoF in a K-user fully-connected IC1 is upper
bounded by K/2. What is more, almost all IC matrices allow
K/2 DoF, albeit an explicit characterization of this almost
all set does not seem to be available [4]. It is known [3],
though, that i) K/2 DoF cannot be achieved if all elements
of the IC matrix are rational numbers and ii) K/2 DoF can
be achieved if the diagonal2 elements of the IC matrix are
irrational algebraic numbers and the off-diagonal elements are
rational numbers. Further algebraic conditions on IC matrices
to allow K/2 DoF were identified in [6, Th. 7 and Th. 8].
An explicit and almost sure sufficient condition for K/2
DoF was reported in [10]; the proof of this result rests on
requiring linear independence—over the rational numbers—of
monomials in the off-diagonal channel coefficients. We note,
however, that the algebraic nature of these conditions renders
them somewhat brittle.

Contributions: In this paper, instead of studying conditions
for K/2 DoF in total, we pursue a slightly more refined
analysis in the sense of investigating conditions that guarantee
1/2 DoF for each user. The necessary and sufficient condition
for 1/2 DoF for each user we obtain applies to all channel
topologies, i.e., to fully-connected channels as well as channels
that have individual links absent, reflected by corresponding
zeros in the IC matrix. Moreover, we provide codebook
constructions achieving 1/2 DoF for each user in all ICs
satisfying the condition we identified.

Notation: We use uppercase letters for random variables,
and lowercase letters for deterministic quantities. Matrices
are represented by boldface uppercase letters, and sets by
calligraphic letters. For x ∈ R, �x� denotes the largest
integer not exceeding x, and |x| refers to the absolute value
of x. N, Q, and R stand for the natural numbers including
zero, the rational numbers, and the real numbers, respectively.
Entropy is denoted by H(·), differential entropy by h(·), d(·)
refers to Rényi information dimension [8], and I(X ; Y ) is the
mutual information between the random variables X and Y .
E designates the expectation operator.

Outline of the Paper: In Section II, we introduce the
system model and we state definitions needed throughout
the paper. Section III presents the main result. In Section IV,

1Throughout the paper IC refers to a constant single-antenna IC.
2Throughout the paper, the term diagonal actually refers to the main

diagonal.
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we develop the mathematical tools required in the proof of its
sufficiency part, which, in turn, is established in Section V.
In Section VI, we introduce the “entropy balancing” idea
underlying the proof—presented in Section VII—of the neces-
sity part. In Section VIII, we present, for the 3-user case, a
strengthened version of the necessity part of our main result.
Section IX provides a corollary of our main statement, which,
we feel, is of independent interest. The appendices collect
various technical results.

II. SYSTEM MODEL

We consider a single-antenna K-user IC with K � 3,
channel matrix H = (hij)1�i,j�K ∈ RK×K , and input-output
relation

Yi =
√

snr
K∑

j=1

hijXj + Zi, i = 1,..., K,

where Xi ∈ R is the input at the i-th transmitter, Yi ∈ R

is the output at the i-th receiver, and Zi ∈ R is noise of
absolutely continuous distribution satisfying h(Zi) > −∞ and
H(�Zi�) < ∞. The Xi are assumed to be statistically indepen-
dent across transmitters. The Zi are taken to be independent
of all inputs Xi and i.i.d. across receivers and channel uses.
Moreover, the Zi must not depend on the parameter snr. Note
that we exclude the case K = 2, as here both users can achieve
1/2 DoF simply through time sharing. We restrict ourselves
to real-valued signals and channel matrices for simplicity
of exposition. An extension to the complex-valued case is
possible based on a formula for the DoF of complex channel
matrices provided in [7]. The IC matrix H is assumed to be
known perfectly at all transmitters and receivers and we take
hii �= 0, for i = 1, ..., K , to avoid situations where direct links
between transmitter-receiver pairs are absent. H is said to be
fully connected if hij �= 0, for all i, j = 1, ..., K .

We impose the average power constraint

E
[
X2

i

]
� 1, i = 1, . . . , K,

and define the total number of DoF of the IC with channel
matrix H as

DoF(H) := lim sup
snr→∞

C(H; snr)
1
2 log snr

, (1)

where C(H; snr) stands for the sum-capacity of the IC.
To define the DoF achieved by individual users, we start from
the following multi-letter bound on the total number of DoF
[6, Eq. 137]. For all ε > 0 and sufficiently large m, there
exist n ∈ N and independent n-sequences of random variables
Xn

1 , ..., Xn
K with H(�Xn

i �) < ∞, i = 1, ..., K , such that

DoF(H) � ε+

1
mn

K∑
i=1

⎧⎨⎩H

⎛⎝⎡⎣ K∑
j=1

hijX
n
j

⎤⎦
m

⎞⎠− H

⎛⎝⎡⎣ K∑
j �=i

hijX
n
j

⎤⎦
m

⎞⎠⎫⎬⎭ ,

(2)

where [x]m = �2mx�
2m . We now define the number of DoF of

user i in H as

DoFi :=

1
mn

⎧⎨⎩H

⎛⎝⎡⎣ K∑
j=1

hijX
n
j

⎤⎦
m

⎞⎠− H

⎛⎝⎡⎣ K∑
j �=i

hijX
n
j

⎤⎦
m

⎞⎠⎫⎬⎭ ,

(3)

for i = 1, ..., K . Noting that for ε, m, and n in (2), the
following holds [6, Eq. 126]

DoF(H) � −ε+

1
mn

K∑
i=1

⎧⎨⎩H

⎛⎝⎡⎣ K∑
j=1

hijX
n
j

⎤⎦
m

⎞⎠− H

⎛⎝⎡⎣ K∑
j �=i

hijX
n
j

⎤⎦
m

⎞⎠⎫⎬⎭ ,

(4)

combining (2) and (4), and letting ε → 0 yields

DoF(H) =
K∑

i=1

DoFi.

We note that, thanks to Lemma 4 in Appendix A, if
each user is to achieve at least 1/2 DoF, i.e., DoFi �
1/2, i = 1, ..., K , then all input distributions yield the same
DoFi, i = 1, ..., K .

III. MAIN RESULT

Before stating the main result, we need to introduce some
formalisms. Denote the vector containing the off-diagonal
elements of H by ĥ ∈ RK(K−1), and let f1, f2, . . . be the
monomials3 in the entries of ĥ as follows: f1, . . . , fϕ(d) are
the monomials of degree not larger than d, with d � 0, where
[12, Ch. 9, Lem. 4]

ϕ(d) :=
(

K(K − 1) + d

d

)
. (5)

Definition 1: (Scaling of IC matrices) We say that H̃ is a
scaled version of H [3], if H̃ can be obtained by scaling (by
nonzero real numbers) rows and columns of H according to
H̃ = DHD′, where D and D′ are diagonal matrices with
nonzero diagonal entries.

Definition 2: (Channel topology) Consider an IC with
channel matrix H. The topology of the IC is determined
by the locations of the zeros, referred to as zero-set, in H.
Specifically, hij = 0 reflects the absence of a link between
transmitter j and receiver i.

We proceed to stating our main result, a necessary and
sufficient condition on the IC matrix H to allow for 1/2 DoF
for each user. In addition, for ICs satisfying this condition,
we provide an explicit construction of codebooks achieving
1/2 DoF for each user. Throughout the paper “achieving (or
allowing) 1/2 DoF” will frequently mean that at least 1/2 DoF
is achieved (or allowed for). For simplicity of exposition, we

3A monomial in the variables x1, x2, ..., xn is an expression of the form
xα1
1 xα2

2 ... xαn
n with αi ∈ N, i = 1, ..., n. The degree of the monomial is

given by α1 + α2 + ... + αn.
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shall not distinguish between these cases and the case where
exactly 1/2 DoF is achieved (or allowed for).

Theorem 1: Consider a K-user IC with channel matrix H,
and let ϕ(d) be as in (5). For d � 0 and N � 1, let

W(H)
N,d :=

⎧⎨⎩
ϕ(d)∑
i=1

aifi(ĥ) : a1, . . . , aϕ(d) ∈ {0, . . . , N − 1}

⎫⎬⎭
and set

W(H) :=
⋃
d�0

⋃
N�1

W(H)
N,d . (6)

For each user to achieve 1/2 DoF, the following condition is
sufficient for all and necessary for almost all IC matrices H:
Either the IC matrix H itself or at least one scaled—in the
sense of Definition 1—version thereof satisfies the following
condition:

For each i = 1,..., K , the map

W(H) ×W(H) → W(H) + hiiW(H)

(w1, w2) 	→ w1 + hiiw2

(∗)

is injective.
Proof. See Section VII.
Remark 1: The injectivity condition in Theorem 1 is at the

heart of our theory and essentially guarantees separability of
signal and interference as will become clear later in the paper,
see e.g. (18).

Remark 2: As made explicit in the proof, the condition
in Theorem 1 is sufficient for “all”—with respect to the
channel coefficients4—channel matrices H and necessary for
“almost all” ICs. We hasten to add that we do not know of
a way to test whether a given fully-connected H falls into
the corresponding measure-zero set of exceptions. Finally, we
note that combinatorial and number-theoretic arguments can
be used to establish necessity in the 3-user case for “all” non-
fully-connected ICs. This proof is very explicit and pedestrian
and it seems unclear how the corresponding arguments could
be extended to the K-user case.

Remark 3: We note that for all IC matrices H, scaling
according to Definition 1 does not change the total number
of DoF [3, Lemma 1].

Remark 4: Thanks to W(H) being made up of integer linear
combinations of monomials in the off-diagonal elements of H,
Condition (∗) is exclusively in terms of the channel matrix H.

Remark 5: An equivalent formulation of Condition (∗) that
will turn out useful later is as follows: For each i = 1, . . . , K
and for all nonzero polynomials P , Q in the variables hij ,
i �= j, with integer coefficients

hiiQ − P �= 0. (7)

To establish this equivalence, we first note that Condition (∗)
can alternatively be expressed as follows: For all (w1, w2) �=
(w̃1, w̃2),

hii(w2 − w̃2) − (w̃1 − w1) �= 0. (8)

4Throughout the paper, almost-all-sets are understood to be with respect to
the channel coefficients.

The argument is concluded by realizing that w2 − w̃2 and
w̃1 −w1 are, by construction, polynomials in hij , i �= j, with
integer coefficients.

Remark 6: We finally remark that Condition (∗) is satisfied
for almost all channel matrices H as equality in (8) is possible
only on a set of measure zero. To see this, first note that regard-
less of H, w1, w2, w̃1, and w̃2 are elements of a countable set,
namely W(H). This implies that hii(w2 − w̃2) = (w̃1 − w1)
can hold only for countably many hii, which in turn shows
that only countably many H can violate Condition (∗).

IV. PROOF IDEA AND AUXILIARY RESULTS

FOR SUFFICIENCY

We first describe the central ideas behind the proof of the
sufficiency part of the statement in Theorem 1. Recall that
this part of the statement applies to “all” IC matrices H. The
tenets of the proof are i) a condition guaranteeing separability
of signal and interference and ii) an alignment cardinality
constraint for the codebook. We begin by restating a result
from [10] needed in the proof.

Proposition 1 (A simple variation of Prop. 1 in [10]): Let
r ∈ (0, 1) and let Ψ1, . . . , ΨK be independent discrete random
variables. Consider the self-similar inputs Xi =

∑∞
k=0 rkΨi,k,

i = 1, . . . , K , where {Ψi,k : k � 0} are independent copies
of Ψi. Then, for all H,

DoFi �

min

⎧⎨⎩H
(∑K

j=1 hijΨj

)
log(1/r)

, 1

⎫⎬⎭− min

⎧⎨⎩H
(∑K

j �=i hijΨj

)
log(1/r)

, 1

⎫⎬⎭ .

(9)

Proof: Follows directly from [10, Eqs. 26-27] and [10,
Eqs. 8-10].

The strategy for proving the sufficiency part of Theorem 1
will be to employ Proposition 1 with the Ψi i.i.d. uniform
on W(H)

Nd,d
for some d � 0, N > K − 1, and to show that

the corresponding expression on the right-hand side (RHS)
of (9) can be made to be arbitrarily close to 1/2 for all
i = 1, . . . , K concurrently. Henceforth, we shall drop the
superscript in W(H)

Nd,d
whenever H is clear from the context.

The first step in the proof establishes that H(
∑K

j �=i hijΨj),
i.e., the entropy of the interference part of the signal received
at user i, can not become too large relative to the entropy of the
signal component given by H(Ψi). This will be accomplished

by noting that
∑K

j �=i hijΨj ∈ W(K−1)Nd,d+1 ⊆ WNd+1,d+1,
where the inclusion is thanks to N > K−1, and then showing

that the ratio
log |W

Nd+1,d+1|
log |W

Nd,d
| , where the denominator is equal

to H(Ψi) (owing to the assumption of Ψi being uniformly
distributed on WNd,d), is close to 1 for d sufficiently large.
This “alignment cardinality” result is formalized as follows.

Lemma 1: For N > 1, we have

lim inf
d→∞

log |WNd+1,d+1|
log |WNd,d|

= 1. (10)

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 20,2022 at 07:25:32 UTC from IEEE Xplore.  Restrictions apply. 



GÜL et al.: CANONICAL CONDITIONS FOR K/2 DEGREES OF FREEDOM 1719

Proof: Since WN,d ⊆ WN ′,d′ for N � N ′ and d � d′,
we have log |WNd+1,d+1| � log |WNd,d|, which implies

lim inf
d→∞

log |WNd+1,d+1|
log |WNd,d|

� 1.

We establish (10) by way of contradiction. To this end, assume
that

lim inf
d→∞

log |WNd+1,d+1|
log |WNd,d|

> 1 + ε,

for some ε > 0. Then, there exists a d0 � 2 such that for all
d ∈ N

log |WNd0+d+1,d0+d+1|
log |WNd0+d,d0+d|

> 1 + ε. (11)

Repeated application of (11) yields

log |WNd0 ,d0
| <

log |WNd0+1,d0+1|
1 + ε

< . . .

<
log |WNd0+d,d0+d|

(1 + ε)d
.

Since |WNd0+d,d0+d| � (N (d0+d))ϕ(d0+d), we get

log |WNd0 ,d0
| <

ϕ(d0 + d)(d0 + d) log N

(1 + ε)d
, (12)

for all d ∈ N. Next, note that owing to the assumption
N > 1, and thanks to d0 � 2, it follows that Nd0 − 1 > 1.
Further, since {0, . . . , Nd0 − 1} ⊆ W(H)

Nd0 ,d0
for all H, we

have |WNd0 ,d0
| > 1 and hence log |WNd0 ,d0

| > 0. The
proof will be completed by establishing the contradiction
log |WNd0 ,d0

| = 0. This is accomplished by showing that the
RHS of (12) tends to zero as d → ∞. To this end, we first
note that

ϕ(d0 + d) =
(K(K − 1) + d0 + d)!
(K(K − 1))!(d0 + d)!

(13)

=
(K(K − 1) + d0 + d) · . . . · (d0 + d + 1)

(K(K − 1))!
(14)

� (K(K − 1) + d0 + d)K(K−1)

(K(K − 1))!
(15)

and, since the largest power of d occuring in the numerator of
(15) is dK(K−1), we find that

ϕ(d0 + d)(d0 + d) � dK(K−1)+2 (16)

for sufficiently large d. On the other hand, it follows from
ex � xK(K−1)+3/(K(K − 1) + 3)!, for x � 0, that

(1 + ε)d = ed ln(1+ε) � (d ln(1 + ε))K(K−1)+3

(K(K − 1) + 3)!
. (17)

Combining (12), (16), and (17), we finally obtain

0 < lim
d→∞

ϕ(d0 + d)(d0 + d)
(1 + ε)d

� lim
d→∞

dK(K−1)+2(K(K − 1) + 3)!
(d ln(1 + ε))K(K−1)+3

= 0,

which completes the proof.

Remark 7: Lemma 1 above is inspired by [13, Lem. 3].
The second step in the proof will be concerned with the

separability of signal and interference and uses the injectivity
of the map in Condition (∗) to establish that

H

(
hiiΨi +

K∑
j �=i

hijΨj

)
= H(hiiΨi) + H

(
K∑

j �=i

hijΨj

)
.

(18)

Upon resolving minor technicalities, Lemma 1 along with (18)
will allow us to show that the RHS of (9) can be made to be
arbitrarily close (from below) to 1/2, for all i = 1, . . . , K
concurrently.

V. PROOF OF SUFFICIENCY IN THEOREM 1

Consider a channel matrix H satisfying Condition (∗).
As described in Section IV, the first step of the proof
balances the entropies of the signal and interference com-
ponents, H(Ψi) and H

(∑K
j �=i hijΨj

)
, respectively. To this

end, we choose N > K − 1. As K − 1 � 1, we can
apply Lemma 1 to find a subsequence {WNdn ,dn

}n�0 of
{WNd,d}d�0 such that

lim
n→∞

log |WNdn+1,dn+1|
log |WNdn ,dn

| = 1. (19)

Next, consider the set of discrete random variables
Ψ(n)

1 , . . . , Ψ(n)
K distributed i.i.d. uniformly on WNdn ,dn

and
construct the corresponding self-similar transmit signals

Xi =
∞∑

k=0

rkΨ(n)
i,k ,

where the Ψ(n)
i,k are independent copies of Ψ(n)

i , and r ∈ (0, 1).
Using these codebooks, we now apply Proposition 1 with r =
|WNdn ,dn

|−2 to get that the i-th user, i = 1, ..., K , achieves

min

⎧⎨⎩H
(∑K

j=1 hijΨ
(n)
j

)
2 log |WNdn ,dn

| , 1

⎫⎬⎭−

min

⎧⎨⎩H
(∑K

j �=i hijΨ
(n)
j

)
2 log |WNdn ,dn

| , 1

⎫⎬⎭
DoF, for n ∈ N. Note that

∑K
j �=i hijΨ

(n)
j ∈

W(K−1)Ndn ,dn+1 ⊆ WNdn+1,dn+1 thanks to N > K − 1. It
follows from the cardinality bound for entropy that

H
(∑K

j �=i hijΨ
(n)
j

)
2 log |WNdn ,dn

| �
log |WNdn+1,dn+1|
2 log |WNdn ,dn

|
n→∞−−−−→ 1

2
, (20)

where we used (19).
The second step of the proof concerned with separability of

signal and interference starts by establishing that

H

(
hiiΨ

(n)
i +

∑
j �=i

hijΨ
(n)
j

)
= H

(
hiiΨ

(n)
i ,

∑
j �=i

hijΨ
(n)
j

)
,

(21)
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for i = 1, . . . , K . To this end, we apply the chain rule to find

H

(
hiiΨ

(n)
i ,

∑
j �=i

hijΨ
(n)
j

)
(22)

= H

(
hiiΨ

(n)
i ,

∑
j �=i

hijΨ
(n)
j , hiiΨ

(n)
i +

∑
j �=i

hijΨ
(n)
j

)
(23)

= H

(
hiiΨ

(n)
i +

∑
j �=i

hijΨ
(n)
j

)

+ H

(
hiiΨ

(n)
i ,

∑
j �=i

hijΨ
(n)
j

∣∣∣∣∣hiiΨ
(n)
i +

∑
j �=i

hijΨ
(n)
j

)
.

(24)

Next, we note that injectivity of the map in Condition (∗)
implies

H

(
hiiΨ

(n)
i ,

∑
j �=i

hijΨ
(n)
j

∣∣∣∣∣hiiΨ
(n)
i +

∑
j �=i

hijΨ
(n)
j

)
= 0,

(25)

which, when combined with (22)–(24), yields (21). From (21)
and the independence of the Ψ(n)

i across users i = 1, ..., K , it
now follows that

H
(∑K

j=1 hijΨ
(n)
j

)
− H

(∑K
j �=i hijΨ

(n)
j

)
2 log |WNdn ,dn

| (26)

=
H(Ψ(n)

i )
2 log |WNdn ,dn

| =
1
2
, (27)

where we used that Ψ(n)
i is uniformly distributed on WNdn ,dn

,
for all i = 1, . . . , K . This allows us to conclude that, for all
n ∈ N, we have

min

⎧⎨⎩H
(∑K

j=1 hijΨ
(n)
j

)
2 log |WNdn ,dn

| , 1

⎫⎬⎭−

min

⎧⎨⎩H
(∑K

j �=i hijΨ
(n)
j

)
2 log |WNdn ,dn

| , 1

⎫⎬⎭ � 1 −
log |WNdn+1,dn+1|
2 log |WNdn ,dn

| ,

(28)

as either the first minimum on the left-hand side (LHS)
of (28) coincides with the non-trivial term in which case
by (26) and (27) the second minimum also coincides with
the non-trivial term, and therefore the LHS of (28) equals

1/2 � 1− log |W
Ndn+1,dn+1|

2 log |W
Ndn ,dn

| , for all n ∈ N, thanks to (20), or

the first minimum coincides with 1 in which case we upper-

bound the second minimum according to
H
��K

j �=i hijΨ
(n)
j

�
2 log |W

Ndn,dn
| �

log |W
Ndn+1,dn+1|

2 log |W
Ndn ,dn

| again using (20). The proof is completed

by noting that the RHS of (28) approaches 1/2 (from below)
as n → ∞. We hasten to add that no restrictions had to be
imposed on H, so sufficiency in Theorem 1 applies to “all”
channel matrices.

We have established that if H itself satisfies Condition (∗),
then each user achieves 1/2 DoF. It remains to show that
if at least one scaled version of H satisfies Condition (∗),
while H itself may or may not satisfy Condition (∗), then
each user achieves 1/2 DoF in H. To this end, let H be
such that its scaled version H̃ satisfies Condition (∗). Further
let, for some ε ∈ (0, 1/2) and r ∈ (0, 1), Ψ̃1, ..., Ψ̃K be the
random variables corresponding to the inputs X1, ..., XK for
H̃ according to Proposition 1. Then, by Proposition 1 and
what was established above for H, specifically (28), user i in
H̃ achieves

min

⎧⎨⎩H
(∑K

j=1 h̃ijΨ̃j

)
log(1/r)

, 1

⎫⎬⎭− min

⎧⎨⎩H
(∑K

j �=i h̃ijΨ̃j

)
log(1/r)

, 1

⎫⎬⎭
� 1/2 (29)

DoF, for i = 1, ..., K . Next, note that H can be obtained as a
scaled version of H̃ according to

H =

⎛⎜⎜⎜⎜⎝
p1c1h̃11 p1c2h̃12 ... p1cK h̃1K

p2c1h̃21 p2c2h̃22 ... p2cK h̃2K

...
...

...
...

pKc1h̃K1 pKc2h̃K2 ... pKcK h̃KK

⎞⎟⎟⎟⎟⎠,

where pi, cj , i, j = 1, ..., K are nonzero scalars. Applying
Proposition 1 with Ψi = Ψ̃i/ci, for i = 1, ..., K , we conclude
that for user i in H,

DoFi � min

⎧⎨⎩H
(∑K

j=1 pih̃ijΨ̃j

)
log(1/r)

, 1

⎫⎬⎭
− min

⎧⎨⎩H
(∑K

j �=i pih̃ijΨ̃j

)
log(1/r)

, 1

⎫⎬⎭ = (30)

min

⎧⎨⎩H
(∑K

j=1 h̃ijΨ̃j

)
log(1/r)

, 1

⎫⎬⎭− min

⎧⎨⎩H
(∑K

j �=i h̃ijΨ̃j

)
log(1/r)

, 1

⎫⎬⎭
� 1

2
. (31)

We note that (30) holds as scaling a random variable by a
constant does not change its entropy.

VI. ENTROPY BALANCING

We next establish “balancing” results on the entropies
of signal and interference contributions that will turn out
instrumental in the proof of the necessity part of Theorem 1.
To this end, we need the following preparatory result, which
is a simple modification of [10, Th. 3].

Proposition 2: Consider the set S of all IC matrices H
for which the following holds: For every ε ∈ (0, 1/2), there
exist independent discrete random variables V1,..., VK of finite
entropy such that

DoFi − ε �

[
H
(∑K

j=1 hijVj

)
− H

(∑K
j �=i hijVj

)]
maxi=1,...,K H

(∑K
j=1 hijVj

) , (32)

for i = 1,..., K . S is an almost all subset of RK×K .
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Proof: See Appendix C.
We are now ready to state our entropy balancing result.
Lemma 2: Let H be a fully-connected IC matrix contained

in the a.a. set5 S in Proposition 2 for DoFi = 1/2, i = 1, ..., K .
For ε ∈ (0, 1/2), denote the corresponding discrete random
variables satisfying (32) by V1,..., VK . Then, we have

H
(∑K

j �=i hijVj

)
H(Vi)

= 1 + O(ε), for i = 1,..., K, (33)

H(Vi)
H(Vj)

= 1 + O(ε), for i, j ∈ {1,..., K}, i �= j, (34)

H
(∑K

j=1 hijVj

)
H(Vi)

= 2 + O(ε), for i = 1,..., K. (35)

Proof: Starting from (32) with DoFi = 1/2 and rearrang-
ing terms, we get

2H

(
K∑

j �=i

hijVj

)
� (1 + 2ε)H

(
K∑

j=1

hijVj

)
, (36)

for i = 1, ..., K . Invoking the following inequality valid for
independent discrete random variables X , Y [14, Ex. 2.14],

H(X + Y ) � H(X) + H(Y ), (37)

on the RHS of (36) yields

(1 − 2ε)H

(
K∑

j �=i

hijVj

)
� (1 + 2ε)H(Vi), (38)

for i = 1, ..., K . Next, we show that

H

(
K∑

j �=i

hijVj

)
� (1 − 2ε)

(1 + 2ε)
H(Vi), (39)

for i = 1, ..., K . To this end, w.l.o.g., we assume that

H(V1) � H(V2) � ... � H(VK). (40)

Applying [14, Ex. 2.14]

H(αX + βY ) � max {H(X), H(Y )} (41)

for independent discrete random variables X and Y , and
arbitrary α, β ∈ R \ {0}, with X =

∑K
j �=1,i hijVj , Y = V1,

α = 1, β = hi1, for i = 2,..., K , we obtain

(1 − 2ε)H(Vi) � (1 − 2ε)H(V1) � (1 + 2ε)H

(
K∑

j �=i

hijVj

)
,

(42)

where the first inequality follows from (40). This establishes
(39) for i = 2,..., K . The statement for the case i = 1 is
obtained as follows. First, note that

(1 − 2ε)H(V1) � (1 − 2ε)H

(
K∑

j �=i

hijVj

)
� (1 + 2ε)H(Vi)

(43)

5Note that almost all fully-connected IC matrices are contained in S as
fully-connected ICs constitute an a.a. set in RK×K , and the intersection of
two a.a. sets in R

K×K is again an a.a. set in R
K×K .

for all i �= 1, where the first inequality is again by application
of (41), and the second is by (38). Next, by (41), we get

(1 + 2ε)H(Vi) � (1 + 2ε)H

(
K∑

j �=1

h1jVj

)
, (44)

for all i �= 1. Inserting (44) into (43) yields

(1 − 2ε)H(V1) � (1 + 2ε)H

(
K∑

j �=1

h1jVj

)
, (45)

which establishes (39) for i = 1. We can now combine (38)
and (39) to get

1 − 2ε

1 + 2ε
�

H
(∑K

j �=i hijVj

)
H(Vi)

� 1 + 2ε

1 − 2ε
, (46)

for all i, which establishes (33).
To prove (34), we again assume, w.l.o.g., that H(V1) �

... � H(VK), and simply note that thanks to (43),

1 − 2ε

1 + 2ε
� H(VK)

H(V1)
� H(Vi)

H(Vj)
� H(V1)

H(VK)
� 1 + 2ε

1 − 2ε
, (47)

for i, j = 1,..., K .
Finally, to establish (35), we start by noting that

H
(∑K

j=1 hijVj

)
H(Vi)

�
(1 − 2ε

1 + 2ε

)H
(∑K

j=1 hijVj

)
H
(∑K

j �=i hijVj

)
� 2(1 − 2ε)

(1 + 2ε)2
, (48)

owing to (46) and (36). Using (37) and (46), we get

H

(
K∑

j=1

hijVj

)
�

(
1 +

1 + 2ε

1 − 2ε

)
H(Vi). (49)

Combining (49) with (48) then establishes (35).

VII. PROOF OF NECESSITY IN THEOREM 1

We assume that the IC has at least three users. (Recall
that we excluded the 2-user case, as here each user can
achieve exactly 1/2 DoF by time-sharing regardless of the
underlying H-matrix). We first prove Theorem 1 for fully-
connected ICs. The proof is effected by contradiction. Towards
this contradiction, we assume that the fully-connected H
is in the almost all set S in Proposition 2 correspond-
ing to DoFi = 1/2, i = 1, 2, ..., K , while at the same
time Condition (∗) is violated for H and all scaled ver-
sions thereof. In particular, Condition (∗) must also be
violated for

H̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

h11 h12 ... h1(K−1) 1
1 h22 ... h2(K−1) 1

h31 h32 ... h3(K−1) 1
...

...
...

...
...

h(K−1)1 h(K−1)2 ... h(K−1)(K−1) 1
1 1 ... 1 hKK

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(50)
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which can be obtained from H by scaling according to
Definition 1 as follows. Denoting the entries of H as h′

ij ,
i, j = 1, ..., K , multiply rows i �= 2, i = 1, ..., K − 1, in
H by h′

2K

h′
21h′

iK
, row 2 by 1

h′
21

, and row K by 1
h′

K1
. Then,

multiply columns j = 1, ..., K − 1 by h′
K1

h′
Kj

and column K

by h′
21

h′
2K

. The reduction to the specific H̃ in (50) is made

for simplicity of exposition. Thanks to Lemma 7, H̃ is also
in the almost all set S in Proposition 2 corresponding to
DoFi = 1/2, i = 1, 2, ..., K . As, by assumption, Condition (∗)
is violated for H and all scaled versions thereof, there must be
a user i such that, thanks to Remark 5, there exist polynomials
P, Q ∈ W(�H) so that

hii =
P

Q
, (51)

where hii is the i-th diagonal entry of H̃. As H̃ is fully
connected and contained in the set S in Proposition 2 for
DoFi = 1/2, i = 1, 2, ..., K , it follows from (35) that

H

⎛⎝hiiVi +
∑
j �=i

hijVj

⎞⎠
H(Vi)

= 2 + O(ε), (52)

where V1, V2, ..., VK are independent random variables satis-
fying (32) for DoFi = 1/2, i = 1, 2, ..., K . We shall show that
this contradicts (35), by proving that (32) with DoFi = 1/2,
for i = 1, 2, ..., K , and V1, V2, ..., VK satisfying (52), implies

H

⎛⎝hiiVi +
∑
j �=i

hijVj

⎞⎠
H(Vi)

= 1 + O(ε), (53)

for the index i that satisfies (51). Conceptually this means that
the entropies of signal and interference can not be balanced if
Condition (∗) is violated. This will be established by employ-
ing the entropy balancing results developed in Section VI.

The contradiction will be effected through two nested
inductive arguments. That is to say, the base case for the
main induction argument over the maximum number of terms
in P and Q in (51) will be effected by another induction,
namely over the maximum degree of the polynomials, actually
monomials in the base case, P and Q.

Base case over the number of terms in P and Q. Let p be
the maximum of the number of terms in P and Q. We start
with the base case p = 1, i.e., both P and Q are monomials.
Then, we can express (51) as follows

hii =
a

b

K(K−1)∏
j,k,j �=k

h
αjk

jk

K(K−1)∏
j,k,j �=k

h
βjk

jk

, (54)

where a, b ∈ Z, αjk, βjk ∈ N, and hjk are off-diagonal
elements of H̃ with j, k ∈ {1, ..., K}, j �= k.

We establish (53) by induction over

d = max

⎧⎨⎩ ∑
j,k,j �=k

αjk,
∑

j,k,j �=k

βjk

⎫⎬⎭
with the base case d = 1. First, the case d = 0 is dealt with
separately by showing that

H
(
aVi + b

∑
j �=i hijVj

)
H(Vi)

= 1 + O(ε). (55)

From (33) with i = K and using the specific form of H̃ in
(50), we get

H
(∑K−1

j=1 Vj

)
H(VK)

= 1 + O(ε). (56)

Again by (33), but now with i = 2, we have

H
(
V1 +

∑K
j=3 h2jVj

)
H(V2)

= 1 + O(ε), (57)

where we used that h21 = 1. Next, note that

1 + O(ε) =
H

(
V1 +

∑K
j=3 h2jVj

)
H(V2)

� H (V1 + VK)
H(V2)

� H (V1)
H(V2)

= 1 + O(ε), (58)

where both inequalities follow from (41), and the last equation
is by (34). This yields

H (V1 + VK)
H(V2)

= 1 + O(ε). (59)

We can now replace the denominators of (56) and (59) by
H(V1), by applying (34) with i = 1 and j = K , and i = 1
and j = 2, respectively. Then, Lemma 6 with X = V1, Y1 =∑K−1

j �=1 Vj , and Y2 = VK yields

H
(∑K

j=1 Vj

)
H(V1)

= 1 + O(ε). (60)

Next, thanks to (60), (34), and (41), we have

1 + O(ε) =
H

(∑K
j=1 Vj

)
H(Vi)

�
H

(∑
j �=i Vj

)
H(Vi)

� 1 + O(ε),

(61)
for all i = 1, ..., K . Applying [6, Th. 14] (see Appendix F)
with p = a, q = b, X = Vi, and Y =

∑
j �=i Vj , and dividing

the result thereof by H(Vi) yields

H
(
aVi + b

∑
j �=i Vj

)
H(Vi)

−
H

(∑K
j=1 Vj

)
H(Vi)

� τa,b

⎛⎝2H
(∑K

j=1 Vj

)
− H(Vi) − H

(∑
j �=i Vj

)
H(Vi)

⎞⎠ ,

(62)
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where τa,b = 7�log |a|� + 7�log |b|� + 2. Thanks to (61), the
RHS of (62) equals O(ε). We therefore have

1 �
H

(
aVi + b

∑
j �=i Vj

)
H(Vi)

� 1 + O(ε), (63)

where the first inequality follows from (41). In summary, we
get

H
(
aVi + b

∑
j �=i Vj

)
H(Vi)

= 1 + O(ε), (64)

which, upon noting that hK1 = hK2 = ... = hK(K−1) = 1,
establishes (55) for i = K . For i �= K , we apply (33) to obtain

H
(
bVK + b

∑K−1
j �=i hijVj

)
H(Vi)

= 1 + O(ε). (65)

Furthermore, thanks to (64) and (41), we have

H (aVi + bVK)
H(Vi)

= 1 + O(ε). (66)

Next, replacing H(Vi) by H(VK) in the denominators of (65)
and (66) leaves, thanks to (34), the corresponding right hand
sides unchanged. Now, applying Lemma 6 with X = bVK ,

Y1 = aVi, and Y2 = b
∑K

j �=i,K hijVj , yields

H
(
aVi + b

∑K
j �=i hijVj

)
H(VK)

= 1 + O(ε), (67)

which, after replacing H(VK) in the denominator by H(Vi),
again thanks to (34), establishes (55) for i = 1, ..., K − 1, as
desired.

We now proceed with the base case of induction over the
maximum degree of the monomials P and Q, namely with
d = 1. Specifically, we need to show that for the specific i
in (51),

H
(

a
b

hmn

hp�
Vi +

∑K
j �=i hijVj

)
H(Vi)

= 1 + O(ε), (68)

for all a, b ∈ Z \ {0}, and hmn, hp� off-diagonal elements of
H̃, i.e., m, n, p, � ∈ {1, ..., K}, with m �= n, p �= �. We first
consider the case i = � = n = K . As here hmK = hpK =
hiK = 1, for i = 1, ..., K − 1, (68) becomes

H
(
aVK + b

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε), (69)

and we are done thanks to (64). Next, we consider i = � = K ,
n �= K . In this case, (68) reduces to

H
(
ahmnVK + b

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε). (70)

We first note that, thanks to (33) for i = m and (41), we have

H (ahmnVn + aVK)
H(VK)

= 1 + O(ε). (71)

Using (60), (41), and (34), we obtain

H (ahmnVK + ahmnVn)
H(VK)

= 1 + O(ε). (72)

Replacing the denominators in (71) and (72) with H(Vn) by

using (34), and applying Lemma 6 with X = ahmnVn, Y1 =

aṼK , Y2 = ahmnVK , where ṼK is an independent copy of
VK , results in

H
(
ahmnVn + aṼK + ahmnVK

)
H(Vn)

= 1 + O(ε). (73)

Again using (34) to replace the denominator in (73) with
H(VK), and applying (41) yields

H
(
aṼK + ahmnVK

)
H(VK)

= 1 + O(ε). (74)

We now combine (73) with (64) (for i = K), to apply
Lemma 6 with X = aṼK , Y1 = ahmnVK , and Y2 =
b
∑K−1

j=1 Vj , resulting in

H
(
aṼK + ahmnVK + b

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε), (75)

which, thanks to (41), yields

H
(
ahmnVK + b

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε), (76)

as desired.
Next, we consider i = n = K , � �= K . In this case (68)

becomes

H
(
aVK + bhp�

∑K−1
j=1 Vj

)
H(Vi)

= 1 + O(ε). (77)

We first note that, thanks to (33) for i = p and (41) for i = p,
j = �, we have

H (ahp�V� + aVK)
H(V�)

= 1 + O(ε). (78)

Using (56) and (41), it follows that

H (ahp�VK + ahp�V�)
H(VK)

= 1 + O(ε). (79)

Replacing the denominator in (79) with H(V�) by using (34),
we apply Lemma 6 with X = ahp�V�, Y1 = aVK , Y2 =
ahp�ṼK , where ṼK is an independent copy of VK , to get

H
(
ahp�V� + aVK + ahp�ṼK

)
H(V�)

= 1 + O(ε). (80)

We again use (34) to replace the denominator in (80) by
H(VK) and get, thanks to (41),

H
(
aVK + ahp�ṼK

)
H(VK)

= 1 + O(ε). (81)

We now combine (81) with (64) for i = K , to apply Lemma 6

with X = ahp�ṼK , Y1 = aVK , Y2 = bhp�

∑K−1
j=1 Vj , and

obtain

H
(
ahp�ṼK + aVK + bhp�

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε), (82)
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which, thanks to (41), yields

H
(
aVK + bhp�

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε), (83)

as desired.
We next consider i = K, n �= K, � �= K . Combining (74)

and (83), we apply Lemma 6 with X = aṼK , Y1 = ahmnVK ,
and Y2 = bhp�

∑K−1
j=1 Vj , where ṼK is an independent copy

of VK , to get

H
(
aṼK + ahmnVK + bhp�

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε), (84)

which, thanks to (41), yields

H
(
ahmnVK + bhp�

∑K−1
j=1 Vj

)
H(VK)

= 1 + O(ε), (85)

as desired.
We finally consider i �= K . Using (60), (34) with i = 1,

j = K , and (41), we get

H (hmnVi + hmnVK)
H(VK)

= 1 + O(ε). (86)

Applying Lemma 6 with (74) and (86), with X = hmnVK ,
Y1 = ṼK , and Y2 = hmnVi, yields

H
(
hmnVi + hmnVK + ṼK

)
H(VK)

= 1 + O(ε), (87)

which, thanks to (41), results in

H
(
hmnVi + ṼK

)
H(VK)

= 1 + O(ε). (88)

Again applying Lemma 6, but now with (81) and (88), with
X = ṼK , Y1 = hp�VK , and Y2 = hmnVi, yields

H
(
hp�VK + ṼK + hmnVi

)
H(VK)

= 1 + O(ε), (89)

which, thanks to (41), results in

H (hp�VK + hmnVi)
H(VK)

= 1 + O(ε). (90)

Next, noting that hiK = 1, application of (33) to user i and
(34) to users i and K yields

H
(
hp�VK + hp�

∑
j �=i,K hijVj

)
H(VK)

= 1 + O(ε). (91)

We now combine (90) and (91), and employ Lemma 6 with
X = hp�VK , Y1 = hmnVi, Y2 = hp�

∑
j �=i,K hijVj , to get

H
(
hmnVi + hp�

∑K
j �=i hijVj

)
H(VK)

= 1 + O(ε). (92)

Applying [6, Th. 14] (see Appendix F) with p = a, q =
b, X = hmnVi, and Y = hp�

∑K
j �=i hijVj , and dividing the

result thereof by H(VK) yields

H
(
ahmnVi + bhp�

∑K
j �=i hijVj

)
H(VK)

−

H
(
hmnVi + hp�

∑K
j �=i hijVj

)
H(VK)

� τa,b

⎛⎝2H
(
hmnVi + hp�

∑K
j �=i hijVj

)
H(VK)

⎞⎠
− τa,b

(
H(Vi)
H(VK)

)
− τa,b

⎛⎝H
(∑K

j �=i hijVj

)
H(VK)

⎞⎠ , (93)

where τa,b = 7�log |a|� + 7�log |b|� + 2. The first, second,
and third terms on the RHS of (93) are 2 + O(ε), 1 + O(ε),
and 1 + O(ε), respectively, thanks to (92), (34), and (91),
respectively. Hence, the RHS of (93) equals O(ε), resulting
in

1 �
H

(
ahmnVi + bhp�

∑K
j �=i hijVj

)
H(VK)

� 1 + O(ε), (94)

where the first inequality is due to (41). Finally, using (34) to
replace the denominator of (94) with H(Vi), we obtain

H
(
ahmnVi + bhp�

∑K
j �=i hijVj

)
H(Vi)

= 1 + O(ε), (95)

as desired.
We proceed to the induction step over d for (53). To this

end, we assume that (53) holds for d = m − 1, with m �
2, and we show that this implies (53) for d = m. Consider
P := a

∏K(K−1)
j,k,j �=k h

αjk

jk and Q := b
∏K(K−1)

j,k,j �=k h
βjk

jk such that

the maximum of the degrees of P and Q is d. Next, note that
we can factorize P and Q such that P = P1P2 and Q =
Q1Q2, where P1, P2, Q1, and Q2 are all of degree strictly
smaller than d. We now want to show that

H

⎛⎝ P1P2
Q1Q2

Vi +
∑
j �=i

hijVj

⎞⎠
H(Vi)

= 1 + O(ε).

To this end, first note that thanks to the induction assumption,
we have

H

⎛⎝ P1
Q1

Vi +
∑
j �=i

hijVj

⎞⎠
H(Vi)

= 1 + O(ε), (96)

and

H

⎛⎝ P2
Q2

Vi +
∑
j �=i

hijVj

⎞⎠
H(Vi)

= 1 + O(ε). (97)

Next, we use (55) with a = b = 1, as well as (96) and (97),
upon replacing their denominators with H

(∑
j �=i hijVj

)
,
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which is possible thanks to (33), and we apply Lemma 6 with
X =

∑
j �=i hijVj , Y1 = P1

Q1
Vi, Y2 = P2

Q2
Vi, Y3 = Vi, to get

H

⎛⎝Vi + P1
Q1

Vi + P2
Q2

Vi +
∑
j �=i

hijVj

⎞⎠
H

⎛⎝∑
j �=i

hijVj

⎞⎠ = 1 + O(ε). (98)

Thanks to (41) this results in

H
(

P2
Q2

Vi + P1
Q1

P2
Q2

Vi

)
H

⎛⎝∑
j �=i

hijVj

⎞⎠ = 1 + O(ε). (99)

Finally, we use (97) and (99) upon replacing its denominator
with H(Vi), which is possible thanks to (33), and we apply
Lemma 6 with X = P2

Q2
Vi, Y1 =

∑
j �=i hijVj , Y2 = P1P2

Q1Q2
Vi,

to conclude that

H

⎛⎝ P2
Q2

Vi + P1
Q1

P2
Q2

Vi +
∑
j �=i

hijVj

⎞⎠
H (Vi)

= 1 + O(ε). (100)

Again, thanks to (41), this yields

H

⎛⎝ P1
Q1

P2
Q2

Vi +
∑
j �=i

hijVj

⎞⎠
H (Vi)

= 1 + O(ε), (101)

as desired and thereby concludes the induction step with
respect to the maximum degree, which, in turn, establishes
the base case for the induction over the number of terms.

We proceed to the induction over the number of terms
by assuming that (53) holds for p = n, n � 1, with p =
max{�, m} in P :=

∑�
s=1 Ps and Q :=

∑m
s=1 Qs, where

Ps = as

∏K(K−1)
j,k,j �=k h

α
(s)
jk

jk and Qs = bs

∏K(K−1)
j,k,j �=k h

β
(s)
jk

jk , with

as, bs ∈ Z and α
(s)
jk , β

(s)
jk ∈ N. We need to show that this

implies

H

⎛⎝ (P1+P2+ ...+P�)
(Q1+Q2+ ...+Qm)Vi +

∑
j �=i

hijVj

⎞⎠
H (Vi)

= 1 + O(ε), (102)

for max{�, m} = n+1. First, we consider the case � = n+1 >
m. Then, thanks to the induction assumption, it holds that

H

⎛⎝P1Vi + (Q1 + ... + Qm)
∑
j �=i

hijVj

⎞⎠
H (Vi)

= 1 + O(ε),

(103)

and

H

⎛⎝(P2 + ... + P�)Vi + (Q1 + ... + Qm)
∑
j �=i

hijVj

⎞⎠
H (Vi)

= 1 + O(ε). (104)

Using (103) and (104), we apply Lemma 6 with X = (Q1 +
... + Qm)

(∑
j �=i hijVj

)
, Y1 = (P2 + ... + P�)Vi, and Y2 =

P1Vi, to get

H

⎛⎝(P1 + P2 + ... + P�)Vi + (Q1 + ... + Qm)
∑
j �=i

hijVj

⎞⎠
H

(∑
j �=i hijVj

)
= 1 + O(ε), (105)

which, upon replacing the denominator with H(Vi), made
possible by (33), establishes (102) as desired.

We next consider the case m = n + 1 > �. Here, similarly,
we apply Lemma 6 with X = P1Vi, Y1 = Q1

∑
j �=i hijVj ,

and Y2 = (Q2 + ... + Qm)
∑

j �=i hijVj , to obtain (102) as
desired.

We are left with the case m = � = n + 1. First, note that
we have already shown (102) for � = n + 1 > m, and hence
the following relations hold:

H

⎛⎝(P1 + ... + P�)Vi + (Q1 + ... + Qm−1)
∑
j �=i

hijVj

⎞⎠
H (Vi)

= 1 + O(ε) (106)

and

H

⎛⎝(P1 + ... + P�)Vi + Qm

∑
j �=i

hijVj

⎞⎠
H (Vi)

= 1+O(ε). (107)

We now combine (106) and (107) and apply Lemma 6 with
X = (P1 + ... + P�)Vi, Y1 = (Q1 + ... + Qm−1)

∑
j �=i hijVj ,

and Y2 = Qm

∑
j �=i hijVj to obtain (102) as desired.

It remains to prove necessity for the non-fully-connected
case. We start with the following technical result.

Lemma 3: Let T be the set of K-user non-fully-connected
IC matrices of an arbitrary, but fixed topology. Let T ′ be the
subset of T obtained by restricting the set of fully-connected
matrices that are in S according to Proposition 2 for DoFi =
1/2, i = 1, ..., K , to the complement of the zero-set of T .
Then, the set T ′ is an a.a. subset of T .

Proof: Since the set of fully-connected matrices F and
the set S in Proposition 2 for DoFi = 1/2, i = 1, ..., K , are
almost all subsets of RK×K , the set Fs := F ∩ S, as the
intersection of two almost all sets, is also an almost all subset
of RK×K . Next, note that T is obtained by restricting F to the
complement of the zero-set of T . Now, let us assume, by way
of contradiction, that T \ T ′ has positive measure. As T \ T ′

is the restriction of F \Fs to the complement of the zero-set
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of T , if T \T ′ were of positive measure so would F \Fs have
to be, which constitutes a contradiction and thereby finishes
the proof.

We finalize the proof by contradiction. Let H be in the
almost all set T ′ defined in Lemma 3 and assume that H and
all scaled versions thereof violate Condition (∗), while each
user achieves 1/2 DoF. Let H̃ be a fully-connected IC matrix
in S for DoFi = 1/2, i = 1, ..., K , which, upon restriction
to the complement of the zero-set of T corresponding to
T ′, yields H. Next, we observe that if injectivity is violated
for a set, it is also violated for its supersets. Hence, since
W(H) ⊆ W(�H), and hii = h̃ii, i = 1, . . . , K , if H and all
scaled versions thereof violate Condition (∗), so do H̃ and all
scaled versions thereof. But then, however, as necessity was
already established above for all fully-connected IC matrices
in the set S for DoFi = 1/2, i = 1, ..., K , we are left with a
contradiction.

VIII. PROOF OF NECESSITY IN THEOREM 1 FOR ALL

3-USER NON-FULLY-CONNECTED IC MATRICES

While Theorem 1 established necessity for almost all IC
matrices and for arbitrary K , a stronger result is possible in
(at least) the 3-user case. Specifically, necessity in Theorem 1
can be shown to hold for all channel matrices H of every
fixed non-fully-connected topology. The corresponding proof
proceeds by direct enumeration of all possible channel topolo-
gies combined with the application of Condition (∗) and a
result in [6].

For the first two topologies necessity follows directly as the
topology per se implies the existence of a scaled version of
H for which Condition (∗) holds. (Note that scaling does not
change the topology.)

Topology 1. We consider the case hij = hji = 0, for i �= j,
and set, w.l.o.g.,6 i = 1 and j = 2, so that

H =

⎛⎝h11 0 h13

0 h22 h23

h31 h32 h33

⎞⎠.

The remaining links (apart from the direct links between the
users corresponding to the diagonal entries) may or may not
be present, i.e., h13, h23, h31, h32 may or may not be nonzero.
We now scale H to convert it into

H̃ =

⎛⎜⎝
√

2 0 h̃13

0 g2 h̃23

h̃31 h̃32 g3

⎞⎟⎠, (108)

where h̃13, h̃23, h̃31, h̃32 ∈ {0, 1}, and g2, g3 ∈ R \ {0}. As√
2 is irrational and W(�H) ⊆ N, (7) implies that user 1 cannot

violate Condition (∗) in H̃. If user 2 is to violate Condition (∗)
in H̃, then g2 must be in Q. Assuming that this is, indeed, the
case, we next scale the first and second rows of H̃ by

√
3

g2
and

the third column by g2√
3

(to keep the off-diagonal components

6This specific choice comes w.l.o.g. as we can simply relabel the users, e.g.
when h23 = h32 = 0, we relabel user 1 as user 2 and user 2 as user 3. We
will exploit this symmetry in all topologies.

in {0, 1}) to get

H =

⎛⎜⎝
√

6
g2

0 h̃13

0
√

3 h̃23

h̃31 h̃32
g2g3√

3

⎞⎟⎠.

Owing to g2 ∈ Q, the first diagonal entry in H is irrational
so that user 1 cannot violate Condition (∗) in H. Likewise,
user 2 cannot violate Condition (∗) in H as

√
3 is irrational.

If user 3 is to violate Condition (∗) in H, then g3√
3

must be in
Q. Assuming that this is, indeed, the case, we next scale the
third row of H by

√
15

g2g3
, and the first and second column by

g2g3√
15

to obtain

H′ =

⎛⎜⎝
g3

√
2√

5
0 h̃13

0 g2g3√
5

h̃23

h̃31 h̃32

√
5

⎞⎟⎠.

Note that since g2,
g3√
3

∈ Q, all diagonal entries of H′

are irrational, so that none of the users in H′ can violate
Condition (∗). We have hence established that user 2 violating
Condition (∗) in H̃ implies the existence of a scaled version of
H, namely H′, that satisfies Condition (∗). It remains to treat
the case of user 3 violating Condition (∗) in H̃. In that case,
again, g3 must be in Q. We scale H̃ to turn it into H′, and note
that user 1 and user 3 cannot violate Condition (∗) in H′ as
g3

√
2√

5
and

√
5 are irrational. If user 2 is to violate Condition (∗)

in H′, as g3 ∈ Q, g2√
5

must be in Q, which, in turn, would

result in an H that has all its diagonal entries irrational and
would therefore satisfy Condition (∗). This establishes that
user 3 violating Condition (∗) in H̃ implies the existence of
a scaled version of H, namely H, that satisfies Condition (∗).
In summary, we have established that for every H of Topology
1 there always exists at least one scaled version of H satisfying
Condition (∗).

Topology 2. We consider the case hik = hji = hkj = 0,
for distinct i, j, k. For concreteness and again w.l.o.g., we set
i = 1, j = 2, k = 3, which leads to the following IC matrix

H =

⎛⎝h11 h12 0
0 h22 h23

h31 0 h33

⎞⎠ ,

with h12, h23, h31 �= 0. Note that if any of h12, h23, h31 were
equal to zero, we would be back to Topology 1.

We next scale H to convert it into

H̃ =

⎛⎝√
2 1 0

0
√

2 1
1 0 g3

⎞⎠,

where g3 ∈ R\{0}. As
√

2 is irrational and W(�H) ⊆ N, users
1 and 2 cannot violate Condition (∗) in H̃. If user 3 were to
violate Condition (∗) in H̃, g3 would have to be in Q. In this
case, we could convert H̃ (by multiplying the first column and

the third row by g3√
3

and
√

3
g3

, respectively) into

H =

⎛⎜⎝g3
√

2√
3

1 0
0

√
2 1

1 0
√

3

⎞⎟⎠,
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which can not violate Condition (∗) as all its diagonal entries
are irrational. Following the same playbook as in Topology 1,
we have hence established that for every H of Topology 2,
there always exists at least one scaled version of H satisfying
Condition (∗).

The proof for the remaining topologies is organized accord-
ing to the number of missing links and we shall argue by
contradiction in all cases as follows: Suppose that each user
achieves 1/2 DoF and Condition (∗) is violated for H and all
its scaled versions. Under these assumptions, we shall identify
a scaled version of H that does not allow 3/2 DoF in total,
implying that, owing to Remark 3, H itself does not allow
3/2 DoF in total, which establishes the contradiction.

One missing link. We start with the case where exactly one
non-diagonal entry of the IC matrix is zero, i.e., hij = 0, for
i �= j. For concreteness and w.l.o.g.,7 we set i = 1 and j = 2
and consider the corresponding IC matrix

H =

⎛⎝h11 0 h13

h21 h22 h23

h31 h32 h33

⎞⎠,

with all coefficients but h12 nonzero. We next scale H to
convert it into

H̃ =

⎛⎝g1 0 1
1 g2 1
1 1 g3

⎞⎠.

As H̃ violates Condition (∗) by assumption, and W(�H) ⊆ N,
at least one diagonal entry of H̃ must be in Q. We can now
apply [6, Th. 8] (See Appendix I) as follows. If g1 is in Q,
we set i = 1, j = 3, k = 2 in [6, Th. 8] to conclude that

H̃ does not allow 3/2 DoF in total, thereby establishing the
contradiction. The argument for g2 or g3 rational follows along
the exact same lines.

Two missing links. Next, we consider the case where exactly
two off-diagonal entries of the IC matrix are equal to zero. This
case will be dealt with by splitting it up into five topologies
as follows: hij = hji = 0, hij = hik = 0, hij = hjk = 0,
hij = hki = 0, and hij = hkj = 0, for distinct i, j, k. The first
case is already covered by Topology 1. The remaining cases
are organized into Topologies 3, 4, 5, and 6, respectively.

Topology 3. We have hij = hik = 0, for distinct i, j, k. For
concreteness and again w.l.o.g., we set i = 1, j = 2, k = 3,
and consider the corresponding IC matrix

H =

⎛⎝h11 0 0
h21 h22 h23

h31 h32 h33

⎞⎠,

with h21, h23, h31, h32 all nonzero real numbers. Next, we
scale H to convert it into

H̃ =

⎛⎝√
2 0 0

1 g2 1
1 1 g3

⎞⎠,

where g2 and g3 are nonzero real numbers. Now, note that user
1 in H̃ cannot violate Condition (∗) as

√
2 is irrational and

7Again, the other choices for i and j follow by simply relabeling users.

W(�H) ⊆ N. If user 2 or user 3 were to violate Condition (∗)
in H̃, then g2 or g3, respectively, would have to be in Q,
in which case we can again apply [6, Th. 8], namely with
i = 2, j = 1, k = 3 and i = 3, j = 1, k = 2, respectively, to
conclude that the total number of DoF in H̃ is less than 3/2.
This establishes the contradiction.

Topology 4. We have hij = hjk = 0, for distinct i, j, k. For
concreteness and again w.l.o.g., we set i = 1, j = 2, k = 3,
and consider the corresponding IC matrix

H =

⎛⎝h11 0 h13

h21 h22 0
h31 h32 h33

⎞⎠,

where h13, h21, h31, and h32 are nonzero real numbers. Next,
we scale H to convert it into

H̃ =

⎛⎝√
2 0 1

1 g2 0
1 1 g3

⎞⎠,

where g2 and g3 are nonzero real numbers. First, note that
user 1 cannot violate Condition (∗) in H̃ as

√
2 is irrational

and W(�H) ⊆ N. If user 2 were to violate Condition (∗), g2

would have to be in Q, and we can apply [6, Th. 8] with
i = 2, j = 1, k = 3 to conclude that the total number of DoF
is less than 3/2, which establishes the contradiction. If user 3
were to violate Condition (∗) in H̃, g3 would have to be in
Q. We then scale the first row and the third column of H̃ by
g3√
3

and
√

3
g3

, respectively, to obtain

H′ =

⎛⎜⎝
√

2g3√
3

0 1
1 g2 0
1 1

√
3

⎞⎟⎠.

Now, we note that since g3 ∈ Q, the first diagonal entry in
H′ is irrational and hence user 1 cannot violate Condition (∗)
in H′. User 3 cannot violate Condition (∗) in H′ as

√
3 is

irrational. If user 2 in H′ were to violate Condition (∗), g2

would have to be in Q, and we can apply [6, Th. 8] with
i = 2, j = 1, k = 3 to conclude that the total number of DoF
is less than 3/2, which establishes the contradiction.

Topology 5. We consider the case hij = hki = 0, for distinct
i, j, k. For concreteness and w.l.o.g., we set i = 1, j = 2,
k = 3 and consider the corresponding IC matrix

H =

⎛⎝h11 0 h13

h21 h22 h23

0 h32 h33

⎞⎠,

with h13, h21, h23, h32 nonzero real numbers. We next scale
H to convert it into

H̃ =

⎛⎝g1 0 1
1 g2 1
0 1

√
2

⎞⎠,

where g1 and g2 are nonzero real numbers. First, note that
user 3 cannot violate Condition (∗) in H̃ as

√
2 is irrational

and W(�H) ⊆ N. If user 2 were to violate Condition (∗) in H̃,
g2 would have to be in Q. We then scale the third row and the
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second column of H̃ by g2√
3

and
√

3
g2

, respectively, to obtain

H′ =

⎛⎜⎝g1 0 1
1

√
3 1

0 1
√

2g2√
3

⎞⎟⎠,

and note that since g2 ∈ Q, the second and the third diagonal
entries of H′ are irrational, which implies that users 2 and 3
cannot violate Condition (∗) in H′. If user 1 in H′ were to
violate Condition (∗), g1 would have to be in Q and we can
apply [6, Th. 8] with i = 1, j = 3, k = 2 to conclude that the
total number of DoF of H′ is less than 3/2. This establishes
the contradiction.

Topology 6. We finally consider the case hij = hkj = 0,
and set, w.l.o.g., j = 1, i = 2, k = 3 to get the IC matrix

H =

⎛⎝h11 h12 h13

0 h22 h23

0 h32 h33

⎞⎠,

with h12, h13, h23, h32 nonzero real numbers. We scale H to
convert it into

H̃ =

⎛⎝√
2 1 1

0 g2 1
0 1 g3

⎞⎠,

where g2 and g3 are nonzero real numbers. First, note that
user 1 cannot violate Condition (∗) in H̃ as

√
2 is irrational

and W(�H) ⊆ N. If user 2 or user 3 in H̃ were to violate
Condition (∗), then g2 or g3, respectively, would have to be in
Q, and we can apply [6, Th. 8] with i = 2, j = 3, k = 1 or i =
3, j = 2, k = 1, respectively, to conclude that 3/2 DoF in total
cannot be achieved, thereby establishing the contradiction.

3 missing links. We now consider IC matrices with exactly
three off-diagonal entries equal to zero and enumerate the
corresponding possible topologies as follows. First, we set,
w.l.o.g., hij = 0, for distinct i, j. We need to choose two more
zero entries among the remaining off-diagonal coefficients
hji, hjk, hik, hki, hkj , with k �= i, j. There is a total of

(
5
2

)
=

10 choices. All choices including hji = 0 result in Topology 1
and have hence already been dealt with. This leaves us with
the

(
4
2

)
= 6 choices hik = hki = 0, hjk = hkj = 0, hjk =

hki = 0, hki = hkj = 0, hik = hkj = 0, hjk = hik = 0. The
first two cases are covered by Topology 1 and the third case
is comprised by Topology 2. The remaining three topologies
are identical. To see this, consider hij = hjk = hik = 0 and
relabel the users according to j′ = k, k′ = j. This leads to
hik′ = hk′j′ = hij′ = 0, which is the fifth topology above.
Similarly, if we relabel the users according to k′ = i, i′ =
j, j′ = k, we obtain hk′i′ = hi′j′ = hk′j′ = 0, which results
in the fourth topology. The remaining case is dealt with by
setting, w.l.o.g., i = 1, j = 2, k = 3 in hij = hjk = hik = 0,
leading to

H =

⎛⎝h11 0 0
h21 h22 0
h31 h32 h33

⎞⎠,

with h21, h31, h32 nonzero real numbers. We scale H to
convert it into

H̃ =

⎛⎝√
2 0 0

1 g2 0
1 1

√
2

⎞⎠,

where g2 is a nonzero real number, and note that users 1 and
3 cannot violate Condition (∗) in H̃ as

√
2 is irrational and

W(�H) ⊆ N. If user 2 in H̃ is to violate Condition (∗), then
g2 must be in Q, and we can apply [6, Th. 8] with i = 2,
j = 1, k = 3 to conclude that 3/2 DoF in total cannot be
achieved, thereby establishing the desired contradiction.

More than 3 missing links. For IC matrices with more than
three off-diagonal entries equal to zero, there always exist
users i, j such that hij = hji = 0 and hence we are back
to Topology 1.

IX. AN APPLICATION

We now show how our results allow to develop a significant
generalization of [6, Th. 8], which was the main technical
engine in the previous section, in our proof of necessity for
all 3-user channel matrices of every fixed non-fully-connected
topology. Specifically, we provide an extension of [6, Th. 8]
from the 3-user case to the K-user case, which, in addition,
applies to almost all channel matrices whereas [6, Th. 8]
applies to the measure-zero set of channel matrices with
algebraic off-diagonal entries only. We are also able to relax
the assumption of the channel coefficients hii, hij , hki, hkj in
[6, Th. 8] being nonzero rational numbers to allow a.a. real
numbers. Finally, [6, Th. 8] makes a statement on the total
number of DoF, whereas our extension is in terms of DoF
achievable by individual users.

Theorem 2: For almost all K × K IC matrices H, if there
exist distinct users i, j, k such that hiihkj

hijhki
is a non-zero rational

number, then 1/2 DoF for each user cannot be achieved.
Proof: We first note that any scaled version of H, includ-

ing H itself, can be expressed as follows

H̃ =

⎛⎜⎜⎜⎝
r1c1h11 r1c2h12 ... r1cKh1K

r2c1h21 r2c2h22 ... r2cKh2K

...
...

...
...

rKc1hK1 rKc2hK2 ... rKcKhKK

⎞⎟⎟⎟⎠,

where ri and cj , for i, j = 1, ..., K , are nonzero real numbers.
The proof is effected by showing that H̃ violates Condition (∗)
for all ri, cj ∈ R \ {0}, i, j = 1, ..., K . To this end, note that
for all ri, cj ∈ R \ {0}, i, j = 1, ..., K , the following holds

h̃ii = hiirici =
(hijricj)(hkirkci)

hkjrkcj

a

b
=

h̃ij h̃ki

h̃kj

a

b
,

where a, b ∈ Z such that a
b = hiihkj

hijhki
. Since ah̃ij h̃ki, bh̃kj ∈

W(�H) for all ri, cj ∈ R \ {0}, i, j = 1, . . . , K , (8) implies
that Condition (∗) is violated for all scaled versions of H.
Application of Theorem 1 now yields the desired conclusion
that 1/2 DoF for each user cannot be achieved.

APPENDICES

A. Implications of Requiring 1/2 DoF for Each User

We start with a definition needed in the formulation of the
main result, Lemma 4 below.

Definition 3: (Totally-disconnected users) We say that a user
is totally disconnected if it does not experience interference
from any other user and does not cause interference to any
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other user. Concretely, the i-th user, i = 1, ..., K , is totally
disconnected if the i-th row and the i-th column of H have
no nonzero off-diagonal elements.

Lemma 4: If each user in a K × K IC matrix H, with L
totally disconnected users, is to achieve at least 1/2 DoF, then
the total number of DoF is exactly L + (K − L)/2, where
the totally-disconnected users achieve 1 DoF each and the
remaining users achieve exactly 1/2 DoF each.

Proof: It follows directly that each totally disconnected
user achieves 1 DoF as these users are interference-free.
Now, consider a non-totally-disconnected user, say user i,
i ∈ {1, ..., K}. Then, there exists a distinct user j ∈ {1, ..., K}
which either experiences interference from user i or causes
interference to user i or both. Next, consider the 2-user IC H̃
obtained by removing all users except for users i and j and
note that DoFi(H) � DoFi(H̃) and DoFj(H) � DoFj(H̃) as
the removed users simply constitute interference for users i
and j. Now, we know, thanks to [11, Corollary 1], that in a
2-user IC, the total number of DoF is bounded by 1, which
together with DoFi(H) � 1/2 and DoFj(H) � 1/2, both by
assumption, results in DoFi(H) = DoFj(H) = 1/2. Summing
over the L totally disconnected users and the K − L non-
totally-disconnected users yields L + K−L

2 DoF in total.

B. Preservation of Individual DoF

Lemma 5: For all IC matrices H, the number of DoF
achievable for each user is preserved under scaling according
to Definition 1.

Proof: The statement follows directly from [3, Lemma 1].
Specifically, [3, Eqs. 2,3, and 4] lead to the following conclu-
sion: The capacity region of the IC with channel matrix H and
that of any scaled version of H are asymptotically (in signal-
to-noise ratio) identical. Therefore, the individual DoF, given
by the pre-log factors of the corresponding individual rates
R1, ..., RK , remain unchanged upon scaling of the underlying
channel matrix.

C. Proof of Proposition 2

The proof is inspired by the proofs of [10, Th. 3]
and [6, Th. 4]. We first construct self-similar input distributions
according to

X̃j =
∞∑

m=0

Vjmrm,

where r ∈ (0, 1) and {Vjm : m � 0} is a sequence of i.i.d.
copies of Vj , j = 1, ..., K . This ansatz is identical to that in
[6, Eq. 148], apart from the choice of the similarity ratio r.
The following statements hold for the a.a. set of IC matrices
H, defined in [6, Th. 4] and denoted as L henceforth. Using
[6, Eq. 154], it follows that

d

(∑
j

hijX̃j

)
=

H
(∑

j hijVj

)
log (1/r)

, (109)

for i = 1, ..., K . Similarly, thanks to [6, Eq. 155], we obtain

d

(∑
j �=i

hijX̃j

)
=

H
(∑

j �=i hijVj

)
log (1/r)

. (110)

Combining (109) and (110), and using [6, Eqs. 156, 157], we
get

sup
V1,...,VK

⎡⎣H
(∑

j hijVj

)
log (1/r)

−
H
(∑

j �=i hijVj

)
log (1/r)

⎤⎦ � DoFi,

(111)

where DoFi is as defined in (3). Finally, thanks to (109), there
exists an r ∈ (0, 1) such that

log (1/r) = max
i=1,...,K

H
(∑

j hijVj

)
d
(∑

j hijX̃j

)
� max

i=1,...,K
H
(∑

j

hijVj

)
, (112)

where the inequality follows from the fact that the informa-
tion dimension of a one-dimensional random variable cannot
exceed 1 [6, Eq. 13]. Combining (111) and (112), and noting
that (112) holds for

∑
j hijVj replaced by

∑
j �=i hijVj as well,

(32) follows for all ICs in L, and hence L ⊆ S. The proof is
concluded upon noting that L is an a.a. set.

D. Entropy Growth

Lemma 6: (A simple incarnation of [15, Th. 2.8.2]): Let
X, Y1, ..., Ym be discrete random variables, all of finite
entropy, such that

H(X + Yi)
H(X)

= 1 + O(ε), (113)

for ε ∈ (0, 1/2) and i = 1,..., m. Then, for finite m,

H(X + Y1 + ... + Ym)
H(X)

= 1 + O(ε). (114)

Proof: In [15, Th. 2.8.2], set log Ki = H(X)O(ε), for
i = 1,..., m, and take the additive group G to be R. This
results in H(X + Y1 + ... + Ym) � H(X) + mH(X)O(ε).
Divide this inequality by H(X) and note that owing to (41)
the expression on the LHS of (114) is greater than or equal
to 1. The proof is concluded by realizing that O(ε)m = O(ε)
thanks to m being finite and independent of ε.

E. Auxiliary Lemma for the K-User Case

Lemma 7: Let H be a K × K IC matrix. If H is in the
set S in Proposition 2 for DoFi = 1/2, i = 1, ..., K , then all
matrices obtained by scaling H are also in S.

Proof: We consider a scaled version of H ∈ S according
to

H̃ =

⎛⎜⎜⎜⎝
r1c1h11 r1c2h12 ... r1cKh1K

r2c1h21 r2c2h22 ... r2cKh2K

...
...

...
...

rKc1hK1 rKc2hK2 ... rKcKhKK

⎞⎟⎟⎟⎠,

where ri, cj , i, j = 1, ..., K , are nonzero real numbers. First,
we show that H̃ ∈ S. To this end, let, for an arbitrary but fixed

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on February 20,2022 at 07:25:32 UTC from IEEE Xplore.  Restrictions apply. 



1730 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

ε ∈ (0, 1/2), V1, ..., VK be random variables corresponding to
H in (32) for DoFi = 1/2, i = 1, ..., K . Starting from

1
2
− ε �

[
H
(∑K

j=1 hijVj

)
− H

(∑K
j �=i hijVj

)]
maxi=1,...,K H

(∑K
j=1 hijVj

) , (115)

we define the random variables Ṽi := Vi/ci, i = 1, ..., K .
Applying Proposition 1 with Ψi = Ṽi, for i = 1, ..., K , and
r = 2−maxi=1,...,K H(

�K
j=1 hij

�Vj), we conclude that user i in
H̃ achieves[

H
(
ri

∑K
j=1 hijVj

)
− H

(
ri

∑K
j �=i hijVj

)]
maxi=1,...,K H

(
ri

∑K
j=1 hijVj

)
=

[
H
(∑K

j=1 hijVj

)
− H

(∑K
j �=i hijVj

)]
maxi=1,...,K H

(∑K
j=1 hijVj

) (116)

DoF, where the equality in (116) holds because scaling a
random variable does not change its entropy, and the choice of
r ensures that the nontrivial terms are selected in both minima
on the RHS of (9). Noting that ε ∈ (0, 1/2) was arbitrary
establishes that H̃ ∈ S.

F. Entropy Difference Between Linear Combinations of
Random Variables

Theorem 3: [6, Th. 14]. Let X and Y be independent G-
valued random variables, where G denotes an arbitrary abelian
group. Let p, q ∈ Z \ {0}. Then,

H(pX + qY ) − H(X + Y )
� τp,q(2H(X + Y ) − H(X) − H(Y )), (117)

where τp,q = 7�log |p|� + 7�log |q|� + 2.

G. Entropy Difference for i.i.d. Random Variables

We restate (a slight variation of) [16, Th. 3.5]. For i.i.d.
discrete random variables X1, X2,

1
2

� I(X1 + X2; X2)
I(X1 − X2; X2)

� 2. (118)

With I(X ; Y ) = H(X) − H(X |Y ), (118) becomes

1
2

� H(X1 + X2) − H(X1 + X2|X2)
H(X1 − X2) − H(X1 − X2|X2)

� 2,

which is equivalent to

1
2

� H(X1 + X2) − H(X1)
H(X1 − X2) − H(X1)

� 2. (119)

H. A Slight Variation of [6, Lem. 18]

We formulate a slight variation of statement [6, Eq. 284] in
[6, Lem. 18].

Lemma 8: Let X, X ′, and Z be independent G-valued
random variables, where G is an abelian group and X ′ has

the same distribution as X . Let p, r ∈ R. Then,

H(pX + Z) � H((p − r)X + rX ′ + Z) + Δ(X, X ′),

where Δ(X, X ′) = H(X − X ′) − 1
2H(X) − 1

2H(X ′).
Remark 8: The only difference between Lemma 8 here and

[6, Lem. 18] is that [6, Lem. 18] applies to p, r ∈ Z \ {0},
whereas Lemma 8 holds for p, r ∈ R. Step-by-step inspection
of the proof of [6, Lem. 18] reveals, however, that the result
holds true more generally for p, r ∈ R.

I. Restatement of [6, Th. 8]

Theorem 4: [6, Th. 8]. Let H be a 3-user IC matrix H
with all off-diagonal entries algebraic numbers. If there exist
distinct i, j, k such that hij , hii, hkj , and hki are non-zero
rational numbers, then the total number of DoF of H is strictly
smaller than 3/2.
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