x

Dielectric Polarizations of Mixtures of Chlorobenzene with Cyclohexane, o-Xylene, m-Xylene, and p-Xylene

M.S. DHILLON

Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab (India)

Manuscript received 18 June 1976, revised 23 February 1977, accepted 25 April 1977.

DIELECTRIC polarizations of chlorobenzene with cyclohexane, o-xylene, m-xylene, and p-xylene have been measured at 303.15 K as a function of composition. Dielectric polarizations results show that charge transfer type complexes are formed in these mixtures except in the mixture of chlorobenzene+cyclohexane.

Excess volume V^E of the above mentioned mixtures were reported earlier^{1/2}. In this paper, we report dielectric polarizations of the same mixtures at 303.15 K. Dielectric polarizations may provide information about complex formation in solution. The nature of the complex and stability constant of the complex in solution phase can also be ascertained from dielectric polarizations.

Experimental

Cyclohexane, o-, m-, and p-xylenes (all B. D H. grade) and chlorobenzene (Reidel) were purified as described earlier^{3'4}. The purities of the samples were checked by measuring their densities; the results agreed to within 0.00002 g cm⁻³ with those in literature^{5'6}.

Dielectric constants of the pure components and their mixtures were determined from capacity measurements using Universal Impedance bridge (type 01-02a, Toshniwal make) at 303.15 K as a function of composition. The samples were placed in a cell containing a coaxiall brass cylinder. The mouth of the cell can be closed with a glass stopper to eliminate errors due to evaporation. The cell was immersed in a water-filled thermostat controlled to within 0.01 K with the help of toluene regulator and an electronic relay. The measured dielectric constants were correct to within 0.001.

Results and Discussion

The dielectric constants of the pure components and mixtures are recorded in Table 1 at 303.15 K.

The molar polarizations of the mixtures were calculated using the relation⁷

$$P_{12} = (\varepsilon_{mix} - 1)/(\epsilon_{mix} + 2). \frac{x M_1 + (1 - x)M_2}{d} ...(1)$$

where P_{1a} is the molar polarization of the mixture, e_{mix} is the dielectric constant of the mixture, d the density of the mixture, x and (1-x) are the mole fractions of the components 1 and 2 with moleculars weights M_1 and M_2 .

The molar polarization of the mixture P_{13} , calculated from equation (1) were used in calculating the apparent polarization (P_1 or P'_3) of the component from the equation

$$P_{12} = x.P_1 + (1-x).P_2 \dots \dots (2)$$

by assuming the molar polarization of the other component equal to the value for the pure liquid. The values of apparent polarizations so determined are recorded in Table 1.

TABLE---1 DIELECTRIC CONSTANTS AND MOLAR POLARIZATIONS OF MIXTURES CONTAINING CHLOROBENZENE AT 303.15 K

$$\epsilon$$
 P₁₂/cc P₁/cc P^E/cc $\left(\frac{\epsilon-1}{\epsilon+2}\right)^2$

Chlorobenzene + (1 - x) o-xylene

1 0.9063 0.8118 0.7125 0.6209 0.5184 0.4177 0.3144 0.2165	5.560 5.386 5.182 4.802 4.505 4.276 3.912 3.684 3.400	68.638 67.866 65.855 64.508 63.203 60.926 58.368 54.983 51.489	70.427 71.124 73.136 75.461 77.461 79.614 80.840 81.751	 0.3626 0.3391 0.3124 0.2903 0.2725 0.2477 0.2230 0.1976

x chlorobenzene + (1 - x) *m*-xylene

1 0.9077 0.8137 0.7199 0.6306 0.5305 0.4233 0.3212 0.2154 0.1132	5.560 5.379 5.106 4.823 4.587 4.272 3.902 3.555 3.200 2.836	68,638 67,892 66,483 64,854 63,425 60,607 57,408 53,226 49,049 44,527	70.884 72.859 74.604 78.043 80.198 83.209 84.410 87.583 91 977	2.038 3.438 4.666 5.931 6.133 6.168 5.066 4.081 2.642	0.3522 0.3328 0.3139 0.2965 0.2721 0.2418 0.2155 0.1790 0.1447
0.1132 0	2.836 2.355	44.527 38.470	91.977	2.642	0.1447

x chlorobenzene + (1 - x) p-xylene

x chlorobenzene + (1 - x) cyclohexane

1	5.560	68.638	
0.8966	5.106	65.605	70.003
0.7936	4.716	62.686	71.850
0.6898	4,235	58.568	72.624
0.6551	4.142	57.686	73.485
0.4951	3.603	51.897	76.827
0.3991	3,326	47.724	78.248
0.2937	3.000	42.669	79.264
0.1933	2.681	37.915	81.585
0.0924	2.402	32.770	83.409
0	2.007	27.451	

Molar polarizations of chlorobenzene in o-xylene, m-xylene, and p-xylene increases at infinite dilutions, indicating the complexing nature of chlorobenzene in these mixtures. Molar polarization of chlorobezene in cyclohexane is linear even at great dilutions indicating the absence of complex formation between chlorobenzene and cyclohexane.

The complexes in mixtures, of chlorobenzene+ o-, +m-, and +p-xylenes, may not be formed due to dipole association because exces polarizations, P^{E} , are positive in these mixtures.

P₁₂ is a linear fuction of $(\varepsilon - 1)^2/(\varepsilon + 2)^2$ which shows that no chemical interaction occurs between the components of the solution. It is expected that only contact-pairs are present.

 P^E is again a linear function of x(1-x) for chlorobenzene + o-, +m-, and + p-xylenes which indicate the presence of contact-pairs⁹ in these mixtures. It is expected that contact-pairs may be formed between the vacant 3d orbitals of chloro group in chlorobenzene and π -electron cloud of benzene ring in xylenes.

Acknowledgements

The author acknowledges his thanks to German Academic Exchange for the award of a fellowship and to Guru Nanyk Dev University Amritsar for leave of absence.

References

- R. K. Nigam and P. P. Singh, Trans. Faraday Soc., 1969, 65, 950. 1.
- 1969, 65, 950.
 R. K. Nigam, N. N. Maini and M. S. Dhillon, Indian J. Chem., 1973, 11, 1233.
 M. S. Dhillon, J. Chem. Thermodynamics, 1974, 6, 1107.
 M. S. Dhillon, J. Chem. Thermodynamics, 1974, 6, 915.
 J. Timmermans, "Physico-Chemical Constants of Pure Organic Liquids", Elsevier Pub. Co., New York, 1950.
 R.C. Weast, "Handbook of Chemistry and Physics", The Chemical Public Public O. Ohio, 1972. 2.
- 3.
- 5.
- 6. Chemical Rubber Pub. Co., Ohio, 1972. S. Glasstone, "Textbook of Physical Chemistry",
- 7. S. Glasstone, Macmillian and Co. Ltd., London, 1956.
- 8. D. P. Erap and S. Glasstone, J. Chem. Soc., 1935, 1709, 1720.
- I. E. Orgel and R. S. Mulliken, J. Amer. Chem. Soc., 1957, 79, 4839.

Temperature Dependent Paper Chromatography of Co(II), Ni(II), Fe(III), Zn(II) and Mn(II)

B. K. DESHMUKH, S. B. GHOLSE, (Miss) V. S. JAWARE and R. B. KHARAT^{*}

Department of Chemistry, Nagpur University, Nagpur-440 010

Manuscript received 22 September 1976, revised 25 January 1977, accepted 27 April 1977

TEMPERATURE dependent paper chromatographic separation has been carried out by many workers^{1,76}. The results indicate that the speed of resolution is improved by increasing temperature.

The purpose of this communication is to employ the known solvent systems viz, (i) acetone : HCl : water $(87:8:5)^{7}$, (ii) acetone : HCl (97:3)⁸ and (iii) acetone : HCl : IBMK (85:5:10)⁹ to study the separation of different cations (a) Co(II), Ni(II) and Fe(III), (b) Co(II), Ni(II) and Zn(II) and (c) Co(II), Ni(II) and Mn(II) at different temperature.

Experimental

All the chemicals used were of AnalaR quality. The usual spraying reagents¹⁰ were used to locate the cations. The solvent mixtures used were (i) acetone : HCl: Water (87: 8: 5), (ii) acetone: HCl (97: 3) and (iii) acetone: HCl: IBMK (85: 5: 10). Thermostatic bath with an automatic temperature control was employed to attain a desired temperature. Whatman No. 1 paper was used in glass jar for running the chromatogram.

5.0 μ l of the mixture of the cations viz., (a) Co(II), Ni(II) and Fe(III), (b) Co(II), Ni(II) and Zn(II), and (c) Co(II), Ni(II) and Mn(II) was enacted in the chromatographic separation.

Results and Discussion

The R_f dependence of various cations on temperature in solvent mixture acetone : HCl : water (87:8:5) resulted the Table-1, the perusal of which shows that in all cases Rf of Ni (II) remains almost constant from 0° to 35° and increases slightly from 35° to 40°. R_f of Fe(III), Zn(II) and Mn(II) show same

TABLE-1	TEMPERATURE DEPENDENCE OF Rf of CATIONS, FOR
	SOLVENT MIXTURE ACETONE: HCl : WATER (87:8:5),
	TIME = 90 MIN.

System	Ions		Rf va	aluet at	differen	nt temp	oeratur	es(°C)
-		0	10	15	20	30	35	`4Ó
1	Ni(II)	0.08	0.08	0.08	0.08	0.08	0.08	0.15
	Co(II)	0.26	0.35	0.40	0.45	0.46	0.69	0.77
	Fe(III)	0.89	0.95	0.95	0.95	0.95	0.95	0.96
	Ni(II)	0.09	0.09	0.09	0.09	0.09	0.09	0.19
2	Co(II)	0.27	0.38	0.41	0.50	0.52	0.70	0.87
	Zn(ÌI)	0.89	0.94	0.94	0.94	0.94	0.94	0.95
	Ni(II)	0.08	0.08	0.08	0.08	0.08	0.15	0 21
3	Co(II)	0.35	0.37	0.46	0.58	0.61	0.83	0.87
	Mn(ll)	0 82	0.95	0.95	0.95	0.95	0.95	0.25

behaviour with slight increase in Rf from 0° to 10° and running with solvent front above 10°. This tendency of these three ions to move along with the solvent front depends upon the quality of paper, the nature of the solvent and the temperature at which the experiment is conducted. Rf of Co(II) increases from 0.2 at 0° to about 0.8 at 40° which means that Co (II) has a tendency to reach solvent front as the temperature rises. Thus, separation in all the three cases is improved by increase in temperature. However, after 35°, Co(II) reaches Fe(III), or Zn(II) or Mn (II) as the case may be, thereby after 40° the separation of these ions may become impossible as suggested by earlier workers¹¹.

A change in temperature influences the rate of movement of the mobile phase as investigated by Muller and Clogg¹². The rate of movement of given cation and hence its Rf value depends upon its