
 

  

 

 

 

Grant Agreement No.: 957216 
Call: H2020-ICT-2018-2020 
 
Topic: ICT-56-2020 
Type of action: RIA 

 

D5.2 Baseline iNGENIOUS data 
management framework  

 

 Revision: v1.0 
 

Work package WP5 

Task T5.1, T5.2, T5.3 

Due date 31/03/2022 

Submission date 30/03/2022 

Deliverable lead TEI 

Version 1.0 

Editors Gino Ciccone (TEI), Marek Bednarczyk (PJATK), Tadeusz Puźniakowski (PJATK), Carlos 
Alcaide Pastrana (TIOTBD), Anssi lappalainen (AWA); Jussi Poikonen (AWA), Alexandr 
Tardo (CNIT), Ivo Bizon (TUD), José Luis Cárcel (FV), Christos Politis (SES), Giacomo 
Bernini (NXW) 

Authors Gino Ciccone (TEI), Giuseppina Carpentieri (TEI), Cosimo Zotti (TEI), Alexandr Tardo 
(CNIT), Marek Bednarczyk (PJATK), Tadeusz Puźniakowski (PJATK), Paweł 
Czapiewski (PJATK), Stefan Köpsell (BI), Kumar Sharad (BI), José Luis Cárcel (FV), 
Joan Meseguer (FV), Ahmad Nimr (TUD), Ivo Bizon (TUD), Pietro Piscione (NXW), 
Erin Seder (NXW), Giacomo Bernini (NXW), Carlos Alcaide Pastrana (TIOTBD), César 
Rodríguez Cerro (TIOTBD), Juan Jose Garrido Serrato (SES), Christos Politis (SES), 
Jussi Poikonen (AWA), Cristina Escribano (NOK), David Gómez-Barquero (UPV), Raúl 
Lozano (UPV) 

Reviewers Carsten Weinhold (BI), Stefan Köpsell (BI), Alexandr Tardo (CNIT), Nuria Molner (UPV), 
Gino Ciccone (TEI), Anton Luca Robustelli (TEI), Carlos Alcaide Pastrana (TIOTBD), 
Laura Gonzalez Estébanez (ASTI), Ivo Bizon (TUD), Giacomo Bernini (NXW), Erin Seder 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 2 of 60 

(NXW), Marek Bednarczyk (PJATK), Paweł Czapiewski (PJATK) 

Abstract This document describes the approach of iNGENIOUS to develop an interoperability 
layer, aggregating data coming from different existing and forthcoming IoT 
technologies. The deliverable describes the state of the current technologies and the 
planned innovations applied to Internet-of-Things (IoT) data management and 
applications. 

Keywords Smart IoT GW, IoT, DVL, Cross-DLTs, Smart application, Interoperable Layer 

 

Document Revision History 

Version Date Description of change List of contributors(s) 

V1.0 31/03/2022 EC Version See Authors 

Disclaimer 

This iNGENIOUS D5.2 deliverable is not yet approved nor rejected, neither 
financially nor content-wise by the European Commission. The 
approval/rejection decision of work and resources will take place at the Mid-
Term Review Meeting planned in June 2022, after the monitoring process 
involving experts has come to an end. 

The information, documentation and figures available in this deliverable are 
written by the "Next-Generation IoT solutions for the universal supply chain" 
(iNGENIOUS) project’s consortium under EC grant agreement 957216 and do 
not necessarily reflect the views of the European Commission. 

The European Commission is not liable for any use that may be made of the 
information contained herein. 

Copyright Notice 

© 2020 - 2023 iNGENIOUS Consortium 

 

Project co-funded by the European Commission in the H2020 Programme 

Nature of the deliverable: R* 

Dissemination Level 

PU Public, fully open, e.g. web ✓ 

CL Classified, information as referred to in Commission Decision 2001/844/EC  

CO Confidential to iNGENIOUS project and Commission Services  

* R: Document, report (excluding the periodic and final reports) 

  DEM: Demonstrator, pilot, prototype, plan designs  

  DEC: Websites, patents filing, press & media actions, videos, etc. 

  OTHER: Software, technical diagram, etc. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 3 of 60 

Executive Summary 

This deliverable describes the way iNGENIOUS implements an interoperable 
layer, able to aggregate data coming from different existing and forthcoming 
IoT technologies, analysed in the first deliverable of the Work Package 5 (D5.1). 
It gives a detailed technical description of the new solution highlighting the 
addressed innovations. 

Specifically, with the reference to the iNGENIOUS architecture defined in the 
deliverable D2.2, this document gives a technical overview of the way the Data 
Management is designed and gives specific implementation details of its first 
release. It describes how the data virtualization layer (DVL) is designed and 
developed in iNGENIOUS ensuring that different M2M platforms (Mobius 
OneM2M, PI System OSIsoft, Symphony and Eclipse OM2M) can be connected, 
providing the requested information to the dedicated upper cross DLT layer. 
The cross DLT layer secures and facilitates exchange of information across 
multiple DLTs solutions (Bitcoin, Ethereum, IBM, Hyperledger, IOTA). Finally, 
the document describes the use cases and data requirements of the IoT 
application layer, including AI algorithms for predicting traffic rates and 
congestion at ports based on heterogeneous data sources along the maritime 
supply chain, and a platform for remotely operating automated guided 
vehicles. 

 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 4 of 60 

Table of Contents 

1 Introduction ........................................................................................................ 9 

2    IoT Application Layer ...................................................................................... 10 

3    Smart IoT Gateway .......................................................................................... 14 

4 Data Virtualization Layer.............................................................................. 20 

5 Cross-DLT Layer ............................................................................................... 46 

6 Conclusions ....................................................................................................... 59 

7 References ......................................................................................................... 60 

 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 5 of 60 

List of Figures 

FIGURE 1:  EXAMPLARY END USER GUI OF FACTORY INSPECTION 
APPLICATION .................................................................................................................. 12 

FIGURE 2: FUNCTIONAL BLOCKS OF SMART IOT GW ............................................... 15 

FIGURE 3: THE ABSTRACT OM2M LAYOUT. .................................................................. 16 

FIGURE 4: DVL AND RELATION TO INGENIOUS USE CASES. ................................. 20 

FIGURE 5: GATEIN/GATEOUT EVENTS DATA MODEL (TRADELENS PLATFORM 
[4]). .....................................................................................................................................24 

FIGURE 6: VESSEL ARRIVAL AND VESSEL DEPARTURE EVENTS DATA MODEL 
(TRADELENS PLATFORM [4]). ...................................................................................24 

FIGURE 7: SEAL REMOVED EVENT DATA MODEL (TRADELENS PLATFORM [4]).
  ..................................................................................................................................... 25 

FIGURE 8: LATESTGATEINEVENT RESPONSE EXAMPLE (LIVORNO SEAPORT).
  ..................................................................................................................................... 26 

FIGURE 9: MOBIUS SOFTWARE ARCHITECTURE. ...................................................... 26 

FIGURE 10: TEIID QUERY ENGINE. ................................................................................... 27 

FIGURE 11: MOBIUS ONE M2M CONNECTOR IMPLEMENTATION - VDB 
DEFINITION FILE (.XML). ............................................................................................. 28 

FIGURE 12: VALENCIA PORT PI DEPLOYMENT. ........................................................... 28 

FIGURE 13: PI SYSTEM AND DVL INTEGRATION ......................................................... 29 

FIGURE 14: SIGNALINFO API RESPONSE ....................................................................... 30 

FIGURE 15: SIGNALSTREAM API RESPONSE ................................................................ 30 

FIGURE 16: ASSETINFO API RESPONSE ......................................................................... 30 

FIGURE 17: EVENTINFO API RESPONSE ......................................................................... 31 

FIGURE 18: DBSTRUCTURE API RESPONSE ................................................................... 31 

FIGURE 19: SYMPHONY HIGH-LEVEL ARCHITECTURE .............................................. 32 

FIGURE 20: SYMPHONY INTEGRATION APPROACH ................................................. 33 

FIGURE 21: OVERVIEW OF SYMPHONY HAL ENHANCEMENTS .............................34 

FIGURE 22: IOT TRACKING SENSOR MESSAGE FORMAT .........................................34 

FIGURE 23: IOT TRACKING SENSOR GPS MESSAGE .................................................. 35 

FIGURE 24: PSEUDONYMIZATION MODULE ............................................................... 40 

FIGURE 25: PSEUDONYMIZATION WORKFLOW ........................................................ 41 

FIGURE 26: FETCHRECORD USING INTERVAL TIME AND SELECTED EVENTS .43 

FIGURE 27: EXAMPLE: RETRIEVED INFO USING FETCHRECORDS WITH 
SELECTED EVENT (GATEIN) .......................................................................................43 

FIGURE 28: FETCHRECORD USING INTERVAL TIME ONLY .................................... 44 

FIGURE 29: EXAMPLE: RETRIEVED INFO USING FETCHRECORDS WITHOUT 
SELECTED GATE EVENT ............................................................................................. 44 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 6 of 60 

FIGURE 30: INTERMEDIATE COMPONENT (BRIDGE) FUNCTIONAL DIAGRAM.
 45 

FIGURE 31: (A) CENTRALIZED, (B) DECENTRALIZED , (C) DISTRIBUTED 
NETWORKS, [21] ........................................................................................................... 46 

FIGURE 32: JSON RESPONSE INCLUDING THE STORAGE EVIDENCE. ............... 48 

FIGURE 33: RESPONSE INCLUDING THE ADDRESS OF THE SMART CONTRACT.
 49 

FIGURE 34: ATTRIBUTES OF THE RESPONSE FOR THE VERIFY METHOD. ....... 49 

FIGURE 35: POSITIVE RESPONSE USING VERIFY METHOD. .................................. 49 

FIGURE 36: SWAGGER-COMPLIANT INTERFACE TO INTERACT WITH IOTA 
NODE .................................................................................................................................. 51 

FIGURE 37: SUPPORTED SCHEMAS/MODELS. ............................................................ 52 

FIGURE 38: JWT-BASED AUTHENTICATION  METHOD FOR LOGIN ..................... 52 

FIGURE 39: TANGLE GRAPHIC USER INTERFACE....................................................... 53 

FIGURE 40: FV APPLICATION ARCHITECTURE ........................................................... 53 

FIGURE 41: FV APPLICATION ARCHITECTURE INTEGRATED WITH TRUST-OS 54 

FIGURE 42: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN .... 55 

FIGURE 43: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN .... 55 

FIGURE 44: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN ... 56 

FIGURE 45: ADMIN PANEL ................................................................................................. 56 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 7 of 60 

Abbreviations 

AF   Asset Framework 
AGV  Automatic Guided Vehicle 
AI   Artificial Intelligence  
AIS                   Automatic Identification System  
AMQP Advanced Message Queuing Protocol 
API                  Application Programming Interface 
AR  Augmented Reality 
AW  Approval Weight 
CORBA Common Object Request Broker Architecture 
DDL  Data Definition Language 
DLT  Distributed Ledger Technology 
DP  Differential Privacy 
DTLS  Datagram Transport Layer Security 
DVL  Data Virtualization Layer 
E2E   End-to-End 
ETH   Ether 
FDW  Foreign Data Wrapper 
FPC  Fast Probabilistic Consensus 
FPE   Format Preserving Encryption 
GDPR  European General Data Protection Regulation 
GPS  Global Positioning System 
GW                Gateway 
GUI  Graphical User Interface 
HAL  Hardware Abstraction Layer 
HMI  Human machine interface 
HWK  Hash Without Key 
HTTPS           HyperText Transfer Protocol over Secure Socket Layer 
ICT  Information and Communications Technology 
IN-CSE Infrastructure Node Common Service Entity 
IoT  Internet of Things 
IP  Internet Protocol 
IPC                   Inter-Process Communication  
JDBC  Java DataBase Connectivity 
JSON               JavaScript Object Notation 
KETI  Korea Electronics Technology Institute 
LAN  Local Area Network 
LiDAR  Light Detection And Raging 
LTE   Long Term Evolution  
M2M               Machine-to-Machine 
ML   Machine Learning 
MN-CSE  Middleware Node Common Service Entity 
MPC   Multi-Party Computation 
MQTT  Message Queuing Telemetry Transport  
NoSQL  Non-Structured Query language  
NB / NB-IOT Narrow Band / Narrow Band - IOT 
NFV   Network Function Virtualization 
OCEAN Open allianCE for IoT stANdards 
ODBC  Open DataBase Connectivity 
OPC  Open Platform Communications  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 8 of 60 

OPC-UA Open Platform Communications United Architecture 
OSI   Open Systems Interconnection 
PoS  Proof of Stake 
PoW  Proof of Work 
REST             Representational State Transfer 
RPC  Remote Procedure Call 
SCADA Supervisory Control and Data Acquisition 
SLA  Service Level Agreement 
SQL   Structured Query language  
VDB  Virtual Database 
VPN  Virtual Private Network 
VR  Virtual Reality  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 9 of 60 

1 Introduction 
   

1.1 Objective of the Document 
This deliverable (as part of the milestone MS18) describes how iNGENIOUS 
Data Management Platform is designed, providing and describing technical 
details of its first release (baseline of the framework). The proposed solution 
consists of different layers (e.g., M2M layer, Data Virtualization layer, cross-DLT 
layer and Smart Applications layer) that are described according to the 
roadmap of the project for the demonstration and validation of its use cases.  

The main outcome of the deliverable will be used as a baseline for the 
implementation of the final version of the proposed platform for data 
management (as part of the WP5 activities) as well as for the intermediate 
demonstration of iNGENIOUS innovations as foreseen by the activities of the 
T6.3 – Trials and Validation. 

1.2 Structure of the Document 
This deliverable is organized in four main sections, briefly described below: 

• Section 2 - IoT Application layer: outlines the IoT applications implemented 
in the project use cases, focusing mainly on port operations. The main 
application areas are AI algorithms for predicting traffic rates and 
congestion at the port based on heterogeneous data sources along the 
maritime supply chain, and a platform for remotely operating automated 
guided vehicles in the port area using a variety of sensors and actuators in 
the vehicle and remote operation station. 

• Section 3 - Smart IoT Gateway: introduces the Smart IoT Gateway (GW), a 
physical element with multiple interfaces that allows end-to-end M2M 
communication. Its main responsibility is to ensure correct and secure 
routing of messages between the sensors or any other deployed IoT 
devices, and M2M interfaces to the interoperable layer. 

• Section 4 - Data Virtualization Layer: describes the deployment of the 
Data Virtualization Layer (DVL), its integration with external data sources 
(OneM2M platform, Tuscan Port Community System and 
Pseudonymization Function) and data consumers (Cross-DLT layer and AI-
driven Smart Port and Shipping Platform). It is also described how to 
represent maritime events by implementing a set of views and/or 
procedures (GateIn, GateOut, Vessel Arrival and Vessel Departure). Finally, 
data protection is addressed by the implementation of a function for data 
anonymization (from the IoT solution providers). 

• Section 5 - Distributed Ledger Technologies: This section introduces the 
Cross-DLT layer, a software component connected to multiple Distributed 
Ledger Technologies (Bitcoin, Ethereum, HyperLedger Fabric and IOTA). 
The purpose of this layer is to record short evidence of key information 
coming from the DVL and to verify against any DLT network, that is part of 
the Cross-DLT integration, the truthfulness of recorded data. Furthermore, 
technical details related to a common API implementation are also 
described.   



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 10 of 60 

2   IoT Application Layer 

The IoT application layer focuses mainly on applications related to port 
operations. These include AI algorithms for predicting traffic rates and 
congestion at the port based on heterogeneous data sources along the 
maritime supply chain, and a platform for remotely operating automated 
guided vehicles in the port area using a variety of sensors and actuators in the 
vehicle and remote operation station. In the following sections we outline the 
functionalities and main data requirements of these applications. 

2.1 AI algorithms  
AI algorithms developed in Use Case 5 focus on modeling and predicting the 
effects of vessel port calls and related cargo operations on truck traffic rates 
and congestion. These are developed based on data collected from the ports 
of Valencia and Livorno. The developed AI system consists of multiple 
component models predicting different subsets of the related processes. The 
main targets for model development include the following: 

• Vessel arrival time prediction 

• Operations prediction, including e.g. 

o Operation durations (discharge, loading) 

o Cargo exchange volumes 

o Cargo exchange modalities (e.g. which containers exit the port by truck) 

• Simulating and predicting cargo and hinterland traffic rates 

• Simulating and predicting truck turnaround times at the port 

These require multiple historical data sets for model development and 
Machine Learning (ML)  model training, and sources of current information for 
online prediction service deployment. In the following subsections we outline 
the related historical data requirements and needs for data integrations for 
up-to-date data. 

2.1.1 Data requirements for model development 

Sufficient historical reference data sets are needed for development and 
testing of algorithms and ML models used for predicting future events. In the 
target AI system, stochastic and machine learning -based models are applied, 
which generally require large datasets to allow optimizing the accuracy of 
their output. Furthermore, distinct datasets describing events in different 
stages of cargo flow through the port need to contain sufficient identifiers to 
allow data integration (e.g. it is necessary to link vessels to port calls, container 
operations to port calls, and truck events to container operations). Sensitive 
identifiers such as truck license plate numbers can be obfuscated, but the 
available identifiers should still enable consistent tracking of the resources on 
a general level. Identified data sets for model development include the 
following: 

• Vessel tracking data collected from the global Automatic Identification 
System (AIS)  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 11 of 60 

• Vessel port call history, including vessel particulars and cargo exchange 
information 

• Operations data, e.g., container discharge and load events 

• Truck and container entry and exit events 

• Other related information such as weather measurements  

2.1.2 Data requirements for service deployment 

Generally, data requirements for operating the developed models with 
current data may differ from the data needs during model training. In the 
ideal case, less data is needed to perform predictions, and potentially sensitive 
data such as specific container or truck tracking information is not needed. 
Precise service data requirements depend on the outcomes of the model 
development, but at least the following current data is expected to be needed: 

• Live global AIS positional and metadata 

• Current planned port calls, including vessel details, planned arrival and 
departure times, berthing locations 

Additional data inputs which may be useful for improving prediction accuracy 
or monitoring the predictions results include: 

• Cargo exchange information per port call (e.g. numbers of containers to be 
discharged or loaded, distribution of container volumes by hinterland 
carrier type) 

• Live gate events (truck and container entries and exits) 

• Weather sensor data.  

2.2 Industrial & Tactile IoT applications  
As wireless communication infrastructure becomes widely available in 
industrial sites, the sensors and actuators within factory plants can be 
regarded as available manufacturing resources that can be programmed to 
produce specific products according to particular specifications. After the 
production of a determined number of pieces or after identification of possible 
product improvements, the resources should be easily rearranged to continue 
the production with the new specific requirements. In contrast, the current 
production lines are built to perform repetitive tasks without flexibility. For 
realizing such flexible production technique, a software abstraction from the 
actual physical devices has to be designed. This conceptual abstraction is 
defined as industrial & tactile application programming interface (API). In 
short words, the industrial & tactile API consists of a set of functions that 
enable the application developer to get data in and out of the system in a 
unified framework. Within this context, first a set of common functionalities 
have been identified has an essential part of the API that enables the user 
defined applications to exchange data easily and securely. The industrial & 
tactile API has to provide different levels of abstraction. Three levels can be 
identified as (i) end user application development API, which gives the end 
user simple and easily comprehensible graphical interface for instantiating 
new applications, and presents data in a format that is understandable by the 
end user; (ii) mid-level function library, which contains functions that do not 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 12 of 60 

need to be directly used by the end user, such as an object detection 
algorithm; and (iii) low-level API that contains functions for data packets 
formatting and specification of communication link parameters given the 
requirements given by the end user.  

The following subsections describes an exemplary set of functionalists for an 
industrial application within the context of industry 4.0. 

In AGVs UC an E2E platform is developed for remotely controlling automated 
guided vehicles (AGVs) in the port area. The primary motivation for enabling 
remote operation is to improve the driver’s safety by avoiding possible 
hazardous situations related to operating in industrial areas. This is achieved 
by designing a complete IoT system which enables the vehicle operator to 
have continuous situational awareness of the vehicle status and surrounding 
environment and enables real-time communication of necessary control 
signals to operate the AGV safely. 

2.2.1 Application example: Factory inspection 

Within Factory UC, factory inspection is defined as an application where an 
autonomous guided vehicle (AGV) travels along a predefined track with 
camera and sensors integrated. The video and environmental information 
collected by the AGV are sent to a remote user that monitors the factory site.  
The quality of the video can be specified at the beginning of the application 
by the user. The graphical user interface from such application is illustrated in 
Figure 1.  This example will be illustrated within the iNGENIOUS Factory UC.  

 
FIGURE 1:  EXAMPLARY END USER GUI OF FACTORY INSPECTION APPLICATION 

The identified functionalities that have to be available from the industrial & 
tactile API are: 

• Start, stop and adjust the AGV’s speed 

• Transfer the measurements from the AGV to end user 

• Capture current image frame and store in user’s data base 

• Transfer AGV’s position to end user 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 13 of 60 

• Translation of MANO resource allocation to PHY parameters 

The identified connection types of the devices are: 

• AGV: UDP frames/JSON 

• Camera: UDP frames 

2.2.2 Data sources and related system components 

The IoT system consist of IoT sensors, IoT actuators, IoT signals and an IoT 
interface. The components related to these subsystems are as follows: 

• IoT sensors:  

o AGV:  

▪ Depth camera: provides a depth image to detect near obstacles  

▪ LiDAR: provides a scan of the vehicle surroundings 

▪ IMU: provides velocity and orientation of the vehicle 

▪ Cameras: provides a 360 real time video of the vehicle surroundings 

o Remote cockpit:  

▪ Wheel, pedal and gear: capture the driving movements performed by 
the operator 

▪ Glove: captures the hand movements made by the operator 

• IoT actuators: 

o AGV:  

▪ Motor drivers: actuators to move the vehicle’s wheels 

o Remote cockpit:  

▪ VR glasses: where the VR app is displayed 

▪ Glove: transmits tactile information (vibrations) to the operator  

• IoT signals:  

o Obstacle avoidance signal: from LiDAR and Depth camera to VR glasses 
application and glove 

o Driving commands signal: from wheel, pedals and gear to AGV drivers 

o Video retransmission signal: from cameras to VR glasses 

• IoT interface:  

VR application: an immersive virtual reality application is designed in order to 
recreate an ordinary driving view. IoT real time parameters are displayed on 
the dashboard to keep the operator informed about velocity, latency, battery, 
etc.  

In summary, the operation of the tactile internet requires defining interfaces 
for communication between devices, access to the network, interaction with 
the computation engines, and implementation service management. 
Therefore, the network techniques should be flexible, since the goal is to 
provide a similar experience for the application developer as programing on 
computer by abstracting the hardware and network functionalities.   



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 14 of 60 

3   Smart IoT Gateway 
In this section, we present the development activities in order to create a 
workflow allowing to receive (sensor) data from different sources via different 
means of communication and transforms, interprets and routes this data in a 
unified way via different routes to a central cloud M2M infrastructure. The 
main challenge to overcome was how to implement a system that handles 
network traffic via multiple routes, that can be manipulated on application 
layer, while still keeping it transparent to the data flow of the system and 
meeting the requirements of security and confidentiality. This has been 
achieved by using an oneM2M compliant system in combination with 
encrypted VPN connections and layered HTTP reverse proxies. oneM2M 
defines a standardized, HTTP(S) based communication framework, which is 
routed through configured VPN connections to reach the cloud M2M server. 
The VPN connections add layers of security and confidentiality on top of the 
oneM2M communication and abstract from complex network topology 
between the Smart IoT Gateway and the cloud infrastructure. Having reverse 
proxies at each end of the VPN connections gives the possibility to select the 
desired route, based on decisions taken by other components of the system 
(i.e., the rule engine).  

3.1 Sensor data retrieval and routing to 
higher levels 

The proliferation of small, interconnected devices has caused the appearance 
of multiple new technologies related to the IoT world. For this reason, it makes 
sense to introduce a new device to provide interoperability between different 
groupings of IoT devices (i.e., in the form of independent mesh networks) and 
logical higher-level systems. The Smart IoT Gateway (GW) is a physical 
element with multiple interfaces that allows end-to-end M2M 
communication, having as main responsibility to ensure correct and secure 
routing of messages from the sensors or any other deployed IoT devices and 
M2M interfaces to interoperable layers. To achieve this goal and other sub-
goals that are not obvious at first glance, the following requirements need to 
be met: 
• Communication integrity: to ensure no data is lost or modified during the 

message transmission or reception. 
• Message translation: to ensure compatibility between different formats 

and protocols. 
• Secure link: to ensure a confidential connection to avoid eavesdropping on 

messages.  
• Resilience: to mitigate connectivity outages or any other non-nominal 

behaviors.  
• Flexibility: to allow the interconnection of multiple physical interfaces. 
To achieve these requirements, the Smart IoT GW has been divided into 
functional blocks with an implementation that isolates them as independent 
containers, following a philosophy similar to micro-services architecture. The 
blocks are presented in Figure 2. 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 15 of 60 

 

FIGURE 2: FUNCTIONAL BLOCKS OF SMART IOT GW 

The following services are available in the Smart IoT GW: 

• Management: management of the GW includes the current status of the 
device, internal configuration, local logs and firmware update. It will also 
include some limited control over the subsystems. 

• Data storage: databases (time series and NoSQL). All data coming from the 
sensor space is time stamped and stored in a time series database that has 
the capacity of performing some operations such as data aggregation, 
statistical calculations, and time consolidation (i.e., decimate values and 
down-sample the data). 

• Data transformation: message translation between formats and protocols. 
This does not include just direct or indirect mapping of fields, but also this 
service will encapsulate related messages coming from independent 
sources and perform compression when possible. 

• Routing: incoming message routing through the gateway to a different 
interface, following predefined rules, respecting priorities and in a secure 
way. 

An Application Programming Interface (API) is available for external 
interoperability and automation. A user-friendly Human-Machine Interface 
(HMI) is provided for local data monitoring. 

In this document, this section will only focus on the description of the Smart 
IoT GW data transformation and routing, and how Smart IoT Gateway will 
interface with the M2M space. 

3.1.1 Smart IoT GW Interfaces – M2M Space Interfaces   

This section describes how the Smart IoT Gateway will interface with the M2M 
space, where the M2M space is the set of interfaces with all OM2M servers. The 
interfaces of the Smart IoT GW with the sensors have been described in D4.2 
and they are not part of this document. 

The Smart IoT GW interfaces with the M2M space through a local MN-CSE 
instance (Middleware Node Common Service Entity) implemented as Eclipse 
OM2M [1] in compliance with the oneM2M standard. The software instance is 
running on the gateway itself and – depending on rules and routes – the 
sensor data is pushed by the gateway’s routing engine towards the local CSE. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 16 of 60 

Following the oneM2M standard, the MN-CSE local to the gateway 
communicates the retrieved data with the central IN-CSE (Infrastructure 
Node Common Service Entity), which is hosted in the SES Cloud space. This 
communication is performed over the respective route (Satellite, Terrestrial, 
Local) previously selected by the gateway’s routing engine. To ensure 
confidentiality and integrity of the transported data, all communication 
between the MN-CSE in the gateway and the IN-CSE in the cloud space relies 
on encrypted HTTP traffic (HTTPS) and additionally, is routed through a secure 
VPN tunnel, allowing only external instances with a valid VPN client 
configuration to connect to the M2M cloud space. 

In the figure below it is shown an example use case where each ship hosts a 
MN-CSE inside its dedicated smart IoT gateway, to which the sensor devices 
(here: arduinos) connect as application entities (ae). On the opposite site, the 
CSEs also connect to the cloud based IN_CSE to consume the published data 
and perform actions accordingly. 

 
FIGURE 3: THE ABSTRACT OM2M LAYOUT. 

External M2M applications which need to request data from the M2M cloud 
space, connect to the IN-CSE through a dedicated public IP, with a firewall 
managing access to specified IP sources only. The above diagram depicts the 
abstract layout from an OM2M perspective, where actuators as part of an 
external use case (here: UC6) perform actions, based on data from the M2M 
cloud space, published by the Smart IoT Gateway(s). 

To complement the oneM2M compliant interface, which only provides a 
predefined number of most recent values per sensor, the sensor data will also 
be stored inside a separate timeseries database in the cloud infrastructure. A 
separate, generic RESTful HTTP API will be available, allowing to fetch the full 
history of sensor data on demand. This REST interface will be provided at a 
later stage of the project. 

Since all data extracted from sensor messages also stored in a local timeseries 
database of each Smart IoT Gateway, it should be avoided to keep additional 
copies of that data, in order to reduce the amount of required physical storage 
capacity of each Smart IoT Gateway instance. For this reason, all data 
published to the M2M space is immediately pushed towards the M2M cloud 
IN-CSE and not stored on the local MN-CSE instance, making the IN-CSE act 
as a central collection point for all most recent sensor data in the system. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 17 of 60 

Additionally, this approach avoids extensive traffic load, especially regarding 
the satellite link, from the cloud towards the Smart IoT Gateway, which could 
be generated by external entities requesting data through the cloud-space 
directly from the gateway. This is considered an acceptable limitation of the 
system, since the functional disadvantages caused by this approach are 
outweighed by reduced networking complexity and the advantages 
mentioned previously. The main functional drawback being that real-time 
sensor data cannot be requested on-demand, which can be neglected, since 
the sensors are expected to publish their data only periodically in a defined 
time interval. 

3.1.2 Smart IoT GW Data Routing    

This section gives a brief description of the parameters and rules identified for 
the Smart IoT Gateway to perform adequate routing of sensor messages to 
the M2M cloud infrastructure. 

These rules only provide a baseline and shall be used to further define the 
actual final routing rules to be implemented in future iterations of the project. 

Route parameters 

The following four parameters have been selected to determine the quality 
rating of the routes: 

• Latency: a simple ping measurement in milliseconds to determine how 
long it will take for a message to reach the cloud target. 

• Loss rate: using packet loss as a stability measurement in percent to 
determine the likelihood of a message being lost on the way to the cloud 
target. 

• Cost: an arbitrary number {1:10}, identifying how “expensive” each message 
will be when sent over the respective route. 

• Availability – A logical-value (0 = DOWN, 1 = UP), identifying, whether a route 
is available or not 

Route types 

The following three types are used to categorize the routes available to the 
gateway: 

• LAN: local area network connections. This type of route is mostly very cost 
efficient and has low latency and loss rates 

• Terrestrial: 4G/LTE/5G connections. This type of route is considered slightly 
more costly than LAN and has slightly higher latency 

• Satellite: internet connection via a satellite terminal, using geostationary 
satellites, which is constantly available and should only be used when none 
of the other route types are available. This type of route has the highest cost 
as well as the highest latency 

The loss rate of a route is mostly important in the transfer zone between 
terrestrial and satellite connections, as there the stability of the terrestrial 
connection gradually decreases with increasing distance from the shoreline.  
 
 
 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 18 of 60 

Message priority and parameter weight 

As not all information sent through the gateway is equally important, each 
message shall be categorized with one of three priority groups. For each of 
these priority groups, the aforementioned parameters shall receive different 
weights in the final calculation of the ratings of the available routes. 

• Low priority: less important, repetitive messages, e.g., sensor readings, 
which constantly send values in the expected “nominal” range for the 
sensor. 
o For these messages, the cost of a route should have the highest weight 

and loss rate as well as latency, shall be less weighted, as a message loss 
or a delay is not critical to the system. 

• Medium priority: messages, which transmit data outside the “nominal” 
range, e.g., temporary fluctuations in temperature or short outages in GPS 
signal 
o Here, the loss rate is more important than with low priority messages. 

Cost is still quite high weighted, as there might only be a temporary issue 
• High priority: very important messages, communicating critical states of 

the monitored container, e.g., an opened door or a fire within the container 
o For high priority messages, cost is the least weighted parameter and loss 

rate the highest weighted one, as the system shall ensure, the message 
does arrive in the cloud server 

The message priority shall be provided by the sensor itself and is to be 
extracted from the message payload by a numeric identifier (e.g., 0=low, 
1=medium, 2=high). 

Calculation of the route rating 

Each of the configured routes is periodically monitored and the gathered 
information is used to update the current rating of each route for each of the 
three message types. This allows the gateway in the event of an arriving 
message to simply compare the route ratings for the identified message type 
and select the best rated route as the target route. 

The route rating matrix is calculated, according to the following 
formula: 

𝑅(𝑟, 𝑚) = 𝐴𝑟 ∗ ∑ (
1

𝑉𝑝,𝑟 ∗ 𝑆𝐹𝑝
∗ 𝑊𝑝,𝑚)

𝑝

, 𝑤ℎ𝑒𝑟𝑒 𝐴𝑟 ∈ {0,1}, 𝑉𝑝,𝑟 ∈ ℝ+, 𝑆𝐹𝑝 ∈ ℝ+, 𝑊𝑝,𝑚

∈ {1. .10} 

Explanation of the above formular, r identifying the route type and m 
identifying the message type 
• Ar is the availability of the route r 
• Vp,r is the current value of the parameterp on the route r 
• SFp is the scaling factor for the parameter p 
• Wp,m is the weight of the parameter p for the message type m 

The scaling factor shall be used to equalize the effective value ranges of each 
individual route parameter. Latency is expected to range from 50ms up to 
800ms, whereas loss rate will range from 0% to 100% and cost will be an 
arbitrary number from 1 to 10. Thus, reasonable scaling factors could be 0.1 for 
latency, 1 for loss rate and 10 for cost. Under this assumption, the weight can 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 19 of 60 

be used as the single factor that determines the importance of a parameter 
on a given route. The current value is defined as Vp,r ∈ R+, which excludes 0-
values for avoiding division by zero. However, for parameters which may have 
0-values (for example in the case of packet loss), shall include slight 
corrections in their measurements to avoid 0-value assignments. 

For a given message type, the route with the highest rating is to be selected 
as the target route. As the availability of a route is added as a 0/1 factor to the 
sum, an unavailable route will always have a rating of 0, ensuring that it will 
never be selected. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 20 of 60 

4 Data Virtualization Layer 
iNGENIOUS exploits the use of different M2M platforms, which are adopted by 
different supply chain stakeholders for collecting and storing raw data in 
maritime. On top of these data silos, the project envisages the 
implementation of a layer based on a Data Virtualization approach (Data 
Virtualization Layer, DVL), which will act as a federated and interoperable IoT 
layer for different M2M platforms as well as data sources (e.g., PCS) by 
providing shared access, management, and reading and writing capabilities 
to different entities (e.g., TrustOS, MANO Platform, Awake.AI platform) while 
ensuring security and privacy aspects following a role-based approach and 
applying pseudonymization techniques when needed.  

From this perspective, Data Virtualization interoperability layer enables the 
federation of different IoT platforms across heterogeneous domains, 
overcoming the integration issues between both standard and non-standard, 
proprietary and custom M2M solutions widely used within the industry 4.0 
verticals. 

In the context of iNGENIOUS project, Data Virtualization Layer is used as a 
cross-UCs component by retrieving data from the underlying data sources 
and making them available to data consumers (pseudonymization module, 
TrustOS, Awake.AI platform, MANO platform, dashboard for trucks’ tracking). 

 
FIGURE 4: DVL AND RELATION TO INGENIOUS USE CASES. 

The interoperability layer (based on DVL and Cross-DLT layer) is expected to 
be validated by means of a limited set of use cases within the project, namely 
the Situational Understanding and Predictive Models in Smart Logistics, Inter-
Model Asset Tracking Via IoT and Satellite and Supply Chain Ecosystem 
Integration.  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 21 of 60 

As a matter of fact, the main aim of the UC6 implementation and validation is 
to test the interoperability between machine-to-machine and DLT domains 
throughout a centralized approach for data retrieval, access, processing and 
handling by means of Data Virtualization. By enabling these data flows then, 
DLT's capabilities are exploited to guarantee data existence and data 
immutability. 

However, its potential goes beyond the selected application fields. From an 
architecture perspective, the interoperability layer can be also used in cross 
use-case scenarios, providing new data management capabilities for end 
users. The DVL suits fine for data lake management, regardless of the 
underlying physical layer, including physical devices and connectivity 
resources. For this reason, the DVL can act as a collector for data coming from 
different data sources and related to different application domains such as 
transportation, asset tracking, smart factories, and logistics. Once data have 
been collected, processed, and aggregated by DVL according to supported 
data, the Cross-DLT layer ensures secure events management by means of 
different available DLTs. 

In this chapter, the main development and integration approaches involving 
Data Virtualization Layer component are presented and discussed by 
describing the underlying machine-to-machine layer including different M2M 
platforms brought by the project in order to clarify how such platforms are 
used in the scope of different use cases and what kind of data are managed.  
 

4.1 DVL Introduction  
Data Virtualization is an advanced approach to data integration. Data 
Virtualization can be considered as an easier way to integrate, federate and 
transform data coming from multiple data sources into a single and unified 
environment in real-time. It is not about collecting data from different data 
sources but connecting them and leveraging data warehouses, data lakes or 
different data infrastructures already in place. In the scope of the iNGENIOUS 
project, we relied on Teiid v16.0 platform [2] an open-source implementation 
of the data virtualization concept. Teiid is a flexible Java-based tool that 
provides integrated access to multiple data sources through a single and 
uniform API, so that applications can access information using standard 
interfaces such as JDBC, ODBC, OData or REST. This approach is relevant in 
those cases, like iNGENIOUS, when the information resides in multiple 
heterogenous data sources, including sources that do not support standard 
query languages and formats. It is not a database management system: it 
does not store any data and it acts as a data gateway for accessing data in an 
optimal manner.  

 

4.1.1 Teiid deployment in a staging environment 

Teiid is foremost an extensible Java project. There are several options to utilize 
it. In the scope of iNGENIOUS project, we relied on WildFly-based 
implementation (integration of Teiid into WildFly Java Application Server [3]). 
This configuration provides robust and well documented options for 
transaction management, connection pooling, security configuration, 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 22 of 60 

resource management, clustered deployment and data access policies 
management. 

First of all, we deployed a local instance of WildFly server as well as Teiid 
platform in a staging environment in the Port of Livorno, hosted in a dedicated 
virtual machine with the following technical specifications: 

• CPU host AMD EPYC 7281 with 4 core. 
• 8GB of RAM. 
• 100GB of storage space. 
• Ubuntu 20.04 Server as the main operating system. 

 
The DVL instance (Teiid v.16.0.0) has been then properly configured (on top of 
JBoss WildFly Application Server v.19.1.0) using a docker image. The 
deployment has been tested using JBoss console and the relative virtual 
databases by means of SQL client (SQuirreL). 

The considered node will be accessible, up and running until the end of the 
project so that involved partners will be provided with access capabilities to 
relevant data.    

4.1.2 Teiid integration with available data sources and external 
applications 

In the context of iNGENIOUS project, Teiid is expected to be used as an 
intermediate layer for data access according to a given set of data sources as 
well as applications, brought by the partners from the consortium. 

On one side we identified the following data sources to be used to fed DVL 
with relevant data: 

• Mobius OneM2M Standard Platform: a M2M platform, based on oneM2M 
standard implementation, for meteorological data collection, processing 
and storage currently used in Livorno seaport. The historical data are 
expected to be consumed by AI-driven Smart Port and Shipping Platform 
by means of an interface. 

• Eclipse OM2M Platform: a M2M platform which is expected to be used for 
collecting data coming from distributed IoT devices installed on the 
container to be transported by COSCO ship line (data are expected to be 
collected by means of the Smart IoT Gateway). In this case, data coming 
from the sensor monitoring the status of the container door will be used to 
feed the DVL component so that Seal Removal event can be considered at 
TrustOS level. 

• Symphony M2M Platform: a M2M platform that is expected to be used for 
data collection, processing and storage in trucks’ tracking scenario. DVL will 
be then used to retrieve such data allowing an external user dashboard to 
visualize them in a user-friendly manner.  

• PISoft M2M Platform: a M2M platform used in Valencia seaport for 
collecting and storing gates access data. By integrating this platform with 
DVL, we will be able to define GateIn, GateOut, Vessel Arrival and Vessel 
Departure events to be stored on TrustOS for the case of Valencia seaport. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 23 of 60 

• Tuscan Port Community System: the main Port Community System used 
in Livorno seaport for GateIn, GateOut, Vessel Arrival and Vessel Departure 
data provisioning.  

• Valencia Port Community System: the main Port Community System used 
in Valencia seaport for Vessel Arrival and Vessel Departure events definition 
as well as implementation. 

On the other side, we identified the following set of applications (consumers) 
that are expected to be used to consume aggregated data at DVL level. 

• TrustOS: a Cross-DLT solution which extracts relevant data from DVL (e.g., 
vessel arrival, vessel departure, gate in, gate out, seal removal, etc.), converts 
them in a digital asset and distributes Trust Points across available DLTs: 
Bitcoin, Ethereum, IOTA and HyperLedger Fabric. Trust Points can be then 
used to guarantee the proof-of-integrity. 

• AI-driven Smart Port and Shipping Platform: a smart IoT application that 
consumes data related to vessels’ and trucks’ traffic, port calls and 
meteorological conditions at Port of Valencia and Livorno. The main 
purpose of this integration is to guarantee a predictive model development 
for trucks’ flows in both seaports by consuming historical data from DVL. 

• Pseudonymization Module: a function allowing to detect personal data and 
pseudonymize them according to available pseudonymization techniques 
such as Format Preserving Encryption (FPE), Hash Without Key (HWK), 
Hashing with static key or BLURRING. In the scope of the iNGENIOUS 
project, the trucks’ plate number is considered as the personal data, so a 
pseudonymization method is applied accordingly. Once personal data are 
detected, a pseudonym is created and the main correspondence between 
“plain” and “pseudonymized” data is stored within a local database 
management system (MongoDB) so that AI-driven Smart Port and 
Shipping Platform can consume historical data throughout the DVL for 
data analysis activities. 

• Cross-layer MANO Platform: the iNGENIOUS network slice management 
and orchestration software stack that is expected to be integrated with DVL 
to collect relevant data for the runtime optimization of network services 
and slices. The main aim of this integration is to enable reactive and 
proactive adaptation of network slice and service instances based on both 
application-level (and possibly) network related data collected from the 
DVL 

4.1.3 Teiid and maritime events definition 

In order to come up with a commercially standardized way to define maritime 
events such as GateIn, GateOut, vessel arrival, vessel departure and container’s 
seal removal, we relied on event data model adopted by Tradelens platform 
[4]. Tradelens is a blockchain-based platform allowing end users to securely 
store and exchange data between them (e.g., carriers, ports, terminals, 
customs, etc.).  

We could have relied on a custom data model for the definition of such events 
but the current approach allows us to extend interoperability capabilities of 
the iNGENIOUS cross-DLT layer by making it (in principle) compliant with 
commercial blockchain-based platforms such as Tradelens. According to this 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 24 of 60 

data model, the maritime events have the following data structures that have 
been implemented at DVL level: 

 

FIGURE 5: GATEIN/GATEOUT EVENTS DATA MODEL (TRADELENS PLATFORM [4]). 

 

FIGURE 6: VESSEL ARRIVAL AND VESSEL DEPARTURE EVENTS DATA MODEL (TRADELENS PLATFORM 
[4]). 

GateIn, GateOut, Vessel Arrival and Vessel Departure events are part of the 
demonstration of both UC5 and UC6, while seal removal  event is under 
assessment (the data model is defined but further investigation is required to 
understand what kind of data would be available from a smart IoT device 
installed on the container) as part of the UC4 and its relative model can be 
seen in the figure below (sealRemoved event from Tradelens platform [4]):  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 25 of 60 

 

FIGURE 7: SEAL REMOVED EVENT DATA MODEL (TRADELENS PLATFORM [4]). 

According to this data model, four different procedures have been 
implemented on DVL after the identification of the main data sources to be 
used for data retrieval: 

• LatestGateInEvent: when invoked, allows to retrieve the latest occurred 
gate-in event. This procedure will be used by the TrustOS-based Cross-DLT 
layer.  

• LatestGateOutEvent: when invoked, allows to retrieve the latest occurred 
gate-out event. This procedure will be used by the TrustOS-based Cross-
DLT layer. 

• HistoricalGateInEvent: when invoked, allows to retrieve historical gate-in 
events. This procedure will be used by the pseudonymization module. 

• HistoricalGateOutEvent: when invoked, allows to retrieve historical gate-
out events. This procedure will be used by the pseudonymization module. 

• LatestVesselArrivalEvent: when invoked, allows to retrieve the latest 
occurred Vessel Arrival event, according to the eventSubmissionTime8601 
attribute. 

• LatestVesselDepartureEvent: when invoked, allows to retrieve the latest 
occurred Vessel Departure event, according to the 
eventSubmissionTime8601 attribute. 

• HistoricalVesselArrivalEvent: when invoked, allows to retrieve the whole 
set of historical data for the Vessel Arrival event. 

• HistoricalVesselDepartureEvent: when invoked, allows to retrieve the 
whole set of historical data for the Vessel Departure event. 

The above-mentioned procedures allow to retrieve gate-in and gate-out data 
for the case of Livorno seaport: the same procedures will be also implemented 
for the case of Valencia seaport according to available data sources (e.g., the 
port community system and machine-to-machine platform). During the 
second half of the project, we expect to implement also procedures for the 
vessel arrival and vessel departure events for both seaports. 

In order to interact with DVL by invoking the available set of procedures, a 
REST interface from OData (an open protocol to allow the creation and 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 26 of 60 

consumption of interoperable RESTful APIs) has been implemented. 
Moreover, access details have been already shared with involved partners in 
order to perform preliminary communication tests. 

In the following picture, as an example, the main result of the http REST query 
request performed to DVL, is depicted (LatestGateInEvent procedure):  

 
FIGURE 8: LATESTGATEINEVENT RESPONSE EXAMPLE (LIVORNO SEAPORT). 

4.2 Mobius OneM2M System, integration & 
data aggregation  

Mobius [8] is an open-source server platform implementing oneM2M 
standards available in the OCEAN (Open allianCE for IoT stANdards), an open 
source-based global partnership project for IoT (CNIT is a developer partner). 
One advantage of using the public IoT server (from KETI - Korea Electronics 
Technology Institute) is that it is possible to use a web-based oneM2M 
resource monitoring application that makes it easy to monitor sensing values 
and actuation commands for the IoT devices in real-time.  

 
FIGURE 9: MOBIUS SOFTWARE ARCHITECTURE. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 27 of 60 

The Port Authority of Livorno in collaboration with CNIT, has employed the 
public Mobius-based IoT server provided by KETI in order to perform smart-
objects and IoT devices management at seaport. Currently, the Mobius 
platform allows to manage and interact with meteorological stations. 

The following section describes the main configuration and deployment that 
we rely on for the development activities foreseen by the iNGENIOUS project. 

4.2.1 Mobius OneM2M Platform deployment and integration 

The access to data sources in Teiid takes two components: a translator and a 
platform-dependent access mechanism to provide source access. A translator 
provides an abstraction layer between Teiid Query Engine and physical data 
source, that knows how to convert Teiid issued query commands into source 
specific commands and execute them. Translators also have some logic to 
convert the result data that came from the physical source into a form that 
Teiid Query Engine is expecting. 

 

FIGURE 10: TEIID QUERY ENGINE. 

A translator is represented in DDL as a foreign data wrapper (FDW). Together 
this access is referred to as a Teiid connector. According to this nomenclature, 
a REST connector (including .xml VDB definition file) has been implemented 
in order to allow the integration between DVL and Mobius OneM2M IoT Server 
Platform deployed as a docker image within a dedicated virtual machine with 
the following specifications (Livorno staging environment): 

• CPU host AMD EPYC 7281 with 4 cores. 

• 8GB of RAM. 

• 100GB of storage space. 

• Ubuntu 20.04 server as the main operating system.  

In the following picture, the virtual-database definition file (.xml) for the 
communication between DVL component and Mobius M2M standard 
platform is depicted: 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 28 of 60 

 

FIGURE 11: MOBIUS ONE M2M CONNECTOR IMPLEMENTATION - VDB DEFINITION FILE (.XML). 

4.3 PI System OSIsoft, integration  
  

PI System is a M2M platform developed by OSIsoft used in heavy industrial 
environments for covering data processing and data streaming functionalities 
as part of industrial IoT ecosystems [14]. As described in D5.1, PI System is 
composed of several software modules to cover data collection, time-series 
historization, finding, analysis, delivery and visualization functionalities for 
managing real-time data and events. Data can be automatically collected 
from different sources such as control systems (e.g., SCADA), industrial 
computers, dedicated HW, laboratory equipment or other external systems.  

 
FIGURE 12: VALENCIA PORT PI DEPLOYMENT. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 29 of 60 

In iNGENIOUS, PI System OSIsoft will be used to store and exchange the data 
related to GateIn and GateOut events performed at the terrestrial accesses of 
the Port of Valencia in the context UC5 (Situational Understanding and 
Predictive Models in Smart Logistics Scenarios) and UC6 (Supply Chain 
Ecosystem Integration). To meet the needs of these use cases and integrate 
the data obtained at terrestrial accesses with the DVL, FV will exploit a pre-
production deployment of PI system available at the Port of Valencia ICT 
infrastructure.  

4.3.1 Integration Approach 

The integration of the data gathered by PI System and the DVL will be 
supported by involving three main PI modules: PI Data Archive, PI Asset 
Framework (AF) and PI Web API.  

 
FIGURE 13: PI SYSTEM AND DVL INTEGRATION 

The PI Data Archive is the time-series database of PI System, where data 
obtained from the different data sources is stored and structured. Based on 
the data stored in the Data Archive, PI AF contextualises raw data and 
organizes assets and signals following hierarchical structures in order to 
provide structured data sets. After that, PI Web API provides the access layer 
through a RESTful interface allowing external client applications to read and 
write over the PI Data Archive and the PI AF over HTTPS programmatically.  

PI Web API defines a set of methods for retrieving information stored in PI 
System from external platforms. To enable all reading and writing operations 
an Authorization Header with hash encryption is configured to authorise the 
API use. The URL base of the API will be:  

 /api/stream/[method] 

and all responses will have JSON format. The four different methods defined 
for retrieving information (GET) from PI Web API are: 

1. /signalinfo/{signalId}: Returns the value of the request signal in a 
specific time period, i.e., from ‘starttime’ to ‘endtime’. If no date is 
specified, the last value of the signal is return. The response has the 
following format:  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 30 of 60 

 
FIGURE 14: SIGNALINFO API RESPONSE 

2. /signalstream/{signalId}: Returns the value of a signal following a 
socket subscription approach. The JSON response has the following 
format: 

 
FIGURE 15: SIGNALSTREAM API RESPONSE 

3. /assetinfo/{assetName}: Returns the value of the requested asset. The 
response has the following format:  

 
FIGURE 16: ASSETINFO API RESPONSE 

4. /eventinfo/{eventId}}: Returns the value of a specific event, which occurs 
when specific conditions are fulfilled. To specify the event related 
parameters like serverName, databaseName, starttime and endtime 
need to be indicated. If endtime parameter is not specified, a list of 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 31 of 60 

values registered since the event started are given. Other optional 
parameters like name, template, finished, duration or 
durationConditional can also be indicated. The JSON response has the 
following format:  

 
FIGURE 17: EVENTINFO API RESPONSE 

5. /dbstructure/{serverName/{databaseName}:}: Returns a tree with the 
data structure of a specific database. The JSON response has the 
following format:  

 
FIGURE 18: DBSTRUCTURE API RESPONSE 

4.4 Symphony platform, integration  
  

Symphony is a service-oriented generalized IoT platform developed and 
commercialized by Nextworks, capable of integrating thousands of 
interconnected devices in support of multiple vertical needs and services [12]. 
It embeds several functionalities (interfacing with field bus protocols, data 
acquisition and actuators control, data storage and processing, rule-based 
engines, application logic and GUIs) into a unified fully decomposed and 
distributed IP-based platform. 

As depicted in Figure 19Figure 19, Symphony is a complete IoT platform 
characterized by a modular architecture which allows to interact with a variety 
of hardware devices, IoT sensors or actuators in a seamless and unified 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 32 of 60 

manner. Internally, Symphony integrates a number of services for 
notifications, event management, analytics and automated reactions which 
can be applied to a variety of applications, like access control, technical 
systems monitoring, industrial automation, energy management, etc.  

The Symphony core component is the Hardware Abstraction Layer (HAL), 
which provides protocol-specific southbound plugins to enable the 
interconnection with heterogeneous protocol gateways and devices 
deployed in the IoT field. The data collected from the field is associated to 
“plain objects”, which are generalized items expressed in a simple unified 
format built by tuple of identifier, timestamp, value. The data is then 
distributed towards the upper layer Symphony components through a variety 
of northbound plugins, to enable data processing and elaboration and 
generate “objects with semantics”, that constitute “meaningful” inputs for the 
upper layers in the platform. Symphony currently supports CORBA (Common 
Object Request Broker Architecture) and REST northbound plugins.  

In terms of relevance for iNGENIOUS, the HAL provide key features for the 
control and managements of IoT devices and related data. First it supports on-
demand runtime configuration, and it allows to create and instantiate 
southbound plugins for new field buses at runtime, using the predefined set 
of plugins already available in Symphony. However, the support of new 
protocols and IoT devices requires the development of dedicated southbound 
plugins. Second, the HAL gives the possibility to configure the information 
models supported by new IoT devices or data sources to be plugged into 
Symphony, enabling a flexible adaptation to different kinds of sensors and 
providing data model interoperability. Finally, the HAL enables the 
configuration of sensors’ digital twins, as it possible to create multiple plain 
objects controlled and managed through the same fieldbus southbound 
plugin, and thus store data related to the status of the object and possibly run 
some commands on the physical device through the specific plugin. 

 
FIGURE 19: SYMPHONY HIGH-LEVEL ARCHITECTURE 

 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 33 of 60 

4.4.1 Integration approach 

Symphony can be used in the Port of Livorno, and specifically in the context 
of UC5 (Situational Understanding and Predictive Models in Smart Logistics 
Scenarios) and UC6 (Supply Chain Ecosystem Integration), as M2M platform 
to integrate the IoT tracking sensors mounted onboard of vehicles within the 
port area. In practice, an instance of the Symphony platform is expected to be 
deployed and run in the Port of Livorno staging environment, and thus collect 
positioning data and events from the IoT tracking sensor devices and expose 
them to the DVL.  

In particular, the IoT tracking sensor device type used in the Port of Livorno is 
a Micktrack MT821, a waterproof asset GPS tracker that use CAT M1 and NB-
IoT technologies to provide low power consumption and optimized data 
transmission. These devices implement a custom communication protocol [5] 
to publish the asset positioning data towards an external server. 

For the purpose of the interconnection with the DVL, Symphony requires two 
different types of integrations, as depicted in Figure 20Figure 20. First, an 
integration at the level of the HAL southbound plugins has to be 
implemented, to interface with the IoT tracking sensors communication 
protocol and thus be able to collect the related data. Second, an integration 
at the level of the HAL northbound is required, to expose the IoT tracking 
sensor internal objects directly towards the DVL as plain objects. To do that, a 
specific HAL northbound plugin is required, e.g., based on the AMQP or MQTT 
protocols (as described in the next sub-section). 

Moreover, as the Symphony HAL do not store itself any data (indeed it keeps 
in memory the last value collected from a specific object to distribute it 
towards the other platform components), an additional Symphony 
component is required as further northbound integration. Indeed, the 
Symphony Data Storage component is used as well to store all the historical 
IoT tracking sensor objects data, and expose it to the DVL (which in turn do 
not store any data as well). 

 

FIGURE 20: SYMPHONY INTEGRATION APPROACH 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 34 of 60 

4.4.2 Symphony enhancements 

The implementation of the Symphony integration approach described above 
requires the development of few enhancements in the legacy Symphony 
platform components. In particular, as depicted in Figure 21, most of these 
enhancements refer to new capabilities and functionalities within the HAL 
and Data Storage, assuming to expose towards the DVL the IoT tracking 
sensor object data directly. 

 
FIGURE 21: OVERVIEW OF SYMPHONY HAL ENHANCEMENTS 

First, a dedicated new HAL southbound plugin is required to collect the data 
from the IoT tracking sensor devices and map it to specific and dedicated 
plain objects maintained by the HAL. The Micktrack MT821 communication 
protocol [5] relies on a server, to be offered and implemented in this new 
Tracker HAL southbound plugin, where to publish the vehicle GPS data. The 
structure of a generic message sent by the IoT device is depicted in Figure 22, 
while the specific report message for the GPS information of the vehicle is 
shown in Figure 23. The Tracker HAL southbound plugin is responsible to 
collect and parse these periodic messages and make it available to the HAL. 

 
FIGURE 22: IOT TRACKING SENSOR MESSAGE FORMAT 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 35 of 60 

 
FIGURE 23: IOT TRACKING SENSOR GPS MESSAGE 

Indeed, as part of this new Tracker HAL southbound plugin, a translation 
feature is also required to filter, map and transform structured data received 
from the IoT tracking sensor devices into the internal format expected by the 
HAL. In addition, as the plugin is an implementation of a base Symphony HAL 
plugin, it can be dynamically instantiated and (re-) configured through 
dedicated REST API calls (as described in the next subsection), enabling its on-
demand creation and configuration. 

Moreover, at its northbound, the HAL natively gives the possibility to define 
and configure the specific protocol and mechanism to expose the processed 
data fetched from the fieldbus. The default HAL northbound plugin is based 
on the CORBA framework, and it is used for the communication between the 
Symphony HAL and the rest of the platform components shown in Figure 
19Figure 12. In iNGENIOUS, the requirement to expose the data collected from 
the IoT tracking sensor devices towards the DVL imposes the need of a 
dedicated new northbound plugin. Following the same Symphony approach 
adopted at the southbound, the HAL northbound is a plugin-based interface 
where it is possible to develop and integrate new specific plugins to export 
data towards external entities following different protocols and technologies. 
Moreover, at runtime it is also possible to instantiate new plugin instances, the 
same way it is done with the southbound ones (as described in the next 
subsection).  

For the integration with the DVL, the selected approach for the HAL 
northbound plugin is based on a MQTT based interface. In particular, this 
northbound plugin allows to integrate the Symphony Data Storage and store 
there the data collected from the HAL through the use of a message bus 
based on RabbitMQ [6]. Indeed, as anticipated above the DVL does not store 
itself any data, therefore the iNGENIOUS Symphony deployment has to 
include the Data Storage component as well, that is integrated with the 
message bus through an AMQP connector, and on top of which a dedicated 
REST interface exposes the data towards the DVL. This approach offers to the 
DVL the possibility to retrieve historical data with filtering options to retrieve 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 36 of 60 

data related to specific time windows and IoT Tracking sensor devices. Details 
on this REST interface are provided in the next subsection. 

4.4.3 APIs and data models 

The iNGENIOUS Symphony deployment described above offers several REST 
APIs for different purposes: platform configuration and data retrieval. 

The platform configuration APIs refer to specific REST APIs through which 
northbound and southbound plugins, as well as HAL plain digital objects can 
be dynamically created and configured according to the specific 
requirements of the IoT data to be managed. 

For what concerns the HAL southbound and northbound plugins 
configuration, all request and response messages are formatted as JSON 
objects. The following REST operations are supported: 

• GET /plugin 

o To retrieve the configurations of all the available HAL plugins 

• POST /plugin:  

o To create a new southbound or northbound plugin, by issuing 
the JSON reported below, where the plugin specific 
configuration in the case of the IoT tracking sensors includes 
information of the UDP server (IP, port) to which the devices 
connect to send the GPS data messages reported in Figure 23 

{ 

  "name": <Plugin Name>, 

 "class": <Plugin Class>, 

 "enabled": true, 

 "config": { 

  <Plugin Specific Configuration> 

 } 

} 

• GET /plugin/{plugin_name} 

o To retrieve the configurations of the specific southbound or 
northbound plugin <plugin name> 

• DELETE /plugin/{plugin_name} 

o To delete the southbound or northbound plugin <plugin name> 

• PUT /plugin/{plugin_name} 

o To update the following attributes of the configuration of the 
specific southbound or northbound plugin <plugin name> 

{ 

 "enabled": true, 

 "config": { 

  <Plugin Specific Configuration> 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 37 of 60 

 } 

} 

For what concerns the HAL digital objects configuration, all request and 
response messages are again formatted as JSON objects. The following REST 
operations are supported: 

• GET /datapoint 

o To retrieve the configurations of all the HAL digital objects 

• POST /datapoint:  

o To create a new HAL digital object, by issuing the JSON reported 
below, where the plugin field identifies the southbound plugin 
associated to this digital object, and the datapoint specific 
configuration in the case of the IoT tracking sensors includes 
information on which attributes to filter and keep from the GPS 
data messages collected by the southbound plugin 

{ 

    "id":"<object_id>", 

    "type":"<object_type>", 

    "plugin":"<SBI_PLUGIN_NAME>", 

    "config": { 

        <Datapoint Specific Configuration> 

    } 

} 

• GET /datapoint/{object_id} 

o To retrieve the configurations of the specific HAL digital object 
<object_id> 

• DELETE /datapoint/{object_id} 

o To delete the HAL digital object <object_id> 

• PUT /datapoint/{object_id} 

o To update the following attributes of the configuration of the 
specific HAL digital object <object_id> 

{ 

 "config": { 

  <Datapoint Specific Configuration> 

 } 

} 

On the other hand, in terms of actual integration with the DVL, the Symphony 
Data Storage exposes specific REST APIs to retrieve the IoT tracking sensors 
data on-demand. In particular the following query operation is supported, 
with response messages formatted as JSON objects: 

• GET / cmd/retrieve_config?section=timeseries 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 38 of 60 

o To retrieve the full list of available HAL digital object timeseries 
within the Symphony Data Storage. In particular, this operation 
returns information on the total number of timeseries available, 
i.e., how many HAL digital objects have data stored (records 
filed), and as shown below, for each digital object (identified with 
its HAL object_id) some additional information concerning the 
type of associated IoT object and southbound plugin 

{ 

 "records": <num_of_timeseries>, 

 "timeseries": { 

  "<object_id>": {…..} 

 } 

} 

• GET /object/{object_id} 

o To retrieve the timeseries data for the HAL digital object 
identified with object_id. In particular, the returned JSON 
message includes the full list of collected object data collected 
by Symphony. Each entry has its own timestamp (ts). For the 
case of the IoT tracking sensor (shown below), the GPS position, 
speed and heading attributes are available (in the v field) 

{ 

 "data": [{ 

   "ts": "< unix_timestamp >", 

   "v": { 

    "lat": "< latitude >", 

    "long": "< longitude >", 

    "speed": "< speed >", 

    "heading": "< heading >" 

   } 

  }, 

  { 

   "ts": "< unix_timestamp >", 

   "v": { 

    "lat": "< latitude >", 

    "long": "< longitude >", 

    "speed": "< speed >", 

    "heading": "< heading >" 

   } 

  }, 

  …….. 

 ] 

} 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 39 of 60 

• GET /object/{object_id}?start=<start_timestamp>,&end=<end_timestamp> 

o To retrieve the timeseries data for the HAL digital object 
identified with object_id, limited to a time window delimited by 
<start_timestamp> and <end_timestamp>. The returned JSON 
message is structured as the one in the previous GET operation 

4.5 Eclipse OM2M, integration  
  

The Eclipse OM2M project [1], initiated by LAAS-CNRS, is an open-source 
implementation of oneM2M and SmartM2M standard. It provides a horizontal 
M2M service platform for developing services independently of the underlying 
network, with the aim to facilitate the deployment of vertical applications and 
heterogeneous devices. The Smart IoT GW relies on the Eclipse OM2M 
implementation of the oneM2M standards. Essentially, OM2M implements 
components and applications for each of the standards described in oneM2M. 
Among its main features are: 

• Not only compliant with oneM2M but also with SmartM2M [13]; 

• Open Service Gateway initiative (OSGi)-based architecture extensible via 
plugins; 

• Implements a restful API with a generic set of service capabilities. 

Provides oneM2M services such as machine registration, application 
deployment, container management, resource discovery, access right, 
authorization, subscription/notification, group management and non-
blocking requests. 

As described in Section 3.1.1, the Smart IoT Gateway interfaces with the M2M 
space through a local MN-CSE instance (Middleware Node Common Service 
Entity) implemented as Eclipse OM2M in compliance with the oneM2M 
standard. Following the oneM2M standard, the MN-CSE local to the gateway 
communicates the retrieved data with the central IN-CSE (Infrastructure 
Node Common Service Entity), which is hosted in the SES Cloud space. To 
ensure privacy and security of the transported data, all communication 
between the MN-CSE in the gateway and the IN-CSE in the cloud space relies 
on encrypted HTTP traffic (HTTPS) and additionally, is routed through a secure 
VPN tunnel, allowing only external instances with a valid VPN client 
configuration to connect to the M2M cloud space. 

External M2M applications which need to request data from the M2M cloud 
space (e.g., DVL), connect to the IN-CSE through a dedicated public IP, with a 
firewall managing access to specified IP sources only (see Figure 3 in Chapter 
3.1.1).  

According to this, the M2M space (based on Eclipse OM2M solution) is 
expected to be used for the storage of data coming from installed sensors (the 
one which acts as the container’s seal). Once data are stored, the DVL can 
easily retrieve them by means of a specific view/procedure so that 
SealOpening event can be available at Cross-DLT layer. Data format and 
structure is still under investigation and further details will be available in D5.3 
– Final iNGENIOUS Data Management Platform. 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 40 of 60 

 

 

4.6 Pseudonymization Function  
  

The DVL integrates in its architecture a pseudonymisation module used for 
the obfuscation of personal data. In this way, applications that need to use 
data from M2M platforms will not have access to sensitive data. 

Pseudonymisation is the processing of personal data used in INGENIOUS in 
such a manner that the personal data can no longer be attributed to a specific 
data subject entering the port, without the use of additional information.  

The only personal data that DVL handles in INGENIOUS are the license plate 
numbers of trucks entering the port (vehicleId). 

The Pseudonymisation function (PF), denoted 𝑃, is a function that substitutes 
the vehicleId by a pseudonym. The pseudonymization function is integrated 
in the Pseudonymization module composed by microservice architecture 
based on 3 levels (see Figure 24Figure 24): 

• Front-end  

• Back-end  

• Database 

 
FIGURE 24: PSEUDONYMIZATION MODULE 

THE FRONT-END USES/EXPOSES INTERFACES VIA HTTPS TO RETRIEVE EVENTS IN CLEAR FORMAT 
FROM TEIID, SEE [4.1 DVL INTRODUCTION], AND TO DEPLOY THE EVENTS IN PSEUDONYMIZED FORM 

WHEN REQUESTED, SEE WORKFLOW IN FIGURE 25FIGURE 25 

Figure 25. The back-end elaborates data and store them into the encrypted 
database. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 41 of 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FetchGateEvents(time interval) 

 

 

 

 

 

 

 
 

FIGURE 25: PSEUDONYMIZATION WORKFLOW 

Using dedicated interfaces developed in the DVL layer (Teiid) the module 
reads once a day all historical GateIn and GateOut port entrance events in the 
specified interval time (set to 24h for the project scope). 
The Pseudonymisation function applies the selected pseudonymization 
algorithm on the fetched personal data in GateIn/GateOut events, before 
storing them into the encrypted database. 

The new pseudonymized events will be retrieved by DVL, when a new request 
comes  from AI-driven Smart Port and Shipping Platform. 

AI-driven Smart 
Port and Shipping 

Platform 

Teiid 
Pseudonymization 

Module 

Apply 
pseudonymization 

Store 
pseudonymized  

GateIn events 

HistoricalGateInEvent(time interval) 

HistoricalGateOutEvent(time interval) 

[event-i1, event-i2,…., event-iN] 

[event-o1, event-o2,…., event-oN] 

Apply 
pseudonymization 

Store 
pseudonymized  
GateOut events 

FetchGateEvents(time interval) 

[p(event-i1), ., p(event-iN), 
p(event-o1), ..., p(event-oN)] [p(event-i1), ., p(event-iN), 

p(event-o1), ..., p(event-oN)] 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 42 of 60 

4.6.1 Front-End 

Front-end exposes the following Rest APIs: 

• configTemplate: this interface is used to set the pseudonymization 
technique to apply.  

• HistoricalGateInEvent: when invoked, allows the PF to retrieve historical 
GateIn according to a specified interval time (see chapter 4.1.3) 

• HistoricalGateOutEvent: when invoked, allows the PF to retrieve historical 
GateOut according to a specified interval time (see chapter 4.1.3) 

• FetchGateEvents: when invoked, allows the DVL to retrieve historical 
pseudonymized GateIn/GateOut events according to a specified interval 
time  

• ClearData: this interface is used to delete a specified event  

4.6.2 Back-End 

The back-end is the core of the pseudonymization function. It receives the 
events GateIn/GateOut, elaborates the personal data (vehicleId) substituting 
them with the proper pseudonyms (applying the configured 
pseudonymization technique) and saves the events in the Passing_Pseudo 
table, ready to be fetched by DVL via FetchGateEvents. 

The admitted pseudonymization techniques are listed below:  

• Format Preserving Encryption (FPE) 

• Blurring 

• Hashing without key (HWK) 

• Hashing with static key 

Hashing without key is the default technique, so if it is the desired one it is not 
necessary to configure anything. Instead, if the preferred technique is 
different from Hashing it is necessary to set it by configTemplate API. 

Hashing with static key technique is scope of next deliverable D5.3. 

Note, AI-driven Smart Port and Shipping Platform uses vehicleId data for 
statistic scope, it can use pseudonym instead of clear format value but to the 
same vehicleId must always correspond the same pseudonym. This 
requirement limits the choice of possible techniques, in fact more 
sophisticated pseudonymisation techniques (such as probabilistic 
encryption) cannot be used. 

4.6.3 Database 

The encrypted database hosts different tables: 

• Configuration table, that retains the pseudonymization function 
configurations, such as encrypted method and data retention period.  

• Conversion table, used when it is necessary to maintain a map between the 
personal data in clear text and its pseudonym (Blurring/Hashing without 
key).  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 43 of 60 

• Passing_Pseudo table: it contains all the GateIn/GateOut events with 
pseudonymized personal data 

• Retention Data table, it contains the references to all the pseudonymized 
events with proper expiration date  

4.6.4 Retrieve pseudonymization data from PF 

When an application wants to retrieve data (in pseudonym format) from the 
PF (in iNGENIOUS AI-driven Smart Port and Shipping Platform), it sends a 
request to the DVL, which fetches data from the PF using the interface 
FetchGateEvents, as shown in workflow in Figure 26Figure 25: 

/FetchGateEvents: Returns all the pseudonymized events in a specific time 
period, i.e. from ‘startdate’ to ‘enddate’. Besides it is possible to fetch GateIn 
events only or GateOut events only if the optional parameter ‘gate’ is used, see 
Figure 26 and Figure 27Figure 27Figure 27. In case ‘gate’ parameter is not 
specified both GateIn and GateOut events in specified time period are 
returned, see Figure 28Figure 28 and Figure 29Figure 29. 

 
FIGURE 26: FETCHRECORD USING INTERVAL TIME AND SELECTED EVENTS 

the result is: 

 

FIGURE 27: EXAMPLE: RETRIEVED INFO USING FETCHRECORDS WITH SELECTED EVENT (GATEIN) 

If the function is invoked without any preferred event:  



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 44 of 60 

 
FIGURE 28: FETCHRECORD USING INTERVAL TIME ONLY 

Both the GateIn and GateOut events are retrieved: 

 

 
FIGURE 29: EXAMPLE: RETRIEVED INFO USING FETCHRECORDS WITHOUT SELECTED GATE EVENT 

4.6.5 Auditor 

The auditor deals with the elimination of data that have an expired retention 
period. According to the GDPR, it is important to keep the data for a limited 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 45 of 60 

period of time (retention period), depending on the use that determine its 
duration. Every night the auditor removes (clearing field) all the pseudonyms 
in each event which retention period has expired. 

The default retention period is set to 5 years, but it can be modified at 
instantiation. The Auditor module is scope of next deliverable D5.3. 

4.7 DVL-Cross-DLT layer integration  
  

The integration between DVL and TrustOS will be addressed by creating an 
intermediate software component that will act as a “bridge” between the two 
of them, see Figure 30. As DVL and TrustOS are software components that 
exposes their functionalities through a REST API, both are passive 
components, and a “bridge” application is necessary.  

This “bridge” will extract the data from the DVL making the HTTP request in a 
long polling way, making consecutive requests after a period of time looking 
for new data in the DVL. This period of time is yet to be defined. 

 
FIGURE 30: INTERMEDIATE COMPONENT (BRIDGE) FUNCTIONAL DIAGRAM. 

Once the “bridge” retrieves new data from DVL it will transform this data from 
the DVL structure to the TrustOS platform required structure to create new 
digital assets. These digital assets have three main fields: 

• AssetID. This field identifies the digital asset uniquely. 

• Data. This field contains any data that does not vary during the lifetime 
of the asset.  

• Metadata. This field contains data that may vary or not during the 
lifetime of the asset. This file can be modified by calling the update 
method and providing only the new data for this field. New information 
is not overwritten but added to the asset history to have full traceability 
at the end of the process. 

After transforming the data, a new digital asset will be created or updated if it 
already exists.  

The creation of the TrustPoints of these data is still pending of decide who or 
when they are created. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 46 of 60 

5 Cross-DLT Layer 

In this chapter, APIs’ development and integration activities between different 
sets of available DLTs and the cross-DLT layer are described and discussed. 
After an introduction to Distributed Ledger Technologies (DLTs), the common 
API to be implemented and supported by all the DLT connectors is detailed. 
Finally, for each available DLT in iNGENIOUS project, the integration approach 
as well as the development activities status is reported. 
 

5.1 DLT Introduction  
Distributed Ledger Technology is a digital system for storing information in an 
immutable, distributed, and decentralized form. Its infrastructure, protocols 
and management are performed by multiple entities, and nobody controls 
them unilaterally. There is a difference between distributed and decentralized 
approaches and Vitalik Buterin explained it in his post “The Meaning of 
Decentralization”: “distributed means not all the processing of the 
transactions is done in the same place” [10], whereas “decentralized” means 
that not one single entity has control over all the processing”, Figure 31Figure 
31Figure 31. DLT meets both of these characteristics. 
 

 
FIGURE 31: (A) CENTRALIZED, (B) DECENTRALIZED , (C) DISTRIBUTED NETWORKS, [21] 

Thanks to these aspects immutability appears in the sense that altering 
information that is replicated in different places is computationally very 
complex and it is even more difficult if each of these copies belongs to a 
different entity. Another strength of the technology is that it uses 
cryptography to store information securely. Blockchain is a type of DLT but 
with its own characteristics. Blockchain uses hashes to group a set of 
transactions in a block which also contains a reference to the previous one 
thus forming a block chain. Blockchain is a type of DLT but not all DLTs are 
Blockchains. 

From the DLT structure perspective in the context of iNGENIOUS project, we 
can distinguish two approaches: 

1. Blockchain – a chain of blocks linked with each other using hash, each 
block containing multiple transaction and maintaining the DLT specific 
structure 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 47 of 60 

2. DAG – a direct acyclic graph structure (Tangle) where each node 
represents a micro-transaction. There is no blockchain and the integrity 
of the tangle is maintained using combination of coordinator server 
and the small PoW in each transaction (node). Moreover, the Tangle is 
intended to be highly scalable, without fees and allowing near-instant 
transfers. The interconnectedness of Tangle's architecture doesn't 
require total verification across the ledger. Instead, all parties are 
verifying simultaneously and, as a result, the energy and time required 
to complete transactions are shortened. In addition, Tangle's 
verification process purports to ensure that there are no duplicate 
transactions that would lead to double spending issue. 

There are different types of DTLs systems from the access rights perspective, 
Privacy, performance and security apply to permissioned networks. Whereas 
security and transparency apply to public networks.: 
• Permissionless/public distributed ledger: Anyone can access and validate 

the information without the need for authorization from a central entity.  
Its nature is usually open source. 

• Permissioned distributed ledger: The reading and validation of information 
must be authorized by certain entities or by the network. 

• Hybrid distributed ledger: Leverage the advantages of public and 
permissioned ledgers by combining privacy, performance, security, and 
transparency. 

Every public DLT system is governed by a consensus mechanism which is the 
set of rules to manage the validation of the world state of the blockchain 
ledger. There are many different consensus mechanisms. We will focus on the 
following ones. 

• The first one to appear was Proof of Work (PoW) with Bitcoin publication  
[7]. The immutability of the ledger in the PoW is achieved using 
probabilistic proof that the amount of energy was consumed in order to 
validate the block of transactions. The blockchain version with the greatest 
work done is the one considered “correct”. This mechanism uses the 
external resource to influence internal state of the system. Currently the 
amount of energy consumed by the largest PoW solution is comparable to 
the energy production of the typical developed nation state [11].  

• Proof of Stake -  In this case, validators – the nodes that can generate blocks 
– needs to lock some amount of native token in given PoS solution in order 
to participate in validation. The feature of this solution is that there is no 
additional energy expenditure other than just signing and verifying 
transactions. There is no external influence on the system other than users 
decisions about signing transactions or performing validation. This kind of 
system requires validators to obtain the amount of native tokens from the 
existing owners. 

• Proof of Authority - The last consensus mechanism is typical of the 
permissioned distributed systems. Here a set of nodes are selected to be 
the validators of the information. The consortium relies on the state of the 
DLT signing the blocks. 

• The IOTA consensus mechanism combines a binary voting protocol (Fast 
Probabilistic Consensus - FPC) and a virtual voting protocol or approval 

https://www.investopedia.com/terms/d/doublespending.asp


D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 48 of 60 

(Approval Weight – AW) which represents the weight of branches (and 
messages), similar to the longest chain rule in Nakamoto consensus. In FPC, 
a node simply asks other nodes about their opinion related to a transaction. 
However, instead of selecting a leader based on a puzzle (PoW) or stake 
(PoS), it allows every node to express its opinion by simply issuing any 
message and attaching it in a part of the Tangle (based on its initial opinion 
on messages and possibly utilizing the like switch to express its opinion on 
branches).  

Most consensus mechanisms try to achieve the immutability of the ledger, 
however it is always some spectrum that is based on probability or human 
decisions. The DLT design tires to maximize effort that must be done in order 
to rewrite transaction history. 

5.2 DLTs API definition  
In order to have a common way of calling to APIs regardless of the DLT 
technology, a common API have been defined to fulfil all the necessary 
requirements to store the TrustPoints in any Distributed Ledger.   

The different connectors implemented for the CrossDLT layer implements this 
API, then the TrustOS platform will act as a bridge and distribute the 
information of the TrustPoints among the different ledgers making a unique 
request to the DLT connectors compliant with the common API.  

To achieve this, three methods have been defined that all the connectors 
must implement and be compatible with (minimum requirement). 

The first method is a read method of the information stored. This method 
needs some kind of identifier that matches with some transaction or a tuple 
of the information asset identifier with a timestamp. It is implemented as 
HTTP GET request that need the following parameters: 

• Transaction ID:  This information will be stored in the TrustOS platform and 
comes from the response of a storing request. If this parameter is used, no 
other is needed as the information is stored in a unique transaction of the 
specific ledger.  

• Asset ID and timestamp: This tuple identifies the evidence information 
related to some digital asset stored in the TrustOS platform and that it has 
been stored previously on a specific ledger. If these parameters are used, 
there is no need to use the transaction identifier.  

The response of this request may be observed in the following Figure 32Figure 
32. It is a JSON data that contains the information about the evidence 
(TrustPoint) stored in the ledger. 

 
FIGURE 32: JSON RESPONSE INCLUDING THE STORAGE EVIDENCE. 

https://wiki.iota.org/goshimmer/protocol_specification/components/consensus_mechanism#active-consensus-mana
https://wiki.iota.org/goshimmer/protocol_specification/components/consensus_mechanism#Like-Switch


D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 49 of 60 

The second method is a writing method that makes it possible to store the 
TrustPoint information in the ledger of the connector that is implementing 
this API. This method receives in the body a JSON containing the TrustPoint 
information, which is the same as the response of the previous GET request. 
This method is implemented as HTTP POST request that accepts JSON data 
in the body. Its response is also a JSON containing the following data: 

• Transaction ID: this is the identifier of the transaction in which the 
information has been stored. This is unique for each DLT technology.  

• Smart Contract address:  this field is optional, as not every DLT used in this 
project allows the usage of smart contract. If smart contract can be used, 
the response may contain the address of the smart contract used to store 
the TrustPoint information:  

 
FIGURE 33: RESPONSE INCLUDING THE ADDRESS OF THE SMART CONTRACT. 

The third and last method is a method that verifies that the information stored 
in the TrustOS platform matches the information stored in another ledger like 
Ethereum or Bitcoin. For that, it is implemented as a POST HTTP request that 
needs a body containing in JSON format the following information: 

 
FIGURE 34: ATTRIBUTES OF THE RESPONSE FOR THE VERIFY METHOD. 

What every connector does when it receives this information is to retrieve the 
TrustPoint indicated in this response from the DLT and compare both of them. 
If it matches, it can be considered verified, and the response would be 
something like the following: 

 
FIGURE 35: POSITIVE RESPONSE USING VERIFY METHOD. 

A new field (“verified”) that says that the information has been checked 
against the specific DLT is added. 

 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 50 of 60 

5.3 IOTA integration  
In this chapter the setup and configuration of the IOTA private tangle, as well 
as the implementation of the main interface to be used for the interaction 
between TrustOS component and IOTA IRI node, are described. 

5.3.1 IOTA Tangle deployment and setup 
In order to deploy a private IOTA node for iNGENIOUS development and 
integration activities, two separate virtual machines have been instantiated, 
hosting a private IOTA tangle as well as a message broker for the 
management of the main requests coming from TrustOS (namely 
InteroperaChain), with the following technical specifications: 
 

VM#1 (Private Tangle): 

o CPU Intel XEON E5-2680 with 2 cores. 
o 4GB of RAM. 
o 30GB of storage space. 
o Ubuntu 20.04 Server as the main operating system. 

VM#2 (InteroperaChain): 

o CPU Intel XEON E5-2680 with 2 cores. 
o 4GB of RAM. 
o 50GB of storage space. 
o Ubuntu 20.04 Server as the main operating system. 

Despite of the legacy version of the current v.1.5 IOTA protocol (Chrysalis) it is 
expected to move to v.2.0 (Coordicide) during the lifetime of the project. In 
order to perform IOTA Private Tangle deployment, we relied on the following 
standard specifications [17]: 

o IOTA Hornet node software (providing IOTA full node capabilities). 
o Wallet built for Chrysalis. 

As far as the technical specifications of the Tangle are concerned, we used a 
default configuration available on GitHub [18]. Such of settings are fully 
compatible with a DevNet and no relevant issues are expected to arise in case 
of the MainNet (this will be further assessed during the project lifetime). By 
means of this configuration, we achieved a permissioned IOTA network 
(DevNet) orchestrated by the coordinator (managed by CNIT) for the 
transaction’s validation. 
 
5.3.2 IOTA-TrustOS API implementation 

According to the technical specifications of a common interface for accessing 
a generic DLT, described in Section 5.2 (namely Cross-DLT Common Interface), 
we relied on OpenAPI standard for the IOTA API definition and 
implementation (using Python as a target language for compiling). As a 
matter of fact, the OpenAPI Specification (OAS) [19] defines a standard, 
language-agnostic interface to RESTful APIs which allows to discover and 
understand the capabilities of the service without access to source code, 
documentation, or through network traffic inspection. When properly 
defined, a consumer can understand and interact with the remote service 
with a minimal amount of implementation logic. An OpenAPI definition can 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 51 of 60 

then be used by documentation generation tools to display the API, code 
generation tools to generate servers and clients in various programming 
languages, testing tools, and many other use cases. 

According to such advantages, the API implementation for interacting with 
IOTA IRI Node is based on the following supported requests: 

• .../api/v1/trustpoint: gets the Trustpoint for an assetID from IOTA DLT; 
• .../api/v1/trustpoint: posts the Trustpoint information into the IOTA DLT; 
• .../api/v1/trustpoint/verify: posts and verifies the received Trustpoint 

information against the one stored in the IOTA DLT. 

The sequence diagrams, describing a high-level interaction between involved 
components (TrustOS, InteroperaChain and IOTA IRI Node) are already 
documented in D5.1 - Key technologies for IoT data management benchmark. 

In order to provide a description of the interface as well as a way to perform 
tests, a Swagger-compliant interface (an  Interface Description Language for 
describing RESTful APIs expressed using JSON [20]) has been released, as 
depicted in the figure below (available at [16]): 

 

FIGURE 36: SWAGGER-COMPLIANT INTERFACE TO INTERACT WITH IOTA NODE 

The following figure shows a set of supported schemas and models: 

https://en.wikipedia.org/wiki/Interface_Description_Language
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON


D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 52 of 60 

 

FIGURE 37: SUPPORTED SCHEMAS/MODELS. 

As far as the authentication is concerned, we adopted JSON Web Token 
internet standard (JWT) [15], allowing data consumers (TrustOS) to perform 
logging operation to service APIs, see Figure 38Figure 38. 

 

FIGURE 38: JWT-BASED AUTHENTICATION  METHOD FOR LOGIN 

Moreover, in order to interact with the private Tangle and explore the history 
of ingested transactions a client with a graphic user interface is adopted, see 
Figure 39. The client is based on Hornet - Community Driven IOTA Node and 
currently it is used for offline testing purposes to make sure the implemented 
interfaces are properly working. 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 53 of 60 

 

FIGURE 39: TANGLE GRAPHIC USER INTERFACE 

The interface is under testing and it is expected to be completed by the end 
of M18 of iNGENIOUS project. Further technical implementation details will be 
included in D5.3 - Final iNGENIOUS data management platform (M28). 

5.4 Hyperledger Fabric integration  
For enabling the integration of Hyperledger Fabric into iNGENIOUS 
architecture, FV is developing a dedicated web application designed to store 
and expose data related to GateIn and GateOut events at the Port of Valencia. 

 
FIGURE 40: FV APPLICATION ARCHITECTURE 

FV application is composed of two different modules: the back-end and the 
front-end. iNGENIOUS back-end is developed in Node.js programming 
language and follows a REST API architecture where data can be read and 
written thanks to the use of GET, POST, PUT and DELETE methods. The back-
end application has a connection with a MongoDB database for storing the 
data model and other metadata (i.e. user and configuration info) needed for 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 54 of 60 

running the application. On the other hand, iNGENIOUS front-end application 
is developed by combining Typescript and Angular, and allows the user to 
visualize and perform all the operations previously defined at the back-end 
level. The data model used to store data in iNGENIOUS application has been 
reused from the Tradelens-based data model defined by CNIT (See Section 4). 

A smart contract (running on Hyperledger Fabric network) enables the 
reading, writing, updating and deleting of GateIn and GateOut data. The 
functions and methods defined in the Smart Contract are similar to the ones 
defined in the back-end application. To store and read the data in the 
blockchain, the front-end module allows the user to decide if GateIn and 
GateOut data is stored in blockchain or not.  

To enable the integration of Hyperledger Fabric network with the rest of DLTs, 
FV will implement an API following the DLT API definition described in Section 
5.2, where the connection with other DLTs is based on the exchange of 
information related to TrustPoints. The three methods described in the API 
definition will be implemented as part of the API defined in the FV back-end 
project. Additionally, since TrustOS is based on a Hyperledger Fabric network, 
a more simplified way of interaction will also be further explored. An example 
of the block diagram for enabling the interaction with the rest of DLTs is 
shown below:  

 
FIGURE 41: FV APPLICATION ARCHITECTURE INTEGRATED WITH TRUST-OS 

5.5 Bitcoin integration  
To integrate Bitcoin in the iNGENIOUS ecosystem, a dedicated web 
application and web API was created. The application is divided into two 
layers. The top layer, developed  with Python and Django framework, provides 
the API for basic operations related to storing and verifying data on the Bitcoin 
node. The application uses typical architecture with model-view-controller 
design pattern. Models provide the object-relational mapping to entities in 
the SQLite database. The views are responsible for rendering the appropriate 
HTML code. The controller handles the requests, responses, and sets database 
connections. The lower layers of the application, created with C++, provide the 
wrapper for the functionality provided in the bitcoin command-line interface, 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 55 of 60 

also functionalities for generating raw transactions that contains data. 
Summary of the architecture is shown in the following figure:  

 
FIGURE 42: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN 

5.5.1 Hardware 

The application is hosted on the server provided by PJATK. Besides the 
application, the server is also hosting a full Bitcoin node. The server has the 
following specifications: 

• CPU host Intel Xeon with 12 cores. 
• 24GB of RAM. 
• 3TB of storage space. 
• Ubuntu 20.04 server as the main operating system. 

5.5.2 Software Endpoints 

The following four different endpoints are to be provided by the API: 

1. /api/v1/trustpoint: POST request for storing the data in the Bitcoin 
node. The user needs to provide the assetId, timestamp, 
merkleRootHash, prevTrustPointHash, and optionally the txfee in 
JSON format. An example of the JSON is provided in the following 
code snippet: 

{ 

"assetID": 98989981137, 

"timestamp": 1567594895, 

"merkleRootHash":"NGz693K+cqYasFNbcfhEr+Ziy/Y/jsfOt0FNKcqYa5E=",  

"prevTrustPointHash":"Vz3ZFr+wTOt0FNbcfhEr+Ziy/Y/jsfNGz693KcqYa5E=", 

} 

FIGURE 43: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 56 of 60 

If no fee is specified, the adaptive fee calculation will be utilized. The 
response has the JSON format specifying the status of the operation, 
transaction id, transaction fee, and how many bitcoins are left after the 
transition. An example of the JSON response is provided in the 
following snippet: 

{ 

"status": "success", 

 "txID": "f69ed4288ce50fe1f071a7af755f13cf8079a519fc37fbcc26dbe8784adcddb3",  

"txfee": 1e-05,  

"bitcoin_left": 0.00428 

} 

FIGURE 44: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN 

2. /api/v1/trustpoint?txID=<tiD>?assetID=<assetID>?timestamp=<timest
amp>? get request which checks if the transaction with specified txID 
has been registered in the application. The assetID and timestamp as 
optional query params are planned - the implementation is in progress. 

3. /api/v1/trustpoint/verify POST according to the common API provided 
in chapter 5.2, returns verified if the transaction is present in the 
database./api/v1/doc/: returns documentation of the API. 
Documentation is in preparations. 

4. /admin/: Provides admin panel for reviewing and searching the 
transaction. Example view of the admin panel is provided in the figure 
below. 

 
FIGURE 45: ADMIN PANEL 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 57 of 60 

At the moment, the underlying methods for verification, storing and reading 
Trustpoints from the Bitcoin DLT are implemented, however only one 
TrustPoint endpoint is functional - storage. The other endpoints are in active 
development and testing. The admin panel allows for the verification of the 
database state that contains all of the Trustpoints handled by the API. The API 
will follow the specification described in the chapter 5.2. 

All information provided to the Trustpoint endpoint are also stored in the 
internal SQL database. The admin panel is intended to ease querying and 
reviewing the stored data. It is also provides user management functionality. 
Currently the API works on the Bitcoin Testnet, however it is easy to set it up 
to work on the Bitcoin Mainnet. Given a transaction ID that is returned by the 
/trustpoint/ endpoint of the API, one can independently verify the details of 
the transaction using a full Bitcoin node or any publicly available block 
explorer.  

5.6 Ethereum integration  
Ethereum is an open source public blockchain platform that allows 
applications to be developed and executed in a decentralized manner. The 
main objective of Ethereum is to provide a decentralized environment that 
allows to execute business logic or rules. Thus, a user could send a certain 
amount of his or her balance to another user when a series of conditions are 
met, for example on the first day of each month. 

The potential of Ethereum is enormous, as it is possible to carry out automatic 
operations without the need for third parties based on any programmable 
condition. This is possible thanks to the fact that the programming language 
it offers is Turing complete, that is, it has the capacity to solve any type of 
computational problem. The business logic that the Ethereum network can 
execute is implemented within computer programs called smart contracts. 

The way to participate in the network is through a node or client. A node is a 
client software implementation that participates in the maintenance of the 
chain and the network by verifying the transactions of each block. 

Ethereum clients implement the remote procedure call protocol (JSON-RPC). 
It is a lightweight, stateless protocol that defines a set of structures and rules 
for making requests to servers (in this case Ethereum clients) implementing 
the same JSON-RPC protocol. Through the integration of Ethereum it is 
possible in the future to use not only this platform but also other Ethereum-
compatible blockchains such as Hyperledger Besu, Polygon, GoChain, etc. 

The current scope is to register public evidence of the information system in 
order to leverage the transparency and the decentralization of the public 
blockchains. Thus, any final user has the ability to check the validity of the 
information. The concept that represents this type of evidence is what is called 
“trustpoint” (already explained in deliverable 5.1). 

Ethereum integration involves the following developments: 

• Infrastructure: There are different ways to interact with an Ethereum 
blockchain, you can deploy your own node, or you can access through a 
third-party node. Infura offers this third-party node as a service to avoid the 
complexity of administration and management of a self-hosted node. The 
used Ethereum Network is Kovan Testnet [9]. The goal using testnets is to 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 58 of 60 

avoid the costs associated with registering information in Ethereum due to 
high fees. 

• Web3 service: a microservice to facilitate the compilation, deployment and 
interaction with smart contracts. 

• Smart Contract: to store trust points evidences in Ethereum an smart 
contract has been implemented using Solidity as a programming 
language. Main methods are described below: 

o setEvidence: Method to store a trust point evidence in the network. It 
stores the trust point identificator, the transactions merkle root hash and 
the previous trust point, all linked to a timestamp. 

o getEvidence: Method to get a trust point evidence from the network. 

An instance of this smart contract has been deployed in Kovan Testnet in 
order to be used in testing phase to validate the registration of public 
evidence through all the DLT connectors.  

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 59 of 60 

6 Conclusions 

This deliverable has described all technical components of Data Management 
framework with focus on Data Virtualization Layer and Cross-DLT layer as the 
main components to address both the cross-domain and cross-platform 
interoperability. The data aggregation approach between different M2M 
platforms and available data sources has been presented and the first 
implementation has been detailed with respect to iNGENIOUS use cases.  

On top of this interoperable layer, we described the IoT application layer which 
focuses mainly on applications related to port operations. These included AI 
algorithms for predicting traffic rates and congestion at the port based on 
heterogeneous data sources along the maritime supply chain, and a platform 
for remotely operating automated guided vehicles in the port area.  

Subsequently, the underlying layer of Data Management framework has been 
described in terms of available set of M2M platforms and data sources to be 
integrated (e.g., Mobius OneM2M, Eclipse OM2M, PISystem and Symphony), 
as well as in terms of hardware components to be used in a limited set of use 
cases (e.g., Smart IoT Gateway). 

Finally, we addressed the cross-DLT interoperability by describing a common 
interface which is expected to allow interacting with available DLTs (e.g., 
Bitcoin, IOTA, Ethereum and Hyperledger Fabric) based on a centralized 
approach for the data orchestration. 

The implemented solution represents the first release of the interoperable 
layer and will be used for platforms integration and validation by means of use 
cases described in deliverable D5.1. The final version of the Data Management 
framework will be released as deliverable D5.3 in M28, including all the 
improvements required to fulfil the requirements and the KPIs defined in D2.1.  

 

 

 

 



D5.2: Baseline iNGENIOUS Data Management Framework 
(v1.0) 

© 2020-2023 iNGENIOUS   Page 60 of 60 

7 References 

[1] Eclipse Foundation, Eclipse OM2M: https://www.eclipse.org/om2m/ 
[2] https://github.com/teiid/ 
[3] https://www.wildfly.org/ 
[4] TradeLens | Digitizing Global Supply Chains: https://www.tradelens.com/ 
[5] Micktrack Communication Protocol, 

https://www.mictrack.com/downloads/protocols/Mictrack_Communicati
on_Protocol_For_MT825_V2.0.pdf 

[6] RabbitMQ, https://www.rabbitmq.com 
[7] Bitcoin Whitepaper by Satoshi Nakamoto: bitcoin.pdf 
[8] https://github.com/IoTKETI/Mobius 
[9] TESTNET Kovan (KETH) Blockchain Explorer (etherscan.io) 
[10] The Meaning of Decentralization. “Decentralization” is one of the words… 

| by Vitalik Buterin | Medium 
[11] https://ccaf.io/cbeci/index 
[12]  Symphony, https://www.nextworks.it/en/products/symphony 
[13] https://www.etsi.org/committee/smartm2m 
[14] https://www.osisoft.com/pi-system 
[15] https://jwt.io 
[16] https://interoperachain.labtlclivorno.it/ui/ 
[17] https://wiki.iota.org/hornet/getting_started/private_tangle 
[18]https://github.com/gohornet/hornet/blob/develop/private_tangle/config_

private_tangle.json 
[19] https://www.openapis.org 
[20] https://swagger.io 
[21] https://medium.com/@VitalikButerin/the-meaning-of-decentralization-

a0c92b76a274  

https://www.eclipse.org/om2m/
https://github.com/teiid/
https://www.wildfly.org/
https://www.tradelens.com/
https://www.mictrack.com/downloads/protocols/Mictrack_Communication_Protocol_For_MT825_V2.0.pdf
https://www.mictrack.com/downloads/protocols/Mictrack_Communication_Protocol_For_MT825_V2.0.pdf
https://www/
https://bitcoin.org/bitcoin.pdf
https://github.com/IoTKETI/Mobius
https://kovan.etherscan.io/
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://ccaf.io/cbeci/index
https://www.nextworks.it/en/products/symphony
https://protect2.fireeye.com/v1/url?k=31323334-501d5122-313273af-454445555731-c00ceff62a035da7&q=1&e=a4adf251-a8ac-4399-bb06-fd50765471c7&u=https%3A%2F%2Fwww.etsi.org%2Fcommittee%2Fsmartm2m
https://www.osisoft.com/pi-system
https://jwt.io/
https://interoperachain.labtlclivorno.it/ui/
https://wiki.iota.org/hornet/getting_started/private_tangle
https://github.com/gohornet/hornet/blob/develop/private_tangle/config_private_tangle.json
https://github.com/gohornet/hornet/blob/develop/private_tangle/config_private_tangle.json
https://www.openapis.org/
https://swagger.io/
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274

