

Grant Agreement No.: 957216
Call: H2020 -ICT-2018-2020

Topic: ICT -56-2020
Type of action: RIA

D5.2 Baseline iNGENIOUS data
management framework

 Revision: v1.0

Work package WP5

Task T5.1, T5.2, T5.3

Due date 31/03/2022

Submission date 30/03/2022

Deliverable lead TEI

Version 1.0

Editors Gino Ciccone (TEI), Marek Bednarczyk (PJATK), þǈǬǳʎɸʷ åʎʸȿȜǈȰɊʧɸȰȜ (PJATK), Carlos
Alcaide Pastrana (TIOTBD), Anssi lappalainen (AWA); Jussi Poikonen (AWA) , Alexandr
Tardo (CNIT) , Ivo Bizon (TUD) , José Luis Cárcel (FV), Christos Politi s (SES), Giacomo
Bernini (NXW)

Authors Gino Ciccone (TEI), Giuseppina Carpentieri (TEI), Cosimo Zotti (TEI), Alexandr Tardo
(CNIT), Marek Bednarczyk (PJATK)Ḽ þǈǬǳʎɸʷ åʎʸȿȜǈȰɊʧɸȰȜ (PJATK)Ḽ åǈʧǳȼ
Czapiewski (PJATK), Stefan Köpsell (BI) , Kumar Sharad (BI), José Luis Cárcel (FV),
Joan Meseguer (FV), Ahmad Nimr (TUD) , Ivo Bizon (TUD), Pietro Piscione (NXW) ,
Erin Seder (NXW) , Giacomo Bernini (NXW), Carlos Alcaide Pastrana (TIOTBD) , César
Rodríguez Cerro (TIOTBD), Juan Jos e Garrido Serrato (SES), Christos Politis (SES),
Jussi Poikonen (AWA) , Cristina Escribano (NOK) , David Gómez -Barquero (UPV), Raúl
Lozano (UPV)

Reviewers Carsten Weinhold (BI) , Stefan Köpsell (BI), Alexandr Tardo (CNIT), Nuria Molner (UPV),
Gino Ciccone (TEI), Anton Luca Robustelli (TEI) , Carlos Alcaide Pastrana (TIOTBD),
Laura Gonzalez Estébanez (ASTI), Ivo Bizon (TUD), Giacomo Bernini (NXW), Erin Seder

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 2 of 60

(NXW), Marek Bednarczyk (PJATK)Ḽ åǈʧǳȼ >ʷǈɭȜǳʧɸȰȜ ṓå¦!þ¨Ṕ

Abstract This document describes the approach of iNGENIOUS to develop an interoperability
layer, aggregating data coming from different existing and forthcoming IoT
technologies. The deliverable describes the state of the current technologies and the
planned innova tions applied to Internet -of -Things (IoT) data management and
applications.

Keywords Smart IoT GW, IoT, DVL, Cross-DLTs, Smart application, Interoperable Layer

Document Revision History

Version Date Description of change List of contributors(s)

V1.0 31/03/2022 EC Version See Authors

EȜɸǥȴǈȜȽǳɰ

This iNGENIOUS D5.2 deliverable is not yet approved nor rejected, neither
financially nor content -wise by the European Commission. The
approval/rejection decision of work and resources will take place at the Mid -
Term Review Meeting planned in June 2022 , after the monitorin g process
involving experts has come to an end.

The information, documentation and figures available in this deliverable are
written by the "Next -Generation IoT solutions for the universal supply chain"
ṓȜ·gM·uÂąðṔ ɭɰɊȭǳǥʆṭɸ consortium under EC grant agreement 957216 and do
not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the
information contained herein.

>ɊɭʭɰȜȎȖʆ ·ɊʆȜǥǳ

© 2020 - 2023 iNGENIOUS Consortium

Project co -funded by the European Commission in the H2020 Programme

Nature of the deliverable: R*

Dissemination Level

PU Public, fully open, e.g. web V

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to iNGENIOUS project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 3 of 60

MʬǳǥʎʆȜʦǳ ðʎȽȽǈɰʭ

This deliverable describes the way iNGENIOUS implements an interoperable
layer, able to aggregate data coming from different e xisting and forthcoming
IoT technologies , analysed in the first deliverable of the Work Package 5 (D5.1) .
It gives a detailed technical description of the new solution highlighting the
addressed innovations.

Specifically, with the reference to the iNGENIOU S architecture defined in the
deliverable D2.2, this document gives a technical overview of the way the Data
Management is designed and gives specific implementation details of its first
release. It describes how the data virtualization layer (DVL) is desi gned and
developed in iNGENIOUS ensuring that different M2M platforms (Mobius
OneM2M, PI System OSIsoft, Symphony and Eclipse OM2M) can be connected,
providing the requested information to the dedicated upper cross DLT layer.
The cross DLT layer secures an d facilitates exchange of information across
multiple DLTs solutions (Bitcoin, Ethereum, IBM, Hyperledger, IOTA). Finally,
the document describes the use cases and data requirements of the IoT
application layer, including AI algorithms for predicting traff ic rates and
congestion at ports based on heterogeneous data sources along the maritime
supply chain, and a platform for remotely operating automated guided
vehicles.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 4 of 60

þǈǤȴǳ Ɋȍ >Ɋȿʆǳȿʆɸ

1 Introduction .. 9

2 IoT Application Layer .. 10

3 Smart IoT Gateway .. 14

4 Data Virtualization Layer .. 20

5 Cross -DLT Layer ... 46

6 Conclusions ... 59

7 References ... 60

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 5 of 60

«Ȝɸʆ Ɋȍ fȜȎʎɰǳɸ

FIGURE 1: EXAMPLARY END USER GUI OF FACTORY INSPECTION
APPLICATION .. 12

FIGURE 2: FUNCTIONAL BLOCKS OF SMART IOT GW ... 15

FIGURE 3: THE ABSTRACT OM2M LAYOUT. .. 16

FIGURE 4: DVL AND RELATION TO INGENIOUS USE CASES. 20

FIGURE 5: GATEIN/GATEOUT EVENTS DA TA MODEL (TRADELENS PLATFORM
[4]). ...24

FIGURE 6: VESSEL ARRIVAL AND VESSEL DEPARTURE EVENTS DATA MODEL
(TRADELENS PLATFORM [4]). ...24

FIGURE 7: SEAL REMOVED EVENT DATA MODEL (TRADELENS PLATFORM [4]).
 ... 25

FIGURE 8: LATESTGATEINEVENT RESPONSE EXAMPLE (LIVORNO SEAPORT).
 ... 26

FIGURE 9: MOBIUS SOFTWARE ARCHIT ECTURE. .. 26

FIGURE 10: TEIID QUERY ENGINE. ... 27

FIGURE 11: MOBIUS ONE M2M CO NNECTOR IMPLEMENTATION - VDB
DEFINITION FILE (.XML). ... 28

FIGURE 12: VALENCIA PORT PI DEPLOYMENT. ... 28

FIGURE 13: PI SYSTEM AND DVL INTEGRATION ... 29

FIGURE 14: SIGNALINFO API RESPONSE ... 30

FIGURE 15: SIGNALSTREAM API RESPONSE .. 30

FIGURE 16: ASSETINFO API RESPONSE ... 30

FIGURE 17: EVENTINFO API RESPONSE ... 31

FIGURE 18: DBSTRUCTURE API RESPONSE ... 31

FIGURE 19: SYMPHONY HIGH -LEVEL ARCHITECTURE .. 32

FIGURE 20: SYMPHONY INTEGRATION APPROACH ... 33

FIGURE 21: OVERVIEW OF SYMPHONY HAL ENHANCEMENTS 34

FIGURE 22: IOT TRACKING SENSOR MESSAGE FORMAT ...34

FIGURE 23: IOT TRACKING SENS OR GPS MESSAGE .. 35

FIGURE 24: PSEUDONYMIZATION MODULE ... 40

FIGURE 25: PSEUDONYMIZATION WORKFLOW .. 41

FIGURE 26: FETCHRECORD USING INTERVAL TIME AND SELECTED EVENTS .43

FIGURE 27: EXAMPLE: RETRIEVED INFO USING FETCHRECORDS WITH
SELECTED EVENT (GATEIN) ...43

FIGURE 28: FETCHRECORD USING INTERVAL TIME ONLY 44

FIGURE 29: EXAMPLE: RETRIEVED INFO USING FETCHRECORDS WITHOUT
SELECTED GATE EVENT ... 44

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 6 of 60

FIGURE 30: INTERMEDIATE COMPONENT (BRIDGE) FUNCTIONAL DIAGRAM.
 45

FIGURE 31: (A) CENTRALIZED, (B) DECENTRALIZED , (C) DISTRIBUTED
NETWORKS, [21] ... 46

FIGURE 32: JSON RESPONSE INCLUDING THE STORAGE EVIDENCE. 48

FIGURE 33: RESPONSE INCLUDING THE ADDRESS OF THE SMART CONTRACT.
 49

FIGURE 34: ATTRIBUTES OF THE RESPONSE FOR THE VERIFY METHOD. 49

FIGURE 35: POSITIVE RESPONSE USING VERIFY METHOD. 49

FIGURE 36: SWAGGER -COMPLIANT INTERFACE TO INTERACT WITH IOTA
NODE .. 51

FIGURE 37: SUPPORTED SCHEMAS/MODELS. .. 52

FIGURE 38: JWT -BASED AUTHENTICATION METHOD FOR LOGIN 52

FIGURE 39: TANGLE GRAPHIC USER INTERFACE ... 53

FIGURE 40: FV APPLICATION ARCHITECTURE ... 53

FIGURE 41: FV APPLICATION ARCH ITECTURE INTEGRATED WITH TRUST -OS 54

FIGURE 42: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN 55

FIGURE 43: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN 55

FIGURE 44: ARCHITECTURE OF THE APPLICATION INTEGRATING BITCOIN ... 56

FIGURE 45: ADMIN PANEL ... 56

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 7 of 60

!ǤǤɰǳʦȜǈʆȜɊȿɸ

AF Asset Framework
AGV Automatic Guided Vehicle
AI Artificial Intell igence
AIS Automatic Identification System
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
AR Augmented Reality
AW Approval Weight
CORBA Common Object Request Broker Architecture
DDL Data Definition Language
DLT Distributed Ledger Technology
DP Differential Privacy
DTLS Datagram Transport Layer Security
DVL Data Virtualization Layer
E2E End -to -End
ETH Ether
FDW Foreign Data Wrapper
FPC Fast Probabilistic Consensus
FPE Format Preserving Encryption
GDPR European General Data Protection Regulation
GPS Global Positioning System
GW Gateway
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HMI Human machine interface
HWK Hash Without Key
HTTPS HyperText Transfer Protocol over Secure Socket L ayer
ICT Information and Communications Technology
IN -CSE Infrastructure Node Common Service Entity
IoT Internet of Things
IP Internet Protocol
IPC Inter -Process Communication
JDBC Java DataBase Connectivity
JSON JavaScript Object Notation
KETI Korea Electronics Technology Institute
LAN Local Area Network
LiDAR Light Detection And Raging
LTE Long Term Evolution
M2M Machine -to -Machine
ML Machine Learning
MN -CSE Middleware Node Common Service Entity
MPC Multi -Party Computation
MQTT Message Queuing Telemetry Transport
NoSQL Non -Structured Query language
NB / NB -IOT Narrow Band / Narrow Band - IOT
NFV Network Function Virtualization
OCEAN Open allianCE for I oT stANdards
ODBC Open DataBase Connectivity
OPC Open Platform Communications

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 8 of 60

OPC-UA Open Platform Communications United Architecture
OSI Open Systems Interconnection
PoS Proof of Stake
PoW Proof of Work
REST Representational State Transfer
RPC Remote Procedure Call
SCADA Supervisory Control and Data Acquisition
SLA Service Level Agreement
SQL Structured Query language
VDB Virtual Database
VPN Virtual Private Network
VR Virtual Reality

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 9 of 60

1 uȿʆɰɊǬʎǥʆȜɊȿ

1.1 ÂǤȭǳǥʆȜʦǳ Ɋȍ ʆȖǳ EɊǥʎȽǳȿʆ
This deliverable (as part of the milestone MS18) describes how iNGENIOUS
Data Management Platform is designed , providing and describing technical
details of its first release (baseline of the framework). The propos ed solution
consists of different layers (e.g., M2M layer, Data Virtualization layer, cross -DLT
layer and Smart Applications layer) that are described according to the
roadmap of the project for the demonstration and validation of its use cases.

The main outcome of the deliverable will be used as a baseline for the
implementation of the final version of the proposed platform for data
management (as part of the WP5 activities) as well as for the intermediate
demonstration of iNGENIOUS innovations as fo reseen by the activities of the
T6.3 Ṝ Trials and Validation.

1.2 ðʆɰʎǥʆʎɰǳ Ɋȍ ʆȖǳ EɊǥʎȽǳȿʆ
This deliverable is organized in four main sections, briefly described below:

¶ Section 2 - IoT Application layer: outlines the IoT applications implemented
in the project use cases, focusing mainly on port operations. The main
application areas are AI algorithms for predicting traffic rates an d
congestion at the port based on heterogeneous data sources along the
maritime supply chain, and a platform for remotely operating automated
guided vehicles in the port area using a variety of sensors and actuators in
the vehicle and remote operation stat ion.

¶ Section 3 - Smart IoT Gateway : introduces the Smart IoT Gateway (GW), a
physical element with multiple interfaces that allows end -to -end M2M
communication . Its main responsibility is to ensure correct and secure
routing of messages between the sensors or any other deployed IoT
devices, and M2M interfaces to the interoperable layer.

¶ Section 4 - Data Virtualization Layer : describes the deployment of the
Data Virtualization Layer (DVL), its integration with external data sources
(OneM2M platform , Tuscan Port Community System and
Pseudonymization Function) and data consumers (Cross-DLT layer and AI-
driven Smart Port and Shipping Platform). It is also describe d how to
represent maritime events by implementing a set of views and/or
procedures (GateIn, GateOut, Vessel Arrival and Vessel Departure) . Finally,
data protection is addressed by the implementation of a function for data
anonymization (from the IoT solutio n providers).

¶ Section 5 - Distributed Ledger Technologies: This section introduces the
Cross-DLT layer, a software component connected to multiple Distributed
Ledger Technologies (Bitcoin, Ethereum, HyperLedger Fabric and IOTA) .
The purpose of this layer is to record short evidence of key information
coming from the DVL and to verify agains t any DLT network , that is part of
the Cross -DLT integration , the truthfulness of recorded data. Furthe rmore,
technical details related to a common API implementation are also
described.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 10 of 60

ᶢ uɊþ !ɭɭȴȜǥǈʆȜɊȿ «ǈʭǳɰ

The IoT application layer focuses mainly on applications related to port
operations. These include AI algorithms for predicting traffic rates an d
congestion at the port based on heterogeneous data sources along the
maritime supply chain, and a platform for remotely operating automated
guided vehicles in the port area using a variety of sensors and actuators in the
vehicle and remote operation stat ion. In the following sections we outline the
functionalities and main data requirements of these applications.

ṁɡᶡ !u ǈȴȎɊɰȜʆȖȽɸ
AI algorithms developed in Use Case 5 focus on modeling and predicting the
effects of vessel port calls and related cargo ope rations on truck traffic rates
and congestion. These are developed based on data collected from the ports
of Valencia and Livorno. The developed AI system consists of multiple
component models predicting different subsets of the related processes. The
main targets for model development include the following:

¶ Vessel arrival time prediction

¶ Operations prediction, including e.g.

o Operation durations (discharge, loading)

o Cargo exchange volumes

o Cargo exchange modalities (e.g. which containers exit the port by truck)

¶ Simulating and predicting cargo and hinterland traffic rates

¶ Simulating and predicting truck turnaround times at the port

These require multiple historical data sets for model development and
Machine Learning (ML) model training, and sources of cur rent information for
online prediction service deployment. In the following subsections we outline
the related historical data requirements and needs for data integrations for
up -to -date data.

ṁɡṁɟᶡ Eǈʆǈ ɰǳɯʎȜɰǳȽǳȿʆɸ ȍɊɰ ȽɊǬǳȴ ǬǳʦǳȴɊɭȽǳȿʆ

Sufficient historical reference data sets are needed for development and
testing of algorithms and ML models used for predicting future events. In the
target AI system, stochastic and machine learning -based models are applied,
which generally require larg e datasets to allow optimizing the accuracy of
their output. Furthermore, distinct datasets describing events in different
stages of cargo flow through the port need to contain sufficient identifiers to
allow data integration (e.g. it is necessary to link vessels to port calls, container
operations to port calls, and truck events to container operations). Sensitive
identifiers such as truck license plate numbers can be obfuscated, but the
available identifiers should still enable consistent tracking of the resources on
a general level. Identified data sets for model development include the
following:

¶ Vessel tracking data collected from the global Automatic Identification
System (AIS)

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 11 of 60

¶ Vessel port call history, including vessel particulars and cargo exchange
information

¶ Operations data, e.g., container discharge and load events

¶ Truck and container entry and exit events

¶ Other related information such as weather measurements

ṁɡṁɟᶢ Eǈʆǈ ɰǳɯʎȜɰǳȽǳȿʆɸ ȍɊɰ ɸǳɰʦȜǥǳ ǬǳɭȴɊʭȽǳȿʆ

Generally, data requirements for operati ng the developed models with
current data may differ from the data needs during model training. In the
ideal case, less data is needed to perform predictions, and potentially sensitive
data such as specific container or truck tracking information is not ne eded.
Precise service data requirements depend on the outcomes of the model
development, but at least the following current data is expected to be needed:

¶ Live global AIS positional and metadata

¶ Current planned port calls, including vessel details, planned arrival and
departure times, berthing locations

Additional data inputs which may be useful for improving prediction accuracy
or monitoring the predictions results include:

¶ Cargo exchange information per port call (e.g. numbers of containers to be
discharg ed or loaded, distribution of container volumes by hinterland
carrier type)

¶ Live gate events (truck and container entries and exits)

¶ Weather sensor data.

ṁɡᶢ uȿǬʎɸʆɰȜǈȴ ỡ þǈǥʆȜȴǳ uɊþ ǈɭɭȴȜǥǈʆȜɊȿɸ
As wireless communication infrastructure becomes widely available in
industrial sites, the sensors and actuators within factory plants can be
regarded as available manufacturing resources that can be programmed to
produce specific products according to particular specifications. After the
production of a determined number of pieces or after identification of possible
product improvements, the resources should be easily rearranged to continue
the production with the new specific requirements. In contrast, the current
production lines are built to perform r epetitive tasks without flexibility. For
realizing such flexible production technique, a software abstraction from the
actual physical devices has to be designed. This conceptual abstraction is
defined as industrial & tactile application programming interf ace (API). In
short words, the industrial & tactile API consists of a set of functions that
enable the application developer to get data in and out of the system in a
unified framework. Within this context, first a set of common functionalities
have been i dentified has an essential part of the API that enables the user
defined applications to exchange data easily and securely. The industrial &
tactile API has to provide different levels of abstraction. Three levels can be
identified as (i) end user application development API, which gives the end
user simple and easily comprehensible graphical interface for instantiating
new applications, and presents data in a format that is understandable by the
end user; (ii) mid -level function library, which cont ains functions that do not

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 12 of 60

need to be directly used by the end user, such as an object detection
algorithm; and (iii) low -level API that contains functions for data packets
formatting and specification of communication link parameters given the
requirement s given by the end user.

The following subsections describes an exemplary set of functionalists for an
industrial application within the context of industry 4.0.

In AGVs UC an E2E platform is developed for remotely controlling automated
guided vehicles (A GVs) in the port area. The primary motivation for enabling
ɰǳȽɊʆǳ ɊɭǳɰǈʆȜɊȿ Ȝɸ ʆɊ ȜȽɭɰɊʦǳ ʆȖǳ ǬɰȜʦǳɰṭɸ ɸǈȍǳʆʭ Ǥʭ ǈʦɊȜǬȜȿȎ ɭɊɸɸȜǤȴǳ
hazardous situations related to operating in industrial areas. This is achieved
by designing a complete IoT system which enab les the vehicle operator to
have continuous situational awareness of the vehicle status and surrounding
environment and enables real -time communication of necessary control
signals to operate the AGV safely.

ṁɡɡṁᶡ !ɭɭȴȜǥǈʆȜɊȿ ǳʬǈȽɭȴǳḻ fǈǥʆɊɰʭ ȜȿɸɭǳǥʆȜɊȿ

Wi thin Factory UC , factory inspection is defined as an application where an
autonomous guided vehicle (AGV) travels along a predefined track with
camera and sensors integrated. The video and environmental information
collected by the AGV are sent to a remote user that monitors the factory site.
The quality of the video can be specified at the beginning of the application
by the user. The graphical user interface from such application is illustrated in
Figure 1. This example will be illustrated within the iNGENIOUS Factory UC .

FIGURE 1: EXAMPLARY END USER GUI OF FACTORY INSPECTION APPLICATION

The identified functionaliti es that have to be available from the industrial &
tactile API are:

¶ ðʆǈɰʆḼ ɸʆɊɭ ǈȿǬ ǈǬȭʎɸʆ ʆȖǳ !gĝṭɸ ɸɭǳǳǬ

¶ Transfer the measurements from the AGV to end user

¶ >ǈɭʆʎɰǳ ǥʎɰɰǳȿʆ ȜȽǈȎǳ ȍɰǈȽǳ ǈȿǬ ɸʆɊɰǳ Ȝȿ ʎɸǳɰṭɸ Ǭǈʆǈ Ǥǈɸǳ

¶ þɰǈȿɸȍǳɰ !gĝṭɸ ɭɊɸȜʆȜɊȿ ʆɊ ǳȿǬ ʎɸǳɰ

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 13 of 60

¶ Tran slation of MANO resource allocation to PHY parameters

The identified connection types of the devices are:

¶ AGV: UDP frames/JSON

¶ Camera: UDP frames

ṁɡṁɡᶢ Eǈʆǈ ɸɊʎɰǥǳɸ ǈȿǬ ɰǳȴǈʆǳǬ ɸʭɸʆǳȽ ǥɊȽɭɊȿǳȿʆɸ

The IoT system consist of IoT sensors, IoT actuators, IoT signals and an IoT
interface. The components related to these subsystems are as follows:

¶ IoT sensors:

o AGV:

Á Depth camera: provides a depth image to detect near obstacles

Á LiDAR: provides a scan of the vehicle surroundings

Á IMU: provides velo city and orientation of the vehicle

Á Cameras: provides a 360 real time video of the vehicle surroundings

o Remote cockpit:

Á Wheel, pedal and gear: capture the driving movements performed by
the operator

Á Glove: captures the hand movements made by the operator

¶ IoT actuators:

o AGV:

Á µɊʆɊɰ ǬɰȜʦǳɰɸḻ ǈǥʆʎǈʆɊɰɸ ʆɊ ȽɊʦǳ ʆȖǳ ʦǳȖȜǥȴǳṭɸ ʧȖǳǳȴɸ

o Remote cockpit:

Á VR glasses: where the VR app is displayed

Á Glove: transmits tactile information (vibrations) to the operator

¶ IoT signals:

o Obstacle avoidance signal: from LiDAR and Depth camera to VR glasses
application and glove

o Driving commands signal: from wheel, pedals and gear to AGV drivers

o Video retransmission signal: from cameras to VR glasses

¶ IoT interface:

VR application: an immersive virtual reality application is designed in order to
recreate an ordinary driving view. IoT real time parameters are displayed on
the dashboard to keep the operator informed about velocity, latency, battery,
etc .

In summary, t he operation of the tactile internet requires defining int erfaces
for communication between devices, access to the network, interaction with
the computation engines, and implementation service management.
The refore, the network techniques should be flexible , since t he goal is to
provide a similar experience for the application developer as programing on
computer by abstracting the hardware and network functio nalities.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 14 of 60

ᶣ ðȽǈɰʆ uɊþ gǈʆǳʧǈʭ
In this section, we present the development activities in order to create a
workflow allowing to receive (sensor) data from different sources via different
means of communication and transforms, interprets and routes this data in a
unified way via different routes to a central cloud M2M infrastructure. The
main challe nge to overcome was how to implement a system that handles
network traffic via multiple routes, that can be manipulated on application
layer, while still keeping it transparent to the data flow of the system and
meeting the requirements of security and con fidentiality. This has been
achieved by using a n oneM2M compliant system in combination with
encrypted VPN connections and layered HTTP reverse proxies. oneM2M
defines a standardized, HTTP(S) based communication framework, which is
routed through configure d VPN connections to reach the cloud M2M server.
The VPN connections add layers of security and confidentiality on top of the
oneM2M communication and abstract from complex network topology
between the Smart IoT Gateway and the cloud infrastructure. Having reverse
proxies at each end of the VPN connections gives the possibility to select the
desired route, based on decisions taken by other components of the system
(i.e., the rule engine).

3.1 ðǳȿɸɊɰ Ǭǈʆǈ ɰǳʆɰȜǳʦǈȴ ǈȿǬ ɰɊʎʆȜȿȎ ʆɊ
ȖȜȎȖǳɰ ȴǳʦǳȴɸ

The proliferation of small, interconnected devices has caused the appearance
of multiple new technologies related to the IoT world. For this reason, it makes
sense to introduce a new device to provide interoperability between different
groupings of IoT devices (i.e., in th e form of independent mesh networks) and
logical higher -level systems. The Smart IoT Gateway (GW) is a physical
element with multiple interfaces that allows end -to -end M2M
communication, having as main responsibility to ensure correct and secure
routing of messages from the sensors or any other deployed IoT devices and
M2M interfaces to interoperable layers. To achieve this goal and other sub -
goals that are not obvious at first glance, the following requirements need to
be met :
¶ Communication integrity : to e nsure no data is lost or modified during the

message transmission or reception.
¶ Message translation : to ensure compatibility between different formats

and protocols.
¶ Secure link : to ensure a confidential connection to avoid eavesdropping on

messages .
¶ Resilience : to mitigate connectivity outages or any other non -nominal

behaviors.
¶ Flexibility : to allow the interconnection of multiple physical interfaces.
To achieve these requirements, the Smart IoT GW has been divided into
functional blocks with an implementation that isolates them as independent
containers, following a philosophy similar to micro -services architecture. The
blocks are presented in Figure 2.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 15 of 60

FIGURE 2: FUNCTIONAL BLOCKS OF SMART IOT GW

The following services are available in the Smart IoT GW:

¶ Management : management of the GW includes the current status of the
device, internal configuration, local logs and firmware update. It will also
include some limited control over the subsystems.

¶ Data storage : databases (time series and NoSQL). All data coming from the
sensor space is time stamped and stored i n a time series database that has
the capacity of performing some operations such as data aggregation,
statistical calculations, and time consolidation (i.e., decimate values and
down -sample the data).

¶ Data transformation : message translation between forma ts and protocols.
This does not include just direct or indirect mapping of fields, but also this
service will encapsulate related messages coming from independent
sources and perform compression when possible.

¶ Routing : incoming message routing through the gateway to a different
interface, following predefined rules, respecting priorities and in a secure
way.

An Application Programming Interface (API) is available for external
interoperability and automation. A user -friendly Human -Machine Interface
(HMI) is provided for local data monitoring.

In this document, this section will only focus on the description of the Smart
IoT GW data transformation and routing, and how Smart IoT Gateway will
interface with the M2M space.

ṁɥᶡṁᶡ ðȽǈɰʆ uɊþ gĞ uȿʆǳɰȍǈǥǳɸ Ṝ µᶢµ ðɭǈǥǳ uȿʆǳɰȍǈǥǳɸ

This section describes how the Smart IoT Gateway will interface with the M2M
space, where the M2M space is the set of interfaces with all OM2M servers. The
interfaces of the Smart IoT GW with the sensors have been described in D4.2
and they are not part of this document.

The Smart IoT GW interfaces with the M2M space through a local MN -CSE
instance (Middleware Node Common Service Entity) implemented as Eclipse
OM2M [1] in compliance with the oneM2M standard. The software instance is
running on the gateway itself and Ṝ depending on rules and routes Ṝ the
ɸǳȿɸɊɰ Ǭǈʆǈ Ȝɸ ɭʎɸȖǳǬ Ǥʭ ʆȖǳ Ȏǈʆǳʧǈʭṭɸ ɰɊʎʆȜȿȎ ǳȿȎȜȿǳ ʆɊʧǈɰǬɸ ʆȖǳ ȴɊǥǈȴ >ðMṁ

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 16 of 60

Foll owing the oneM2M standard, the MN -CSE local to the gateway
communicates the retrieved data with the central IN -CSE (Infrastructure
Node Common Service Entity), which is hosted in the SES Cloud space. This
communication is performed over the respective rout e (Satellite, Terrestrial,
«ɊǥǈȴṔ ɭɰǳʦȜɊʎɸȴʭ ɸǳȴǳǥʆǳǬ Ǥʭ ʆȖǳ Ȏǈʆǳʧǈʭṭɸ ɰɊʎʆȜȿȎ ǳȿȎȜȿǳṁ To ensure
confidentiality and integrity of the transported data, all communication
between the MN -CSE in the gateway and the IN-CSE in the cloud space relies
on encrypte d HTTP traffic (HTTPS) and additionally, is routed through a secure
VPN tunnel, allowing only external instances with a valid VPN client
configuration to connect to the M2M cloud space .

In the figure below it is shown an example use case where each ship ho sts a
MN -CSE inside its dedicated smart IoT gateway, to which the sensor devices
(here: arduinos) connect as application entities (ae). On the opposite site, the
CSEs also connect to the cloud based IN_CSE to consume the published data
and perform actions accordingly .

FIGURE 3: THE ABSTRACT OM2M LAYOUT.

External M2M applications which need to request data from the M2M cloud
space, connect to the IN -CSE through a dedicated public IP, with a firewall
managing access to specified IP sources only. The above diagram depicts the
abstract layout from an OM2M perspective, where actuators as part of an
external use case (here: UC6) perform actions, based on data from the M2M
cloud space, published by the Smart IoT Gateway(s) .

To complement the oneM2M compliant interface, which only provides a
predefined number of most recent values per sensor, the sensor data will also
be stored inside a separate timeseries database in the cloud infrastructure. A
separate, generic RESTful HTTP A PI will be available, allowing to fetch the full
history of sensor data on demand. This REST interface will be provided at a
later stage of the project.

Since all data extracted from sensor messages also stored in a local timeseries
database of each Smart IoT Gateway, it should be avoided to keep additional
copies of that data, in order to reduce the amount of required physical storage
capacity of each Smart IoT Gateway instance. For this reason, all data
published to the M2M space is immediately pushed tow ards the M2M cloud
IN-CSE and not stored on the local MN -CSE instance, making the IN -CSE act
as a central collection point for all most recent sensor data in the system.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 17 of 60

Additionally, this approach avoids extensive traffic load, especially regarding
the sa tellite link, from the cloud towards the Smart IoT Gateway, which could
be generated by external entities requesting data through the cloud -space
directly from the gateway. This is considered an acceptable limitation of the
system, since the functional dis advantages caused by this approach are
outweighed by reduced networking complexity and the advantages
mentioned previously. The main functional drawback being that real -time
sensor data cannot be requested on -demand, which can be neglected, since
the senso rs are expected to publish their data only periodically in a defined
time interval.

ṁɥᶡṁᶢ ðȽǈɰʆ uɊþ gĞ Eǈʆǈ èɊʎʆȜȿȎ

This section gives a brief description of the parameters and rules identified for
the Smart IoT Gateway to perform adequate routing of sensor messages to
the M2M cloud infrastructure.

These rules only provide a baseline and shall be used to further define the
actual final routing rules to be implemented in future iterations of the project.

Route parameters

The following four parameters have been selected to determine the quality
rating of the routes:

¶ Latency: a simple ping measurement in milliseconds to determi ne how
long it will take for a message to reach the cloud target.

¶ Loss rate: using packet loss as a stability measurement in percent to
determine the likelihood of a message being lost on the way to the cloud
target.

¶ Cost: an arbitrary number {1:10}, ident ȜȍʭȜȿȎ ȖɊʧ ṪǳʬɭǳȿɸȜʦǳṫ ǳǈǥȖ ȽǳɸɸǈȎǳ
will be when sent over the respective route.

¶ Availability Ṝ A logical -value (0 = DOWN, 1 = UP), identifying, whether a rou te
is available or not

Route types

The following three types are used to categorize the routes ava ilable to the
gateway:

¶ LAN: local area network connections. This type of route is mostly very cost
efficient and has low latency and loss rates

¶ Terrestrial: 4G/LTE/5G connections. This type of route is considered slightly
more costly than LAN and has sligh tly higher latency

¶ Satellite: internet connection via a satellite terminal, using geostationary
satellites, which is constantly available and should only be used when none
of the other route types are available. This type of route has the highest cost
as w ell as the highest latency

The loss rate of a route is mostly important in the transfer zone between
terrestrial and satellite connections, as there the stability of the terrestrial
connection gradually decreases with increasing distance from the shoreline .

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 18 of 60

Message priority and parameter weight

As not all information sent through the gateway is equally important, each
message shall be categorized with one of three priority groups. For each of
these priority groups, the aforementioned parameters shall receive different
weights in the final calculation o f the ratings of the available routes.

¶ Low priority: less important, repetitive messages, e.g., sensor readings,
ʧȖȜǥȖ ǥɊȿɸʆǈȿʆȴʭ ɸǳȿǬ ʦǈȴʎǳɸ Ȝȿ ʆȖǳ ǳʬɭǳǥʆǳǬ ṪȿɊȽȜȿǈȴṫ ɰǈȿȎǳ ȍɊɰ ʆȖǳ
sensor.
o For these messages, the cost of a route should have the highest weight

and loss rate as well as latency, shall be less weighted, as a message loss
or a delay is not critical to the system.

¶ µǳǬȜʎȽ ɭɰȜɊɰȜʆʭḻ ȽǳɸɸǈȎǳɸḼ ʧȖȜǥȖ ʆɰǈȿɸȽȜʆ Ǭǈʆǈ ɊʎʆɸȜǬǳ ʆȖǳ ṪȿɊȽȜȿǈȴṫ
range, e.g., temporary fluctuations in temperature or short outages in GPS
signal
o Here, the loss rate is more important than with low priority messages.

Cost is still quite high weighted, as there might only be a temporary issue
¶ High priority: very important messages, communicating critical states of

the moni tored container, e.g., an opened door or a fire within the container
o For high priority messages, cost is the least weighted parameter and loss

rate the highest weighted one, as the system shall en sure, the message
does arrive in the cloud server

The messag e priority shall be provided by the sensor itself and is to be
extracted from the message payload by a numeric identifier (e.g., 0=low,
1=medium, 2=high).

Calculation of the route rating

Each of the configured routes is periodically monitored and the gathe red
information is used to update the current rating of each route for each of the
three message types. This allows the gateway in the event of an arriving
message to simply compare the route ratings for the identified message type
and select the best rate d route as the target route.

The route rating matrix is calculated, according to the following
formula:

Ὑὶȟά ὃᶻ
ρ

ὠȟ ὛzὊ
ὡzȟ ȟύὬὩὶὩ ὃ ᶰπȟρȟὠȟᶰᴙ ȟὛὊɴ ᴙ ȟὡȟ

ᶰρȢȢρπ

Explanation of the above formular, Ò identifying the route type and Í
identifying the message type
¶ ! is the availability of the route Ò
¶ 6ȟ is the current value of the parameter Ð on the route Ò
¶ 3& is the scaling factor for the parameter Ð
¶ 7 ȟ is the we ight of the parameter Ð for the message type Í

The scaling factor shall be used to equalize the effective value ranges of each
individual route parameter. Latency is expected to range from 50ms up to
800ms, whereas loss rate will range from 0% to 100% and cost will be an
arbitrary number from 1 to 10. Thus, reasonable scaling factors could be 0.1 for
latency, 1 for loss rate and 10 for cost. Under this assumption, the weight can

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 19 of 60

be used as the single factor that determines the importance of a parameter
on a given route. The current value is defined as 6ȟᶰ2 , which excludes 0 -
values for avoiding division by zero . However, for parameters which may have
0-values (for example in the case of packet loss), shall include slight
corrections in their measurements t o avoid 0 -value assignments.

For a given message type, the route with the highest rating is to be selected
as the target route. As the availability of a route is added as a 0/1 factor to the
sum, an unavailable route will always have a rating of 0, ensuring that it will
never be selected .

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 20 of 60

4 Eǈʆǈ ĝȜɰʆʎǈȴȜʷǈʆȜɊȿ «ǈʭǳɰ
iNGENIOUS exploits the use of different M2M platforms, which are adopted by
different supply chain stakeholders for collecting and storing raw data in
maritime. On top of these data silos, the project envisages the
implementation of a layer based on a Data Virtualization approach (Data
Virtualization Layer, DVL), which will act as a federated and interoperable IoT
layer for different M2M platforms as well as data sources (e.g., PCS) by
providing shared access, management, and reading and writing capabilitie s
to different entities (e.g., TrustOS, MANO Platform, Awake.AI platform) while
ensuring security and privacy aspects following a role -based approach and
applying pseudonymization techniques when needed.

From this perspective, Data Virtualization interope rability layer enables the
federation of different IoT platforms across heterogeneous domains,
overcoming the integration issues between both standard and non -standard,
proprietary and custom M2M solutions widely used within the industry 4.0
verticals.

In the context of iNGENIOUS project, Data Virtualization Layer is used as a
cross -UCs component by retrieving data from the underlying data sources
and making them available to data consumers (pseudonymization module,
TrustOS, Awake.AI platform, MANO platform Ḽ ǬǈɸȖǤɊǈɰǬ ȍɊɰ ʆɰʎǥȰɸṭ ʆɰǈǥȰȜȿȎṔṁ

FIGURE 4: DVL AND RELATION TO INGENIOUS USE CASES.

The interoperability layer (based on DVL and Cross -DLT layer) is expected to
be validated by means of a limited set of use cases within the pro ject, namely
the Situational Understanding and Predictive Models in Smart Logistics, Inter -
Model Asset Tracking Via IoT and Satellite and Supply Chain Ecosystem
Integration.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 21 of 60

As a matter of fact, t he main aim of the UC6 implementation and validation is
to test the interoperability between machine -to -machine and DLT domains
throughout a centralized approach for data retrieval, access, processing and
handling by means of Data Virtualization. By enabling these data flows then ,
DLT's capabilities are exploited to guarantee data existence and data
immutability.

However, its potential goes beyond the selected application fields. From an
architecture perspective, the interoperability layer can be also used in cross
use -case scenarios, providing new data management capabilities for end
users. The DVL suits fine for data lake management, regardless of the
underlying physical layer, including physical devices and connectivity
resources. For this reason, the DVL can act as a collector for data coming from
different data sources and related to different application domains such as
transportation, asset tracking, smart factories, and logistics. Once data have
been collected, processed, and aggregated by DVL according to supported
data, the Cross -DLT layer ensures secure ev ents management by means of
different available DLTs.

In this chapter, the main development and integration approaches involving
Data Virtualization Layer component are presented and discussed by
describing the underlying machine -to -machine layer including different M2M
platforms brought by the project in order to clarify how such platforms are
used in the scope of different use cases and what kind of data are managed.

ṁɨᶡ Eĝ« uȿʆɰɊǬʎǥʆȜɊȿ
Data Virtualization is an advanced approach to data integration. Data
Virtualization can be considered as an easier way to integrate, federate and
transform data coming from multiple data sources into a single and unified
environment in real -time. It is not about collecting data from different data
sources but connectin g them and leveraging data warehouses, data lakes or
different data infrastructures already in place . In the scope of the iNGENIOUS
project, we relied on Teiid v16.0 platform [2] an open -source implementation
of the data virtualization concept. Teiid is a flexible Java -based tool that
provides integrated access to multiple data sources through a single and
uniform API, so that applications can access information using standard
interfaces such as JDBC, ODBC, OData or REST. This approach is relevant in
those cases, like iNGENIOUS, when the information resides in multiple
heterogenous data sources, including sources that do not support standard
query lang uages and formats. It is not a database management system: it
does not store any data and it acts as a data gateway for accessing data in an
optimal manner .

ṁɨṁɟ ɟþǳȜȜǬ ǬǳɭȴɊʭȽǳȿʆ Ȝȿ ǈ ɸʆǈȎȜȿȎ ǳȿʦȜɰɊȿȽǳȿʆ

Teiid is foremost an extensible Java project. The re are several options to utilize
it. In the scope of iNGENIOUS project, we relied on WildFly -based
implementation (integration of Teiid into WildFly Java Application Server [3]).
This configuration provides robust and well documented options for
transaction management, connection pooling, security configuration,

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 22 of 60

resource management, clustered deployment and data access policies
management .

First of all, we deployed a local instance of WildFly server as well as Teiid
platform in a staging environment in the Port of Livorno, hosted in a dedicated
virtual machine with the following technical specifications :

¶ CPU host AMD EPYC 7281 with 4 core.
¶ 8GB of RAM.
¶ 100GB of storage space.
¶ Ubuntu 20.04 Server as the main operating system.

The DVL instance (Teiid v.16.0.0) has been then properly configured (on top of
JBoss WildFly Application Server v.19.1.0) using a docker image. The
deployment has been tested using JBoss con sole and the relative virtual
databases by means of SQL client (SQuirreL).

The considered node will be accessible, up and running until the end of the
project so that involved partners will be provided with access capabilities to
relevant data.

ṁɨᶡṁᶢ þǳȜȜǬ ȜȿʆǳȎɰǈʆȜɊȿ ʧȜʆȖ ǈʦǈȜȴǈǤȴǳ Ǭǈʆǈ ɸɊʎɰǥǳɸ ǈȿǬ ǳʬʆǳɰȿǈȴ
ǈɭɭȴȜǥǈʆȜɊȿɸ

In the context of iNGENIOUS project, Teiid is expected to be used as an
intermediate layer for data access according to a given set of data sources as
well as applications, brought by th e partners from the consortium.

On one side we identified the following data sources to be used to fed DVL
with relevant data:

¶ Mobius OneM2M Standard Platform: a M2M platform, based on oneM2M
standard implementation, for meteorological data collection, pro cessing
and storage currently used in Livorno seaport. The historical data are
expected to be consumed by AI -driven Smart Port and Shipping Platform
by means of an interface.

¶ Eclipse OM2M Platform: a M2M platform which is expected to be used for
collecting data coming from distributed IoT devices installed on the
container to be transported by COSCO ship line (data are expected to be
collected by means of the Smart IoT Gateway). In this case, data coming
from the sensor monitoring the status of the containe r door will be used to
feed the DVL component so that Seal Removal event can be considered at
TrustOS level.

¶ Symphony M2M Platform: a M2M platform that is expected to be used for
Ǭǈʆǈ ǥɊȴȴǳǥʆȜɊȿḼ ɭɰɊǥǳɸɸȜȿȎ ǈȿǬ ɸʆɊɰǈȎǳ Ȝȿ ʆɰʎǥȰɸṭ ʆɰǈǥȰȜȿȎ ɸǥǳȿǈɰȜɊṁ Eĝ« ʧȜȴl
be then used to retrieve such data allowing an external user dashboard to
visualize them in a user -friendly manner.

¶ PISoft M2M Platform: a M2M platform used in Valencia seaport for
collecting and storing gates access data. By integrating this platform w ith
DVL, we will be able to define GateIn, GateOut, Vessel Arrival and Vessel
Departure events to be stored on TrustOS for the case of Valencia seaport.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 23 of 60

¶ Tuscan Port Community System: the main Port Community System used
in Livorno seaport for GateIn, GateOu t, Vessel Arrival and Vessel Departure
data provisioning.

¶ Valencia Port Community System: the main Port Community System used
in Valencia seaport for Vessel Arrival and Vessel Departure events definition
as well as implementation.

On the other side, we id entified the following set of applications (consumers)
that are expected to be used to consume aggregated data at DVL level.

¶ TrustOS: a Cross -DLT solution which extracts relevant data from DVL (e.g.,
vessel arrival, vessel departure, gate in, gate out, seal removal, etc.), converts
them in a digital asset and distributes Trust Points across available DLTs:
Bitcoin, Ethereum, IOTA and HyperLedger Fabric. Trust Points can be then
used to guarantee the proof -of -integrity.

¶ AI-driven Smart Port and Shipping P latform: a smart IoT application that
ǥɊȿɸʎȽǳɸ Ǭǈʆǈ ɰǳȴǈʆǳǬ ʆɊ ʦǳɸɸǳȴɸṭ ǈȿǬ ʆɰʎǥȰɸṭ ʆɰǈȍȍȜǥḼ ɭɊɰʆ ǥǈȴȴɸ ǈȿǬ
meteorological conditions at Port of Valencia and Livorno. The main
purpose of this integration is to guarantee a predictive model development
for t ɰʎǥȰɸṭ ȍȴɊʧɸ Ȝȿ ǤɊʆȖ ɸǳǈɭɊɰʆɸ Ǥʭ ǥɊȿɸʎȽȜȿȎ ȖȜɸʆɊɰȜǥǈȴ Ǭǈʆǈ ȍɰɊȽ Eĝ«ṁ

¶ Pseudonymization Module: a function allowing to detect personal data and
pseudonymize them according to available pseudonymization techniques
such as Format Preserving Encryption (FPE), Hash Without Key (HW K),
Hashing with static key or BLURRING. In the scope of the iNGENIOUS
ɭɰɊȭǳǥʆḼ ʆȖǳ ʆɰʎǥȰɸṭ ɭȴǈʆǳ ȿʎȽǤǳɰ Ȝɸ ǥɊȿɸȜǬǳɰǳǬ ǈɸ ʆȖǳ ɭǳɰɸɊȿǈȴ ǬǈʆǈḼ ɸɊ ǈ
pseudonymization method is applied accordingly. Once personal data are
detected, a pseudony m is created and the main correspondence between
ṪɭȴǈȜȿṫ ǈȿǬ ṪɭɸǳʎǬɊȿʭȽȜʷǳǬṫ Ǭǈʆǈ Ȝɸ ɸʆɊɰǳǬ ʧȜʆȖȜȿ ǈ ȴɊǥǈȴ ǬǈʆǈǤǈɸǳ
management system (MongoDB) so that AI -driven Smart Port and
Shipping Platform can consume historical data throughout the DVL for
data analy sis activities.

¶ Cross-layer MANO Platform: the iNGENIOUS network slice management
and orchestration software stack that is expected to be integrated with DVL
to collect relevant data for the runtime optimization of network services
and slices. The main aim of this integration is to enable reactive and
proactive adaptation of network slice and service instances based on both
application -level (and possibly) network related data collected from the
DVL

ṁɨᶡṁᶣ þǳȜȜǬ ǈȿǬ ȽǈɰȜʆȜȽǳ ǳʦǳȿʆɸ ǬǳȍȜȿȜʆȜɊȿ

In order to com e up with a commercially standardized way to define maritime
ǳʦǳȿʆɸ ɸʎǥȖ ǈɸ gǈʆǳuȿḼ gǈʆǳÂʎʆḼ ʦǳɸɸǳȴ ǈɰɰȜʦǈȴḼ ʦǳɸɸǳȴ Ǭǳɭǈɰʆʎɰǳ ǈȿǬ ǥɊȿʆǈȜȿǳɰṭɸ
seal removal, we relied on event data model adopted by Tradelens platform
[4] . Tradelens is a blockchain -based platform allowing end users to securely
store and exchange data between them (e.g., carriers, ports, terminals,
customs, etc.).

We could have relied on a custom data model for the definition of such events
but the current approach allows us to extend interoperability capabilities of
the iNGENIOUS cross -DLT layer by making it (in principle) compliant with
commercial blockchain -based platforms such as Tradelens. According to this

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 24 of 60

data model, the maritime events have the following data structures that have
been implemented at DVL level :

FIGURE 5: GATEIN/GATEOUT EVENTS DATA MODEL (TRADELENS PLATFORM [4]).

FIGURE 6: VESSEL ARRIVAL AND VESSEL DEPARTURE EVENTS DATA MODEL (TRADELENS PLATFORM
[4]).

GateIn, GateOut, Vessel Arrival and Vessel Departure events are part of the
demonstration of both UC5 and UC6, while seal removal event is under
assessment (the data model is defined but further investigation is requi red to
understand what kind of data would be available from a smart IoT device
installed on the container) as part of the UC4 and its relative model can be
seen in the figure below (sealRemoved event from Tradelens platform [4]):

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 25 of 60

FIGURE 7: SEAL REMOVED EVENT DATA MODEL (TRADELENS PLATFORM [4]).

According to this data model, four different procedures have been
implemented on DVL after the identification of the main data sources to be
used for data retrieval:

¶ LatestGateInEvent : when invoked, allows to retrieve the latest occurred
gate -in event. This procedure will be used by the TrustOS -based Cross -DLT
layer.

¶ LatestGateOutEvent : when invoked, allows to retrieve the latest occurred
gate -out event. This procedure will be used by the TrustOS -based Cross -
DLT layer.

¶ HistoricalGateInEvent : when invoked, allows to retrieve historical gate -in
events. This procedure will be used by the pseudonymization module.

¶ HistoricalGateOutEvent : when invoked, allows to retrieve historical gate -
out events. This procedure will be used by the pseudonymization module.

¶ LatestVesselArrivalEvent : when invoked, allows to retrieve the latest
occurred Vessel Arrival event, according to the eventSubmissionTime8601
attribute.

¶ LatestVesselDepartureEvent : when invoked, allows to retrieve the latest
occurred Vessel Departure event, according to the
eventSubmissionTime8601 attribute.

¶ HistoricalVesselArrivalEvent : when invoked, allows to retrieve the whole
set of historical data for the Vessel Arrival event.

¶ HistoricalVesselDepartureEvent : when invoked, allows to retrieve the
whole set of historical data for the Vessel Departure event.

The above -mentioned procedures allow to retrieve gate -in and gate -out data
for the case of Livorno seaport: the same procedur es will be also implemented
for the case of Valencia seaport according to available data sources (e.g., the
port community system and machine -to -machine platform). During the
second half of the project, we expect to implement also procedures for the
vessel arrival and vessel departure events for both seaports.

In order to interact with DVL by invoking the available set of procedures, a
REST interface from OData (an open protocol to allow the creation and

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 26 of 60

consumption of interoperable RESTful APIs) has been i mplemented.
Moreover, access details have been already shared with involved partners in
order to perform preliminary communication tests.

In the following picture, as an example, the main result of the http REST query
request performed to DVL, is depicted (LatestGateInEvent procedure):

FIGURE 8: LATESTGATEINEVENT RESPONSE EXAMPLE (LIVORNO SEAPORT).

ṁɨᶢ µɊǤȜʎɸ Âȿǳµᶢµ ðʭɸʆǳȽḼ ȜȿʆǳȎɰǈʆȜɊȿ ỡ
Ǭǈʆǈ ǈȎȎɰǳȎǈʆȜɊȿ

Mobius [8] is an open -source server platform implementing oneM2M
standards available in the OCEAN (Open allianCE for IoT stANdards), an open
source -based global partnership project for IoT (CNIT is a dev eloper partner).
One advantage of using the public IoT server (from KETI - Korea Electronics
Technology Institute) is that it is possible to use a web -based oneM2M
resource monitoring application that makes it easy to monitor sensing values
and actuation c ommands for the IoT devices in real -time.

FIGURE 9: MOBIUS SOFTWARE ARCHITECTURE.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 27 of 60

The Port Authority of Livorno in collaboration with CNIT, has employed the
public Mobius -based IoT server provided by KETI in order to perform sma rt -
objects and IoT devices management at seaport. Currently, the Mobius
platform allows to manage and interact with meteorological stations.

The following section describes the main configuration and deployment that
we rely on for the development activitie s foreseen by the iNGENIOUS project .

ṁɨṁɡᶡ µɊǤȜʎɸ Âȿǳµᶢµ åȴǈʆȍɊɰȽ ǬǳɭȴɊʭȽǳȿʆ ǈȿǬ ȜȿʆǳȎɰǈʆȜɊȿ

The access to data sources in Teiid takes two components: a translator and a
platform -dependent access mechanism to provide source access. A translator
provides an abstraction layer between Teiid Query Engine and physical data
source, that knows how to convert Teiid issued query commands into source
specific commands and execute them. Translators also have some logic to
convert the result data that came f rom the physical source into a form that
Teiid Query Engine is expecting.

FIGURE 10: TEIID QUERY ENGINE.

A translator is represented in DDL as a foreign data wrapper (FDW). Together
this access is referred to as a Teiid connector. According to this nomenclature,
a REST connector (including .xml VDB definition file) has been implemented
in order to allow the integration between DVL and Mobius OneM2M IoT Server
Platform deployed as a docker image within a dedicated virtual machine with
the following specifications (Livorno staging environment):

¶ CPU host AMD EPYC 7281 with 4 cores.

¶ 8GB of RAM.

¶ 100GB of storage space.

¶ Ubuntu 20.04 server as the main operating system.

In the following picture, the virtual -database definition f ile (.xml) for the
communication between DVL component and Mobius M2M standard
platform is depicted :

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 28 of 60

FIGURE 11: MOBIUS ONE M2M CONNECTOR IMPLEMENTATION - VDB DEFINITION FILE (.XML).

4.3 åu ðʭɸʆǳȽ ÂðuɸɊȍʆḼ ȜȿʆǳȎɰǈʆȜɊȿ

PI System is a M2M platform developed by OSIsoft used in heavy industrial
environments for covering data processing and data streaming functionalities
as part of industrial IoT ecosystems [14]. As described in D5.1, PI System is
composed of several software modules to cover data collection, time -series
historization, finding, analysis, delivery and visualization functionalities for
managing real -time data and events. Data can be automatically collected
from different sources such as control systems (e.g., SCADA), industrial
computers, dedicated HW, laboratory equipment or other external systems.

FIGURE 12: VALENCIA PORT PI DEPLOYMENT.

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 29 of 60

In iNGENIO US, PI System OSIsoft will be used to store and exchange the data
related to GateIn and GateOut events performed at the terrestrial accesses of
the Port of Valencia in the context UC5 (Situational Understanding and
Predictive Models in Smart Logistics Scen arios) and UC6 (Supply Chain
Ecosystem Integration). To meet the needs of these use cases and integrate
the data obtained at terrestrial accesses with the DVL, FV will exploit a pre -
production deployment of PI system available at the Port of Valencia ICT
infrastructure.

ṁɨṁɥᶡ uȿʆǳȎɰǈʆȜɊȿ !ɭɭɰɊǈǥȖ

The integration of the data gathered by PI System and the DVL will be
supported by involving three main PI modules: PI Data Archive, PI Asset
Framework (AF) and PI Web API.

FIGURE 13: PI SYSTEM AND DVL INTEGRATION

The PI Data Ar chive is the time -series database of PI System, where data
obtained from the different data sources is stored and structured. Based on
the data stored in the Data Archive, PI AF contextualises raw data and
organizes assets and signals following hierarchica l structures in order to
provide structured data sets. After that, PI Web API provides the access layer
through a RESTful interface allowing external client applications to read and
write over the PI Data Archive and the PI AF over HTTPS programmatically.

PI Web API defines a set of methods for retrieving information stored in PI
System from external platforms. To enable all reading and writing operations
an Authorization Header with hash encryption is configured to authorise the
API use. The URL base of t he API will be:

 /api/stream/[method]

and all responses will have JSON format. The four different methods defined
for retrieving information (GET) from PI Web API are:

1. /signalinfo/{signalId}: Returns the value of the request signal in a
specific time peri od, i.e., ȍɰɊȽ ṬɸʆǈɰʆʆȜȽǳẈ ʆɊ ṬǳȿǬʆȜȽǳẈṜ If no date is
specified, the last value of the signal is return. The response has the
following format:

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 30 of 60

FIGURE 14: SIGNALINFO API RESPONSE

2. /signalstream/{signalId}: Returns the value of a signal following a
socket subscription approach. The JSON response has the following
format:

FIGURE 15: SIGNALSTREAM API RESPONSE

3. /assetinfo/{assetName}: Returns the value of the requested asset. The
response has the following format:

FIGURE 16: ASSETINFO API RESPONSE

4. /eventinfo/{eventId}}: Returns the value of a specific event, which occurs
when specific conditions are fulfilled . To specify the event related
parameters like serverName, databaseName, starttime and endtime
need to be indicated. If endtime parameter is not specified, a list of

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 31 of 60

values registered since the event started are given. Other optional
parameters like name, template, finished, duration or
durationConditional can also be indicated. The JSON response has the
following format:

FIGURE 17: EVENTINFO API RESPONSE

5. /dbstructure/{serverName/{databaseName}:}: Returns a tree with the
data str ucture of a specific database. The JSON response has the
following format:

FIGURE 18: DBSTRUCTURE API RESPONSE

4.4 ðʭȽɭȖɊȿʭ ɭȴǈʆȍɊɰȽḼ ȜȿʆǳȎɰǈʆȜɊȿ

Symphony is a service -oriented generalized IoT platform developed and
commercialized by Nextworks, capable of integrating thousands of
interconnected devices in support of multiple vertical needs and services [12].
It embeds several fun ctionalities (interfacing with field bus protocols, data
acquisition and actuators control, data storage and processing, rule -based
engines, application logic and GUIs) into a unified fully decomposed and
distributed IP -based platform.

As depicted in Figure 19Figure 19, Symphony is a complete IoT platform
characterized by a modular arch itecture which allows to interact with a variety
of hardware devices, IoT sensors or actuators in a seamless and unified

D5.2 : Baseline iNGENIOUS Data Management Framework
(v1.0)

© 2020 -2023 iNGENIOUS Page 32 of 60

manner. Internally, Symphony integrates a number of services for
notifications, event management, analytics and automated reactions whi ch
can be applied to a variety of applications, like access control, technical
systems monitoring, industrial automation, energy management, etc.

The Symphony core component is the Hardware Abstraction Layer (HAL),
which provides protocol -specific southbo und plugins to enable the
interconnection with heterogeneous protocol gateways and devices
deployed in the IoT field. The data collected from the field is associated to
ṪɭȴǈȜȿ ɊǤȭǳǥʆɸṫḼ ʧȖȜǥȖ ǈɰǳ ȎǳȿǳɰǈȴȜʷǳǬ ȜʆǳȽɸ ǳʬɭɰǳɸɸǳǬ Ȝȿ ǈ ɸȜȽɭȴǳ ʎȿȜȍȜǳǬ
format built by tuple of identifier, timestamp, value . The data is then
distributed towards the upper layer Symphony components through a variety
of northbound plugins, to enable data processing and elaboration and
Ȏǳȿǳɰǈʆǳ ṪɊǤȭǳǥʆɸ ʧȜʆȖ ɸǳȽǈȿʆȜǥɸṫḼ ʆȖǈʆ ǥɊȿɸʆȜʆʎʆǳ ṪȽǳǈȿȜȿȎȍʎȴṫ Ȝȿɭʎʆɸ ȍɊɰ ʆȖǳ
upper layers in the platform. Symphony currently supports CORBA (Common
Object Request Broker Architecture) and REST northbound plugins.

In terms of relevance for iNGENIOUS, the HAL provide key features for the
control and manage ments of IoT devices and related data. First it supports on -
demand runtime configuration, and it allows to create and instantiate
southbound plugins for new field buses at runtime, using the predefined set
of plugins already available in Symphony. However, the support of new
protocols and IoT devices requires the development of dedicated southbound
plugins. Second, the HAL gives the possibility to configure the information
models supported by new IoT devices or data sources to be plugged into
Symphony, enab ling a flexible adaptation to different kinds of sensors and
providing data model interoperability. Finally, the HAL enables the
ǥɊȿȍȜȎʎɰǈʆȜɊȿ Ɋȍ ɸǳȿɸɊɰɸṭ ǬȜȎȜʆǈȴ ʆʧȜȿɸḼ ǈɸ Ȝʆ ɭɊɸɸȜǤȴǳ ʆɊ ǥɰǳǈʆǳ ȽʎȴʆȜɭȴǳ ɭȴǈȜȿ
objects controlled and managed through the sam e fieldbus southbound
plugin, and thus store data related to the status of the object and possibly run
some commands on the physical device through the specific plugin .

FIGURE 19: SYMPHONY HIGH -LEVEL ARCHITECTURE

