
iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 1 of 82

Grant Agreement No.: 957216
Call: H2020-ICT-2018-2020

Topic: ICT-56-2020
Type of action: RIA

D4.4 Service orchestration at the
edge

Revision: v1.0

Work package WP 4

Task Task 4.3

Due date 31/03/2022

Submission date 31/03/2022

Deliverable lead Nextworks

Version 1.0

Authors Pietro Piscione (NXW), Giacomo Bernini (NXW), Erin Seder (NXW),
Francisco Javier Curieses Sanz (UPV), Nuria Molner (UPV), Roberto Bomfin
(TUD), Jose Costa Raquena (CMC), Joe Cahill (iDR), Shane Bunyan (iDR),
Christos Politis (SES)

Reviewers Michael Roitzsch (BI), Nils Asmussen (BI), Jose Costa Raquena (CMC), Gino
Ciccone (TEI), Roberto Bomfin (TUD), Nuria Molner (UPV), Francisco Javier
Curieses Sanz (UPV), Tadeusz Puźniakowski (PJATK)

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 2 of 82

Abstract This document presents the design and preliminary prototype
implementation of the iNGENIOUS service and network slice orchestration
framework. The proposed solution is aligned with relevant 3GPP and ETSI
standard architectures, and is described in terms of architectural
principles, functional architecture, information models and APIs. The
integration of AI/ML capabilities is also described to achieve full
automation in the operation of 5G network slices supporting industrial IoT
and supply chain services.

Keywords 5G, network slices, edge, orchestration, AI, ML

Document Revision History

Version Date Description of change List of contributor(s)

V1.0 31/03/2022 EC version NXW

Disclaimer

This iNGENIOUS D4.4 deliverable is not yet approved nor rejected, neither
financially nor content-wise by the European Commission. The
approval/rejection decision of work and resources will take place at the Mid-
Term Review Meeting planned in June 2022, after the monitoring process
involving experts has come to an end.

The information, documentation and figures available in this deliverable are
written by the "Next-Generation IoT solutions for the universal supply chain"
(iNGENIOUS) project’s consortium under EC grant agreement 957216 and do
not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the
information contained herein.

Copyright notice

© 2020 - 2023 iNGENIOUS Consortium

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ✓

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to iNGENIOUS project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 3 of 82

Executive Summary

This deliverable presents the design and preliminary prototype
implementation of the iNGENIOUS network slice orchestration framework.
The work reported covers specific functionalities within the iNGENIOUS
Network Layer, and that relates to the management and orchestration
features required for the coordination of the relevant 3GPP and non-3GPP
network technologies developed in the project. The main aim is to provide
automation in the deployment, provisioning and operation of end-to-end
network slices in support of industrial IoT and supply chain 5G services.

The proposed orchestration framework is aligned with the relevant 3GPP and
ETSI standard specifications for 5G network slice management. Specifically,
the orchestration of 5G radio access, transport and core network domains
allow to coordinate resources (network, computing, storage) and network
functions to instantiate and compose vertical services and network slices over
a shared infrastructure. The iNGENIOUS end-to-end network slice
orchestration framework provide a seamless integration and coordination
with edge computing infrastructures to support ultra-low latency
applications. For this, the proposed architecture provides a truly end-to-end
orchestration of resources that considers the edge of the network as key for
the deployment of network functions and applications.

A detailed description of the iNGENIOUS end-to-end network slice
orchestration framework architecture is provided in this document, which
includes architectural principles, functional decomposition, applicable
information models and exposed interfaces. Moreover, the pure slice
management and orchestration functionalities are augmented with closed-
loop capabilities, aiming at a high degree of automation in service and
network slice operation leveraging on AI and ML techniques.

The document also reports on the preliminary software prototype of the
iNGENIOUS end-to-end network slice orchestration framework, which makes
use and enhances existing opensource tools and platforms. Moreover, the
results of preliminary integration activities are reported, with the aim of
validating the functionalities of the developed orchestration components
against the relevant iNGENIOUS 5G-IoT network technologies (the 5G Core,
the Flexible PHY/MAC and the O-RAN near real time controller).

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 4 of 82

Table of Contents

1 Introduction ... 10

1.1 Objective of this deliverable .. 10

1.2 Positioning in the iNGENIOUS architecture ... 11

1.3 Structure of the document ... 12

2 Related Work ... 13

2.1 Management and orchestration of 5G networks ... 13

2.2 5G network slices ... 14

3 The 5G-IoT Network .. 21

3.1 Radio Access Network ... 21

3.2 5G Core ... 22

3.3 Backhaul and Transport Networks ... 29

4 End-to-end Network Slice Orchestration Architecture 35

4.1 Architectural Principles.. 35

4.2 Functional Architecture ... 36

4.3 AI/ML based network slice optimization .. 49

4.4 Network Slice Orchestration Workflows ... 52

4.5 Interfaces and APIs ... 56

5 Preliminary Prototype and Early Integration 62

5.1 Software prototype description .. 62

5.2 Integration with 5G Core ...66

5.3 Integration with Flexible PHY/MAC .. 70

5.4 Integration with O-RAN ... 72

6 Relation to UCs and Main Innovations .. 75

6.1 End-to-end network slice orchestration innovations 75

6.2 Relation to UCs .. 76

7 Conclusions and Next Steps ... 79

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 5 of 82

List of figures

Figure 1-1 - Overview of the iNGENIOUS architecture (D2.2) .. 11

Figure 1-2 - Highlight on the iNGENIOUS network layer components 12

Figure 2-1 - Mobile network management architecture – Interaction between
3GPP management system and NFV-MANO framework [2] 13

Figure 2-2 - Multiple instances of communication services deployed over different
network slice instances [7] ... 15

Figure 2-3 - Example of network slice instances [7] .. 16

Figure 2-4 - Structure of network slices and network slice subnets in network
services and virtual network functions [8] ... 17

Figure 2-5 - Information model of a Network Service Descriptor [9] 18

Figure 2-6 - Role of GST and NEST as input for the preparation of a NSI [11] 18

Figure 2-7 - High-level architecture of management functions for network slicing
[12] ... 19

Figure 2-8 - Hierarchical interaction between NSMF and per-domain NSSMFs [13]
 .. 20

Figure 2-9 - Example of management system deployment with NSSMF
interacting with NFVO [13] .. 20

Figure 3-1 - Flexible PHY/MAC frame structure. ... 21

Figure 3-2 - Network slicing for different machine type communications............... 23

Figure 3-3 - Network slicing management modules .. 23

Figure 3-4 - Network slice activation flow .. 24

Figure 3-5 - Network Data Analytic Function modules design. 27

Figure 3-6 - Interaction between 3GPP and TN management systems [7] 30

Figure 3-7 - Intra-Domain SDN Transport Network .. 31

Figure 3-8 - Inter-Domain SDN Transport Network .. 31

Figure 3-9 - Satellite backhaul connectivity architecture .. 33

Figure 3-10 - Distributed SDN Controller Architecture .. 34

Figure 4-1 - End-to-end network slice architecture functional high-level
architecture supported by AI/ML platform .. 36

Figure 4-2 - High level software architecture end-to-end network orchestration
framework ... 37

Figure 4-3 - Network Slice Simplified Class Diagram ... 39

Figure 4-4 - Translation of Vertical Service Requirements into end-to-end slice
resource allocation ... 39

Figure 4-5 - High-level software architecture of VSMF ... 40

Figure 4-6 - High-level architecture of NSMF .. 42

Figure 4-7 - High-level architecture of NSSMF layer .. 44

Figure 4-8 - High-level architecture of generic NSSMF .. 44

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 6 of 82

Figure 4-9 - AI/ML and monitoring platform functional architecture 47

Figure 4-10 - Closed-loop pre-emptive auto-scaling of UPF .. 50

Figure 4-11 - Data source available so far for the monitoring platform 51

Figure 4-12 - High-level sequence diagram of end-to-end network slice
provisioning .. 53

Figure 4-13 - High-level workflow of end-to-end network slice termination 54

Figure 4-14 - High-level workflow of end-to-end network slice re-configuration 55

Figure 5-1 - VSMF implementation diagram... 63

Figure 5-2 - Implementation diagram of NSMF .. 64

Figure 5-3 - High-level workflow of manual deployment of a 5G network 67

Figure 5-4 - Logs of day-1 configuration stages .. 68

Figure 5-5 - Snippet of Python script of day-1 configuration of 5G Core instance 69

Figure 5-6 - Edge-core deployment of 5G Core through the end-to-end Network
Slicer .. 70

Figure 5-7 - Integration diagram between end-to-end network slice orchestrator
and flexible PHY/MAC ... 71

Figure 5-8 - Flexible PHY/MAC integration with UERANSIM... 71

Figure 5-9 - High-level architecture of O-RAN NSSMF ... 72

Figure 5-10 - Sequence diagram of network slice subnet instance 73

Figure 5-11 - Tree structure of source code of O-RAN NSSMF .. 74

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 7 of 82

List of tables

Table 4-1 - Architectural principles of end-to-end network slice orchestration
framework ... 35

Table 4-2 - Data model of inputs to the AI Engine .. 50

Table 4-3 - REST APIs for tenant and SLA management .. 57

Table 4-4 - REST APIs for VSB and VSD management .. 57

Table 4-5 - REST APIs for Vertical Service LCM .. 58

Table 4-6 - REST APIs for NST/GST management ... 60

Table 4-7 - REST APIs for end-to-end network slice management 60

Table 4-8 - REST APIs for end-to-end network slice subnet management 61

Table 5-1 - Technical description of VSMF components .. 63

Table 5-2 - Technical description of NSMF Components ... 64

Table 5-3 - Technical description of (O-RAN) NSSMF components................................ 66

Table 6-1 - Network slice orchestration functionalities mapped to UCs 75

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 8 of 82

Abbreviations

5GC Fifth Generation Core
5QI 5G Quality of Service (QoS) Indicators
AD Anomaly Detection
AGV Automated Guided Vehicle
AI Artificial Intelligence
AN Access Network
API Application Programming Interface
BS Base Station
CN Core Network
CNW Cumucore Network Wizard
CRUD Create Read Update and Delete
CS Communication Service
CSMF Communication Service Management Function
DSP Digital Service Provider
EM Element Manager
eMBB Enhanced Mobile Broad Band
EPC Evolved Packet Core
FPGA Field Programmable Gate Array
GFDM Generalized Frequency Division Multiplexing
gNB gNodeB
GSMA GSM Association
GST Generalized Network Slice Template
GUI Graphical User interface
GW GateWay
IGW Intelligent GW
LCM Lifecycle Management
M2M Machine-To-Machine
MANO Management and Network Orchestration
mIoT Massive Internet of Things
ML Machine Learning
NF Network Function
NFVO NFV Orchestrator
NG-RAN Next Generation RAN
NM Network Manager
NR New Radio
NRM Network Resource Model
NEST Network Slice Type
NSD Network Service Descriptor
NSMF Network Slice Management Function
NSMS Network Slice Management Service

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 9 of 82

NSSMF Network Slice Subnet Management Function
NSSMS Network Slice Subnet Management Service
NSI Network Slice Instance
NSS Network Slice Subnet
NSSI Network Slice Subnet Instance
NSST NSS Template
NST Network Service Template
NWDAF Network Data Analytics Function
OSS/BSS Operations Support System / Business Support System
PCF Policy Control Function
PDU Protocol Data Unit
PNF Physical Network Function
QoS Quality of Service
RAN Radio Access Network
RIC Radio Intelligent Controller
RT Real Time
SBA Service Based Architecture
SDN Software Defined Network
SDR Software-Defined Radio
SLA Service Level Agreement
SST Slice/Service Type
TAC Type Allocation Code
TAI Tracking Area Identity
TAPI Transport API
TN Transport Network
TS Traffic Steering
UC Use case
UE User Equipment
uRLLC Ultra-Reliable and Low Latency Communication
VIM Virtual Infrastructure Manager
VNF Virtual Network Function
VNFD Virtual Network Function Descriptor
VNFM VNF Manager
VS Vertical Service
VSB Vertical Service Blueprint
VSD Vertical Service Descriptor
VSI Vertical Service Instance
VSMF Vertical Service Management Function
WAN Wide Area Network
WIM WAN Infrastructure Manager
WG Working Group

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 10 of 82

1 Introduction

1.1 Objective of this deliverable

The main objective of this document is to present the design and preliminary
prototype implementation of the iNGENIOUS service and network slice
orchestration functionalities. Indeed, with 5G, comprehensive Management
and Orchestration (MANO) solutions are increasingly required to ease the
deployment of heterogeneous vertical services and network slices across
several technology domains, including radio, core and transport networks. In
particular, the concept of network slicing allows to coordinate resources
(network, computing, storage) and network functions (NFs) (virtualized or
physical), which are managed and provisioned together to instantiate and
compose network services over a shared infrastructure. As a fundamental
concept, network slices can be tailored to the requirements of the vertical
services that will run on top of them, mostly in terms of Quality of Service (QoS)
needs. This is extremely relevant to iNGENIOUS, where heterogeneous IoT
network technologies and devices are required to interoperate with the 5G
network to provide smart and innovative supply chain and industrial IoT
services. In the specific case of these iNGENIOUS services and use cases, a
seamless integration and coordination with edge computing infrastructure is
of high relevance to provide when needed ultra-low latency capabilities and
thus reduce the response time of the deployed applications. Therefore, a key
aspect to consider and to highlight is the need of delivering a truly end-to-end
orchestration of resources that considers the edge of the network as key for
the deployment of network functions and applications. In addition,
iNGENIOUS aims at augmenting these orchestration and coordination
functionalities with closed-loop capabilities, aiming at a high degree of
automation in service and network slice operation leveraging on AI and ML
techniques.

Due to the aforementioned aspects, iNGENIOUS has put efforts to define and
implement an end-to-end network slice orchestration framework. The work
reported in this deliverable presents a comprehensive service and network
slice orchestration solution suitable for the iNGENIOUS 5G-IoT network
infrastructure and at the same time aligned with the current solutions and
trends for network slice management and orchestration as defined by main
relevant standardisation bodies (i.e., 3GPP and ETSI). Specifically, the main
target of the deliverable is to provide a detailed functional design of the
orchestration components, including their integration with closed-loop
functionalities enabled by Artificial Intelligence (AI) / Machine Learning (ML).
Moreover, as a preliminary development milestone, it also aims at describing
the initial software prototype of the proposed end-to-end network slice
orchestration framework.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 11 of 82

1.2 Positioning in the iNGENIOUS
architecture

This deliverable covers a specific functionality within the iNGENIOUS Network
Layer, and relates to the management and orchestration features required for
the coordination of the relevant network technologies developed in the
project. It is worth to mention that, while in other iNGENIOUS deliverables the
terms MANO and cross-layer MANO are used, in this document the term-end-
to-end network slice orchestration framework is used.

As anticipated above, the traditional and pure MANO functionalities are
augmented with AI/ML enabled closed-loop features to achieve a full
automation in services and network slice management, control and
operation. Figure 1-1 highlights the end-to-end network slice orchestration
framework within the iNGENIOUS architecture as presented in D2.2 [1]. As
shown in the picture, the end-to-end network slice orchestration framework
encompasses the MANO functional block, including part of the orthogonal
AI/ML functionalities within the iNGENIOUS architecture. In practice, the end-
to-end network slice framework described in this deliverable provides a set of
overarching management and orchestration features to glue together
different network and computing technology domains, spanning from the
radio, edge, transport up to the core network.

Figure 1-1 - Overview of the iNGENIOUS architecture (D2.2)

This end-to-end overarching approach is more clearly depicted in Figure 1-2,
where it shown the interaction for resource management, orchestration,
provisioning and operation in the different technology domains and layers. As
deeply detailed in the next sections of this document, the main interactions
supported by the iNGENIOUS end-to-end network slice orchestration
framework (in terms of actual implementation, integration and validation)
refer to the Radio Access Network (RAN), the 5G Core and the edge (shown as
MEC in the figure), with this latest as specific case of compute location for

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 12 of 82

deploying virtualized network functions and applications that impose ultra-
low latency requirements.

Figure 1-2 - Highlight on the iNGENIOUS network layer components

1.3 Structure of the document

This deliverable is structured as follows:

• Section 2 provides a brief overview of relevant state-of-the-art and related
work for the design and implementation of the iNGENIOUS end-to-end
network slice orchestration. This mostly includes 5G network slicing,
information models and management approaches defined by 3GPP.

• Section 3 provides an overview of the iNGENIOUS 5G-IoT network,
focusing on the solutions and technologies integrated with the end-to-
end network slice orchestration framework. It briefly summarizes the
content described in previous WP4 deliverables helping to better
contextualize the work reported in this document.

• Section 4 is the core part of the document, and describes the end-to-end
network slice orchestration framework architecture, highlighting the
functional components, data models, workflows and interfaces.

• Section 5 describes the preliminary software prototype of the iNGENIOUS
end-to-end network slice orchestration framework, including a report of
the initial integration activities carried out within WP4.

• Section 6 identifies the main innovations that the iNGENIOUS end-to-end
network slice orchestration framework brings and how these innovations
are mapped against the project Use Cases.

• Section 7 provides some concluding remarks and highlights the next
steps foreseen for the work reported in the document.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 13 of 82

2 Related Work
This chapter provides an overview of the major outcomes from 3GPP and ETSI
standardization activities in the areas of 5G network management and
orchestration, including network slicing in 5G infrastructures. The main
references in this context are the 3GPP technical specifications from the TSG-
SA Working Groups (WG) for the 5G system Architecture (TSG-SA WG 2) and
the Management, Orchestration and Charging (TSG-SA WG 5), with particular
reference to Release 16 and the latest Release 17. This 3GPP work is
complemented with the ETSI NFV specifications for management and
orchestration of Virtual Network Functions (VNFs) and network services,
which are considered the reference baseline for 5G infrastructures exploiting
the concept of network virtualization.

2.1 Management and orchestration of 5G
networks

The 3GPP TSG-SA WG 5, responsible for the aspects related to Management,
Orchestration and Charging of 5G networks, has defined a generalized mobile
network management architecture in the 3GPP TS 28.500 specification [2].
The architecture, depicted in Figure 2-1, involves a 3GPP Management System
with a Network Manager (NM) and Element Managers (EM) that control the
elements composing a 5G network, where each of them can be deployed as a
Physical Network Function (PNF) or a VNF. The presence of VNFs in the 5G
mobile network introduces the need of a Management and Orchestration
(MANO) framework responsible for their provisioning, configuration and, more
in general, for their lifecycle management (LCM), in cooperation with the
3GPP management system.

Figure 2-1 - Mobile network management architecture – Interaction between 3GPP management system

and NFV-MANO framework [2]

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 14 of 82

The MANO framework is based on the architecture defined by the ETSI NFV
ISG for the NFV-MANO [3] and includes the three elements of the NFV
Orchestrator (NFVO), VNF Manager (VNFM) and Virtual Infrastructure
Manager (VIM). In this scenario, the NM of the 3GPP management system is
part of the Operations Support System / Business Support System (OSS/BSS)
and interacts with the NFVO to request the provisioning and drive the
management of the NFV Network Services composed by the VNFs that build
the mobile communication network.

The adoption of virtualized functions as elements of the mobile network
brings higher degrees of dynamicity and flexibility in the 5G network
deployment. It also enables a number of features in its management and
operation, including dynamic instantiation, automated scaling, optimization
and healing. Such functionalities can be driven by an external management
logic and actuated through the NFV Orchestrator, with the cooperation of
VNFM and VIM for the configuration of virtual functions and the control of the
virtual resource allocation, respectively.

The interaction between the 3GPP management system and the ETSI NFV
MANO components is further specified by the 3GPP TS 28.528 specification [4],
which identifies the ETSI NFV SOL 005 interface [5] as the reference for the
communication between the NM and NFVO. This interface is used to request
provisioning and lifecycle management actions (e.g., termination, scaling,
healing, re-configuration) on the NFV network services related to a 5G mobile
network including virtualized elements. Additional FCAPS-related
functionalities are also supported on this interface, including monitoring,
policy management, failures, and alarms notifications, etc.

2.2 5G network slices

The network slicing concept has been introduced in 5G networks to allow the
operators to effectively share their own infrastructure creating multiple
concurrent logical partitions, i.e., the network slices. Network slices can be
easily customized according to the business requirements of their customers
or the technical requirements of their services. Network slices can be
differentiated and updated independently, offering various degrees of
isolation, and they can be adapted in terms of mobile connectivity, virtual
functions or computing and storage resources.

Network slices can be easily configured to offer dedicated communication
services to the verticals, e.g., customized on the basis of their production
requirements. For example, ultra-Reliable and Low Latency Communications
(uRLLCs) meet the requirements of the production lines automated control in
Industry 4.0 and smart factory scenarios. Massive Internet of Things (mIoT)
communications are particularly suitable to manage huge amounts and high
density of IoT sensors and actuators. Enhanced Mobile BroadBand (eMBB)
communications are the enablers for video producing and broadcasting,
offering high data rates in both uplink and downlink directions. Vehicle to
Everything (V2X) communications support high-bandwidth, low-latency and
high-reliable interactions among moving (autonomous) vehicles and different
entities such as other vehicles, pedestrian, etc.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 15 of 82

The concept of network slicing is introduced in the 3GPP TS 23.501 [6]
specification, where a network slice is defined like a logical network that
provides specific network capabilities and characteristics. A Network Slice
Instance (NSI) consists of a set of Network Functions (NFs), with their own
computing, storage and networking resources. A NF can be implemented
within a NSI as a PNF running on dedicated hardware or as a VNF instantiated
over a computing shared infrastructure, e.g., on the cloud. In a 5G network, an
end-to-end NSI includes the NFs related to control and user planes of the 5G
Core Network, as well as Next Generation RAN (NG-RAN) functions for the
3GPP mobile access network.

Network slices can be differentiated in terms of network functions and
network capabilities, according to a number of major categories defined
through a Slice/Service Type (SST) including eMBB, uRLLC, mIoT and V2X. A
network operator can thus instantiate multiple NSIs with their specific SST to
differentiate the business offer towards its own customers. Moreover, multiple
NSIs with the same SST can be instantiated and reserved to different
customers to better guarantee their traffic QoS, isolation and security.

The 3GPP TS 28.530 specification [7] defines the major concepts related to the
management of a network slice to support specific types of Communication
Services (CS), or vertical services. The network slice is presented as a logic
network, including the related pool of resources, which enables the delivery of
a CS on the basis of its characteristics and requirements (e.g., maximum
latency and jitter, minimum data rates, density of UEs, coverage area, etc.). As
shown in Figure 2-2, different types of CS can be supported through dedicated
NSIs.

Figure 2-2 - Multiple instances of communication services deployed over different network slice instances

[7]

As highlighted in the picture, a NSI can support one or more instances of CS.
Moreover, a NSI is formally modelled as an end-to-end Network Slice Subnet
Instance (NSSI), which in turn can include multiple NSSIs (see the network
slice information model in Section 2.2.1 for further details). In particular, the

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 16 of 82

figure shows a common pattern of network slice modelling, with the end-to-
end NSSI composed of two lower level NSSIs: the former related to the 5G Core
Network (CN) and the latter related to the Access Network (AN). Each of them
includes the related NFs, which communicate through the underlying
connectivity provided by the Transport Network (TN). In other terms, a NSSI
represents a group of NF instances (together with their own resources) that
implement a part of the NSI. Through this concept, it is possible to manage
the set of NF and related resources as an atomic element, independently on
the rest of the NSI.

A key concept of the network slices is the possibility to share one or more
NSSIs among multiple NSIs. This approach allows to share NFs (physical or
virtual) and their resources among different end-to-end NSIs and,
consequently, multiple service instances. Therefore, the operator can adopt
strategies for resource allocation and sharing, in compliance with the isolation
requirements of the target services, in order to optimize the utilization of its
own physical infrastructure.

Clearly, there is a strong relationship between the lifecycle of a CS instance
and the lifecycle of the NSI hosting the service. Whenever a new CS instance
is created, a new NSI may need to be established or an existing one may be
activated, re-configured, or up-scaled according to the requirement of the
additional service. Similarly, when the CS instance is terminated, the related
NSI may be deactivated, down-scaled, re-configured or entirely terminated,
depending on the presence of additional services still running. iNGENIOUS
implements a similar approach, creating on demand NSIs which will be
shared among multiple services on a per-tenant basis and modifying their
configuration and deployment according to the service requests and the real-
time network conditions.

Figure 2-3 - Example of network slice instances [7]

Figure 2-3 provides an example of NSI. NFs related to the RAN and the CN are
interconnected through a TN. iNGENIOUS assumes the same modelling for
the network slices. It is worth to mention that the management of the NFs
related to AN and CN is covered by the management system defined in the
3GPP specifications. On the other hand, the TN management is usually
delegated to a “non-3GPP” system that interacts with the 3GPP management
system to receive the requirements in terms of transport network topology,
QoS and network connectivity (see 3.3).

RAN
NFs

TN

CN NFs

CN NFs

CN NFs

Network Slice Instance

TN

TN

App
(UE)

App
Server

App
(UE)

App
(UE)

RAN
NFs

RAN
NFs

TN

TN

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 17 of 82

2.2.1 INFORMATION MODELS FOR 5G NETWORK SLICES

The information model of a NSI is defined in the 3GPP TS 28.541 [8], as part of
the 5G Network Slice Resource Model (NRM). The model, represented in
Figure 2-4, highlights how an end-to-end network slice, composed of several
network slice subnets, can be deployed through a number of NFV network
services and (virtual) network functions.

Figure 2-4 - Structure of network slices and network slice subnets in network services and virtual network

functions [8]

A Network Slice is associated to an end-to-end Network Slice Subnet that
defines the slice’s internal elements and their interconnectivity, together with
a set of Service Profiles describing the service requirements. Example of
Service Profile parameters includes maximum number of UEs, service
coverage area, maximum latency, per-slice and per-UE throughput in uplink
and downlink, maximum number of allowed connections, jitter, UEs’
maximum speed, etc.
The information model of a Network Slice Subnet includes the following main
elements:

• Slice Profiles defining the requirements of the slice subnet (similar to
the Service Profile at the network slice level);

• Managed Functions, i.e., the network functions managed within the
network slice subnet which can corresponds to one or more VNFs;

• Network Service, representing a group of interconnected VNFs and/or
PNFs composing (part of) the slice subnet. The Network Service
concept corresponds to the NFV Network Service defined in the
context of the ETSI NFV ISG and, in particular, in the ETSI GS NFV-IFA
014 [9] and ETSI GS NFV-IFA 013 [10] that define the models for the
Network Service Descriptor (NSD) and for the Network Service instance,
respectively.

As shown in Figure 2-5, an NSD represents the topology of a network service,
identifying its internal network functions (through references to the VNF

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 18 of 82

and/or PNF descriptors) and describing how they are interconnected through
the Virtual Links. Moreover, the NSD also defines the logic of the
communications among the network functions, describing how the traffic
should be forwarded through the sequence of functions. This aspect is defined
through the “VNF Forwarding Graph”, which indicates the sequence of VNFs,
and the related “Network Forwarding Path”, which describe the traffic flows
and their L2/L3 classifiers.

Figure 2-5 - Information model of a Network Service Descriptor [9]

The 3GPP information model reported in Figure 2-4 captures the internal
technical details of a network slice instance, identifying its components and
their connectivity. However, when exposing the generic characteristics of a
network slice towards external entities (for example in case of network slice
offers to potential customers), it is useful to refer to a “Network Slice Template”
that describes the slice capabilities through a more abstract model that hides
its internal details and the operator implementation choices. In this case, the
slice can be defined through the “Generalized Network Slice Template” (GST)
[11] defined by the GSM Association (GSMA).

Figure 2-6 - Role of GST and NEST as input for the preparation of a NSI [11]

The GST consists of a set of attributes that characterize a given type of network
slice and it is generic, i.e., independent on the specific implementation of the
slice. When the GST attributes are associated to specific values, the result is a
Network Slice Type (NEST), which constitutes the main input for the
preparation of a Network Slice Instance, as shown in Figure 2-6.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 19 of 82

2.2.2 MANAGEMENT OF 5G NETWORK SLICES

The 3GPP TR 28.801 specification [12] defines the high-level functional
architecture for the management of network slices in support of
communication services, identifying the three functional elements of the
Communication Service Management Function (CSMF), Network Slice
Management Function (NSMF) and Network Slice Subnet Management
Function (NSSMF), represented in Figure 2-7.

Figure 2-7 - High-level architecture of management functions for network slicing [12]

At the upper layer, the CSMF is responsible of processing the requests for new
CS and manages the CS instances provided by a network operator. The CSMF
translates the CS requirements into a set of network slice characteristics, e.g.,
defining the SST, the required capacity of the mobile connectivity, the QoS
requirements, etc., and interacts with the NSMF to request the creation of the
related NSI.

The NSMF is responsible for the management and end-to-end orchestration
of NSIs, on the basis of the requests received from the CSMF. The NSMF splits
the NSI into its internal NSSIs, according to the NEST, and manages their
lifecycle. Therefore, the NSMF is the entity which takes decisions about the
composition of a NSI, including the re-usage of pre-existing NSSIs that can be
shared among multiple NSIs, and the coordination of their provisioning,
scaling and/or configuration. The actuation of these decisions is then delated
to the NSSMFs, which are the final responsible for the management and
orchestration of each NSSI.

As analysed in the 3GPP TS 28.533 specification [13], which defines an
architecture of the 3GPP management system designed following the Service
Based Architecture (SBA) pattern, a typical deployment of the 3GPP
management system is structured with domain-specific NSSMFs, related to
the RAN, the CN or TN domains. Such NSSMF are customized according to the
specific requirements and technologies adopted in their own target domain.
As detailed in Section 4, the iNGENIOUS end-to-end network slice
orchestration architecture follows a similar approach introducing dedicated
NSSMF to handle the RAN, 5G core and transport domains, as shown in Figure
2-8.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 20 of 82

Figure 2-8 - Hierarchical interaction between NSMF and per-domain NSSMFs [13]

3GPP standards do not mandate any specific implementation of the NSMF
and NSSMF components. However, the 3GPP TR 28.533 specification [13]
proposes a deployment option, widely used in production infrastructures,
where the management of the network slices and slice subnets lifecycle is
handled through an interaction with the NFV MANO system, where the NFV
Orchestrator is responsible for the lifecycle of the NFV Network Services
associated to the NSSIs (see Figure 2-9).

Figure 2-9 - Example of management system deployment with NSSMF interacting with NFVO [13]

iNGENIOUS is aligned to this approach and relies on the NFV MANO for the
instantiation and lifecycle management of the virtual functions related to the
5G Core Network and to the application services within the end-to-end
network slices.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 21 of 82

3 The 5G-IoT Network
This chapter is intended to provide a brief overview of the iNGENIOUS 5G-IoT
network technologies that are targeted to be managed, at least at the design
and concept level, by the end-to-end network slice orchestration framework
described in this document. The aim is to provide a summary description of
such technologies for the sake of completeness of this deliverable.

3.1 Radio Access Network

This section provides an introduction on two specific aspects of the work
carried out as part of the iNGENIOUS Network Layer and that are going to be
integrated with the iNGENIOUS MANO functionalities, namely, the flexible
PHY/MAC implementation and O-RAN. Both items have been described in
detail in the Deliverable D4.2 [14].

3.1.1 FLEXIBLE PHY/MAC

The flexible PHY/MAC implementation consists of a centralized multiple
access scheme based on a polling mechanism, which allows the base station
(BS) to have a full control of the traffic such that the PHY parameters can be
adjusted according to the application needs. The goal of this implementation
is to provide a dynamic RAN deployment with Software Defined Radio (SDR)
devices, such that applications with diverging needs are able to share the
wireless medium with efficient use of the radio resources in the time domain.

In order to implement this MAC protocol, a control channel has been defined
to transmit control data and coordinate the medium usage. At the PHY level,
the implementation is based on the generalized frequency division
multiplexing (GFDM) waveform, which is advantageous from the flexibility
perspective, i.e., GFDM can be flexibly configured depending on the data type
and user’s needs. A basic frame structure is given in the Figure 3-1. It can be
seen that the payload length is variable, meaning that users can have different
PHY configuration.

Figure 3-1 - Flexible PHY/MAC frame structure.

Moreover, this implementation uses SDR platforms, with field programmable
gate array (FPGA) based implementation for real-time signal processing. As
described in the Deliverable D4.1 [15], the flexible PHY will be applied in the
iNGENIOUS Factory UC, where different applications will be deployed in a
dynamic environment. For example, applications that require relatively high
throughput, e.g., video stream will have more resources allocated than
applications requiring less data, e.g., remote control of AGV.

The relevant aspects of the integration of flexible PHY/MAC and iNGENIOUS
MANO layer is related to the management and coordination of radio resource
allocation according to application requirements, with the aim of integrating

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 22 of 82

the solution within (private) 5G networks. The status of the current activities
and planned development in this regard is described in Section 5.3.

3.1.2 O-RAN

The O-RAN Alliance is working together with hundreds of vendors and
operators to transform the radio access network industry towards open,
intelligent virtualized and fully interoperable RAN. One of the most relevant
elements in the architecture is the RAN Intelligent Controller (RIC), which is
designed to take intelligent decisions and provides the possibility manage the
radio resources, is divided into the non-real time (Non-RT) and the near-real-
time (Near-RT) components.

To improve RAN efficiency and performance, dedicated applications are used,
the called rApps in the Non-RT RIC and xApp in the Near-RT RIC, that work
independently of the RIC. The main differences between rApps and xApps are
that rApps are used to help to create policies, and xApps directly control a real-
time function within the RAN element, and act at different times. In
iNGENIOUS, the Near-RT RIC has been deployed to connect with the end-to-
end network slice orchestration framework through the O-RAN A1 interface,
and validate xApps defined in the O-RAN community.

One of the main application use cases is Anomaly Detection, with the
objective of detecting and correcting anomalies in the UEs, using quality
metrics and throughput values. For this, RIC makes use of three xApps:
Anomaly Detection (AD), Traffic Steering (TS) and QoS Prediction (QP). When
the AD xApp detects an anomalous UE (due to degradations of RSRP, RSRQ,
SINR and/or throughput), sends the UE ID to the TS xApp, which asks for a
throughput prediction to the QP xApp. QP xApp predicts the throughput
based on signal quality parameters and cell load data, and sends the data to
TS xApp, who checks if a neighbour cell can provide better throughput to the
UE sends a handover request. With this application we can take decision in
base of, i.e., the UE priority, and offer the best possible throughput.

The interconnection between the end-to-end network slice orchestration
framework and the Near-RT RIC of O-RAN allows to set policies following the
specifications (in terms of APIs, data models) of the A1 interface. These policies
define to which context the policy statement will be applied and the goals for
the Near-RT RIC. The full workflow of the policy statement is explained in the
Deliverable D4.2 [14]. O-RAN has enabled a new release (E), that is currently
being deployed and will test once the A1 standard policy is completely
available to use. This integration will allow to automatize the exchange of
policies between the Near-RT RIC and the end-to-end network slice
orchestration framework.

3.2 5G Core

The 5G Core architecture compared to previous generations is designed to
support UE and IoT communications. For this reason, Network Slicing creates
virtual instances of the core to separate traffic with different high-level
requirements. For instance, IoT data flow can be isolated from consumer data
flow, each one of them belonging to different 5G slices. Moreover, different

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 23 of 82

flavours of IoT traffic can have their own slice depending on their
requirements in terms of latency, reliability, or bandwidth capacity.

Network Slicing feature enables to deliver several virtual networks relying on
the same physical network as depicted in Figure 3-2. Virtual networks can
have different operational characteristics among themselves. For instance,
these characteristics can be maximum number of simultaneous users,
maximum capacity, access to advanced features like 5GLAN and integration
to external Data Networks, etc.

Figure 3-2 - Network slicing for different machine type communications

As depicted in Figure 3-3, Cumucore Network Wizard (CNW) consists of a user-
friendly Graphical User interface (GUI) that interacts with the Cumucore
Network Controller (CNC) through a RESTful interface to create and manage
Network Slices and use of network slices on data flow level.

Figure 3-3 - Network slicing management modules

There are two separate APIs to manage network slices and dataflows:

• There is an API provided by the CNC that can be used from CNW to
create, manage and terminate Network Slices.

• An API provided by the Policy Control Function (PCF) that is used to
generate dataflows with specific QoS settings and related SLAs.

The Network Slice Management is done through an Application Function (AF)
named informally NSM-AF. Network Slice Management Service (NSMS). or
Network Slice Subnet Management Service (NSSMS) are defined in 3GPP

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 24 of 82

specifications to support different use cases defined in TS 28.531 [16]. The CNC
has been implemented as the 3GPP standard NSMS and CNW as the NSM-AF.
A slice subnet is considered a different segment of the end-to-end system e.g.,
RAN subnet, Transport subnet and Core subnet.

3.2.1 NETWORK SLICE INSTANCE CREATION

To satisfy requests for allocation of a network slice instance with certain
characteristics, the request shall include the network slice related
requirements.

As depicted in Figure 3-4, the network slice NSMS receives the request for
allocation of the network slice instance with certain characteristics. The
request contains network slice related requirements and the information
indicating whether the requested NSI could be shared with other consumers.

Figure 3-4 - Network slice activation flow

1. The network slice provisioning management service provider triggers
the creation of a new Network Slice Instance (NSI).

2. For the required NSSI(s), the network slice provisioning management
service provider sends network slice subnet related requirements to
the network slice subnet provisioning management service provider to
request allocation of the required NSSI(s).

3. The network slice provisioning management service provider receives
the information of the allocated NSSI(s).

4. The network slice provisioning management service provider, via the
network slice subnet provisioning management service provider, sends
the transport network related requirements (e.g., external connection
point, latency and bandwidth) to the Transport Network (TN) manager.
The TN manager reconfigures the TN accordingly and responds to the
network slice provisioning management service provider via the
network slice subnet provisioning management service provider.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 25 of 82

5. The network slice provisioning management service provider receives
the response from TN manager via the network slice subnet
provisioning management service provider.

6. The network slice provisioning management service provider
associates the NSSI(s) with the corresponding NSI (e.g., allocation of the
management identifier of NSI and mapping the management
identifier of NSI with the received management Identifier of NSSI(s))
and triggers to establish the links between the service access points of
the NSSI(s).

3.2.2 NETWORK SLICE SUBNET INSTANCE CREATION

Create a new network slice subnet instance or use an existing network slice
subnet instance to satisfy the network slice subnet related requirements.

The steps are:

1. Based on the network slice subnet related requirements received, the
network slice subnet provisioning management service provider
decides to create a new NSSI or use an existing NSSI.

2. The network slice subnet provisioning management service provider
triggers to create a new NSSI, the following steps are needed.

3. The first network slice subnet provisioning management service
provider receives the constituent NSSI information from the other
network slice subnet provisioning management service provider (s)
and associates the constituent NSSI(s) with the required NSSI.

4. Based on the network slice subnet related requirements received and
Slice Profile, the network slice subnet provisioning management
service provider decides that to satisfy the NSSI requirements. The
network slice subnet provisioning management service provider
determines the NS related requirements (i.e. information about the
target NSD and additional parameterization for the specific NS to
instantiate).

5. Based on the NS related requirements, the network slice subnet
provisioning management service provider triggers corresponding NS
instantiation requests to Network Function (NF).

6. The network slice subnet provisioning management service provider
associates the NS instance with corresponding network slice subnet
instance (e.g., allocation of the management identifier of NSSI and
mapping with the corresponding identifiers).

7. The network slice subnet provisioning management service provider is
using the NF provisioning service to configure the NSSI constituents.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 26 of 82

3.2.3 NETWORK SLICE AND NETWORK SLICE SUBNET INSTANCE
ACTIVATION

This section provides the steps for network slice and network slice subnet
instance activation.

To activates an NSI based on the received network slice related request from
a customer after on boarding, the following steps are needed:

1. The NSMS checks whether NSSIs associated with the NSI are all in
active state; if there is an inactive NSSI, the network slice provisioning
management service provider requests the network slice subnet
provisioning management service provider to activate the
corresponding NSSI.

2. The NSMS receives a response from the network slice subnet
provisioning management service provider indicating that the NSSI is
active.

3. The network slice provisioning management service provider sets the
state of the NSI as active and sends a response to the requesting
consumer.

To activate an existing network slice subnet instance which is in inactive state,
the required steps are:

1. The network slice subnet provisioning management service provider
identifies inactive constituents (e.g., NSSI, NF) of the NSSI and decides to
activate those constituents.

2. If the constituent of NSSI is managed directly by the network slice subnet
provisioning management service provider, the network slice subnet
provisioning management service provider activates the NSSI constituent
directly.

3. If an NSSI constituent is an NF managed by NF related provisioning
management service provider, the network slice subnet provisioning
management service provider requests the NF related provisioning
management service provider to activate the NF.

4. The network slice subnet provisioning management service provider
receives responses indicating that NSSI constituents are all activated.

5. The network slice subnet provisioning management service provider sets
the state of the network slice subnet instance as active and sends a
response to its authorized consumer.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 27 of 82

3.2.4 NETWORK DATA ANALYTICS FUNCTION

The 5G Core architecture also includes network functions that collect data
from other network functions for monitoring. This information is made
available to external orchestrator to take some corrective actions and launch
or terminate some instances. The NetWork Data Analytics Function (NWDAF)
represents operator managed network analytics logical function.

Figure 3-5 - Network Data Analytic Function modules design.

As depicted in Figure 3-5, the NWDAF includes the following functionality:

• Support data collection from NFs and AFs;

• Support data collection from OAM;

• NWDAF service registration and metadata exposure to NF/AFs;

• Support analytics information provisioning to NF or AFs.

The details of the NWDAF functionality are defined in TS 23.288 [17] and it can
expose the analytics to both internal or external AFs The NWDAF analytics
may be securely exposed by NEF for external party, as specified in TS 23.288.
The AFs can subscribe to following events published by the NWDAF:

• Service Experience information, as defined in clause 6.4.2, TS 23.288.

• UE Mobility information, as defined in clause 6.7.2.2, TS 23.288.

• UE Communication information, as defined in clause 6.7.3.2, TS 23.288.

• Exceptional information, as defined in clause 6.7.5.2, TS 23.288.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 28 of 82

3.2.4.1 Retrieval of data from external party by NWDAF

Data provided by the external party may be collected by NWDAF via NEF for
analytics generation purpose. NEF handles and forwards requests and
notifications between NWDAF and AF, as specified in TS 23.288.

NWDAF will collect information from all Network Functions (NFs) and network
switches using SDN controller to fetch counter information and will store into
CNC DB. NWDAF uses CNC to access the network statistics stored in the DB.

The NWDAF provides three services:

• Event subscription service which allows NFs to subscribe/unsubscribe for
different analytic information found in 3GPP TS 29.520 [18]

• Event notification service provides analytic notification for NFs which
subscribe for a certain event based on subscription ID

• The NWDAF provide Analytic Info service which allows any NF to request
and get specific analytic information.

3.2.4.2 NWDAF discovery and selection

Multiple instances of NWDAF may be deployed in a network. The NF
consumers shall utilize the NRF to discover NWDAF instance(s) unless
NWDAF information is available by other means, e.g., locally configured on NF
consumers. The NWDAF selection function in NF consumers selects an
NWDAF instance based on the available NWDAF instances. The following
factors may be considered by the NF consumer for NWDAF selection:

• S-NSSAI

• Analytics ID(s).

• NWDAF Serving Area information, i.e., list of Tracking Area Identities (TAIs)
for which the NWDAF can provide analytics.

3.2.4.3 NWDAF Data collection procedure

The NWDAF collects analytics from core NF and expose the results using the
Namf_EventExposure service endpoint defined in TS23.502 [19]. This service
enables an NF to subscribe and get notified about an Event ID. Following UE
access and mobility information event that can be collected from the AMF:

• Location Report (TAI, Cell ID, N3IWF/TNGF node, UE local IP address and
optionally UDP source port number);

• UE moving in or out of a subscribed "Area Of Interest" as described in
clauses 5.3.4.4 and 5.6.11 in TS 23.501

• Number of UEs served by the AMF and located in "Area Of Interest";

• Time zone changes (UE Time zone);

• Access Type changes (3GPP access or non-3GPP access);

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 29 of 82

• Registration state changes (Registered or Deregistered); - Connectivity
state changes (IDLE or CONNECTED);

• UE loss of communication;

• UE reachability status;

• UE indication of switching off SMS over NAS service;

• Subscription Correlation ID change (implicit subscription);

• UE Type Allocation code (TAC);

• Frequent mobility re-registration;

• Subscription Correlation ID addition (implicit subscription); and

Other AF can also subscribe to the Nsmf_EventExposure Service to receive
notifications whenever some event is trigger as defined in TS23.502. Following
are the events that can be subscribed by the NF consumer to get information
from the SMF:

• UE Ip address

• DNN

• PDU session type

• QoS monitoring for URLLC

• change of access type

• PLMN change

• QFI allocation

3.3 Backhaul and Transport Networks

Backhaul and transport networks are typically responsible for connecting
radio access/edge networks to the core network and can be wired, wireless or
a mix of both. As described in Section 2.2, according to 3GPP, end-to-end
network slices have to take into account that 5G NFs could be interconnected
through transport networks, that can be either intra-RAN and intra-core
domain, or inter-domain (in the sense that they interconnect RAN and core
domains). This is shown in Figure 3-6, where indeed different types of
transport networks are highlighted. In the RAN domain, a transport network
can interconnect 5G RAN NFs, while in the core domain, it can interconnect
5G Core NFs.

From a management and orchestration perspective, transport networks are
considered (by 3GPP) as “non-3GPP” systems that require specific
management functionalities to interact with the 3GPP management system
to receive the requirements in terms of transport network topology, QoS and

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 30 of 82

network connectivity. It is worth to mention that, in the iNGENIOUS case, the
3GPP management system is mapped to the end-to-end network slice
orchestration framework described in this document. Therefore, the 3GPP
management system coordinates with the management systems of the non-
3GPP parts when preparing a network slice instance. This coordination can be
either direct or mediated by a MANO system.

Figure 3-6 - Interaction between 3GPP and TN management systems [7]

The following subsections focus on a brief analysis of backhaul and transport
network options considered in iNGENIOUS, and that from a conceptual and
design perspective can be integrated with the proposed end-to-end network
slice orchestration solution.

3.3.1 FIXED BACKHAUL AND TRANSPORT

In the context of end-to-end network slices to be provided across several
network domains, including as mentioned above RAN, Core and transport, a
common approach for the control and management of fixed transport
networks (e.g., based on optical technologies) is to make use of SDN solutions.
However, according to the differentiation of transport networks identified
above and shown in Figure 3-6 (i.e., intra-domain and inter-domain), different
approaches can be followed.

First, in the intra-domain case, the 3GPP management system (i.e., the
iNGENIOUS end-to-end network slice orchestration framework), when RAN or
5G Core NFs are virtualized, leverages on NFV orchestration solutions to
manage those NFs as VNFs and NFV Network Services. In this case, the 3GPP
management system delegates to the NFV MANO the 5G NFs deployment
and configuration into virtualized infrastructures that can span across several
compute locations interconnected through a transport network. To properly
manage the interconnection of the various 5G RAN or 5G Core VNFs across
different compute locations the NFV MANO defines and uses a WAN
infrastructure Manager (WIM), that is a particular case of the NFV MANO VIM
component (see Section 2.1) [3]. While the VIM is responsible for controlling
and managing the compute locations resources (for allocation of networking
and computing resources required to execute the virtualized NFs), the WIM is
used to establish connectivity between them and the given NFs running in it.
In this case, the WIM can be implemented by a dedicated Transport SDN
controller (e.g., based on opensource), and from a 3GPP management system
perspective, the control and management of the intra-domain transport
network is hidden and mediated by the NFV MANO system. Specifically, there
is no need to export towards the 3GPP management system any transport

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 31 of 82

network detail or specific requirement, as it is the NFV MANO system that
translates the specific network slice requirements imposed by the 3GPP
management system into transport network provisioning and configurations
through the SDN controller.

Figure 3-7 - Intra-Domain SDN Transport Network

In the second option, i.e., the inter-domain transport network used for
interconnecting RAN/edge and core network domains, the 3GPP
management system should directly interact with a Transport SDN control
framework.

Figure 3-8 - Inter-Domain SDN Transport Network

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 32 of 82

As depicted in Figure 3-8, the 3GPP management system (i.e., the iNGENIOUS
end-to-end network slice orchestration framework), should provide specific
transport network management functionalities capable to interact with
Transport SDN controllers and thus retrieve information on available
topologies, QoS capabilities, and enforce transport network connectivity
services in support of end-to-end network slice performance requirements.

However, due to the traditional complexity of transport networks, either in the
intra-domain or inter-domain case, which are normally composed by multiple
network nodes featuring diverse technologies (i.e., packet, optical) and
provided by different vendors, the case of having a single Transport SDN
controller is not realistic. Current transport networks are indeed fragmented
into multiple vendor domains with their own control plane technology. For
this reason, the Open Networking Foundation Transport API (ONF TAPI) is a
good candidate solution to overcome this fragmentation [20]. Indeed, the
ONF TAPI enables to abstract a set of common SDN control plane functions
(e.g., for path computation, topology, connectivity services provisioning) and
defines a common data model and protocol based on YANG [21]. Moreover, it
defines common APIs to interact with heterogeneous SDN controllers,
independently of the specific SDN proprietary logic implemented. In
particular, the ONF TAPI approach facilitates the deployment of hierarchical
SDN architectures, with the specific common APIs used as the northbound
interface of the lower layer SDN controller and as southbound interface of the
upper layer SDN controller, enabling a recursive approach with cascades of
SDN controllers.

3.3.2 SATELLITE BACKHAUL AND TRANSPORT

A satellite backhaul connectivity deployment includes UEs (e.g., IoT devices)
connected to an edge node which is connected to, or integrated with, a
satellite terminal. The satellite terminal communicates with the central node
over a satellite link. The satellite backhaul is seen as a transport layer for the
messages between the edge and the central node. Because of this, the
backhaul should be as transparent as possible, while at the same time being
able to assure a guaranteed communication quality depending on the
requirements of the use case.

IoT devices send regular status updates to an IoT Gateway (GW) which
processes and optimizes the data before forwarding via the satellite backhaul
link to the IoT cloud/data centre as shown in Figure 3-9.

As illustrated in Figure 3-9, the satellite network architecture used in
iNGENIOUS also incorporates major concepts and components of the 5G
architecture to provide the end-to-end satellite connectivity. Firstly, the space
segment is provided by SES’ multi-orbit and multi-band transparent (bent
pipe) satellite fleet which provides connectivity between the satellite remotes
and the hub platform located at the SES’ teleport in Betzdorf, Luxembourg.
The satellite network deployed at the SES Teleport is built using IDR’s 5G-
enabled Velocity™ Intelligent Gateway (IGW) system and uses satellite
capacity provided by SES’s Ku Band satellite. This architecture is captured by
ETSI SES in ETSI SES - DTR/SES-00405 - TR 103 611: Satellite Earth Stations and
Systems (SES); Seamless integration of satellite and/or HAPS (High Altitude

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 33 of 82

Platform Station) systems into 5G systems specifically “Scenario A3 - Indirect
mixed 3GPP NTN access with bent-pipe payload”.

Figure 3-9 - Satellite backhaul connectivity architecture

A satellite system can be used as a transport network within the IoT network
to provide connectivity between remote and central nodes. Typically, the
satellite system is not managed by the same entity that manages the end-to-
end IoT network.

Management and Orchestration

Reaching across a network to provision an end-to-end service is certainly
challenging in any network with diverse control across a multi-layer and
heterogeneous service network. However, in satellite networks there is the
constant challenge of variable performance and reliability combined with
greater latencies of GEO and Non-GEO satellite links that can add hundreds
of milliseconds of latency. Centralized Orchestration or SDN Controller
architectures are vulnerable to a high frequency of command exchanges
across the space segment. Furthermore, synchronized message exchanges
suffer on high latency and variable availability links. These demanding
operating conditions need a resilient and recoverable control architecture
that provides durability in the face of variable performance that a physically
centralized architecture does not sustain. A distributed and possibly federated
SDN Controller architecture puts greater intelligence and autonomy at the
edge beyond the space segment, minimizing the dependency and use of
space segment resources using distributed intelligence to maintain a rich
control interface with local devices where terrestrial networks are typically
available [22]. Figure 3-10 illustrates specialized controllers for various layers
and segments of the network where each controller can support either the
centralization or distribution of network control functions. These functions
can typically be implemented as virtualized network functions that are placed
at the network edge in devices that support a virtualization infrastructure.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 34 of 82

Figure 3-10 - Distributed SDN Controller Architecture

When the MANO system requests a service from the satellite system, the
internal network controller (e.g., SDN) will “spin up” the necessary virtual
functions and perform the necessary checks to provide the service before
responding to the MANO system indicating if the service is available or not.

It is important to note that, typically, the MANO system itself is not allowed to
spin up resources within the satellite network. The satellite system needs to
be responsible for this as it has limited resources and the satellite system is
the only one with a full view of the resources available.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 35 of 82

4 End-to-end Network Slice Orchestration
Architecture

This chapter represents the core part of this document, and provides a
detailed description of the iNGENIOUS end-to-end network slice
orchestration framework architecture. In particular, it highlights the
architectural principles that are the foundation of the design of the
orchestration framework, that is then detailed in the form of a functional
architecture with the identification of the main building blocks required to
achieve the needed management and orchestration capabilities withing the
iNGENIOUS Network Layer. In addition, operation workflows, information
models and APIs are also detailed to provide a full design picture for the
proposed end-to-end network slice orchestration framework.

4.1 Architectural Principles

The iNGENIOUS end-to-end network slice orchestration framework has been
designed considering the overall requirements defined in Deliverable D4.1 [15],
and satisfy the architectural principles gathered in Table 4-1:

Table 4-1 - Architectural principles of end-to-end network slice orchestration framework

Principle #1: The end-to-end network slice orchestration architecture
should follow the global structure of the 5G system defined in the 3GPP
specifications and make use of the latest technologies and architectures in
the area of Network Function Virtualization

Principle #2: The end-to-end network slice orchestration architecture
should be aligned with the major 3GPP and ETSI standards in terms of
functional architecture and interfaces with aim of facilitating
interoperability and integration with 5G infrastructure deployments.

Principle #3: The design of the end-to-end network slice orchestration
framework should maximize the re-use of existing architectural
components from 3GPP and ETSI NFV specifications, e.g., in terms of
management functionalities, MANO components, etc. When new functions
or components are required, their interfaces should be designed to
facilitate their integration with the existing standard frameworks.

Principle #4: The end-to-end network slice orchestration should be
augmented with closed-loop functionalities to achieve a high degree of
automation in service and network slice operation. The integration of AI/ML
solutions and technologies should be considered to go beyond current
reactive closed-loop approaches in favor of proactive optimization
solutions.

Principle #5: The end-to-end network slice orchestration architecture
should enable the implementations of its components as cloud-native
services, easing the deployment in edge and cloud environments, in a
modular, dynamic and orchestrated way.

Principle #6: The end-to-end network slice orchestration framework should
make use of open interfaces and APIs to facilitate its integration with third
party systems and avoid vendor lock-ins.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 36 of 82

Principle #7: The design of the end-to-end network slice orchestration
architecture should follow a modular pattern that enables its applicability
to multiple use cases and deployment scenarios. It should facilitate
composition and customization of the functional blocks according to
accommodate specific requirements of the target use case domains and
required features.

4.2 Functional Architecture

The main principles and motivations described in the previous section led to
the specification of the iNGENIOUS end-to-end network slice orchestration
framework. In Figure 4-1 is available a mapping between the functional
architecture described the 3GPP TR 28.801 specification (Figure 4-1a) and the
proposed high-level architecture of the end-to-end network slice framework,
which is assisted by cross-layer AI/ML functionalities in support of the network
slice operations. (Figure 4-1b).

Figure 4-1b shows the three main functional blocks, namely Vertical Service
Management Function (VSMF), Network Slice Management Function (NSMF)
and Network Slice Subnet Management Function (NSSMF), which play a
specific and crucial role in the proposed orchestration framework. In
particular:

• The VSMF layer is in charge of the lifecycle of vertical service instances,
i.e., a service with high-level requirements. The VSMF translates the
vertical service requirements into end-to-end network slice
requirements.

• The NSMF layer is in charge of the lifecycle of end-to-end network slices.
Furthermore, the NSMF interacts with different NSSMFs.

• The NSSMF layer is in charge of managing the specific lifecycle of the
network slices subnet. This layer can include multiple instances of
NSSMFs, one specific for each network domain (e.g., RAN, transport,
core).

Figure 4-1 - End-to-end network slice architecture functional high-level architecture supported by AI/ML

platform

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 37 of 82

The number and type of end-to-end network slices applicable and suitable for
a given vertical service strictly depend on its high-level requirements and
application scenario. For instance, a uRLLC and eMBB end-to-end slices can
coexist on the same physical network infrastructure. The former can be
referred to as an industry 4.0 scenario (e.g., robot communication service),
while the latter as a video streaming communication service with a fixed QoS
(e.g., video resolution).

From an architectural perspective, the orchestration framework uses a cross-
layer approach, meaning that each functional component described above is
dedicated to manage and coordinate specific service, network slice and
resource operations, with tight cooperation to fulfill end-to-end and cross-
layer consistency. The information available at the VSMF level is kept at the
service level only, with abstraction in terms of network slice and resource
details. On the other hand, at the NSSMF level the information managed is
technology and vendor-specific. Therefore, the end-to-end network slice
orchestration framework implements different mechanisms for translating
the high-level requirements into technology and vendor-specific
requirements. The end-to-end orchestration framework is also supported by
an AI/ML platform to execute some automatic decisions in the operation of
vertical services and network slices.

In the next sections, the main components of the proposed architecture
(already briefly described above) are detailed. In particular, for each
component the related functional decomposition is presented, including the
information managed and the interaction with other layers.

4.2.1 ORCHESTRATION COMPONENTS

This section describes the internal components of the end-to-end network
slice orchestration framework.

Figure 4-2 - High level software architecture end-to-end network orchestration framework

Figure 4-2 depicts the functional architecture of the end-to-end network
orchestration framework, derived from the high-level view of Figure 4-1. In
particular, the 3GPP CSMF functionalities are realized by the Vertical Service
Management Function (VSMF), the 3GPP NSMF functionalities are realized by
the end-to-end NSMF and finally the 3GPP NSSMF layer is mapped into
multiple specific technology-tailored NSSMFs.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 38 of 82

After a brief description of the network slice related data models supported
by the end-to-end orchestration framework (which is key to capture how the
various entities managed are modelled), the following sub-sections detail the
functional decomposition and internal design of the VSMF, NSMF and NSSMF
components.

4.2.1.1 Data models

The end-to-end network slice orchestration stack introduced above supports
a multi-layered data model. This is used by each orchestration component to
drive the lifecycle management operations and derive any requirement
concerning services and network slices, and thus enforce the proper actions
and invoke primitives in the lower layer components.

At the upper layer of the orchestration stack, the VSMF implements two
different data models: the Vertical Service Blueprint (VSB) and the Vertical
Service Descriptor (VSD). Both data models are based on a non-standard
information model defined as part of the Vertical Slicer (the baseline
Nextworks software stack used for the end-to-end network slice orchestrator
[23]) and represent respectively a class of vertical services (VSB) and a specific
vertical service belonging to a certain class (VSD). The VSB describes a vertical
service through service parameters defined according to
digital/communication service providers’ knowledge. Indeed, it provides a
high-level description of the service that does not include infrastructure-
related information. The VSD is obtained from a VSB, when a vertical
consumer selects a class of service (i.e., a VSB) and produces a Vertical Service
description by specifying certain value of the VSB parameters, that may
include resource specifications, QoS and geographical constraints, number of
users consuming the service, and also reference to specific Vertical Functions.

As anticipated above, at the NSMF and NSSMF levels two different network
slice data models are supported: the 3GPP Network Slice Template (NST) and
the GSMA GST. The latter is then called Network Slice Type (NEST) once its
attributes have been assigned proper values for a given service. The GSMA
NEST allows the description of a Network Slice through value assignment
according to the GSMA GST (GSMA, 2020). The main requirements expressed
through the NEST consist of a list of 5G Quality of Service (QoS) Indicators (5QI),
which are subsequently mapped into NST’s parameters that determine the
type of the Network Slice. In particular, such 5QIs are used in the GST-to-NST
translation process to determine the 3GPP-based Service Profile specified in
the NST.

The 3GPP NST describes a Network Slice according to the attributes defined
by the 3GPP Network Slice NRM [8], that provides network requirements and
related resources’ configuration. In particular, the NST, whose simplified class
diagram is shown in Figure 4-3, contains a list of Service Profiles, each of them
specifying the Network Slice type and the related QoS and service attributes
(e.g., the latency, the maximum number of UE, the maximum supported
packet size etc.). In addition to the list of Service Profiles, the NST contains a
reference to a Network Slice Subnet (NSS) that can be represented through a
NSS Template (NSST) as part of the overall NST data model. The NSST contains
a list of Slice Profiles, each of them representing the required properties of the
NSS. The Slice Profile contains QoS attributes, similar to the Service Profile, and

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 39 of 82

a list of Performance Requirements. The attributes included in the
Performance Requirements depends on the type of the NSS. For instance, if
the Network Slice type is uRLLC, the list of Performance Requirements will
contain parameters like the E2E latency, the jitter, the message size byte and
the communication service availability target. For eMBB network slices, the
list of Performance Requirements can contain attributes like the experienced
data rate, the area traffic capacity downlink and the area traffic capacity
uplink. Finally, two other attributes contained inside the NSST are a reference
to a list of NSSTs and a Network Service Descriptor (NSD) Info field, which
refers to the NFV Network Services that may be included into the NSS.

Figure 4-3 - Network Slice Simplified Class Diagram

Translation process

As part of the end-to-end network slice orchestration steps, together with the
slice resource allocation operations, the iNGENIOUS cross-layer orchestration
stack implements a stepwise procedure where the vertical consumer intent
expressed in the VSB and VSD to describe the desired service is gradually
translated into the slice and related resources technical requirements that
follow standard definitions.

Figure 4-4 - Translation of Vertical Service Requirements into end-to-end slice resource allocation

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 40 of 82

As anticipated above, the first step consists in the vertical consumer creating
a VSD specifying tailored values for the VSB parameters (e.g., through a
dedicated User Interface offered by the VSMF). After this, the vertical may
request the deployment of the vertical service intent expressed in the VSD,
thus triggering the translation process to standard network slice technical
models. From the VSD are extracted information to build a slice specification
following the GSMA-GST model. At this point, first, a NEST is produced, then
the Network Slice is defined following the 3GPP NRM model, that incorporates
the concepts of end-to-end slice and network subnet slices, in order to model
and manage the slices at each network segment. For the core/edge segment
the slice subnet can include a set of NFV Network Services and VNFs (e.g., to
model either the 5G Core NFs or specific vertical virtual service applications),
defined by following the ETSI NFV SOL-006 [24] information models for the
VNF Descriptor (VNFD) and the Network Service Descriptor (NSD).

4.2.1.2 Vertical Service Management Function

As already mentioned, the VSMF is in charge of managing the requests of
vertical service lifecycle management exploiting the related data model, i.e.
the Vertical Service Blueprint (VSB) and Vertical Service Descriptor (VSD).
Specifically, the VSB is a template used for representing a class of services. It
contains parameters like the number of users, covered geographical area by
the service and so on. VSD is the parametrization of the defined VSB,
specifying for instance the actual number of users the service, the actual
geographical area where the service would be deployed and so on.

In general, each vertical service is associated with a Tenant that represents the
vertical consumer/customer of the orchestration platform. However, each
Tenant has a maximum amount of resources for the vertical service
provisioning defined within a Service Level Agreement (SLA). Therefore, the
VSMF implements operations to manage the Tenant according to its specific
SLAs information.

Figure 4-5 depicts the functional decomposition of the VSMF, including the
interactions among the internal components and with the NSMF.

Figure 4-5 - High-level software architecture of VSMF

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 41 of 82

In general, the main aim of the VSMF is to manage the lifecycle of multiple
vertical services in a seamless way. For this reason, different functionalities are
supported by its internal components. The two main entities that interact with
the VSMF at its northbound are:

• the network/admin operator for managing the onboarding of VSBs,
and the configuration of the Tenants and related SLAs

• the vertical consumer/customer (i.e., the Tenant) for requesting
lifecycle operations of vertical services (e.g., instantiation, modification,
termination)

A brief description of each VSMF internal component (with reference to Figure
4-5) is reported below.

VSB & VSD catalogue

This component allows performing Create, Read, Update and Delete (CRUD)
operations on VSBs and VSDs used for managing the vertical service
capabilities and its high-level requirements. This catalogue not only is used by
the network/system administrator, but also by the other VSMF internal
services. Moreover, the VSB and VSD catalogue can interact with the NSMF for
retrieving technical network slice related information related to the vertical
service.

REST APIs related to CRUD Operation on VSBs and VSDs are documented in
section 4.5.

Vertical Service (VS) Lifecycle Management (LCM) Engine

This component, with the support of the Service to Slice Translator, Multi-
service arbitrator and the VSB & VSD Catalogue, manages the whole lifecycle
of vertical services instances (VSIs), from their instantiation to their
termination. Moreover, the VS LCM manages also the runtime modifications
of the VSIs. A dedicated Vertical Service LCM interface is exposed to allow LCM
operations triggered by Tenants and admin/network administrator.

The related REST APIs are documented in section 4.5.

Service-to-slice translator

This component translates the vertical service into end-to-end network slice
capabilities. In particular, it maps the high-level service requirements
provided by the VSD into technical specifications available in the NST/GST
catalogue of the NSMF. The translation process follows the translation rules
provided by the admin/network administrator during the VSB on-boarding
process.

Multiservice arbitrator

This component determines the vertical service instantiation feasibility when
a new vertical service is requested to be provisioned. In detail, it checks
whether the request of the instantiation does violate or not the SLA in terms
of maximum resources that can be allocated for a specific Tenant. Moreover,
it allows, with specific arbitration policies (that can be pre-configured) to share
network slices to serve different vertical services (e.g., from the same Tenant).

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 42 of 82

NSMF Client

This component is responsible for interacting with the NSMF, sending
requests for different operations related to end-to-end network slices. These
operations include the instantiation, modification and the termination of the
end-to-end network slices. In general, the NSMF Client is in charge of
dispatching all the requests towards the end-to-end NSMF coming from the
VS LCM Engine and managing the corresponding responses. Furthermore,
the interaction mechanism with NSMF is asynchronous: once the request is
sent and a reply is received, it means that it has been submitted. Then, when
the end-to-end network slice has been successfully provisioned, a notification
is sent back to the VS LCM Engine..

4.2.1.3 Network Service Management Function

Figure 4-6 depicts the high-level architecture of the NSMF with its internal
components and the related interaction among them. The NSMF is mainly
responsible for managing the lifecycle of end-to-end network slices,
according to the requirements and capabilities expressed in the Generalized
network Slice Template (GST) and Network Service Template (NST).

Figure 4-6 - High-level architecture of NSMF

As already described, the GST defined by GSM Association (GSMA) contains a
set of attributes for defining a generic network slice regardless of the
technology used for the network slice provisioning itself. The GST results in a
NEST when GST’s attributes are associated with a specific value [11]. Similarly,
The NST and NSST, in compliance with the 5G NRM [8] (also detailed in Section
2.2.1), describe through an abstract model the slices’ capability, without
explicitly stating the internal technical details of the network slice itself. GSTs,
NSTs and NSSTs drives the whole lifecycle management of end-to-end
network slices, implemented by the different components available within
the NSMF.

A brief description of each NSMF internal component (with reference to
Figure 4-6) is reported below.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 43 of 82

GST and NST catalogue

This component allows to perform CRUD operations on GSTs, NSTs and NSSTs
used for defining the end-to-end slice requirements. In particular, a
admin/network administrator can manage the GSTs\NSTs, making them
available for possible end-to-end network slice instantiation requests.
Moreover, the GST/NST catalogue can be queried by the VSMF for the
translation process during a vertical service instantiation. For this reason, the
GST/NST catalogue exposes a set of REST API is detailed in section 4.5.

End-to-end network slice LCM engine

This component manages the lifecycle of the end-to-end network slices. With
the support of the E2E Slice Composer and Slice Functions Placement Service,
it manages the set of requests to be sent to the corresponding NSSMFs. The
end-to-end network slice LCM engine is triggered by the NSMF client of VSMF
through the Network slice lifecycle management interface. This interface
(whose rest API are available in section 4.5), allows performing the
instantiation, re-configuration and termination of end-to-end network slices.
This interface can be also used by an external entity such as an AI/ML platform
to automatically trigger the LCM operation to implement closed-loops in the
network slice operations.

The interaction with different NSSMFs is asynchronous: each network domain
may require a certain amount of time for provisioning the technology-specific
resources for the end-to-end network slice. For this reason, an asynchronous
approach is used, i.e., the NSMF sends the request and it will receive
notifications about the Network Slice Subnet instantiation request.

NSMF services for AI/ML

On the left side of the NSMF architecture depicted in Figure 4-6, the Network
Slice reconfiguration interface, Network slice lifecycle notification and
Monitoring configure client components are included. These components
provide the information related to the lifecycle of the end-to-end network
slices to external components (e.g., the AI/ML platform) and allow to perform
LCM operations on the end-to-end network slice itself. For instance, the AI/ML
engine can be notified about the creation and evolution of network slice
instances, possibly retrieving the related capabilities, and enforce runtime
operations (e.g., network slice modifications or optimizations) according to the
final aim of the specific AI/ML algorithms.

End-to-end slice composer

The main aim of this component is to support the LCM engine into composing
end-to-end slice templates, by identifying the related subnets information,
from the GST/NST requirements issued by the VSMF. Using the specific
GST/NST the network slice instantiation request is referring to and the
different network slice subnets available, it composes the end-to-end network
slice to be created. In this way, the NSMF can interact with the corresponding
NSSMFs, specific for each segment and network domain of the 5G network.
More details about the interaction between the NSMF and NSSMFs are
detailed in section 4.4.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 44 of 82

5G Infrastructure handler

The main purpose of this component is to maintain information on the
computational and network capabilities of the available 5G infrastructure,
providing a topology view of how the multi-domain 5G network is composed.
This information can be exposed to the AI/ML platform through the 5G
Infrastructure information notification interface.

4.2.1.4 Network Slice Subnet Management Function

The NSSMF layer is a collection of different NSSMFs. Depending on the specific
deployment scenario and specific 5G network infrastructure where the
orchestration framework operates, the number and the type of NSSMFs can
change. In the case of iNGENIOUS, the high-level architecture of the NSSMF
layer is depicted in Figure 4-7.

Figure 4-7 - High-level architecture of NSSMF layer

Each specific network domain implements its own mechanisms, data models,
REST APIs and workflows for allocating computing and network resources. For
this reason, a tailored NSSMF implementation is needed to deal with the
domain-specific controllers or local orchestrators, such as NFVOs, RAN
controllers, SDN controllers, etc. Furthermore, the technical details of the
domain are hidden by an abstraction layer each NSSMF provide: this approach
allows the NSMF to deal transparently and uniformly with all the NSSMFs,
providing flexibility to the NSMF perspective. All NSSMFs follows a generic and
unified functional decomposition, which is show in Figure 4-8.

Figure 4-8 - High-level architecture of generic NSSMF

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 45 of 82

In particular, each NSSMF provide at least the following functionalities:

• The Northbound Interface (NBI) is exposed for exploiting the NSSMF
functionalities and for receiving subnet slice related requests. From an
implementation perspective, REST APIs are used for interfacing with the
NSSMF (i.e., from the NSMF).

• The NSSMF Service plays the role of validating and dispatching the
requests into an event bus, publishing them as events. Moreover, the
NSSMF service can perform a subscription to the event bus for receiving
notifications related to the requests dispatched.

• The Event bus allows communications among components using a topic-
based and publish-subscribe mechanisms. In the case of the requests of
the NSSMF towards the specific network domain, the NSSMF service is the
publisher of the events, i.e. the requests, while the NSSMF Handler
represents the subscriber. Similarly, for the notifications, the NSSMF
Handler is the publisher while the NSSMF Service is the subscriber.

• The NSSMF Handler subscribing to the events receives multiple requests
and realizes the internal logic of the NSSMF. For instance, it translates the
request appropriately and invokes the specific network driver domain to
send the processed request. On the other hand, it could receive
notifications from the specific network domain and dispatch them into
the event bus. Each specific NSSMF extends this NSSMF Handler with
custom translation logic depending on the specific managed domain and
related services and resources.

As anticipated, from a software implementation perspective, each specialized
NSSMF has its tailored realization: internal logic of NSSI provisioning, payload
information model and workflow interactions with the corresponding
network domain controllers/orchestrators strictly depend on the technology,
vendor, interfaces supported. In the particular case of iNGENIOUS, the
NSSMFs included in the overall design are the following:

• O-RAN NSSMF: providing the translation of slice profiles into O-RAN A1
policies and A1 policy management operations in the O-RAN Near RT RIC.
Early implementation and integration of O-RAN NSSMF with a Near-RT
RIC provided by UPV have been described in deliverable D4.3 [25]. In
section 5 a software prototype description and early integration activities
are described.

• RAN NSSMF: providing automatic LCM and custom configuration of NFV
Network Services for RAN NFs through ETSI OSM [26], an ETSI-led
opensource implementation of the NFV MANO architecture, which is used
in iNGENIOUS as NFV Orchestrator. The Network service contains a
UERANSIM [26] instance, a tool for emulating gNB and UEs and providing
5G connectivity. Specifically, the connectivity is provided to the flexible
PHY/MAC base station (provided by TUD), which UEs are represented by
the SDR Platforms. Moreover, the RAN NSSMF configures the Flexible
PHY/MAC allocating the correct amount of resources for each UE.

• Core Network NSSMF: providing automated LCM and configuration of 5G
Core NFV Network Services through ETSI OSM [26]. The network service

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 46 of 82

contains a 5G Core instance, provided by Cumucore, consisting of the
Control Plane and User Plane Network Functions of a 5G Core. Details
about the 5G Core can be found in section 3.2. The CN NSSMF manages
the subnet slices available in the 5G network interfacing with the available
REST APIs.

• Transport Network NSSMF: providing the allocation of network resources
(i.e., in the form of connectivity services) in the transport network, when
available to interconnect 5G RAN/edge and core network domain. Details
of backhaul and transport network and its management and
orchestration can be found in section 3.3.

• Service Application NSSMF: providing automated LCM and configuration
of NFV Network Services modelling service virtual applications through
ETSI OSM [26].

4.2.2 AI/ML AND MONITORING PLATFORM

As anticipated above, beyond the pure orchestration features, the iNGENIOUS
end-to-end orchestration framework will provide closed-loop functionalities
through the integration of a dedicated AI/ML and monitoring platform. First,
the implementation of a closed-loop concept to fully automate the runtime
optimization and adaptation of network slices requires knowledge on status
and performance of (at least) the various involved NFs, network and
computing resources. For this, specific monitoring capabilities have to be
considered as key to collect and store relevant data on how the provisioned
network slice instances (and the related resources) behave. Moreover, with the
aim of going beyond the traditional reactive approach in fault and
performance management, iNGENIOUS targets the implementation of
predictive, proactive and automated network slice runtime operation. For this,
the end-to-end network slice orchestration framework makes use of AI/ML
techniques to assist the decision-making processes mostly at the network
slice management (and thus NSMF) level.

Therefore, the end-to-end network slice orchestration framework relies on an
AI/ML and Monitoring Platform which is designed with the main purpose of
supporting automated lifecycle management procedures for the
optimization of network slices related resources (both network and
computing). In practice, it aims at collecting metrics and information from
heterogeneous resources, providing a variety of data inputs to AI/ML based
analytics and decision algorithms that can feed and assist the NSMF. The
proposed platform is kept agnostic with respect to the specific algorithms
consuming the monitoring data, and provides two ways for accessing the
data. First, it offers query-based access to retrieve historical or periodical data,
for example for the training of ML models. Second, it implements a
subscribe/notify mechanism that allows to access streams of real-time data
and can be used for real-time inference.

Figure 4-9 shows the high-level functional architecture of the AI/ML and
monitoring platform. It is implemented through the integration of different
data management open-source tools, augmented with additional ad-hoc
components (such as the Configuration Manager and the Adaptation Layer)
to ease the integration with the network slice orchestration components. As

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 47 of 82

shown in the figure, the AI/ML and monitoring platform is built by the
interaction of two building blocks: the monitoring platform and the AI/ML
engine.

Figure 4-9 - AI/ML and monitoring platform functional architecture

The monitoring platform provides both data storing and streaming
functionalities, with proper interfaces exposed towards the AI/ML engine to
consumes the monitoring data. The data can be collected from different and
heterogeneous data sources through the Adaptation Layer, that provides the
necessary interfaces and logic to map the data from the sources to proper
messages topics on the internal data bus. In particular, the Adaptation Layer
is designed to be plug-in oriented, where each plug-in (or data-collection
driver) collects data from a specific data source. This approach provides a high
level of flexibility since the composition of the active plugins may vary with
respect the different network slices to be monitored or during the different
phases of a network slice lifetime.

The data streaming service is provided by a central Apache Kafka Bus [28]that
is accessed by an instance a Telegraf [29] plugin, which acts as a data
collection manager and listens to new messages on the bus to send them to
an instance of Prometheus [30]. Prometheus provides data aggregation
functionalities, and uses InfluxDB [31] as database to store the collected raw
data in form of timeseries. Therefore, InfluxDB represent the Data Lake of the
whole AI/ML and monitoring platform. In addition, a configurable Alert
Manager (which is a built-in component of Prometheus) sends alarms to the
bus when specific data exceeds certain thresholds, so that the alarm
notification can be captured by Telegraf and stored in the Data Lake. The
alarms and the data, both historical and near-real time are therefore

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 48 of 82

immediately available to the AI/ML engine that can access both the Data Lake
and the Kafka Bus through dedicated interfaces. The whole monitoring
platform is configured by the NSMF through the Config Manager, that for
each network slice instance can tailor the behaviour of the monitoring
platform to properly collect, manage and store the required data. Indeed, the
Config Manager provides the logic for configuring Prometheus to properly
aggregate the data collected through the Kafka bus. Similarly, the Alert
Manager is configured to produce different types of alerts when a given
metric is exceeding a specific threshold. Moreover, the Config Manager is also
responsible for the configuration of the different Data Collector Drivers to
tailor the data collection from the various available sources according to the
given network slice requirements, including Telegraf and Kafka configuration
to create ad-hoc topics on the bus and consume the related data to be
forwarded to Prometheus.

The AI Engine is divided into two functional blocks, Analytics and Decision. The
live data inputs are obtained by the Analytics block through the monitoring
platform, with analytics performance and results reported in Grafana. The
Decision block passes the determined slice adaptations to the network slice
orchestration components.

The Analytics block can be subdivided into 4-stages designed for robust
functionality on real world data:

• Stage 1. Data pre-processing - real-time data contains many irregularities
(ex. null values) unrelated to the useful information derived from the target
analysis. This noise can directly affect the ability of models to reliably infer
behaviours in the incoming data. The data pre-processor cleans and
normalises the incoming dataset to avoid misbehaviour of the model on
real world data.

• Stage 2. Feature detection - correlated time series data is analysed with
respect to long term behaviours which create unique features that can be
used to predict future trends in network behaviour. Selection of these
features is achieved through the use of trained models capable of
discriminating target behaviours.

• Stage 3. Inference engine - inference of future trends is performed using
the identified features of the incoming dataset that are used as inputs in
AI/ML algorithms to determine the most probable future state of the
system. These predictions are then sent to the scaling logic to determine
the most appropriate system adaptation.

• Stage 4. logic - the predictions of the state of the system are combined with
operational parameters to decide if, how, and when an adaptation will
optimise the resources of the system. The logic interacts with the NSMF to
accept any changes to the slice reconfiguration.

For what concerns the interaction with the network slice orchestration
components, the AI/ML and Monitoring Platform offers a set RESTful APIs on
top of the Config Manager and the AI/ML Engine. The purpose of the Config
Manager API is to enable the automated configuration of specific monitoring
jobs from the NSMF. Indeed, during the provisioning of the end-to-end
network slice instances, through this API the NSMF can trigger the monitoring
of specific service and network related metrics, to be then stored in the data

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 49 of 82

lake, visualized in customized dashboards, and consumed by the AI/ML
Engine. On the other hand, the AI/ML Engine offers an API that is exploited by
the NSMF to notify the analytics and decision functionalities about the
evolution of network slices lifecycle (e.g., instantiation, scaling, termination) as
well as on the result of the related lifecycle operations (i.e., success or failure)
to help in the contextualization of data retrieved from the monitoring
platform.

4.3 AI/ML based network slice optimization

AI/ML techniques are being adopted into 5G networks to support full
automation in closed loops related to the management and runtime
operation of 5G services and network slices. In practice, the target is to
improve the optimization of network performances, while enhancing the
users perceived experience. At the same time, AI/ML techniques can help in
solving network management complexities brought by 5G, where several
technologies and domains coexist for the provisioning of end-to-end services
and slices. Currently, this requires ad-hoc integrations and knowledge of
heterogeneous per-domain control and management solutions. Exploiting
data that can be easily collected from the 5G infrastructure, network functions
and applications, AI/ML techniques can therefore help in fully automating 5G
network services and slices runtime operations with a truly closed-loop
approach.

In particular, the concept of network self-X (self-healing, self-optimization,
etc.) based on the continuous monitoring of service attributes and
performance parameters (data-driven), is a well-known approach in the
context of 5G management platforms. The iNGENIOUS end-to-end network
slice orchestration framework implements such automation mechanism by
involving all the components building the platform: the orchestration stack,
the monitoring platform and the AI/ML engine. Indeed, when an end-to-end
network slice is deployed, the orchestration platform (i.e., through the NSMF),
as final step, configures the Monitoring Platform in order to continuously
collect data which are relevant to determine the current status of the slice
itself and the related services. The collected data are related to the different
network subnet slices and their resources (e.g., 5G Core NFs, virtual
applications, etc.). The monitoring platform collects and stores the data and
make them available for the AI/ML engine that continuously takes decisions
based on the monitored status, that can be a simple “do nothing” or slice
optimization requests to be enforced towards the slice re-configuration
interface offered by the NSMF. At this point the NSMF translates such requests
to real actions on the target (monitored) end-to-end slice.

The AI/ML innovation scenario considered for the end-to-end network slice
optimization targets the trigger of a pre-emptive auto-scaling of local-edge
and central User Plane Functions (UPFs), in support of low latency
communication services, as shown in Figure 4-10. A single UPF instance can
handle multiple protocol data unit (PDU) sessions, however the resources of a
UPF instance are finite. As traffic load increases, to avoid degradations in
service caused by finite resources, more UPF instances can be deployed and
started, and likewise, an idle UPF instance can be terminated when the traffic
is low. This process can be achieved in a closed-loop continuous fashion that

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 50 of 82

monitors, measures, and assesses real-time network data, then automatically
acts to optimise according to the SLA. It is important to note that human
operators configure the automated actions and can manually modify them at
any point within the loop.

Figure 4-10 - Closed-loop pre-emptive auto-scaling of UPF

The information used in pre-emptive auto-scaling, collected from the 5G
infrastructure, and applications, can be related to specific UEs, (mobility,
communication pattern, etc.), NFs, network slices, or the network as a whole.
UPF load information available from the NWDAF, including CPU, memory,
and disk usage, can be supplemented with user plane data like bandwidth,
latency, packet loss, etc., as well as UE-related information (mobility, position,
etc.) to get accurate predictions of future network conditions. The current list
of attributes considered by the AI Engine is given in Table 4-2, additional
metrics are expected to be added as they become available. Within an Edge
Compute Node, a local NWDAF collects data from the UPF and exposes it to
the Monitoring Platform. The Platform collects the data from the NWDAF as
well as other sources which are ingested after a pre-processing by the AI
agent which performs a decision about the pre-emptive auto-scaling
operation on UPF itself.

Table 4-2 - Data model of inputs to the AI Engine

Attribute
(item

associated
with)

Source
Data
type Frequency Description

of PDU
sessions
(UPF)

CMC UPF
logs

int Event-based
(Event=connection UE)

number of
simultaneous
sessions handled
by UPF

NF load (UPF)
at least one

NWDAF int polling or event based CPU usage

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 51 of 82

value will be
given

int polling or event based memory usage

int polling or event based Storage usage

int polling or event based Avg load level

packet loss
(UPF, session)

iperf3
output
stats
(UDP)

int Using iperf3, at the end
of each experiment.
Experiment duration is
a customizable
parameter

percentage of
packets lost with
respect to packets
sent

Number of
retransmissions
(UPF, session)

iperf3
output
(TCP)

int Using iperf3, at the end
of each experiment.
Experiment duration is
a customizable
parameter

Number of
retransmissions of
TCP session

From a data collection perspective, the setup for the UPF data collected by
the monitoring platform at the time writing this deliverable, is depicted in
Figure 4-11.

Figure 4-11 - Data source available so far for the monitoring platform

Currently, from the UPF it is possible to collect three types of data:

• The UPF resource usage, in particular related to the CPU, RAM, disks
and so on. This information is collected using a Telegraf plugin called
procstat. With this plugin it s possible to obtain, at given time, metrics
like the amount of time that the UPF uses the CPU, the amount of
memory that the UPF uses for data, the number of bytes that the UPF
has read from disks and has written into disks and so on. In general, it
provides a detailed perspective about the resource usage of the UPF in
a given time.

• From the UPF logs, information related to the PDU sessions. In this case,
a Telegraf plugin called execd is properly configured and then used.
Currently, the processing of the logs from the UPF is ongoing and

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 52 of 82

information such as the total number of PDU sessions and PDU
sessions per gNB can be extracted from the logs. Also in this case, the
information is time-based and is sent to the database each time a new
PDU session is established.

• The UPF networking usage information, using ntop [32], an open-
source traffic monitoring tool, is possible to extract metrics about the
network interface the UPF is using. These metrics include a plethora of
information: number of bytes and packets transmitted and received to
and from a specific interface or from a specific autonomous system,
TCP packets dropped, number of active flows and hosts, out of order
packets, protocols used for the monitored traffic and so on. Once
collected, all these data are sent to the monitoring platform.

The possibility to collect more data related to UPF performances will be
further investigated. In this way, the Monitoring Platform can be enriched
with all the data needed by the AI/ML platform to extract as much as possible
knowledge from the UPF status.

4.4 Network Slice Orchestration Workflows

This subsection describes the high-level workflows of the network slice
orchestration. Specifically, the workflow related to the provisioning,
termination and re-configuration of an end-to-end network slices are
described. The communication mechanisms occurring among the different
components is asynchronous for two reasons: first, it is not known at priori the
time taken by a specific network domain to either allocate or re-configure or
free a certain number of resources, and second, the different components
could serve simultaneously multiple requests.

4.4.1 PROVISIONING OF END-TO-END NETWORK SLICE

Figure 4-12 depicts a high-level sequence diagram describing the end-to-end
network slice provisioning. The end-to-end network slice provisioning is part
of a vertical service provisioning and it is assumed that a vertical service
instantiation request is correctly translated into an end-to-end network slice
instantiation request. For completeness, it is assumed also that the network
domains involved in this particular case are the RAN, Transport Network (TN)
Core Network and the vertical (virtual) applications deployment.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 53 of 82

Figure 4-12 - High-level sequence diagram of end-to-end network slice provisioning

The below steps summarize the end-to-end network slice provisioning:

• The NSMF receives the instantiation request, validates it and decomposes
the related NST into multiple NSST.

• In this way, the NS LCM Engine knows the NSSMF to make the requests
to and the specific parameters to be sent.

• NSMF sends multiple specific requests for network slice subnet
instantiation to the specific NSSMFs.

• At this point, each NSSMF translates the instantiation request into
domain-specific requests, sending it to the related network domain
controller/orchestrator.

• Depending on the domain and the type of resource provisioning, this
operation is not synchronous. For this reason, it can be possible that in
some cases the request is submitted and eventually a notification is
expected. Consequently, each NSSMF saves internally the information
about the Network Slice subnet provisioning and notifies the NSMF about
the instantiation.

• The NSMF updates the information related to the end-to-end network
slice instantiation.

• Finally, the VSMF is notified about the end-to-end network slice
provisioning.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 54 of 82

4.4.2 TERMINATION OF END-TO-END NETWORK SLICE

Figure 4-13 depicts the high-level workflow of the termination of an end-to-
end network slice as part of a vertical service. It is assumed that the tenant
wants to terminate the vertical service and the VSMF triggers the workflow
termination of the end-to-end network slice.

Figure 4-13 - High-level workflow of end-to-end network slice termination

The below steps summarize the end-to-end network slice termination:

• The VSMF requests to terminate the end-to-end network slice towards the
NSMF.

• The NSMF receives and checks the request, sending the corresponding
termination requests to the NSSMFs where the network slice subnet
instances have been previously provisioned.

• Then, the NSSMFs request the related and specific network domain
controllers/orchestrators to free or terminate the resources previously
allocated.

• Depending on the network domain workflow implementation the
resources can be freed synchronously or asynchronously. In the latter case,
once these resources have been correctly deallocated, then notifications
are sent, the NSSMFs update the NSSI information.

• At this point, the NSMF is notified by the NSSMFs and updates the NSI info.

• Finally, the VSMF is notified about the correct termination of end-to-end
network slice termination.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 55 of 82

4.4.3 RE-CONFIGURATION OF END-TO-END NETWORK SLICE

Figure 4-14 shows a high-level sequence diagram of an end-to-end network
slice re-configuration. In general, a re-configuration consists of scaling up or
scaling down the end-to-end network slice resources. In other terms, either
new computational and networking resources can be allocated, or eisting
ones can be deallocated. For simplicity, it is assumed that the re-configuration,
in the case of scaling up operation, does not violate any SLA belonging to the
related Tenant and all the involved specific network domains have enough
resource to satisfy this request. Moreover, the re-configuration of the end-to-
end network slice could be either trigger by the VSMF or by the AI/ML engine
as part of the scenario defined in 4.3.

Figure 4-14 - High-level workflow of end-to-end network slice re-configuration

The below steps summarize the end-to-end network slice re-configuration:

• The AI/ML Engine or VSMF requests to re-configure the end-to-end
network slice towards the NSMF, specifying what are the new high-level
slice capabilities to enforce. In the former case, the request is
automatically triggered by the AI/ML internal logic, in the latter case the
request is manual through the VSMF user interface.

• The NSMF receives and validates the request, processing the new slice
capabilities and identifying the involved domains a related subnet slices.
At this point, it sends the corresponding re-configuration requests to the
correspondent NSSMFs. Depending on the high-level request, not all
NSSMFs could be involved.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 56 of 82

• Then, the NSSMFs, after having properly translated the NSMF request,
interact with the specific network domain controllers/orchestrators to re-
configure properly the resources.

• If a notification mechanism is present at network domain level, after a
while, the specific network domain controllers/orchestrators update their
allocated resources and send the corresponding notifications. Then, the
NSSMFs update the NSSI information.

• At this point, the NSMF is notified by the NSSMFs about the NSSI re-
configuration and updates the status of the NSI.

• Finally, the AI/ML engine or VSMF is notified about the correct re-
configuration of the end-to-end network slice.

4.5 Interfaces and APIs

In this section the high-level REST APIs of the different components and
services part of the end-to-end network orchestration framework are
described. In particular, for each layer, a specific subsection containing the
REST APIs are available in table format. In particular, for each REST API, the
specific functionality offered, the requestor, the HTTP method, the URL, a brief
description and the request parameter are provided.

4.5.1 VSMF REST API

In this section the REST APIs exposed by the VSMF are described. Table 4-3
details the REST APIs for Tenant and SLA management. These requests can
be performed by an administrator that, after a successful login, can manage
the tenants, groups and the related SLAs within the VSMF.Table 4-5 details the
REST API of Vertical Service LCM. Some of the described REST APIs are in a
working in progress state and their URL could change during future
development.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 57 of 82

Table 4-3 - REST APIs for tenant and SLA management

Functionality HTTP
method URL Description Request parameters

Group creation POST /vs/admin/group/{{group}} Request to create a new group Group name in the URL.

Tenant
instance
creation

POST /vs/admin/group/{{group}}/tenant
Request to create a new tenant
inside a group specified

A group identifier that identifies the tenant’s
group in the URL.
In the body, a JSON object that represents
the Tenant information

Tenant(s)
information
retrieval

GET /vs/admin/group/{{group}}/tenant
Request to retrieve tenants’
information by group name

In the URL, a group name to retrieve all
tenants inside a group.

Tenant
information
removal

DELETE
/vs/admin/group/{{group}}/tenant
/ {{tenant}}

Request to delete a specific tenant
In the URL, the group name and the
username that identifies the tenant to be
deleted.

SLA creation POST
/vs/admin/group/{{group}}/tenant
/ {{tenant}}/sla

Request to create a new tenant’s
SLA

In the URL, the group name and the
username that identifies the tenant;
As payload, a JSON object representing the
SLA to be created for a specific tenant.

SLA
information
retrieval

GET /vs/admin/group/{{group}}/tenant
/ {{tenant}}/sla

Request to retrieve a specific SLA
In the URL, the group and the username to
retrieve all SLAs of a specific tenant;

Table 4-4 - REST APIs for VSB and VSD management

Functionality
(Requestor)

HTTP
Method

URL Description Request parameters

VSB creation
(A)

POST /portal/catalogue/vsblueprint Request to create a new VSB
As payload, a JSON object representing
the on board VSB request.

VSB(s)
information
retrieval

GET
/portal/catalogue/vsblueprint/
{{vsb_id}}

Request to retrieve one or all
VSBs

In the URL, a VSB identifier that
identifies the VSB to be retrieved;
None to retrieve all VSBs.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 58 of 82

(A or T)

VSB removal
(A)

DELETE
/portal/catalogue/vsblueprint/
{{vsb_id}}

Request to delete a VSB
In the URL, a VSB identifier that
identifies the VSB to be deleted.

VSD creation
(T)

POST /portal/catalogue/vsdescriptor Request to create a new VSD
As payload, a JSON object representing
the on board VSD request.

VSD(s)
information
retrieval
(A or T)

GET
/portal/catalogue/vsdescriptor
/ {{vsd_id}}

Request to retrieve a specific
VSD or all VSDs

In the URL, a VSD identifier that
identifies the specific VSD to be
retrieved;
None to retrieve all VSDs.

VSD removal
(T)

DELETE /portal/catalogue/vsdescriptor
/ {{vsd_id}}

Request to delete a specific
VSD

In the URL, a VSD identifier that
identifies the VSD to be deleted.

Table 4-5 - REST APIs for Vertical Service LCM

Functionality
(Requestor)

HTTP
method

URL Description Request parameters

VSI
Instantiation
(T)

POST
/vs/basic/vslcm/vs/{{vsi_id}}/instan
tiate

Request to instantiate a new VSI
As payload, a JSON object representing the
VSI Instantiation

VSIs
information
retrieval
(A or T)

GET /vs/basic/vslcm/vs/{{vsi_id}}
Request to retrieve a specific VSI or
all VSIs

In the URL, a VSI Identifier that identifies a
specific VSI
None to retrieve all VSIs.

VSI
modification
(T)

PUT /vs/basic/vslcm/vs/{{vsi_id}} Request to modify a specific VSI
In the URL, a VSI Identifier that identifies the
VSI to be modified and a JSON object
representing the VSI modification request.

VSI purging (T) POST /vs/basic/vslcm/vs/{{vsi_id}}/purge Request to purge a specific VSI
In the URL, a VSI Identifier that identifies the
VSI record to be deleted.

VSI
termination (T)

GET /vs/basic/vslcm/vs/{{vsi_id}}/termi
nate

Request to terminate a specific VSI In the URL, a VSI Identifier that identifies the
VSI to be terminated.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 59 of 82

4.5.2 NSMF REST API

This section contains all the REST APIs of the Network Slice Management
Function.

Table 4-6 describes the NST/GST management and the end-to-end network
slice management, respectively. In this case, the requestor is either the VSMF
or the administrator. In both cases, a valid authentication towards the NSMF
must be performed.

Table 4-7 describes the REST APIs for the LCM management of an end-to-end
network slice. These requests can be made either by the VSMF or an external
entity like the AI/ML platform engine.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 60 of 82

Table 4-6 - REST APIs for NST/GST management

Functionality
HTTP

method
URL Description Request parameters

NST/GST on
boarding

POST /ns/catalogue/nstemplate Request to onboard a new NST and/or a GST
As payload, a JSON object representing
the NST/GST

N(S)STs/GST(s)
retrieval GET /ns/basic/nslcm/ns/{nstId}

Request to retrieve one or more NST/GST.
Single NST/GST are retrieved specifying its
identifier.

In the URL, a NST identifier to retrieve a
single NST or GST.

NST/GST
Removal DELETE /ns/basic/nslcm/nss/{nstId}

Request to retrieve one or more NSST
specifying its identifier.

In the URL, a NSST identifier to retrieve a
single NST or GST.

Table 4-7 - REST APIs for end-to-end network slice management

Functionality HTTP
Method

URL Description Parameters

NSI entry
creation

POST
/ns/basic/nslcm/ns

Request to create a NSI identifier
As payload, a JSON containing the NST
associated with, the NSI name and a
description.

NSIs
information
retrieval

GET /ns/basic/nslcm/ns(s)/{nstId}
Request to retrieve information about one or
more NSIs

In the URL, a NSI identifier that identifies
the specific NSI that have to be retrieved;
None to retrieve all NSIs.

NSI
Instantiation

PUT /ns/basic/nslcm/ns/{nsiId}/ac
tion/ instantiate

Request to instantiate a new NSI
In the URL, a NSI identifier and as
payload a JSON object representing the
instantiation request.

NSI
modification

PUT /ns/basic/nslcm/ns/{nsiId}/ac
tion/ modify

Request to modify an NSI
In the URL, a NSI identifier and as
payload and a JSON object representing
the modification request.

NSI
termination

POST
/ns/basic/nslcm/ns/{nsiId}/ac
tion/ configure

Request to configure an NSI
In the URL, a NSI identifier and as
payload and a JSON object representing
the configuration request.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 61 of 82

4.5.3 NSSMF REST API

This section contains all the REST APIs of the Network Slice Subnet Management Function. Table 4-8 describes the REST APIs
for the network slice subnet management. The request body of each REST API could be different depending on the specific
implementation of the NSSMF.

Table 4-8 - REST APIs for end-to-end network slice subnet management

Functionality
HTTP

method
URL Description Request parameter

Create NSSI POST /nss/createnss Request to create a new NSSI
identifier

No request parameter

Instantiate Network
Slice Subnet

PUT

/nss/{nsiId}/action/instantiate
Request to instantiate a network
slice subnet

In the URL, the identifier of the network
slice subnet and a customized payload
depending on the NSSMF logic.

Modify an
instantiated
Network Slice
Subnet

/nss/{nsiId}/action/modify
Request to modify a network slice
subnet

Terminate an
instantiated
Network Slice
Subnet

/nss/{nsiId}/action/terminate
Request to terminate a network
slice subnet

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 62 of 82

5 Preliminary Prototype and Early
Integration
This chapter provides a brief overview of the preliminary prototype of the end-
to-end network orchestration framework. It also describes the initial
integration with the various iNGENIOUS Network Layer technologies and
related network domain controllers/orchestrators. In detail, this refers to the
software prototype and related integration activities with the 5G Core, Flexible
PHY/MAC and O-RAN.

5.1 Software prototype description

This section describes the software prototype of the end-to-end network
orchestration framework. In particular, for each component described in
Section 4.2.1 is available a technical description.

The source code of the software prototype components developed for the
end-to-end network orchestration framework, which is an extension of the
Nextworks opensource Slicer [23], makes use of the Spring Boot framework
[33]. This framework allows to easily manage multiple services, each of them
specific for a functionality, maintaining a high degree of modularity. To
maintain the data persistence, postgreSQL [34] database has been used.
Starting from the available information model implemented as Java classes,
the tables within the database are automatically created.

Some of the internal components are in a preliminary release stage, while
other components are in the development phase and will be delivered with
the final version of the end-to-end network slice orchestration framework,
planned to be described in deliverable D4.5. All the software components
described in this section are currently available in an internal Gitlab repository.
However, it is under evaluation to release either part or all of the software as
open-source in the main Nextworks Slicer repository.

5.1.1 VSMF SOFTWARE

The implementation of the VSMF is realized using the Object-Oriented
Programming Language Java. It consists of different Java libraries and other
tools for realizing the interactions among them.

Figure 5-1 depicts how each component described in Section 4.2.1.2 is built in
terms of internal Java modules. This diagram maps the high-level software
architecture depicted in Figure 4-5 with the actual implementation. For
clarity, each VSMF component has a different shade of blue, while the internal
libraries are depicted as white blocks.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 63 of 82

Figure 5-1 - VSMF implementation diagram

Table 5-1 describes the software technical description of the VSMF
components. According to its internal complexity, the component is either an
independent java library or a software module embedded within the source
code of the VSMF itself.

Table 5-1 - Technical description of VSMF components

Software
component

Technical description

Vertical
Service LCM
i/f

REST APIs for the LCM of the Vertical Slices. This component is
mapped one-to-one with its design.

VS LCM
Engine

It provides the whole LCM capabilities for the vertical services
using the implementation of a state finite machine logic for
representing the status of vertical services.

In consists of different Java modules:

• The Identity management (MGMT Service and
VSMF_NBI_MGMT blocks), consisting of Java classes for
representing the information model about the Tenant and
SLA, the implementation for creating, reading, updating and
deleting the tenant and SLA information into the database. It
contains also the REST API implementation
(VSMF_NBI_MGMT block) for exposing the information
related to group, tenants and SLAs.

• VSI record manager for managing the information of the
vertical service instances.

• The LCM Service where the vertical service instances are
validated against the related Tenant and SLAs.

• Engine + dispatcher where the core logic of the VSMF is
implemented. The requests are dispatched through an MQ
Rabbit Queue (MQ block) to the VSI LCM instance(s).

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 64 of 82

• VSI LCM Manager instance to manage the lifecycle of the
single Vertical Slice. It interacts with the Service to slice
translator and the VSB/VSD catalogue.

VSB & VSD
catalogue

It consists of the Java classes for representing the VSB and VSD
information model, the implementation of the logic to create,
read, updated and read the VSB and VSD to and from the
database. It contains also the REST API layer to expose the VSB and
VSD information.

Service-to-
slice
translator

It is a Java module, consisting of the implementation of the
translation of the vertical service instantiation request into end-to-
end network slice instantiation request. In particular, following the
attributes of the VSD, it translates them in one or more available
NSTs.

5.1.2 NSMF SOFTWARE

Figure 5-2 depicts the implementation diagram of the NSMF and the main
internal interactions. This diagram contains the preliminary implementation
of the NSMF components briefly described in Section 4.2.1.3 and whose high-
level architectural is depicted in Figure 4-6. Similar to the VSMF
implementation, the Java programming Language has been used for
developing all the modules and libraries within the NSMF. Some components
are not depicted because they are still in development phase.

For clarity, the different components are in shades of blue, while the internal
Java libraries and modules are the ones in white color.

Figure 5-2 - Implementation diagram of NSMF

Table 5-2 contains the software technical details of the NSMF components.
Some components are standalone Java library that can be reused, while other
are software modules developed within the NSMF Spring boot Application.

Table 5-2 - Technical description of NSMF Components

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 65 of 82

Software
component

Technical description

Network Slice
LCM i/f

Its implementation consists of the REST APIs for providing
network slicing LCM functionalities. It is mapped one-to-one with
the related designed component.

Network slice
LCM Engine

It provides the whole LCM of the end-to-end network slices using
the implementation of a state finite machine logic for
representing the status of end-to-end slices. Moreover, to
guarantee the management of several requests and notifications
asynchronously, it exploits the RabbitMQ bus message exchange.
This service exposes its functionalities using REST interfaces. In
particular, the Network slice LCM Engine has the following
modules:

• LCM service, where the request is validated and checked
against the identity management. The network slice
information is managed through the NSI Record Manager.

• The Engine + dispatcher, where the core logic of NSMF is
implemented and the requests are dispatched towards the NSI
LCM instances.

• NSI LCM, that manages the LCM of a single end-to-end network
slices and the related network slice subnet instances, through
the specific drivers (NSS Coordinator and NFVO driver blocks).

GST/NST
catalog

It consists of the Java classes representing the GST, NST and NSST
data model and the implementation to create, read, update and
delete GST(s), NST(s) and NSST(s) from and to database. Moreover,
a translation mechanism that maps the attributes of GST into the
NST attributes and vice versa is available too.

Slice function
placement

It breaks down the NST, following its attributes, into multiple
NSSTs for the end-to-end network slice instantiation. In particular,
it specifies where the VNFs, vertical service virtual applications
representing one or more NSSTs should be deployed. The
development of this component is on-going, for this reason is not
depicted in the diagram.

5.1.3 NSSMF SOFTWARE

Table 5-3 describes the software and technical details of the NSSMF
components. This technical description refers to a generic NSSMF, which
implementation can be specialized for realizing the specific NSSMF
functionalities.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 66 of 82

Table 5-3 - Technical description of (O-RAN) NSSMF components

Software
component

Technical description

Northbound
interface

It has been implemented using the REST API provided by Spring
Boot framework. Except in special cases, these REST APIs are the
same for all NSSMFs regardless their implementation.

However, the payload sent to this interface is specific for the
NSSMF implementation.

NSSMF
Service

Its implementation consists of checking the payload content of
the request. If valid, it is dispatched to the event bus pushing it as
event.

In the case of the O-RAN NSSMF implementation it checks if all the
mandatory field are available and valid.

Bus Event
It has been used the Guava Event bus [35] to manage and dispatch
simultaneously multiple and concurrent requests, allowing not
blocking requests from the NBI.

NSSMF
Handler

It represents the engine of the NSSMF where the whole logic is
implemented. It subscribes to all the events of the Guava Event
Bus and translates the requests for the specific network domain.

In the O-RAN case, the slice profiles within the NSSI requests are
translated into A1 policy requests. It performs operations towards
the postgreSQL DB and uses the specific network domain driver
to send the translated requests.

More details about the implementation of the O-RAN NSSMF can be found in
Section 5.4.

5.2 Integration with 5G Core

In general, a 5G network contains the Radio network segment for connecting
the UEs and the 5G Core for the control and user planes. From a deployment
perspective, for providing the 5G connectivity to the UEs, all the 5G network
components and functions must be properly setup and configured, exploiting
the provided hardware and software infrastructure. When network slices are
considered and provisioned, end-to end network slice resources must be
properly managed and allocated at the different segment of the networks.
This task is usually performed by an end-to-end network slice orchestrator
that interacts with the different segments of the network (RAN, 5G Core and
so on).

To this end, the integration between the end-to-end network slice
orchestration framework presented in this document and the 5G Core has
been started. At the current status, it is possible to deploy and configure a
monolithic instance of 5G Core as part of an NFV Network Service through the
ETSI OSM Web GUI, as already described in deliverable D4.3 [25] and shown in
Figure 5-3.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 67 of 82

Figure 5-3 - High-level workflow of manual deployment of a 5G network

A NSD containing the VNF Descriptor packages of UERANSIM and 5G Core is
onboarded on ETSI OSM and then deployed on an OpenStack [36] virtualized
infrastructure. After having deployed the 5G Core and UEARANSIM instances,
the day-0 and day-1 configurations are properly executed, using cloud-init [37]
and the juju [38] open-source tool, respectively. Day-0 configurations of
UERANSIM and 5G Core briefly consists of setting up the SSH credentials on
both machines and using the assigned IP address for configuring the 5G Core
Network Function and gNB, respectively.

On the other hand, the day-1 configurations of 5G Core instance consist of the
following three steps:

1. Get the assigned local IP address of the 5G Core in order to make the
emulated gNB interconnect to it, in particular the AMF Network
Function. This step is used by a juju relation.

2. Start in the correct order the 5G Core Network Functions.

Similarly, the day-1 configuration of UERANSIM instance consists of properly
configuring the emulated gNB, setting the IP address of the 5G Core AMF. This
IP is got from the step 1 of day-1 configuration of 5G Core using the juju
relations available into the Network Service Descriptor. At this point, the
emulated gNB is ready to be connected to the 5G Core instance as well as the
UEs registered in the 5G Core itself.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 68 of 82

Figure 5-4 - Logs of day-1 configuration stages

Additionally, Figure 5-4 depicts the different stages day-1 configurations are
composed of. Specifically, “machine 0” is associated with UERANSIM instance,
while “” is associated with 5G Core instance. Both day-1 configurations are
associated with the so-called juju models. The stages of day-1 configuration
are the following:

• The first step (Figure 5-4 (a)) consists of waiting the machines to be up
and running on OpenStack. Using a polling mechanism, the juju model
checks whether the machines are ready to be configured or not.

• Once machines are ready, the day-1 configuration can be executed in
both machines as depicted in Figure 5-4 (b). Specifically, the related
Python scripts are executed in the machine 0 and machine 1 as shown in
Figure 5-4 (b.1) and Figure 5-4 (b.2), respectively.

• Finally, the juju-relation is executed (Figure 5-4 (c)) for making the 5G
Core reachable to the UERASIM instance.

As an example, Figure 5-5 shows a snippet of the Python script used in the
day-1 configuration of the 5G Core instance. In particular, the
on_configure_action function is used for debugging purposes creating a file,
while _on_start5gc_action function is used for starting the NFs in the
following order: NRF, UPF, SMF and AMF. Finally, the web GUI is started too.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 69 of 82

Figure 5-5 - Snippet of Python script of day-1 configuration of 5G Core instance

Currently, activities to automatically deploy the new Cumucore 5G Core
version available in containerized version are ongoing. In particular, Figure 5-6
depicts the Control Plane Network Functions available as Docker containers
and the Data Plane Network Functions available as separated but related
network services. From a deployment perspective, Control Plane NFs and User
Plane NFs can be deployed as either single or multiple VNF instances
belonging to the same Network Service. Moreover, the Core NSSMF can
manage the slices available in the User Plane NFs using the corresponding
REST APIs offered by the UPF.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 70 of 82

Figure 5-6 - Edge-core deployment of 5G Core through the end-to-end Network Slicer

5.3 Integration with Flexible PHY/MAC

As part of the end-to-end network slice orchestration work, integration
activities with the Flexible PHY/MAC have been started. These activities are
still in an initial phase, mostly focused on the identification of the integration
approach as depicted in Figure 5-7.

The final aim of this integration is to make the Flexible PHY/MAC solution 5G
compatible and thus enable 5G connectivity to multiple SDR platforms
representing the UEs.

From an orchestration point of view, the end-to-end network slice
orchestrator deploys a 5G Core instance, an UERANSIM instance and
configures properly the Flexible PHY/MAC enabled Base Station (BS). In
details:

• The 5G Core and the related NFs are deployed and configured by the Core
NSSMF through ETSI OSM. Moreover, slice configurations can be
performed by the Core NSSMF itself.

• The RAN NSSMF not only deploys the UERANSIM instance through ETSI
OSM, but it also it connects to the Flexible PHY/MAC BS, where
communication resources can be allocated depending on specific
application requirements. Indeed, Flexible PHY/MAC can expose
dedicated APIs to allocate radio resources according to application
requirements.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 71 of 82

Figure 5-7 - Integration diagram between end-to-end network slice orchestrator and flexible PHY/MAC

Some initial experiments have been conducted in order to check the viability
of the integration between the UERANSIM, the 5G Core and the BS. The setup
is depicted in Figure 5-8. The data communication flows from the UEs to the
sinks consist of the following steps:

1. Starting from the right of Figure 5-8, the UEs send the data in the uplink
direction using the wireless transmission.

2. Then, the Base Station forwards the user plane data to the UE
Emulator.

3. In the UE Emulator, a Python script forwards the data to the
corresponding tunnel interface created by the UERANSIM.

4. At this point, the UERANSIM sends the data to the corresponding data
sink, i.e., Sink UE0 or Sink UE1, via the 5G Core. At this initial step, the
Open5GS [39] 5GCore has been used to connect the users.

Figure 5-8 - Flexible PHY/MAC integration with UERANSIM

At the current state, the 5G Core and UERANSIM instances can be configured
and deployed using ETSI SOM and through a customized script, while the SDR

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 72 of 82

platforms can connect to the simulated gNB using the physical base station.
In this way, the UEs can send data using the deployed 5G network. On the
orchestration side, control plane and user plane are provided and
developments for automated deployment of the 5G Core and UERANSIM
instances and configuration of the Flexible PHY/MAC enabled Base Station are
ongoing.

5.4 Integration with O-RAN

An initial integration work between the end-to-end network slice
orchestration framework and O-RAN has been carried out and described in
the D4.2 Deliverable [14]. In this context, an early prototype of the O-RAN
NSSMF has been implemented, tested and integrated with a Near RT RIC.
Additionally, slice profiles available in the network slice subnet instances are
translated into A1 policies within the Near RT RIC itself. Specifically,
guaranteed flow bit rate, priority level and packet delay budget available into
the A1 policy QoS objective can be configured.

The development and integration activities have been continued after D4.2,
leading to an enhancement of the early prototype of the O-RAN NSSMF whose
high-level architecture is depicted in Figure 5-9. These enhancements consist
of supporting multiple network sub slice instantiation requests
asynchronously towards the Near RT RIC of O-RAN. In detail, a specialized
handler receives, processes and dispatches the specific sub slice instantiation
requests without blocking the whole NSSMF O-RAN. Moreover, as part of the
improvement of the NSSMF O-RAN, the information about the network slice
subnet instance, the A1 policy and their mapping are persistently stored within
a database.

Figure 5-9 - High-level architecture of O-RAN NSSMF

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 73 of 82

Figure 5-10 depicts the workflow of a network slice subnet instance creation
using the enhanced NSSMF implementation described above. The workflow
is summarized by the following steps:

• At the start of the O-RAN NSSMF, a subscription to all requests and all
responses is made by the O-RAN NSSMF service and O-RAN NSSMF
Handler, respectively. In this way, the former can receive and manage all
the requests, the latter all the responses.

• When a request of instantiating a RAN network slice subnet instance is
received, it is managed by the NSSMF Service, publishing it on the Event
bus.

• The NSSMF Handler takes the request as notification and for each slice
profile available, it translates into an A1 policy request.

• The RAN NSSMF Handler through the O-RAN A1 Client sends the requests
to create the A1 policy.

• Once the A1 policies are created, the responses are notified back to the
original requestor.

Figure 5-10 - Sequence diagram of network slice subnet instance

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 74 of 82

From an implementation perspective, Figure 5-11 shows the tree structure of
the source code of the O-RAN implementation.

Figure 5-11 - Tree structure of source code of O-RAN NSSMF

In particular, it mainly consists of three libraries:

• RecordIM, which contains all the information model (Java classes) that
represents the data model for O-RAN: the Java classes of A1 policy type
JSON schema and for the specific NSSI.

• RecordService: which contains the logic for managing the information
model into postgresDB defined into RecordIM.

• O-RAN Handler: with the support of the RecordService, implements the
internal logic of the O-RAN NSSMF, managing and translating the slice
profiles into A1 policies and sending them to the Near RT RIC.

These libraries are included within a portable Spring Boot Application for
exposing through REST APIs the functionality of the O-RAN NSSMF.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 75 of 82

6 Relation to UCs and Main Innovations
iNGENIOUS implements the end-to-end network slice orchestration
framework described in this document and deploys it in real environments for
demonstrating specific project use cases (UCs) in different industrial IoT and
supply chain scenarios. This section is dedicated to the identification of the
main innovations brought by the end-to-end network slice orchestration, and
how they are mapped and used in the relevant iNGENIOUS UCs.

6.1 End-to-end network slice orchestration
innovations

The end-to-end network slice orchestration framework described in the
previous sections brings a set of technical innovations in the way industrial IoT
and supply chain services and network slices are managed. While an initial list
of innovations was already presented in deliverable D4.1 [15], together with
their mapping to the various iNGENIOUS UCs, few updates have occurred
according to the evolution of the technical activities in WP4 and WP6 mostly.

In particular, the end-to-end network slice orchestration functionalities are
integrated and validated mostly in the context of the Automated Robots with
Heterogeneous Networks UC, with plans of demonstrations in the ASTI
factory, as well as in the UPV and TUD testbeds. However, for the Situational
Understanding and Predictive Models in Smart Logistics Scenarios and Supply
Chain Ecosystem Integration UCs it is still planned to validate some of the key
functionalities at least in a partially emulated environment. On the other hand,
no specific activities are planned for the other UCs in relation with the end-to-
end network slice orchestration framework.

The Table 6-1 below shows the updated list of innovations brought by the end-
to-ed network slice orchestration (with respect to D4.1), and for each of them
a mapping with the relevant iNGENIOUS UCs in terms of expected innovation
maturity. For this mapping, two options are shown:

• innovation concept, for those innovative functionalities relevant to the
UCs but that will not be demonstrated in a real environment (e.g., they
could be implemented but showcased in emulated scenarios only),

• innovation demonstrated, for those functionalities that will be
implemented and showcased as part of the UC in a real environment.

Table 6-1 - Network slice orchestration functionalities mapped to UCs

Functionality Factory UC
Port Entrance

UC DVL UC

End-to-end network slice
provisioning

innovation
demo

innovation
concept

innovation
concept

Orchestration and slicing of
Flexible RAN

innovation
demo

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 76 of 82

Orchestration and slicing of
5G RAN

innovation
demo

Orchestration and data
collection from 5G Core

innovation
demo

Orchestration of applications
and NFs at edge/MEC

innovation
demo

AI-assisted (network-data
based) slice optimization

innovation
demo

AI-assisted (IoT/DVL-data
based) slice optimization

innovation

concept
innovation

concept

6.2 Relation to UCs

This section provides a brief description for each end-to-end network slice
orchestration functionality, highlighting the innovative aspects and their
maturity for each iNGENIOUS UC, with a mapping to the relevant
orchestration components involved.

6.2.1 END-TO-END NETWORK SLICE PROVISIONING

The end-to-end network slice provisioning innovation refers to the capability
of automated creation of network slices and the deployment of the required
NFs and virtual applications to support industrial IoT and supply chain
services. Specifically, this is a key basic innovation, as it refers to the
coordinated orchestration of different technological domains, including RAN,
edge and core.

This innovation will be fully demonstrated as part of the Automated Robots
with Heterogeneous Networks UC. Different incremental demonstrations are
planned to be carried out to validate the VSMF and NSMF operation in
orchestrating and managing the various subnet slices required for the 5G
Core, Flexible PHY-MAC and 5G-RAN. The demonstration activities will be
carried out in the different UC sites and testbeds (i.e., ASTI factory, UPV testbed
and TUD testbed).

In addition, the innovation concept will be also validated in emulated
environments (setup in the Nextworks lab) in the context of the Situational
Understanding and Predictive Models in Smart Logistics Scenarios and Supply
Chain Ecosystem Integration UCs.

6.2.2 ORCHESTRATION AND SLICING OF FLEXIBLE RAN

The orchestration and slicing of flexible RAN refer to the capability of the end-
to-end network slice orchestration framework to manage network resources
when the RAN includes flexible PHY-MAC for 5G-NR functionalities.
Specifically, this innovation is mapped to the integration and validation of the
specific NSSMF component developed for the Flexible PHY-MAC and aiming

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 77 of 82

at managing and provisioning network subnet slices that combine the PHY-
MAC processing with a legacy 5G-RAN and 5G Core, as shown in Section 5.3.

This innovation will be demonstrated as part of the Automated Robots with
Heterogeneous Networks UC, and the related activities will be carried out in
the TUD testbed.

6.2.3 ORCHESTRATION AND SLICING OF 5G-RAN

The orchestration and slicing of 5G-RAN refer to the capability of the end-to-
end network slice orchestration framework to configure and manage network
slice subnets resources in a standard 5G-RAN.

This innovation also includes the integration with O-RAN Near-RT RICs for
provisioning QoS policies. Here, network slice subnets are mapped with O-
RAN A1 policies through a dedicated O-RAN NSSMF, as exposed in Section 5.4.

The first part of this innovation is planned to be demonstrated as part of the
Automated Robots with Heterogeneous Networks UC, and the related
activities will be carried out in the ASTI factory and UPV testbed. For this a
dedicated 5G-RAN NSSMF will be developed to interact with the specific gNBs
that will be used for the UC. For the second part of the innovation, the
validation and demonstration of the O-RAN NSSMF is planned to be carried
out in emulated environments (either in the UPV or Nextworks testbeds).

6.2.4 ORCHESTRATION AND DATA COLLECTION FROM 5G CORE

The orchestration and data collection from 5G Core refer to the capability to
the capability of the end-to-end network slice orchestration framework to
automatically deploy, configure and operate 5G Core NFs as part of the
network slices. It also refers to the interaction with the NWDAF for slice, NFs
and UEs related data collection

Specifically, this innovation is mapped to the integration and validation of the
specific NSSMF component developed for the Cumucore 5G Core and aims at
managing, provisioning and operating the related network subnet slices.
Moreover, as it involves the integration with the 5G Core NWDAF, the
innovation is also mapped to the AI/ML and monitoring platform described in
section 4.2.2, for the part related to the data collection and storage.

This innovation will be demonstrated as part of the Factory UC, and the related
activities will be carried out in the different UC sites and testbeds (i.e., ASTI
factory, UPV testbed and TUD testbed).

6.2.5 ORCHESTRATION OF APPLICATIONS AT EDGE/MEC

The orchestration of applications and NFs at the edge refers to the capability
of the end-to-end network slice orchestration framework to support
deployment, configuration, and operation of virtualized applications (e.g.,
specific vertical or use case applications) and NFs (e.g., 5G Core UPF) at the
edge locations in support of specific latency or real-time requirements of
network slices.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 78 of 82

Specifically, this innovation is provided by the coordination (implemented by
the NSSMF) of the specific NSSMFs components developed for the Cumucore
5G Core and the service applications (as described in Section 4.5.3). In
particular, the deployment of application VNFs and 5G Core NFs (e.g., UPF) at
the edge is coordinated by the specific NSMF, and then actuated by these two
NSSMFs that interact with the specific NFV and resource orchestrators.

This innovation will be demonstrated as part of the Automated Robots with
Heterogeneous Networks UC, carrying out the related activities in the
different UC sites and testbeds (i.e., ASTI factory, and UPV and TUD testbeds).

6.2.6 AI-ASSISTED (NETWORK-DATA BASED) SLICE OPTIMIZATION

The AI-assisted network slice optimization is based on network monitoring
data and refers to the capability of the end-to-end network slice orchestration
framework to be assisted in the decision-making processes by external AI/ML
algorithms. They process network slice related data collected from the 5G
Core NWDAF and other network and compute infrastructure related sources.

Specifically, this innovation is mapped to the closed-loop functionalities
implemented by the AI/ML and monitoring platform described in section
4.2.2. In particular, this innovation focuses on the optimization of the runtime
operation of network slices, targeting the scenario described in section 4.3
and thus acting as an added value with respect to all the previous innovations.

This innovation will be demonstrated as part of the Automated Robots with
Heterogeneous Networks UC, and the related activities are planned to be
carried out at least in one of the UC sites and testbeds (i.e., ASTI factory, UPV
testbed and TUD testbed).

6.2.7 AI-ASSISTED (IOT/DVL-DATA BASED) SLICE OPTIMIZATION

The AI-assisted network slice optimization (IoT/DVL data) refers to the
capability of the end-to-end network slice orchestration framework to be
assisted in the decision-making procedures by external AI/ML algorithms that
process data related to IoT applications as collected and exposed by the DVL.

From a technical perspective, this innovation is similar to the previous one, in
the sense that it can be mapped to the closed-loop functionalities provided
by the AI/ML and monitoring platform. Specifically, in this case, the ML
enabled analytics and decision features in the AI/ML engine should be able to
derive and trigger network slice optimization by processing the IoT and M2M
data, and possibly correlating it with network slice related data (as used in the
previous innovation).

This innovation is linked to the Situational Understanding and Predictive
Models in Smart Logistics Scenarios and Supply Chain Ecosystem Integration
UCs. However, only a basic integration of the AI/ML and monitoring platform
with the DVL is planned to be performed to validate the heterogeneity in the
data collection and management aspects of the platform. For this reason, a
dedicated AI/ML analytics and decision pipeline is not planned for
development at the time of writing, and therefore the maturity of this
innovation is kept at the conceptual level.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 79 of 82

7 Conclusions and Next Steps
The Management and Orchestration aspects are crucial in the iNGENIOUS
architecture, and in particular aim at providing key automation and
programmability features in the Network Layer functionalities. To this
purpose, an end-to-end network slice orchestration framework has been
designed to coordinate the automated deployment, configuration and
operation of network slices in support of industrial IoT and supply chain 5G
services.

The proposed end-to-end network slice orchestration framework is aligned
and compliant with the relevant standard architectures and solutions
provided by 3GPP and ETSI NFV. Specifically, this document has described the
iNGENIOUS end-to-end network slice orchestration framework design
approach, which is based on a cross-layer architecture that combines vertical
services, network slices and resource management functionalities. In
particular, the proposed orchestration framework is made of three main
functionalities, namely VSMF, NSMF and NSSMF, which follow the 3GPP high
level architecture for the management of network slices. The alignment with
the 3GPP, GSMA and ETSI standards refer also to the supported information
models, particularly with support of GSMA NEST and GST, as well as the 3GPP
5G Network Resource Model for NSTs and NFV descriptors for virtualized 5G
network functions. To achieve full automation and align with current trends
of native integration of AI/ML functionalities within network control and
management functionalities, the proposed iNGENIOUS end-to-end network
slice orchestration framework is also integrated with an AI engine that exploit
a monitoring platform to assist the orchestration components in the runtime
operation and optimization of network slice instances.

In addition to the architecture design, this document has also reported on the
implementation of a preliminary software prototype for the iNGENIOUS end-
to-end network slice orchestration framework. For this deliverable, a subset of
the VSMF, NSMF and NSSMF functionalities has been developed, which
anyway allowed to perform some initial integration and validation activities.
In particular, the advancements on the integration with the Cumucore 5G
Core, the Flexible PHY/MAC and O-RAN Near-RT RIC have been reported,
which lay the foundation for the validation of the end-to-end network slice
orchestration software stack in the iNGENIOUS use cases.

With specific relation to the project use cases, the iNGENIOUS end-to-end
network slice orchestrator framework provides a set of innovations in the way
the 5G-IoT network is managed to support industrial IoT and supply chain
services. In particular, these innovations enable automated orchestration and
slicing of the various relevant network technologies developed in the project,
which are validated experimentally in the Automated Robots with
Heterogeneous Networks use case and conceptually in the context of the
Situational Understanding and Predictive Models in Smart Logistics Scenarios
and Supply Chain Ecosystem Integration use cases.

In terms of next steps, while different development and integration activities
have already started and reached a mature status, the work will be continued
until the orchestration stack will be completed and ready to be reported in the
final deliverable D4.5. In particular, these upcoming activities are related to the

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 80 of 82

consolidation of some internal services of the VSMF, NSMF and NSSMF
orchestration components, as well as to the integration with domain specific
resource controllers and orchestrators. In summary, the main relevant next
steps for the end-to-end network slice orchestration activities are:

• Finalization of the development of the VSMF, NSMF and NSSMF
internal components, targeting a full stack prototype ready to be
integrated and demonstrated as part of the iNGENIOUS use case
activities

• Completion of the integration with the Flexible PHY/MAC, consisting of
the implementation of a dedicated RAN NSSMF software prototype for
the automatic deployment and joint configuration of 5G RAN
emulation (UERANSIM) and Flexible PHY/MAC processing logic

• Completion of integration with the latest version of 5G Core
containerized version, and support the automatic deployment and
configuration of 5G Core instances through a dedicated Core Network
NSSMF.

• Implementation of the Monitoring platform, and its integration with
the end-to-end network slice orchestration software stack for
automated collection of custom slice monitoring data

• Implementation of the AI/ML engine, with its analytics and decision
functionalities, and specifically of the ML algorithm supporting the pre-
emptive auto-scaling of local-edge UPFs.

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 81 of 82

References

[1] iNGENIOUS D2.2, “System and Architecture Integration (Initial)”

[2] 3GPP TS 28.500, “Management concepts, architecture and requirements
for mobile networks that include virtualized network functions (Release
16)”, v16.0.0, July 2020

[3] ETSI GS NFV-MAN 001, “Network Function Virtualisation (NFV);
Management and Orchestration”, v1.1.1, December 2014

[4] 3GPP TS 28.528, “Life Cycle Management (LCM) for mobile networks that
include virtualized network functions; Stage 3 (Release 16)”, v16.0.0, July
2020

[5] ETSI GS NFV-SOL 005, “Network Functions Virtualisation (NFV) Release 3;
Protocols and Data Models; RESTful protocols specification for the Os-Ma-
nfvo Reference Point”, v3.3.1, September 2020

[6] 3GPP TS 23.501, “System architecture for the 5G System (5GS); Stage 2
(Release 17)”, v17.1.1, June 2021

[7] 3GPP TS 28.530, “Management and Orchestration; Concepts, use cases and
requirements (Release 17)”, v17.1.0, March 2021

[8] 3GPP TS 28.541, “Management and Orchestration; 5G Network Resource
Model (NRM); Stage 2 and stage 3 (Release 17)”, v17.3.0, June 2021

[9] ETSI GS NFV-IFA 014, “Network Functions Virtualisation (NFV) Release 4;
Management and Orchestration; Network Service Templates
Specification”, v4.2.1, May 2021

[10] ETSI GS NFV-IFA 013, “Network Functions Virtualisation (NFV) Release
4; Management and Orchestration; Os-Ma-nfvo reference point - Interface
and Information Model Specification”, v4.2.1, May 2021

[11] GSMA, “Generic Network Slice Template”, v5.0, June 2021

[12] 3GPP TR 28.801, “Study on management and orchestration of network
slicing for next generation network (Release 15)”, v15.1.0, January 2018

[13] 3GPP TS 28.533, “Management and Orchestration; Architecture framework
(Release 16)”, v16.7.0, March 2021

[14] iNGENIOUS D4.2, “Smart NR and NG-RAN IoT designs “

[15] iNGENIOUS D4.1, “Multi-Technologies Network for IoT”

[16] ETSI TS 128 531 V16.6.0 – “5G; Management and orchestration;
Provisioning”

[17] ETSI TS 123 288 V16.4.0 - “5G; Architecture enhancements for 5G System
(5GS) to support network data analytics services”

[18] 3GPP TS 29.520 V17.0.0 - “3rd Generation Partnership Project; Technical
Specification Group Core Network and Terminals; 5G System; Network
Data Analytics Services;”

[19] ETSI TS 123 502 V16.5.0 – “5G; Procedures for the 5G System (5GS)”

[20] ONF Transport API,

iNGENIOUS | D4.4: Service Orchestration at the Edge

© 2020-2023 iNGENIOUS Page 82 of 82

https://wiki.opennetworking.org/display/OTCC/TAPI+Overview

[21] YANG Data Modelling Language RFC 7950 -
https://datatracker.ietf.org/doc/html/rfc7950

[22] P. Sayyad, P. Khodashenas, C. Fernandez, D. Guija, K. Liolis, C. Politis, G.
Atkinson, J. Cahill, R. King, M. Kavanagh, B. Jou and O. Vidal, “Benefits and
Challenges of Software Defined Satellite-5G Communication,” in IEEE/IFIP
WONS 2019, Wengen, Switzerland, 2019.

[23] Nextworks Slicer Open-source repository -
https://github.com/nextworks-it/slicer

[24] ETSI GS NFV-SOL006, “Network Functions Virtualisation (NFV) Release
3; Protocols and Data Models; NFV descriptors based on YANG
Specification”, v3.5.1, July 2021

[25] iNGENIOUS D4.3, “Core network automation design for 5G-IoT“

[26] ETSI Open Source MANO (OSM), https://osm.etsi.org/

[27] Open-source UERANSIM tool repository
https://github.com/aligungr/UERANSIM

[28] Open-source Apache Kafka Event data analytics streaming platform -
https://kafka.apache.org/

[29] Open-source Telegraf server agent - https://www.influxdata.com/time-
series-platform/telegraf/

[30] Open-source Prometheus Monitoring Platform - https://prometheus.io/

[31] InfluxDB Timeseries-based platform - https://www.influxdata.com/

[32] ntop Traffic analysis open-source tool - https://www.ntop.org/

[33] Spring Boot Framework - https://spring.io/projects/spring-boot

[34] Postgres SQL - https://www.postgresql.org/

[35] Guava Event Bus - https://www.baeldung.com/guava-eventbus

[36] OpenStack cloud Software - https://www.openstack.org/

[37] cloud-init documentation - https://cloudinit.readthedocs.io/en/latest/

[38] Juju as Service - https://jaas.ai/

[39] Open5GS website - https://open5gs.org/

https://wiki.opennetworking.org/display/OTCC/TAPI+Overview
https://github.com/nextworks-it/slicer
https://github.com/aligungr/UERANSIM
https://kafka.apache.org/
https://prometheus.io/
https://spring.io/projects/spring-boot
https://www.postgresql.org/
https://cloudinit.readthedocs.io/en/latest/
https://jaas.ai/
https://open5gs.org/

