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Drawing Exercises

• Since wave 8 SHARE contains three „constructional

praxis tests“ (Wagner & Douhou, 2021)

• Part of several screening tests (e.g. MoCA) for early

signs of cognitive decline

Infinity loops Cube Clock
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Overview

Respondents draw
pictures

Interviewers score
drawings



Trained Model

Use drawings as
examples

Use scores as
labels

Can be used to score 
unlabeled data automatically
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• Scanned 2,109 SHARE DE recording
booklets

• Linked to survey data

• Processed and enhanced images

Thank you, Amany, Julia, Pandora, 
Claudia and Charlotte!

• Collected ~10,000 recording booklets from
9 additional countries

Progress so far
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• Convolutional Neural Networks
• Work horse for image recognition tasks

• Initially used to digitize handwritten numbers (LeCun

et al. 1989)

• Made dramatical improvements in recent years and is

the basis of the Deep Learning „hype“

Models

“Fully connected convolutional neural network” by Aphex34 is licensed under CC BY-SA 4.0
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Best out of 20 epochs; Validation set = 30%; All models pretrained on ImageNet (https://www.image-net.org/)
[1] Krizhevsky, Sutskever & Hinton (2012); [2] Simonyan & Zisserman (2015); [3] He et al. (2015)
Software: PyTorch 1.10.0, fastai 2.5.3; Hardware: NVIDIA GeForce RTX 3070 Ti

% classified correctly

Model 
architecture Layers

Trainable
parameters
(millions)

Clock / Cube 
/ Loops

3 classes

Cube: (partially) 
correct / wrong

2 classes

Cube: correct / 
partially / wrong

3 classes

AlexNet[1] 8 62 99.8 84.9 68.4

VGG (BN)[2] 19 144 99.8 86.6 71.2

ResNet[3]
18 11 99.8 86.7 70.3

50 26 99.8 86.2 68.4
NClock = 1,907
NCube = 1,882
NLoops = 1,891

N(Partially) Correct = 1,417 (80.5%)
NWrong = 343

NCorrect = 1,088 (61.8%)
NPartially = 329
NWrong = 343 

Preliminary results

https://www.image-net.org/
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• Fiddle with models
longer training, hyperparameter tuning, newer architectures, class

imbalances, data augmentation, better pre-training datasets …

• Get more data
scan available recording booklets, collect wave 9 drawings

• Improve scoring
Prediction performance could be impaired by bad scoring due to:

• Interviewers not sticking to the rules

• Rules being sub-optimal

• Scoring not lending itself well to exact rules

 Investigate error sources and get closer to bayes error rate

Ways to improve
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• Make „gold standard“ scoring
• Check performance of interviewers compared to gold standard

• Use as improved labels for the training data

• Visualize predictive features in drawings
(cf. e.g. Zeiler & Fergus 2013)

• Check whether interviewers stick to rules: features indicated by

rules shoud be predictive of interviewers‘ scores

• Check if rules work as intended: try to predict other criteria of

cognitive decline with drawings and see if features indicated by

rules are predictive

Ideas for investigating error sources
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• Phase 1 (2020-2022):
• Scan initial batch of SHARE DE drawings (~2,000)

• Make proof-of-concept models

• Assess feasibility and sketch further plans

• Phase 2 (2022-2023):
• Find funding

• Scan all available wave 8 drawings (~10,000)

• First substantial publications

• Phase 3 (2023-2024):
• Scan wave 9 drawings (~60,000)

• More data intensive analyses (e.g. clock draws)

• Release as well curated, strictly anonymous open dataset

• Release access restricted linked dataset

Next steps
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With any questions/issues please don't hesitate to contact me:

bethmann@mea.mpisoc.mpg.de

THANK YOU!
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