

Fig. 1. Electronic spectra of (Oxin H₂) [MoOBr₅] in 9M HBr.

line with stirring. This was cooled in freezing mixture when greenish yellow precipitate of the compound appeared. This was filtered, recrystallised from hydrobromic acid and dried in vaccum over solid KOH to constant weight, yield 3g.

Found: Mo, 11.48%; Br, 49.97%; N, 3.49%

Calculated for $C_{13}H_{16}N_2O_2$ [MoOBr₅], Mo, 11.93%; Br, 49.73%; N, 3.48% Oxidation state of the metal determined by modified ceric sulphate method was +5.

 $Oxo-\mu$ -dioxoaquo (8-hydroxyquinolinato) molydenum (V), $[Mo_2O_4 (Oxine)_2(H_2O)_2]$: 2g of (Oxine $H_2)_2$ [MoOBr_s] was slowly boiled with 100 ml water when there was immediate precipitation of a pink solid. This was filtered, washed with water and dried as before, yield 0.5g.

Found: Mo, 32.90%; N, 4.59%; oxidation state of Mo, +5.

Calculated for $[Mo_2O_4 \text{ (oxine)}_2 (H_2O)_2]$, Mo, 32.98%; N, 4.81%.

Properties: Conductivity measurements of the salt $(OxineH_2)_2$ [MoOBr₅] in aqueous medium show that it is extensively hydrolysed and ionised. But the molar conductance of the derivative in acetonitrile is much less than that of a binary electrolyte $\triangle = 8.5$ ohm⁻¹ cm² for $10^{-3}M$ solution, which indicates the nonelectrolytic nature of the compound. The salt (μ eff = 1.55 B M. at 33°) contains molybdenum in quinquevalent state. The nonelectrolytic compound is diamagnetic due to the presence of oxobridged species $Mo_2O_4^{2+}$. Infrared spectra of these compounds clearly show the "(M=O) frequency at 991 cm⁻¹ and 96) cm⁻¹. The broad bands in the region 700-800 cm⁻¹ may be traced as metal-oxygen chain (-Mo-O-Mo-O) vibrations² in the nonelectrolytic species.

Electronic spectra : The spectra of the salt $(OxineH_2)_2$ [MoOBr₅] was taken in 9 M HBr and the nonelectrolytic compound [Mo₂O₄(Oxine)₂ (H₂O)₂] in acetonitrile. The results are tabulated in Table 1.

Compound	λ _{max} in mu	$v \times 10^{-8}$ in cm ⁻¹	e molar extinction	
(Oxine H)[MoOBr ₅]	695	14.3	14	
	469	21.3	519	
	408	24.5	3800	
	370	27.0	5950	
[Mo2O4(Oxine)(HO)]	308	32.4	7510	
	254	39 3	1007	
	538	18.5	168	
	384	26.0	660	
	312	32.0	840	
	246	40 6	4620	

Acknowlegdement

Our grateful thanks are due to Council of Scientific and Industrial Research for financial help to one of us (S.S.M.).

References

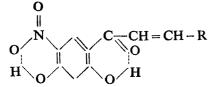
- 1. R. G. JAMES and W. WARDLAW., J. Chem. Soc., 1927, 2145.
- 2. P. C. H. MITCHELL., J. Inorg. Nuclear Chem., 1963, 25, 965.
- 3. W. WARDLAW., J. Chem. Soc., 1924, 125, 1911.
- 4. W. M. CHARMICHAEL and D. A. EDWARDS., J. Inorg. Nuclear Chem. 1968, 2641.
- C.G. BARRACLOUGH, H. LEWIS and R. S. NYHOLM., J. Chem. Soc. 1957, 8552.
- 6. H. L. KRAUSS and W. HUBES., Chem. Ber. 1961, 94,2864.
- 7. H. B. GRAY and C. R. HARL., Inorg. Chem. 1962, 1, 363.

Chalcones XIII : Potential Germicides derived from Substituted Acetophenones

SHYAM SUNDER MISRA* and SANTOSH CHANDER KUSHWAHA**

(Department of Chemistry, Harcourt Butler Technological Instt. Kanpur-2)

Manuscript Received 30 December 1971 ; received 19 July 1974; accepted 26 March 1975


THE antimicrobial and toxic action of amino, hydroxy, methoxy, and halo Chalcones have been reported by a few workers¹⁻¹³. The antibacterial and germicidal activity of these compounds is due to conjugated systems^{2,8-10}. These results have prompted us to synthesise several chalcones with a view to study their and other biological activity. The various subtituent, present in the nucleus, by changing their position from ortho to meta and then to para extends the length of the conjugated system. This may reinforce the germicidal activity of compounds.

Present Address :

- * Department of Chemistry, Feroze Gandhi post Graduate College, Raebareli-229001 (India)
- ** Department of Biochemistry; University of OTTAWA OTTAWA-2, Canada.

In all twenty five substituted chalcone compouds have been prepared by Claisen-Schmidt condensation of 2-methyl-4-methoxy; 3-methyl-4-methoxy-; 3-methylo-methoxy-; 2,5-dimethoxy- and 5-nitro-2, 4-dihydroxy acetophenones, with different aryl aldehydes at room temperature.

Russel^{3'13} has observed, during the preparation of polyhydroxy chalcones, that dark coloured tarry masses were obtained instead of desired compounds. Similar types of difficulties have been encountered in the syntheses of nitro chalcones¹⁴⁻¹⁷. Therefore, the presence of both nitro and hydroxy groups in the reacting molecules will be more detrimental to chalcone syntheses. But contrary to the general experience we have obtained 2', 4'-dihydroxy-5'nitrochalcones in good yields. To us, one feasible reason seems to be the hydrogen bonding between the pairs of nitro hydroxy and carbonyl hydroxy groups, which are situated ortho to each other, The formation of hydrogen bonding leaves no hydroxyl group free. which in earlier syntheses were reported to responsible for poor or no yields of chalcones.

The identity of the chalcones was established by elemental analyses, halochromism with Conc. H_2SO_4 (produced orange to violet shades) and in a few cases

by preparing 2,4-DNP's which analysed satisfactorily for nitrogen.

Determination of Germicidal Activity

The compounds were assayed against *E. Coli*, S. Aureus and A. Niger for germicidal and fungicidal activity at a concentration of $150\pm10\mu$ g/ml. in 10%aqueous ethanol by following Agar-Cup method. The inocula were prepared from stationary culture and inhibition of growth was checked at an incubation temperature of $(32^\circ\pm2^\circ)$ after 24 hr. The strength is reported by measuring the diameter of zone of inhibition of a particular microorganism (Table 1) and the results were compared against benjoic acid.

Experimental

Preparation of 5-nitro resacctophenone¹⁰: It was prepared by nitration of resacctophenone¹⁰ in glacial acetic acid.

Preparation of Chalcone : Chalcones reported here have been prepared by the methods reported 3, 4, 7, 12earlier. One typical example is given below.

An equimolar alcoholic mixture of 2,5-dimethoxy acetophenone and 2-chloro benzaldehyde was treated with saturated solution of sodium in methanol (5 ml) at 25° with constant stirring. After keeping the reaction mixture for an overnight yellow crystalline compound was obtained, which was recrystallised from alcohol (Table 1).

TABLE 1-PHYSICAE CHARACTERISTICS AND ANALYTICAL DATA OF CHALCONES Ar-CH = CH--CO-Ar'

											Dia. of
No.	Ar	Ar'	M. P.	°C	%	M. F.	Fc	ound	ii Ca	lc	zon. of
		(,4-DNF	Yield		С	H	С		inh.in mm.
Ì.	2-C1	2',5'-(OMe) ₂	98		81	$C_{17}H_{15}O_{8}Cl$	67.38	4.83	67.44	4.96	10
2.	3-C1	$2',5'-(OMe)_{2}$	167		78	C.H.O.Cl	67.41	4.66	67.44	4.96	9
3.	4-C1	$2',5'-(OMe)_2$	224		79	\mathbf{C}_{1}^{1} \mathbf{H}_{1}^{1} \mathbf{O}_{2}^{1} \mathbf{C}_{1}^{1}	67.40	4.80	67.44	4.96	12
4.	3-Me	$2',5'-(OMe)_{3}$	151	_	80	C_{1}	76.50	6.33	76.59	6.38	
5.	4-Me	$2',5'-(OMe)_{2}$	78	215	85	$\begin{array}{c} C_{17}H_{15}O_{3}CI\\ C_{17}H_{15}O_{3}CI\\ C_{17}H_{15}O_{3}CI\\ C_{18}H_{18}O_{3}\\ C_{18}H_{18}O_{3}\\ C_{19}H_{20}O_{3}\\ C_{19}G_{10}G_{10}\\ C_{10}G_{10}G_{10}\\ C_{10}G_{10}G_{10}\\ C_{10}G_{10}G_{10}\\ C_{10}G_{10}G_{10}\\ C_{10}G_{10}\\ C_{10}G_{10}\\$	76.55	6.34	76.59	6.38	
6.	4-Me-6-OMe	2'-Me-4'OMe	103		49	$C_{18}^{18}H_{18}^{18}O_{2}^{18}$	77.14	6.72	77.02	6.76	
7.	2-Cl-6-OMe	2'-Me-4'-OMe	- 91	237	48	$C_{18}^{19}H_{17}^{2}O_{3}Cl$	68.21	5.25	68.25	5.37	10
8.	3-Cl-6-OMe	2'-Me-4'-OMe	115		50	$C_{10}H_{17}O_{3}CI$	68.13	5.18	68.25	5.37	9
9.	4-NMe ₂	2'-Me-4'-OMe	108		68	C. H. ON	81.56	7.50	81.72	7.53	
10.	2-Cl	2'-Me-4'-OMe	226		38		71.18	5.16	71.19	5.24	9
11.	4-C1	2'-Me-4'-OMe	233		36	$C_{17}H_{15}O_{2}Cl$	71.03	5.10	71.19	5.24	10
12.	4-C1	3'-Me-4'-OMe	92	220	43	$C_{1}H_{1}C_{0}C_{1}$	71.06	5,02	71.16	5.24	9
13.	4-NMe ₂	3'-Me-6'-OMe	141		64	$C_{10}H_{01}O_{2}N$	77.06	7.06	77.29	7.12	- 9
14.	2-Cl	2',4'-(OH) ₂ -5'-NO ₂	205		80	$C_{15}H_{10}O_{5}NCI$	56.50	3.00	56.34	3.13	9
15.	3-Cl	2',4'-(OH) ₂ -5'-NO ₂	203		76	$C_{15}H_{10}O_5NCI$	56.15	2.90	56.34	3.13	8 11
16.	4-CI	2',4'-(OH) ₂ -5'-NO ₂	216	254	86	$C_{15}H_{10}O_{5}NCI$	56.20	3.30	56.34	3.13	
17.	4-NMe ₂	2',4'-(OH) ₂ -5'-NO ₂	141		60	$C_{17}H_{16}O_5N_2$	62.00	4.95	62.20	4.87	
18.	2-Me	2',4'-(OH) ₂ -5'-NO ₂	197	246	75	$C_{18}H_{13}O_5N$	64.10	4.45	64.21	4.35	
19.	3-Me	2',4'-(OH) ₂ -5'-NO ₃	185		83	$C_{16}H_{13}O_{5}N$	64.00	4.50	64.21	4.35	
20.	4-Me	2',4'-(OH),-5'-NO	189		80	$C_{16}H_{13}O_{5}N$	64.45	4.20	64.21	4.35	
21.	3-OMe ¹	$2'.4'-(OH)_{0}-5'-NO_{0}$	172		76	$C_{16}H_{18}O_{6}N$	60.70	4.00	60.95	4.12	
22,	2-OH-3-OMe	2',4'-(OH),-5'-NO,	224		62	$C_{16}H_{18}O_7N$	57.80	4.20	58.00	3.93	
23.	2,3-OMe	4^{-4} -(OH) ₉ -5'-NO	190		84	$C_{17}H_{15}O_{7}N$	59.00	4.20	58.13	4.34	-
24.	3-OH	$2',4'-(OH),-5'-NO_{2}$	238	-	50	$C_{15}H_{17}O_{6}N$	59.55	3.85	59.80	3.65	
25.	4-OH	2',4'-(OH) ₂ -5'-NO ₂	137	275	37	$C_{15}H_{11}O_6N$	60.00	3.43	59.80	3.65	
Benzoic Acid											*13
* All molting points are uncerned to											

* All melting points are uncorrected

Acknowledgement

The authors thank Dr. C. R. Mitra, Director, H.B.T.I. Kanpur, for providing necessary facilities, Dr. U. K. Mishra, Alcoholic Technologist to Govt. of U. P., for biochemical assay and Mr. A. H. Siddiqui, I.I.T. Kanpur, for microanalysis.

References

- 1. E. SCHRAUFSTATTER and S. DEUTSCH., Z. Naturforsch., 1948, 4b, 430.
- 2. J. K. EATON and R. G. DAVIES, Ann. Applied Bio., 1950, 37, 471.
- 3. S. S. MISRA and R. S. TEWARI., Proc. Nat. Acad. Sci. (India), 1970, 40(A), 468.
- S. S. MISRA, S. C. KUSHWAHA and J. B. LAL., Proc. Nat. Acad. Sci. (India), 1970, 40(A)/301,
- 5. R. SCHRAUFSTATTER and S. DEUTSCH., Z. Naturforsch, 1948, 3b, 168.
- 6. S. S. MISRA, R. S. TEWARI and J. B. LAL., Proc. Nat. Acad. Sci. (India), 1970, 40(A), 296.
- 7. S. S. MISRA and R. S. TEWARI., Labdev J. Sci. Tech. (India), 1971, 8, 152.

- 8. W. B. GEIGER and J. E. CONN., J. Amer. Chem. Soc., 1945, 67, 112.
- 9. S. S. MISRA, Ph. D. Thesis, 1970, Kanpur University, Kanpur.
- 10. S. S. MISRA and R. S. TEWARI., Indian J. Appl. Chem., 1971, 34, 260.
- 11. M. KAMODA., J. Agr. Chem. Soc., Japan, 1954, 38, 791.
- 12. S. S. MISRA and DINKAR., J. Indian Chem. Soc., 1972, 49, 637.
- 13. J. RUSSEL and H. CLARKE., J. Amer. Chem. Soc, 1939, 61, 3651.
- 14. T. SZELL., Chem. Ber., 1959, 92, 1672.
- 15. G.SIPOS and T.SZELL., Act. Phys. et Chem., 1959, 5, 70.
- 16. T. SZELL., Chem. Ber., 1960, 93, 1928.
- 17. D. N. DHAR and J. B. LAL., J. Org. Chem., 1958, 23, 115.
- 18. J. W. COOPER., Org. Synth., 1941, 21, 102.
- 19. R. E. OMER and N. HAMILTON., J. Amer. Chem. Soc., 1937, 59, 642.
- 20. T. A. GEISSMAN and R. O. CLINTON., J. Amer. Chem. Soc., 1946, 68, 692.
- 21. S. S. MISRA., J. Indian Chem. Soc., 1973, 50, 68.
- 22. S. S. MISRA., J. Indian Chem. Soc., 1973, 50, 335.