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Summary 

In this paper, we introduce a framework to leverage satellite data through AI to build rich 
representations of urban form and function. We use a concept of Spatial signatures to characterise 

predominantly urban environment into data-driven classes based on both form and function composed 
of a large number of input data sources. Consequently, we explore the ability of Sentinel 2 satellite 
imagery and state-of-the-art AI models to capture the same classification of space using a single, 

regularly updated data source, including the conceptual questions of relationship between granular 
signature geometry and rigid raster grid of satellite data. 
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The way we organise cities matters. From walkability (Pafka and Dovey, 2016) to energy efficiency 
(Ewing and Rong, 2008), the structure of space both reflects and affects the daily life of billions of 
people. Spatial signatures are a concept that encodes the form and function of (urban) environments 
into a manageable set of distinct, data-driven classes. However, developing signature-based 
classifications requires a large amount of diverse data updated slowly over time. The question then 
stands: How to roll the classification back and forward, acknowledging varied update cycles of 
underlying data? The resource that could help and is continuously up to date is satellite imagery. 
However, all the information of relevance contained in an image is in unstructured form. To provide 
structure and decode such information, we train a neural network to capture spatial signatures from 
Sentinel 2 satellite imagery. In effect, this potentially allows turning the static classification into a 
temporal one. In this paper, we discuss the potential and challenges of such an approach, what can be 
captured (and what cannot), and where is the current limit of satellite data when it comes to an 
understanding of the form and function of urban environments as well as the relationship between the 
signature geometry and raster data being conceptualised as a grid of a certain pixel size. 
 
The building blocks that make up cities, the activities and agents that inhabit them, and the structure 
that supports them can be spatially arranged in many ways. Activities and agents can be conceptualised 
as urban function, while the structure as urban form; two aspects of an environment worth quantifying 
and understanding in their own right but, more importantly, in tandem. However, the study of form and 
function is fragmented, scattered across many disciplines and levels of the policy hierarchy. That means 
that while individual aspects of understanding are well covered - economic forces shaping cities by 
economists (Ahlfeldt and Pietrostefani, 2019), transportation networks by planners (Gil, 2014), or 
public space by urban designers and architects (Khirfan, 2011) - the connection is not always present. 
There is thus a clear need for detailed, consistent and scalable evidence on urban form and function. 
 
This paper relies on the concept of “spatial signatures”, a characterisation of space based on form and 
function designed to understand urban environments (Arribas-Bel and Fleischmann, 2022). Spatial 
signatures exhaustively divide geographical space into distinct classes based on its appearance (form) 
and how it is used (function). This division is based on two underlying concepts – enclosed tessellation 
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as a basic spatial unit and quantitative characterisation as a way of capturing form and function. The 
enclosed tessellation is an indivisible (any subdivision would result in a unit that is incapable of 
capturing the nature of urban form and function), internally consistent (reflects only a single signature 
type), and exhaustive (covering the entirety of the study area) spatial unit derived from a set of natural 
or built barriers or delimiters (as rivers, railways, or roads) and anchors such as building footprints. 
Each of the resulting enclosed tessellation cells is then characterised using urban morphometrics (to 
capture form) and by linking additional functional data to this new geometry, where the latter includes 
information on population, points of interest, land use, land cover and other characteristics. 
 
Due to their dependency on a multitude of data sources that are being updated at a variable and often 
slow rate (e.g., ten years for the case of census-based data) signatures cannot be easily updated with 
frequency. The challenge that stands ahead is thus enabling spatial signatures as a temporal 
classification. That means being able to use available data to derive signatures for points in a time 
predating the recent data and, importantly, being able to capture their state going into the future 
periodically. With predominantly vector-based data linked to various statistical and administrative 
boundaries (e.g., census output areas or uniform grids), depending on the occasional collection and 
release of data, being a significant component of the function part of signatures, the method needs to 
decouple itself from these data sources. At the same time, it needs to preserve its open nature, i.e., being 
based on transparent procedures as well as openly available data. 
 
One possible pathway towards this goal comes from remote sensing and satellite imagery. While 
staying in the realm of open data, two substantial resources are available - the Sentinel mission of the 
European Space Agency and the Landsat mission of NASA/USGS. Of these, two stand out: the Sentinel 
2 satellite mission offers visible and near-infrared bands at 10 meters per pixel resolution, while Landsat 
8 provides similar bands (among others) at 30 meters resolution. Both sources are of specific interest 
as they able to capture urban structure at a similar scale that that which spatial signatures focus on (e.g., 
spatial pattern composed of a contiguous area of multiple, often thousands, of enclosed tessellation 
cells). Moreover, there is suggestive evidence these resources are able to capture urban patterns of an 
analogous scale. Examples include the detection of different Local Climate Zones (Taubenböck et al., 
2020), land use and land cover patterns (Georganos et al., 2018), or urban structural types (Huck et al., 
2011). 
 
We explore this pathway using the Sentinel 2 imagery within a deep convolutional neural network 
(CNN) trained to predict each pixel's spatial signature type across Great Britain. This exploration aims 
not only to develop the optimal model with the highest accuracy but also to understand the relationship 
between granular geometry of signatures and conceptualisation of space into a grid and rectangular 
input chips (a small piece of the grid) of raster data. With Sentinel 2 being relatively coarse in terms of 
the spatial resolution compared to some commercial products that can offer a resolution of up to 30 cm 
per pixel (Maxar, 2022), there are not only technical questions of the CNN architecture, but also 
geographical ones related to a Modifiable Areal Unit Problem (Openshaw, 1983) and the ability of 
chips of a certain size to capture the nature of each signature type. While larger chips are naturally 
better at capturing more information, they often cover multiple signature types. On the other hand, 
smaller chips that may fit better within individual signature types may not carry enough information to 
result in a reliable prediction. 
 
This paper discusses this exploratory work and outlines our empirical experiments. We talk through the 
options we face in the selection of a neural network, its training, and relevant parameters. We identify 
the crucial variables and investigate their effects on the performance of the model both in terms of 
accuracy and complexity, leading to a longer training time. Since spatial signatures are composed not 
only of urban form that can be seen by a naked eye but also of urban function that is harder to "see", 
the paper tries to find the limit of satellite imagery and understand what can be captured from space 
using primarily bands falling into the visible spectrum and what cannot. 
 
While traditional data sources such as census, population estimates, or crowdsourced points of interest 
(like those available via the OpenStreetMap project) are extremely valuable in understanding urban 



 

Page | 3  
 

environments, and hence deriving spatial signatures, they are limited in their ability to provide temporal 
granularity. On the other hand, satellite imagery comes with frequent and consistent updates but does 
not by itself provide enough information to build spatial signatures from scratch. However, developing 
a CNN that uses spatial signatures based on traditional data and learns to predict them from satellite 
imagery is possible and opens a way towards developing up-to-date temporal classifications of form 
and function in urban environments. While such a pursuit is not without both technical and conceptual 
challenges, it has the potential to significantly expand the applicability of spatial signatures as a method 
of understanding cities and minimise their current data dependency. 
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