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Figure 1: An overview of the system, from the input image and captions on the left, to the target image on the right.

ABSTRACT

Building on the recent advances in multimodal zero-shot represen-
tation learning, in this paper we explore the use of features obtained
from the recent CLIP model to perform conditioned image retrieval.
Starting from a reference image and an additive textual description
of what the user wants with respect to the reference image, we
learn a Combiner network that is able to understand the image
content, integrate the textual description and provide combined
feature used to perform the conditioned image retrieval. Starting
from the bare CLIP features and a simple baseline, we show that
a carefully crafted Combiner network, based on such multimodal
features, is extremely effective and outperforms more complex state
of the art approaches on the popular FashionIQ dataset.
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1 INTRODUCTION

Content-Based Image Retrieval (CBIR) is a fundamental task in
multimedia and computer vision and has been applied to many dif-
ferent domains like art [10], commerce [16], medicine [20], security
[2], nature [14], landmarks [26], etc. Typically image features of
the database images are computed and compared with the features
of a query image.

Interactive (i.e. conditioned) image retrieval systems extend CBIR
systems to improve their effectiveness, by adding some form of
user feedback, e.g. to provide some measure of relevance [3] or re-
questing constraints on some attributes of the retrieved results [25].
These types of systems can be applied in many different domains
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Figure 2: Architecture of the combiner network.

such as web search, e-commerce and surveillance. However, the
difficulty in the development of these approaches is the need to
incorporate features from the feedback and the intent of the user, in
addition to the semantic gap between features and image content.

Very recently, it has been shown that a deep neural network like
CLIP [22], trained using an image-caption alignment objective on
large-scale internet data, can obtain impressive zero-shot transfer
on a myriad of downstream tasks like image classification, text-
based image retrieval, object detection and video action recognition.

In this work we show that CLIP-based features can be effectively
used to implement a conditioned image retrieval system where user
feedback is provided as natural language input to provide additional
(or contrasting) requirements with respect to those embedded in
the visual features of the image used to query the system. Figure 1
on the preceding page shows how the system works: a user selects
a reference image and then provides additional requirements and
requests in form of text, e.g. asking to change texture or shape
features of the reference image. We apply the system to the fashion
domain. Experiments are carried on the challenging FashionIQ
dataset [28] obtaining state-of-the-art results.

2 PREVIOUS WORK

Traditional CBIR did not use any kind of user feedback or its intent
to refine results. However, within interactive and conditioned CBIR,
a lot of work has been done to improve retrieval performance in-
corporating user’s feedback in terms of relevance to the query [23]
or by considering relative [18] and absolute attributes [12, 30]. The
limiting expressiveness of attributes was successively addressed
in [11, 27] by considering purely textual feedback, allowing richer
expressiveness. Nonetheless, performance of the textual model can
limit the system in understanding and reacting appropriately. At
the same time, GPT-2, BERT [21] and GPT-3 [4] models have shown
that large amounts of text combined with recent improvements in

attention mechanisms enable learning of powerful features that
integrate vast knowledge. Adding images to the learning process,
CLIP [22] has very recently shown that it is feasible to perform
multimodal zero shot learning, obtaining remarkable feature gen-
eralization of both images and text. Contrary to standard vision
models that are trained on typical datasets and that are good at only
one task, this new class of models learn only associations between
the abundant images and natural language supervision available on
the internet. They are not directly optimized for a benchmark and
yet are able to perform consistently well on different tasks. CLIP
effectiveness is still subject of study [1], with first applications to
art [7], image generation [9] and zero shot video retrieval [8]. Our
work builds upon CLIP and further explores its potential in the task
of conditioned image retrieval, applying the proposed approach to
fashion.

In the growing area of image retrieval with user feedback, our
work is related to the recently introduced conditioned fashion image
retrieval with text [28]. In [6], a transformer that can be seamlessly
plugged in a CNN to selectively preserve and transform the visual
features conditioned on language semantics is presented. In [24, 27]
they use skip connections and combine them with graph neural
networks, reporting improved performance. In [19], image style and
content are considered separately by two different neural network
modules. In [17] a Correction Network is added which explicitly
models the difference between the reference and target image in
the embedding space.

Differently from these work, our method differs by few factors.
It explicitly considers a learned manifold of visual and text features
with the goal of learning an additive transformation in the same
space. Moreover, our approach does not use any kind of spatial in-
formation. Instead, in [19, 27] features extracted from the backbone
are 3-dimensional and the composition takes care of spatial infor-
mation, in [6] the features are extracted at different convolutional
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layers from the ResNet-50 backbone. In [17] the authors divided the
image and the sentence into a set of localized components assigning
a representation module, denoted as experts, to each of them. More
similar to our work is [24] which trains a combiner directly on
flattened image and text features that, differently from our work,
are obtained from different embeddings.

3 THE PROPOSED METHOD

The proposed method addresses the multimodal problem of con-
ditional fashion image retrieval. Given as input a reference image
(e.g. an image of a black dress) and a text that includes a descriptive
request from the user in relation to the image (“red and yellow"),
the goal of the retrieval is to retrieving the best matching images
that satisfy similarity constraints imposed by both of the input com-
ponents (an image of a red and yellow dress). To retrieve correct
images, the system must be able to understand both the contents
of the image and text, and further add the textual comment to the
image content.

A schema of the complete system is shown in Figure 1 on page 1.
In contrast to previous works like [6, 17, 19, 24] that build from
different image and textual model, we start from the hypothesis of
having a common embedding of images and text, realized by CLIP.
As shown in [22], similar concepts expressed in text and images
tend to share similar features, or at least be “near" in the common
space.

The input image and text are encoded using their respective CLIP
encoders into features in the common space. The task is then cast
as a problem of learning a transformation from the reference image
feature and input text to a combined feature that includes both
the multimodal input information and is as near as possible to the
common manifold. We denote this transformation as a Combiner
function and design a neural network architecture that is trained to
learn the correct function. We explore different Combiner functions
showing that state of the art performance is obtainable.

The Combiner function, depicted in Figure 2 on the facing page,
is simple yet more performing than more complex architectures
that we tested. The idea is to build an additive transformation where
text, image and the combination of both are all added into the final
combined feature. The text and image features are each weighted
by a scalar that is trained to balance their contribution. We found
these two contributions essential to obtain a new state of the art
performance. The third contribution is given from the mixture of
image and text. Starting from text and image features, we apply to
each feature a linear transformation followed by the ReLU function.
Features are then concatenated and the output is fed to another
linear layer that is followed by a ReLU and a final linear layer. The
three contributions are finally summed and Ly normalized. Dropout
is applied to each layer to reduce overfitting.

Training of the system is performed with triplets of input images,
text and target images. Following [24, 27] we employ the DML loss
as pairwise contrastive loss using the normalized dot product as
similarity kernel. Similarly to CLIP [22], we multiply the logits
(i.e. the dot product between predicted and target features) by 100
before computing the loss. This was shown to help the training
process by improving the dynamic range of features.
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3.1 Implementation Details

We decided to perform experiments using two CLIP models of
different size. The smallest one is based on a modified ResNet-50
(RN50) [13] architecture. It takes as input images of 224 X 224 pixels
and outputs features of 1024 dimensions. The biggest one, denoted
as RN50x4, follows the EfficientNet-style model scaling and use
approximately 4x the computation of the smallest. It takes as input
images of 288 X 288 pixels and outputs features of 640 dimensions.
In the experiments, the CLIP encoders have been kept frozen and
the only trained part of the model is the Combiner function. The
dropout rate was set to 0.5 as commonly done with linear layers.
The text and image scalar weights were both initialized to 1. We
used PyTorch in our experiments. The learning rate was set to 5e—5
and we trained the model for a maximum of 300 epochs. The batch
size was set to 1024 for the experiments with RN50 and 512 for the
experiments with RN50x4, due to memory limits.

4 EXPERIMENTAL RESULTS

Average
Model R@10 | R@50
Sum 19.55 38.40
Weighted sum 19.78 | 39.04
No skip 2338 | 46.81
Linear after skip 2336 | 47.42
No Dropout 28.36 51.62
No ReLU & Dropout || 28.20 51.10
CLIP fine-tuning 2791 51.50
Proposed model 29.67 | 53.41

Table 1: Recall at K on the validation set, with variations on
the architecture. Best score is highlighted in bold.

Average
Batch size || R@10 ‘ R@50
64 28.75 51.94
128 29.01 52.41
256 29.10 52.58
512 29.00 53.02
1024 29.67 53.41

Table 2: Recall at K on the validation set when increasing
the batch size. Best score is highlighted in bold.

4.1 Dataset and metrics

We used the popular FashionIQ dataset [28] since it is commonly
used to test conditioned image retrieval. FashionIQ provides 77,684
fashion images crawled from the web and split in train, validation
and test sets, divided into three different categories: Dress, Toptee
and Shirt. Among the 46,609 training images there are 18,000 train-
ing triplets made of a candidate image, a pair of user texts and a
target image. The texts describe properties to modify in the candi-
date image to match the target image. Validation and test set have,
respectively, 15,537 and 15,538 images with 6,017 and 6,119 triplets.
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Shirt Dress Toptee Average
Method R@10 | R@50 | R@10 | R@50 | R@10 | R@50 | R@10 | R@50
JVSM [5] 12.0 271 10.7 259 13.0 26.9 11.9 26.6
TRACE w/BERT [15] 20.80 40.80 22.70 4491 24.22 49.80 22.57 46.19
VAL w/GloVe [6] 22.38 44.15 22.53 44.00 27.53 51.68 24.15 46.61
CurlingNet [29] 21.45 44.56 26.15 53.24 30.12 55.23 25.90 51.01
RTIC-GCN [24] 22.72 44.16 27.71 53.50 29.63 56.30 26.69 51.32
CoSMo [19] 24.90 49.18 25.64 50.30 29.21 57.46 26.58 52.31
DCNet [17] 23.95 4730 | 28.95 | 56.07 | 30.44 58.29 27.78 53.89
Our (CLIP-RN50) 31.41 52.11 25.69 50.64 31.91 57.50 29.67 53.41
Our (CLIP-RN50x4) 35.76 | 56.20 | 27.20 53.57 | 36.31 | 61.14 | 33.09 | 56.99

Table 3: Comparison between our method and current state-of-the-art models on the Fashion-IQ validation set. Best scores

are highlighted in bold.

We follow experimental setting as in [17, 19]. We employ the
average recall at rank K (Recall@K) as evaluation metric, namely
Recall@10 (R@10) and Recall@50 (R@50). Note that for each triplet
there is only a positive index image. Hence, each individual query
has R@K either of zero or one. All results are on the validation set
since at the time of writing the test set ground-truth labels has not
been released yet.

4.2 Ablation studies

In this section we show preliminary experiments with variations
of the architecture shown in Figure 2 on page 2, and with differ-
ent batch sizes. All experiments were performed with RN50 as
backbone.

We tested the following baselines:

e Sum: image and text features are summed;

o Weighted sum: a weighted sum between the image and
text features, i.e. the model without the mixture contribution
of text and image;

o No skip: only the mixture contribution of text and image;

e Linear after skip: the regular model with an additional
linear layer in both text and image contributions;

e No Dropout: without dropout layers;

e No ReLU & Dropout: without ReLU activations and dropout
layers;

e CLIP fine-tuning: end-to-end fine-tuned CLIP with the
Combiner function;

e Proposed model: the proposed model shown in Figure 2
on page 2.

We report the results for each variation in Table 1 on the previous
page.

The first interesting thing to notice is that a simple sum of the
candidate image features and the relative captions features led
to decent results that are not too far from the worst competing
state-of-the-art methods. This confirms that text and images in
the CLIP embedding reside (approximately) in the same manifold.
The weighted sum baseline, where text and image weights are
learned, results in little improvement. The two weights stabilize
respectively to 1 and 0.80 for images and text, signaling a preference
towards image features. Compared to the proposed model, we note
that removing the text and image direct contributions lead to a

significant drop in performance. Given the effectiveness of the
Sum baseline, this is reasonable, since their presence may enable
the Combiner function to only learn an offset to an already good
starting point. In our experiments, fine-tuning CLIP along Combiner
training did not bring any performance improvement.

Regarding the batch size, we tested different value ranging from
64 to 1024. We report the performance obtained in Table 2 on the
preceding page. We note that increasing the batch size provides a
~ 3% increase of both recall measures.

4.3 Comparison with SotA

Table 3 shows the quantitative results on Fashion-IQ validation set.
Our approach outperforms the state-of-the-art by improving up
to ~ 5% in average R@10 and 3% in average R@50 upon the best
method, DCNet [17], when using the CLIP RN50x4 backbone. Our
method have the highest recall in the Shirt and Toptee categories,
with comparable performance in the Dress category, using both
backbones. Between the two backbones, we note that bigger RN50x4
obtains the best performance, with an improvement on the smaller
RN50 in the range of about 2% to 4% in all categories.

5 CONCLUSIONS

In this paper we tackled the problem of conditioned image retrieval
for fashion using the recent CLIP model where we exploited its
zero shot transfer features. We developed a Combiner network that
is able to compute a combined feature made from reference images
integrated with a textual description. Experiments on the FashionIQ
dataset show that our approach is able to outperform more complex
state of the art methods.

Our future work will deal with the extension of the proposed
method to videos and further experimentation with different image
domains.
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