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ABSTRACT 
Immunological memory is the basis of protective immunity provided by vaccines and previous infections. 
Immunological memory can develop from multiple branches of the adaptive immune system, including 
CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been 
made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing 
development; quantitative and qualitative features of different cellular and anatomical compartments; and 
durability of each cellular component and antibodies. Given the sophistication of the measurements; the 
size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head 
comparisons between infection and vaccines or between multiple vaccines, the understanding of immune 
memory for one year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute 
infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 
vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases. 
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Introduction  

Protective immunity provided by vaccines is predicated on the existence of immunological memory: 
the capacity of the adaptive immune system to not only recognize a novel pathogen but to also remember 
it. Only in the past few decades have the cellular and molecular sources of immunological memory been 
defined, and much remains to be determined. The three main branches of the adaptive immune system 
are B cells (the source of antibodies, “Abs”), CD4 T cells, and CD8 T cells. Immune memory is encoded in 
four main compartments of adaptive immunity: memory CD8 T cells, memory CD4 T cells, memory B cells 
(MBCs), and circulating Abs 1 (Figure 1). There is evidence of roles for B cells (including Abs), CD4 T cells, 
and CD8 T cells in protective immunity to SARS-CoV-2, and thus it is important to study immune memory 
to SARS-CoV-2 and COVID-19 vaccines to understand protective immunity against COVID-19. Because of 
the size and scope of immunological studies of SARS-CoV-2 in humans, the large number of first-time 
infections, the large number of first-time vaccinations, and the diversity of COVID-19 vaccines developed 
in a short period of time, there is now more data on human antigen-specific immune responses to SARS-
CoV-2 than any other acute pathogen. As a result, immune memory to SARS-CoV-2 is now a benchmark 
in human immunology for understanding antigen-specific T cell and B cell memory.  
 Immune memory to SARS-CoV-2 can be generated by infection (classically referred to as “natural 
immunity”), vaccination, or hybrid immunity. Hybrid immunity is the combination of infection-induced 
immunity and vaccine-induced immunity2. Each of these causes of immune memory is discussed in each 
section of this review. Overall, immune memory from prior infection, vaccination, or hybrid immunity each 
have distinctive characteristics. Previous infection can generate robust immune memory3,4, including 
memory CD8 T cell, CD4 T cell, MBCs, durable Abs, and local immune memory (Figure 2). Epidemiological 
data on protective immunity in previously-infected individuals are consistent with the immune memory 
measurements. Multiple large studies observe that prior infection provides ~80-95% protection against 
symptomatic COVID-19 re-infections for 8+ months, for SARS-CoV-2 ancestral strain and the Alpha 
through Delta VOCs5–11, and significant protection against disease with Omicron12–14.    

COVID-19 vaccines, focusing for the moment on 2-dose mRNA vaccines (Moderna mRNA-1273, 
Pfizer/BioNTech BNT162b2), clearly provide high levels of protective immunity against SARS-CoV-2 
ancestral strain and the Alpha through Delta VOCs9,15,16. However, the high levels of vaccine immunity 
against detectable SARS-CoV-2 infections wanes over a period of months17,18. Immunity provided by 2-
dose ChAdOx1 (AstraZeneza/Oxford ChAdOx1-nCoV-19 AZD1222 “ChAdOx1”) is somewhat lower and 
wanes faster than the mRNA vaccines 19. With hybrid immunity, neutralizing Ab  (nAb) titers and breadth 
of recognition of SARS-CoV-2 variants are dramatically higher in previously-infected individuals receiving 
at least one dose of a COVID-19 RNA vaccine2 (Figure 2). Hybrid immunity from vaccination plus 
subsequent infection (breakthrough infection) also results in similarly robust immune responses20,21. 
Multiple epidemiological studies have now validated those immunological findings, by observing that 
hybrid immunity results in more robust protection against COVID-19 than either previous infection 
immunity or vaccine-induced immunity9,11. These types of antigen exposure(s) — infection-induced 
memory, vaccine-induced memory, and hybrid immunity — each have distinct characteristics of immune 
memory (Figure 2), which are key to the observed protective immunity in each case. High circulating nAb 
titers can clearly provide protective immunity. However, such high nAb titers are not present in many 
cases, particularly after SARS-CoV-2 infection, and there is substantial evidence for roles of T cells, MBCs, 
and local tissue immunity in protection from COVID-19 22,23 (see companion article by Goldblatt et al., this 
volume). For example, previous infection provides substantial immunity with significantly lower circulating 
nAb titers than after BNT162b2 or ChAdOx1 vaccination19.  Local tissue immunity contributes to protective 
immunity after infection (Figure 3). Different adaptive immunity mechanisms may be involved in protective 
immunity to differing degrees with immune memory generated by previous infection, vaccination, or 



hybrid immunity. Thus, each are discussed in this review for CD8 T cells, CD4 T cells, MBCs, and Abs.  
 
CD8 T cell memory to SARS-CoV-2 

In general, CD8 T cells are important in the control and clearance of viral infections 24. In particular, 
several lines of evidence suggest that CD8 T cells are a relevant and valuable component of the overall 
adaptive immune response to SARS-CoV-2. One line of evidence is derived from studies in acute SARS-
CoV-2 infection, which observed that early CD8 T cell responses were significantly associated with milder 
disease 25. An inverse association between CD8 T cell response magnitude and disease severity was also 
reported in 4 of 5 additional independent studies 4,26–29. Additional evidence for a role of CD8 T cells 
comes from studies in non-human primates. McMahan and colleagues directly showed that depletion of 
CD8 T cells in COVID convalescent animals affected immunity against SARS-CoV-2 re-challenge 30. An 
important role for CD8 T cell responses was also reported in an antibody-independent COVID-19 vaccine 
study 31. See companion article by Plotkin and colleagues for a review of T cells in protection [ref] and 32. 
 Multiple techniques are commonly utilized to measure antigen-specific T cells responses, with antigen 
specificity ensured by the use of SARS-CoV-2 derived peptides or defined epitopes, utilized as pools or 
isolated epitopes. The techniques utilized included Activation Induced Marker (AIM), ICS (intracellular 
cytokine staining), ELISPOT, and tetramer staining assays and their strengths and weaknesses are reviewed 
elsewhere 33,34.  
 
CD8 T cell memory to SARS-CoV-2 infection 

SARS-CoV-2-specific CD8 T cells are detectable in ~70% of COVID-19 cases one-month after 
infection3,4. The frequency of responders then declines to ~50% by 8 months post-infection3,4. The Dan et 
al. study included SARS-CoV-2-specific CD8 T cell measurements from 169 COVID-19 case subjects and 
the Cohen et al study included 114 subjects, making them the two largest studies of CD8 T cell memory 
to an acute viral infection examining a 6+ month period. The estimated SARS-CoV-2-specific memory CD8 
T cell kinetics from the Dan et al. study was t1/2 = 125-190 days, while the Cohen et al. t1/2 was 196 days. 
That is strong concordance between the two studies, given that the studies utilized different CD8 T cell 
assays (AIM and ICS) and the calculations were based predominantly on cross-sectional sampling. By 
comparison, a rigorous study using in vivo deuterium labelling found yellow fever virus (YFV) vaccine CD8 
T cell responses to have an initial t1/2 of 123 days35. Given that the YFV vaccine is highly effective, elicits 
robust CD8 T cells as a live attenuated viral vaccine, and deuterium labelling determined a subsequent t1/2 

of 460 days35, the observation of similar initial t1/2for memory CD8 T cells after a SARS-CoV-2 infection 
indicates the generation of long-lasting memory SARS-CoV-2-specific CD8 T cells3,4 (Figure 2). Memory 
CD8 T cells to SARS-CoV were detected 17 years post-infection36. 
 SARS-CoV-2-specific CD8 T cells generated in response to SARS-CoV-2 infection predominantly 
express IFNg and granzyme B (GzB)4,37,38, with some expression of TNF and IL-24. Eight months post-
infection, effector memory (TEM) and CD45RA+ effector memory (TEMRA) phenotype memory CD8 T cells 
predominate, with a smaller fraction of central memory (TCM) phenotype cells3,4. Other studies have 
corroborated these central findings, with fewer COVID-19 cases, shorter study periods, or inferred CD8 T 
cells from PBMC ELISPOT assays 39,40. Bystander CD8 T cell activation can occur during COVID-1941, and 
some AIM markers can represent bystander activation of CD8 T cells and must be used carefully, 
depending on the experiment context, to avoid miscalculation of antigen-specific CD8 T cells. SARS-CoV-
2-specific memory CD8 T cells have also been identified with MHCI tetramers/multimers 26,42–46. There has 
been some confusion about the expression of PD-1 on CD8 T cells in COVID-19. PD-1 is expressed on 
virtually all activated CD8 T cells. PD-1is also a marker of exhausted CD8 cells in some contexts. Expression 
of PD-1 by itself does not indicate an exhausted T cell. While CD8 T cells have been observed to express 
PD-1 after COVID-19, and increased activation/exhaustion markers were noted in mild as compared to 



hospitalization-level or severe disease 47,48; subsequent studies using tetramers reported that at later time 
points the memory PD-1-expressing CD8 T cells are not exhausted, and appear to be highly functional 45. 
 Notably, SARS-CoV-2-specific memory CD8 T cell responses are undetectable in ~30% of COVID-19 
cases3,4,37, even when testing the full SARS-CoV-2 ORFeome of epitopes3. It is unknown whether those 
subjects have CD8 T cell responses to untested epitopes, CD8 T cell responses just below the technical 
limit of detection of the assays used, or whether those subjects truly did not develop CD8 T cell response 
to SARS-CoV-2 infection. 
 Lower SARS-CoV-2-specific CD8 T cell responses have been observed in hospitalized COVID-19 cases 
in multiple studies4,25,28, including memory, consistent with a weak CD8 T cell response predisposing for 
more severe COVID-19, particularly in older adults possessing fewer naïve CD8 T cells25. This contrasts 
with CD8 T cell responses to YFV vaccine, which positively correlate with viral load. This also contrasts with 
positive correlations in SARS-CoV-2 infections between spike Ab titers, MBC frequencies, and disease 
severity, indicating that the humoral immune response and memory development correlates with acute 
SARS-CoV-2 viral loads (see MBC and Antibody sections). One interpretation of these data is that acute T 
cell responses are important for the control and clearance of SARS-CoV-2 infection22. 

Many SARS-CoV-2 antigens are recognized by human CD8 T cell responses in SARS-CoV-2 infected 
individuals37, with an estimated median of 17 epitopes per individual49. Recognized class I epitopes are 
distributed throughout the SARS-CoV-2 ORFeome, but structural proteins (spike, nucleocapsid, and M) 
are relatively immunodominant37,49. CD8 T cell epitopes are in general well conserved between variants50–

52. SARS-CoV-2 CD8 T cell specificities have been recently reviewed elsewhere53,54.  
 The frequencies of circulating memory CD8 T cells after SARS-CoV-2 infection are lower than the 
frequencies reported for influenza in humans55 , though influenza memory reflects the accumulation of 
many exposures throughout life. The frequencies of circulating SARS-CoV-2 memory CD8 T cells can be 
considered relatively low in comparison to frequencies generated to viruses in animal models associated 
with high levels of CD8 T cell mediated protective immunity. However, the frequency of memory CD8 T 
cell required for control of an infection is generally highly dependent on the speed of the clinical disease. 
Most animal models of CD8 T cell mediated protection require CD8 T cell immediate effector functions 
(e.g., cell killing at the site of infection within hours), or viral clearance within a few days. However, once 
activated CD8 T cell proliferate rapidly and migrate to infected tissues (sites of inflammation), with the 
cells potentially expanding in number 10-fold every 24 hours. Thus, within 72 hours of activation memory 
CD8 T cell can increase in number close to 1000-fold. Importantly, progression of hospitalization with 
COVID-19 is relatively slow, often occurring 10 days post-infection or later 56,57. Thus, a role for CD8 T cell 
in prevention of severe COVID-19 may require quite low levels of circulating memory CD8 T cells at the 
time of infection. In contrast, since CD8 T cells must exert their functions directly on infected cells, a role 
for CD8 T cells in prevention of SARS-CoV-2 transmission (half of which occurs within the first 5 days), 

before reported symptoms58–60 is a high bar and likely requires a large number of tissue resident memory 
(TRM) CD8 T cells in the URT (Figure 3), which nevertheless can be achieved by immunization31.  
 TRM are an important category of T cells for protective immunity. They are underreported in the human 
immunology literature because it is much more difficult to obtain human tissue samples and isolate T cells 
from diverse tissues in comparison to blood. It is also much more difficult to identify antigen-specific T 
cells from such samples, due to limited cell numbers recovered and different cellular phenotypic 
characteristics61. In the context of SARS-CoV-2, immune memory in tissues is particularly relevant in the 
nasal passages, oral cavity, throat, and lungs (Figure 3). SARS-CoV-2-specific CD8 T cell TRM have been 
identified in humans62,63. Lung tissue was examined from four subjects up to 6+ months after unremarkable 
(non-hospitalized) cases of COVID-19. Lymphoid tissues such as blood and lymph nodes (LNs) were 
examined for comparison. While SARS-CoV-2-specific CD8 T cell were identified in blood from only 2 out 
of 4 subjects (consistent with the detection rate in much larger studies3,4), SARS-CoV-2-specific CD8 T cell 



were identified in lung LNs from 4 out of 4 subjects, and SARS-CoV-2-specific CD8 T cell were identified 
in lung tissue from 3 or 4 out of 4 subjects62. Additionally, substantial fractions of the CD8 T cells in both 
lungs and lung LNs were TRM cells. Notably, in two studies SARS-CoV-2-specific CD8 T cell frequencies in 
lung tissue or bronchoalveolar lavage (BAL) were substantially higher than blood62,63. SARS-CoV-2 is also 
present in gut tissues. While intestinal tissue was not available, intestinal LNs were examined, and SARS-
CoV-2-specific CD8 T cell and CD8 T cell TRM were found in all three samples tested, suggesting that 
substantial CD8 T cell TRM may be present in intestinal tissue of previously-infected individuals64. Thus, 
blood samples may significantly underreport SARS-CoV-2-specific CD8 T cell memory in previously-
infected individuals. SARS-CoV-2-specific TRM from throat, nasal passages, or the oral cavity after COVID-
19 are less well studied 65, representing a major knowledge gap for immune memory.  
 Development of pediatric T cell memory is of particular interest in the context of the well-known lower 
disease susceptibility of children to severe COVID-19, and in the context of the many differences in adult 
versus pediatric immune reactivity66. Conflicting data have been reported regarding pediatric T cell 
responses to COVID-19. In one study, significantly stronger acute and memory T cell responses were 
reported67. In another study, significantly lower acute and memory CD8 T cell responses were reported68. 
Of potential interest is also the observation that T cell memory in children may have differences in 
immunodominance, perhaps as a result of different exposure to common cold coronaviruses67,68 . A small 
fraction of pediatric SARS-CoV-2 infections later develop a serious hyperinflammatory condition, 
multisystem inflammatory syndrome in children (MIS-C). Conflicting data have been reported regarding 
the relative strength of T cell memory in MISC versus non-MISC cases 69–74. 

Long COVID (aka post-acute sequelae of SARS-CoV-2 infection [PASC]) is an important collection of 
conditions, with unclear etiology75. Given that SARS-CoV-2 viral RNA and protein have been detected 90+ 
days post-infection in gut biopsies from unremarkable COVID-19 cases (not hospitalized, and not long 
COVID), it is plausible that significant SARS-CoV-2 viral persistence occurs in some individuals in some 
tissues. This could be a source of inflammation and symptoms for at least some cases of long COVID. It is 
unclear why CD8 T cell would not clear SARS-CoV-2 infection from intestines within a few weeks [Plotkin, 
Crotty…]. Efficacy of CD8 T cell clearance of virus in humans remains an important knowledge gap. 
Notably, SARS-CoV-2-specific CD8 T cell responses are undetectable in ~30% of COVID-19 cases3,4,37, 
even when testing the full SARS-CoV-2 ORFeome of epitopes3. It is unknown whether those subjects have 
CD8 T cell responses to untested epitopes, CD8 T cell responses just below the technical limit of detection 
of the assays used, or whether those subjects truly have no CD8 T cell response to SARS-CoV-2 infection. 
It is also possible that some subjects in which SARS-CoV-2-specific CD8 T cell responses are undetectable 
in the periphery, might nevertheless have TRM antigen specific cells residing in the lung or upper respiratory 
tract tissues64,76. Separately, CXCR6+ CD8 T cells in lungs have been associated with extended periods of 
COVID-19 inflammation and may have a role in long COVID63.  
 
CD8 T cell memory to vaccination 

Spike-specific CD8 T cell responses are detected in ~70-90% of individuals weeks after receiving 2-
dose mRNA COVID-19 vaccines77–80, and memory CD8 T cells are detectable in ~41-65% of individuals at 
6 months after the 2nd dose (7 months from 1st dose) 77–79,81. A low dose (25 µg) of mRNA-1273 was found 
to generate memory CD8 T cells at similar frequencies as previous infection, comparing 6 months after 
the 2nd dose to 6 months after infection, indicating similar spike-specific CD8 T cell responses between 
mRNA vaccination and infection. A separate study also found similar spike-specific CD8 T cell responses 
at earlier times82. Among individuals with detectable CD8 T cell memory to mRNA vaccines months after 
immunization, the magnitude of the memory is generally observed to be low77,78,80,81,83 , both in comparison 
to spike-specific CD4 T cell memory, and memory to influenza55.  

 There was initial confusion about whether both BNT162b2 and mRNA-1273 mRNA COVID-19 



vaccines generated CD8 T cell responses42,84,85. More recently, multiple groups have observed similar CD8 
T cell responses to both vaccines78, including in head-to-head comparisons78,80,83. Methodological 
differences measuring antigen-specific T cells can result in different findings, as studies not detecting 
memory CD8 T cells usually utilized a less than optimal short stimulation ICS protocol, or less sensitive 
ELISPOT formats. The mRNA vaccine-elicited memory CD8 T cells detected predominantly have a TEM 
surface phenotype, consistently express IFNg, and have proliferative capacity43,80. 

The first 6 months are likely to be the period with the fastest decline in T cell memory35. The 
observation of ~2-fold declines at 6 months in spike-specific CD8 T cell memory from peak cytokine-
positive CD8 T cell frequencies is encouraging evidence that CD8 T cell memory to mRNA vaccines is 
long-lived and may last many years 77,79,80 (Figure 2). Memory CD4 T cells exhibit similar kinetics, as 
discussed in the CD4 T cell section below. 

The adenoviral vector vaccines ChAdOx1 and Ad26.COV2.S elicit spike-specific CD8 T cell responses 
in 51-64% of individuals in immunogenicity clinical trials86, though the response rate drops to 24-36% in 
individuals > 65 years old86. Stable CD8 T cell memory to Ad26.COV2.S is observed to 8 months87. Some 
comparisons between mRNA vaccines and adenoviral vector vaccines are available for CD8 T cell memory. 
Similar (within ~2-fold) spike-specific CD8 T cell responses to mRNA vaccines and adenoviral vector 
vaccines are observed ~1 month after immunization, including the 1-dose Ad26.COV2.S78,80,83,88, 2-dose 
Ad26.COV2.S88, or 2-dose ChAdOx189–91 . Two studies that assessed CD8 T cell memory at 5+ months 
determined that mRNA-1273 elicited larger spike-specific CD8 T cell memory that Ad26.COV2.S 78,80 . Two 
others studies reported the opposite92,93, with a clinical trial reporting 45/57 Ad26.COV2.S subjects and 
only 20/116 BNT162b2 or mRNA-1273 subjects positive for CD8 T cell memory93. In PBMC IFNg ELISPOT 
assays, T cell memory 2-4 months after ChAdOx1 and BNT162b2 appears to be equivalent, though CD8 
and CD4 T cells were not distinguished94,95 (bulk PBMBC IFNg ELISPOT assay signal comes from a mixture 
of CD8 T cells and CD4 T cells42.). A similar observation was made for Ad.COV2.S96. In sum, CD8 T cell 
memory to mRNA and adenoviral vector COVID-19 vaccines appears to be similar in magnitude and % 
responders (Figure 2), but conclusions vary depending on the study. Additional head-to-head studies or 
memory are warranted, including examination of CD8 T cell functionality. 

Memory CD8 T cells elicited by mRNA vaccines recognize diverse spike epitopes49,50,78. Memory CD8 
T cells largely have conserved recognition of variants, including Omicron78,82,88,97–99.  Mix & match 
adenoviral vector + mRNA vaccine approaches may increase CD8 T cell responses89,90,96, and thereby may 
alter CD8 T cell memory. Perplexingly, lower CD8 T cell responses were reported to vaccine extended 
dose intervals, with the caveat that minimal CD8 T cells were measurable in any group100. 
 
CD8 T cell memory in hybrid immunity 

Modest differences have been observed between vaccination only and hybrid immunity for circulating 
spike-specific CD8 T cells in most studies100, as well as no difference based on symptomatic or 
asymptomatic infection101  (Figure 2). In one study, no difference in memory IFNg+ spike-specific CD8 T 
cells was observed between vaccination only and hybrid immunity after 6 months 81. Multiple studies 
observed increased T cell responses in hybrid immunity compared to infection or vaccination alone without 
distinguishing between CD4 and CD8 T cells82,100.  
 
CD4 T cell memory to SARS-CoV-2 

Memory CD4 T cells are important in the control and clearance of viral infections, both directly and by 
the effects exerted in the support and amplification of antibody responses. Several different subsets of 
CD4 T cells can differentiate in antigen-specific responses to infections. This heterogeneity is manifested 
at the level of different memory subsets, each associated with distinctive patterns of cytokine secretion, 
transcription factors and differentiation profiles (TH1, TH2, TH17, TFH and others 102). This heterogeneity is 



further amplified by a diverse array of functional roles. TFH cells play a key role in orchestrating the 
development and maturation of antibody responses103,104, while Th1 and cytotoxic CD4 T cells (CD4-CTL) 
can exert direct antiviral functions105–107. Multiple lines of evidence suggest that CD4 T cell are a relevant 
and valuable component of the overall adaptive immune response to SARS-CoV-222,32,108. Protective effects 
of CD4 T cells against COVID-19 are fully reviewed in the companion article [Plotkin, Crotty and 
colleagues, this volume]. 
 
CD4 T cell memory to SARS-CoV-2 infection 

Dan et al. found that antibody, CD4 T cell, CD8 T cell, and B cell memory responses were durable 
over 8 months after infection, with 95% of the subjects still retaining multiple measurable memory 
responses, including memory CD4 T cells3. Notably, memory CD4 T cells are detectable in 93% of COVID-
19 cases one-month after infection3, and still 92% at >6 months post-infection3. Multiple studies have 
reported similar memory CD4 T cell findings 4,38,39,109, with a notable large longitudinal study4. The 
estimated t1/2 of memory SARS-CoV-2-specific CD4 T cells is 94 to 207 days during the first 8 months 3,4, 
with the t1/2 likely increasing substantially over time, based on a study determining a t1/2 of 377 days for 
memory SARS-CoV-2-specific CD4 T cells at 6 to 15 months post-infection110 (Figure 2), as well as similar 
data on CD8 T cell memory against a different virus35. These SARS-CoV-2 infection data are consistent 
with T cell memory to SARS-CoV being detected 17 years post-infection36,111–113.  

SARS-CoV-2-specific memory CD4 T cells after SARS-CoV-2 infection predominantly are TH1, TFH, and 
CD4-CTL cells3,4,110. Eight months post-infection, the memory CD4 T cells predominantly have central 
memory (TCM) and effector memory (TEM) surface phenotypes3,4. Virus-specific TH2 cells and TH17 cells are 
generally not detectable4,25,37. Regarding the TH1 memory cells, they are a stably maintained population4, 
predominantly expressing CD40L and IFNg 4, with significant expression of TNF and some expression of 
IL-2 4,28,55,101,110,114. The CD4-CTL cells express CD40L and granzyme B (GzB)4,80,115,116. CD4-CTL cells are of 
interest because SARS-CoV-2-infected epithelial cells upregulate class II expression117, and CD8 T cell 
responses appear to be low in many individuals, leaving open the possibly that memory CD4-CTL may 
compensate117,118. Memory TFH cells are generated after SARS-CoV-2 infection and are stably maintained 
after a brief decline3,110,119 (Figure 2). The memory TFH cells are highly functional, as they greatly enhance 
nAb responses to COVID-19 vaccines2,120,121. Some memory TFH cells express CCR6, which is associated 
with lung homing3,119. Other memory TFH cells express CXCR3, which is associated with rapid anamnestic 
antibody responses104,122, while the CXCR3neg memory TFH population is associated with higher quality 
germinal center and antibody responses123,124. Germinal centers are discussed in the B cell memory section. 
 In terms of anatomical location of memory T cells, memory CD4 T cells are detectable in the bone 
marrow, spleen, lung, and multiple lymph nodes (LNs) for 6+ months after infection64. Memory TFH cells 
are observed in LNs64. CD4 TRM cells were present at substantial frequencies in lungs64 and BAL63 (Figure 
3). Less is known regarding SARS-CoV-2-specific CD4 TRM in the URT and oral cavity.   

Many SARS-CoV-2 antigens are recognized by human memory CD4 T cells in previously-infected 
individuals37, with an estimated median of 19 epitopes per individual49. Recognized class II epitopes are 
distributed throughout the SARS-CoV-2 ORFeome, but structural proteins (spike, nucleocapsid, and M) 
are relatively immunodominant4,37,49,125. CD4 T cell epitopes are in general well conserved between 
variants50–52. SARS-CoV-2 CD4 T cell specificities have been recently reviewed elsewhere53,54.  

Human antiviral immune memory may be influenced by variables such as viral factors related to the 
infection event such as viral dose and tissue distribution, and host factors such as age, sex and general 
health of the host126. A distinctive feature of SARS-CoV-2 infection and COVID-19 disease is the wide range 
of clinical outcomes, ranging from fully asymptomatic infection to severe disease and death. The 
heterogeneity in clinical outcomes associated with SARS-CoV-2 infection and COVID-19 disease is 
paralleled by large variations in heterogeneity at the level of CD4 T cell responses3,25. Specifically, SARS-



CoV-2 T cell responses are influenced by older age and the size of the pool of naïve T cells25. No significant 
difference in CD4 T cell memory is observed between males and females3,4. Pre-existing comorbidities in 
COVID patients have been reported to affect magnitude and helper T cell subset composition127. T cell 
responses of a homogenous group of healthy young males were still widely heterogenous128, suggesting 
that heterogeneity of responses is driven by variables other than predisposing conditions, age and sex. As 
noted above, conflicting data have been reported regarding pediatric T cell responses to COVID-19. In 
one study, stronger acute and memory CD4 T cell responses were reported in one study67, but significantly 
lower acute and memory CD4 T cell responses were reported in anther study68. Conflicting data have been 
reported regarding CD4 T cell memory in MISC versus non-MISC cases 69–74. 

Asymptomatic SARS-CoV-2 infections may reflect shorter infections with lower overall viral loads 
in tissues, which could be expected to have lower T cell memory as a result of lower antigen exposure. 
Comparison between asymptomatic and mild symptomatic COVID-19 cases revealed slightly lower T cell 
memory among asymptomatic COVID-19 cases38,129. The relation between COVID-19 severity and quality 
of memory CD4 T cells is still an open topic of debate and investigation 115,125,130,131. In the context of long 
COVID75, alterations of T cell responses lasting several months post-infection have been reported 63, as 
have increased total T cell accumulation in BAL132.  
 
Crossreactive memory T cells 

Memory CD4 T cells able to recognize SARS-CoV-2 have been demonstrated in unexposed subjects, 
with the clearest evidence comping from blood samples obtained during pre-pandemic times36,37,115,133,134. 
It was hypothesized that these cells may predominantly be memory T cell to previous common cold 
coronavirus (CCC) infections 53,135. Indeed, at least in some cases these memory T cells cross-recognize 
SARS-CoV-2 and CCCs 27,45,125,136–139. Detailed studies suggest that cross-recognition across distant viral 
species can occur, but rather infrequently140,141, and is observed for SARS-CoV-2 sequences129,142. In 
general, SARS-CoV-2 crossreactive memory T cells have been most often described in the case of CD4 T 
cells, and less often for CD8 T cells37. In terms of antigen specificity, the sequences associated with 
crossreactive memory are often derived from non-structural antigens encoded in the Orf1ab, which 
correlates with the higher degree of conservation of across the genome of CCCs and other coronaviruses53. 

It has been debated to what extent this pre-existing crossreactive T cell memory is functional and 
biologically relevant135,143. The T cells associated with this pre-existing immunity display classical memory 
markers136, and were detected by a variety of assays. However, this crossreactive recognition can be of 
low affinity, particularly in the case of more distant unrelated viruses142. Additionally, SARS-CoV-2 infection 
is associated with development of T cell response that is largely focus on novel epitopes49. Nevertheless, 
it has now been demonstrated that the crossreactive memory T cells are biologically functional. Pre-
existing crossreactive memory T cells exert a positive influence on COVID-19 vaccination outcomes 
77,144,145. This is consistent with two reports that persons with CCC infections within recent years 
preferentially had less severe COVID-19 outcomes146,147, while a different study found no association148. 
Healthcare workers were observed to have high levels of SARS-CoV-2 crossreactive memory T cells, and 
CCC-specific T cells149. It was further shown that the presence of these crossreactive T cells was linked to 
favorable outcomes in a large healthcare worker cohort during the first wave of the pandemic, with 
crossreactive memory CD4 T cells possibly providing protection resulting in abortive SARS-CoV-2 
infection150. Evidence of protection was also observed in a household contacts study151. Overall, 
crossreactive memory CD4 T cells recognizing SARS-CoV-2 existed in ~50% of individuals pre-pandemic, 
those crossreactive CD4 T cells have functional properties in vivo, and they have been associated with 
some degree of protection from COVID-19. 
 
CD4 T cell memory to vaccination 



COVID-19 vaccines can elicit robust CD4 T cell memory. Spike-specific CD4 T cell responses are 
detected in close to 100% of individuals weeks after receiving 2-dose mRNA COVID-19 vaccines77–81, and 
memory CD4 T cells are detectable in ~100% of individuals at 6 months after the 2nd dose (7 months from 
1st dose) 77–79,81. mRNA-1273 generated spike-specific memory CD4 T cell frequencies higher than seen in 
previously infected individuals80, while BNT162b2 generate spike-specific memory CD4 T cell frequencies 
similar to infection80,81. A dose of mRNA-1273 similar to that of BNT162b2 generated spike-specific 
memory CD4 T cells at frequencies comparable to previous infection77, indicating that differences between 
memory CD4 T cells after the two mRNA vaccines most likely predominantly relate to the different doses 
of the two vaccines. Reductions in memory CD4 T cell frequencies over 6 months were modest, and half-
lives of memory CD4 T cells after mRNA COVID-19 vaccines appear to be at least as long as after infection 
77,80,81 (Figure 2). Memory CD4 T cells are generated after a single dose of mRNA vaccine or Ad26.COV2.S 
that maintained at least several months 80,87,96,100. In the context of vaccine interval extension protocols, IL-
2+ memory CD4 T cells were increases in vaccinees who waited longer before the 2nd mRNA vaccine 
dose100.  

After vaccination, memory TH1 cells are stably maintained78–81,98, and express CD40L, IFNg, TNF, and 
IL-279,80. Memory TFH cells represent ~25% of CD4 T cell memory after mRNA immunization80, and the 
abundance of the cTFH cells is associated with the magnitude of the nAb response77,80,120,121,152. Vaccine-
elicited memory TFH cells in blood are stably maintained with minimal decline over 6+ months80, though 
the cTFH may change phenotype during the first months81,110,153. Active germinal center TFH (GC-TFH) cells 
are found in LNs for at least 6 months, and appear to be critical for maintaining germinal centers and 
development of nAbs after vaccination 152,153. Durable TFH cell memory in blood was observed for mRNA 
vaccines, Ad26.COV2.S, and NVX-CoV2373 80. Memory CD4-CTL cells are also generated in response to 
several COVID-19 vaccines and are stably maintained for at least 6 months80. Overall, each major subset 
of memory CD4 T cells are maintained for at least 6 months after vaccination with BNT162b2, mRNA-
1273, Ad26.COV2.S, and NVX-CoV2373, with kinetics that indicate the memory CD4 T cells will be 
substantially maintained for years (Figure 2). 

After ChAdOx1-nCoV-19 immunization, polyfunctional TH1 memory CD4 T cells are induced154,155. 
Similar (within ~2-fold) spike-specific CD4 T cell responses to mRNA vaccines and ChAdOx1-nCoV-19 are 
observed ~1 month after 2 doses 89 . Immunization with 2 doses of the inactivated SARS-CoV-2 alum and 
imidazoquinolin adjuvanted vaccine BBV152 (Covaxin) generates memory CD4 T cell responses 
comparable to that seen in infected individuals, stably maintained for over 6 months156. Limited T cell 
memory data are available for several other vaccines, including Coronavac, Sinopharm, and Sputnik.  

Memory CD4 T cells elicited by mRNA vaccines recognize diverse spike epitopes49,50,78. Recognition 
of variants by memory CD4 T cells is maintained in mRNA, Ad26.COV2.S, and NVX-CoV2373 vaccinees 
78,82,97,98. 
 
CD4 T cell memory in hybrid immunity 

Modest differences have been observed between vaccination only and hybrid immunity for circulating 
spike-specific memory CD4 T cells in most studies100,114,120,157, as well as no difference based on 
symptomatic or asymptomatic infection101. In one study, no difference in memory spike-specific CD4 T 
cells was observed between vaccination only and hybrid immunity after 6 months 81 (Figure 2). Multiple 
studies observed increased T cell responses in hybrid immunity compared to infection or vaccination alone 
using IFNg ELISPOTs that do not distinguish between CD4 and CD8 T cells82,100, suggesting functional 
changes may occur. Indeed, a distinct population of spike-specific IFNg+ IL-10+ TH1 memory cells is 
observed in hybrid immunity but not after vaccination alone, demonstrating a function of imprinting on 
the memory TH1 cells by infection 114. There is dramatic enhancement of antibody and B cell responses in 
persons with hybrid immunity, demonstrating a strong functional role for memory TFH cells in hybrid 



immunity, discussed elsewhere.  
An additional important aspect of hybrid immunity is the location of the T cell memory. Intramuscular 

vaccination is expected to generated almost exclusively circulating T cell memory. In contrast, SARS-CoV-
2 infection generates both circulating T cell memory and TRM (Figure 3). Thus, hybrid immunity is expected 
to result in both circulating and TRM, but it is unclear if the vaccines enhance TRM already present from 
infection. Lastly, if the order is vax+infection, it is unknown whether the TRM are  qualitatively or quantitative 
different than what occurs after infection alone. 
 
B cell memory to SARS-CoV-2 

Human MBCs can be exceptionally long-lived, with smallpox vaccine MBCs lasting > 50 years158, and 
MBCs generated from infections during the 1918 pandemic lasting at least 90 years159. MBCs are re-
activated upon an infection and are the source of classic anamnestic antibody responses. MBCs serve two 
purposes. The first is a cellular source for the anamnestic antibody response. MBCs can plausibly reactive 
and generate an anamnestic antibody response within 3-5 days160. The second important value of MBCs 
is to serve as a library of predictions by the immune system of possible future viral variants2,161. The COVID-
19 pandemic has dramatically demonstrated the importance of MBC diversity in the recognition of a 
pathogen and variants, also highlighting the brilliance of the immune system at predicting viral mutations, 
embedding those predictions in the MBC repertoire. MBCs likely play a role in protective immunity against 
SARS-CoV-2 infection by both of the mechanisms above, and protection by MBCs is reviewed in the 
accompanying article [].  
 
B cell memory to SARS-CoV-2 infection 

Detectable MBCs develop within two weeks of symptom onset after SARS-CoV-2 infection3,4. 
Strikingly, MBC frequencies continuously increase over the course of 3 to 6 months post-infection3,4,162. 
Spike-, RBD-, and nucleocapsid-specific MBCs all exhibit this increase, in a cohort of 160 individuals3. 
SARS-CoV-2-specific MBC frequencies stabilize ~4 months post-infection3 and are maintained for at least 
15 months162,163 (Figure 2). These Spike-and RBD-binding MBCs frequency increases are associated with 
substantial somatic hypermutation (SHM) for 6-months162,164,165, continuing for at least 12 months 162. The 
MBC antibody mutations accumulated over 6 to 12 months demonstrated increased affinity maturation 
and increased neutralization potency, particularly against variants162,165. These patterns are all indicative of 
long-lasting germinal centers after SARS-CoV-2 infection; an exception however is fatal COVID-19, in 
which profound disruption of germinal centers can be observed in autopsies166,167. The high quality of the 
MBCs after SARS-CoV-2 infection is also evidenced by the anamnestic nAb responses to variants after a 
subsequent vaccination or infection, as discussed in the “Antibody durability” sections below. 
 While IgM+ MBCs initially comprise ~1/3rd of SARS-CoV-2-specific MBCs, IgM+ cells decline rapidly 
and are mostly undetectable after 5 months3,4. IgA+ MBCs are uncommon, comprising only ~5% of Spike 
or RBD-specific MBCs on average3,4,165, but the IgA+ MBCs are stably maintained over 8 months post-
infection, in contrast to the IgM+ MBCs 3. MBCs can have diverse phenotypes. After SARS-CoV-2 infection, 
activated SARS-CoV-2-specific MBC frequencies are initially high, but decline over the course of 7 months, 
with a reciprocal increase in resting MBCs 164. 

COVID-19 severity does impact the magnitude of the MBC response. Patients with hospitalization-
level COVID-19 develop higher RBD-specific MBC frequencies compared to individuals with mild COVID-
193,164, similar to what is observed for antibody titers168. Asymptomatic cases develop similar Spike-specific 
MBC frequencies compared to symptomatic but non-hospitalized COVID-19 cases [Crotty manuscript in 
prep].  

The detailed study of SARS-CoV-2-specific MBCs in response to infection, over periods of 6 to 12 
months, in multiple large independent cohorts, with a range of disease severities, and intensive BCR 



sequencing, amounts to the most detailed understanding of the development of B cell memory to any 
acute infection. In a small data set from two YFV vaccine (a live viral vaccine) recipients, increases in MBC 
frequencies were observed for 6 months, increases in affinity maturation were observed for over 6 months, 
and declining frequencies of IgM+ or activated MBCs were observed over 6+ months169. All of those 
features are commonalities shared with MBC responses to SARS-CoV-2 infection. Ebola infection MBC 
responses also have some commonalities, though the severity of Ebola disease and longevity of high viral 
loads may alter that response170.  Overall, the MBC response to SARS-CoV-2 infection is quite impressive, 
with substantial RBD- and Spike-specific MBC generation; and with only exposure to a single viral strain, 
the MBC compartment develops over several months to contain MBCs with high neutralization potency 
and MBCs capable of recognizing and neutralizing a range of variants.  

Tissue resident MBCs (BRM) can exist in some cases. Pathogen-specific tissue BRM have been observed 
in lungs of mouse models171, and BRM phenotype MBCs are found in multiple human tissues172. BRM have 
now been demonstrated in humans after SARS-CoV-2 infection64 (Figure 3). By studying organ donors with 
a previous history of unremarkable COVID-19 (non-hospitalized), it was shown that Spike/RBD-specific BRM 
were observed in the lungs of all subjects64. Notably, the frequencies of Spike/RBD-specific MBCs in lungs 
were significantly higher than in spleen, indicating enrichment of local memory in lungs after SARS-CoV-
2-infection. Spike/RBD-specific MBCs were also found in bone marrow, lung LNs, and gut LNs64. RBD-
specific BRM have also been observed in BAL63. Local reactivation of BRM in lungs could result in faster 
anamnestic antibody responses than from circulating MBCs, based on data from a mouse influenza 
model171. URT tissues were not available for MBC analysis, and this remains a knowledge gap, given that 
the URT is the primary site of SARS-CoV-2 replication and transmission. 

Regarding long COVID, there is no SARS-CoV-2-specific MBC study reported for long COVID. As 
noted in the memory T cell sections, it is plausible that at least some long COVID cases are due to 
persistent infection in some tissue sites. As such, some of the extended SHM of MBCs may be due to new 
SARS-CoV-2 antigen generation after the acute phase of the disease was resolved. These are significant 
remaining knowledge gaps.  
 
B cell memory to vaccination 
 MBC are generated in response to COVID-19 vaccines. Similar frequencies of RBD-binding IgG+ MBCs 
are generated after 2-dose RNA vaccines or SARS-CoV-2 infection81 (Figure 2). SHM levels are also 
substantial, and comparable between 2-dose RNA vaccines and SARS-CoV-2 infection at 5 months81,173. A 
substantial fraction of RBD-binding IgG+ MBCs from 2-dose RNA vaccinated individuals also bind to VOC 
RBDs78,81. Thus, 2-dose RNA vaccines generate substantial affinity matured MBCs. Nevertheless, the 
affinity maturation after a standard 2-dose RNA vaccine regimen is qualitatively poorer than that after 
SARS-CoV-2 infection. Substantial improvements in nAb breadth were observed months after infection 
but not after RNA vaccination (e.g., 69% of nAbs from previously-infected subjects had improved potency, 
but on 19% of nAbs did from 2-dose RNA vaccinees)173. These qualitative differences may be related to 
the narrow time between dose 1 and dose 2 of the RNA vaccines. The priming period can be important 
for the quality of a B cell response. Extending the priming period can result in better nAb responses to 
HIV174–178. Extending the dose interval between RNA vaccine immunizations from 3 to 10 weeks significantly 
improves nAb titers and nAb breadth100, most likely by impacting affinity maturation. 
 Spike and RBD IgG+ MBC frequencies increase between 3 to 6 months after immunization with mRNA 
vaccines80,81,173, an adenoviral vector vaccine80, or a recombinant protein vaccine80. 1-dose Ad26.COV2.S 
vaccine elicits significantly lower Spike and RBD IgG+ MBC frequencies than the mRNA vaccines80 (Figure 
2). NVX-CoV2373 also elicits lower Spike and RBD IgG+ MBC frequencies than the mRNA COVID-19 
vaccines80 (Figure 2). Additionally, MBC frequencies are somewhat higher after mRNA-1273 compared to 
BNT162b2 vaccination80. Less is known regarding MBCs after ChAdOx1 immunizations. 



Germinal centers appear to be central to the immune responses to COVID-19 vaccines. Most nAb 
responses, class-switched MBCs, and durable antibody responses to viral infections and vaccines are 
dependent on germinal centers104. For COVID-19 vaccines, nAb responses are substantially reduced in 
many immunocompromised individuals, such as kidney transplant recipients. Direct examination of 
germinal centers in healthy subjects compared to kidney transplant recipients revealed dramatically 
weaker germinal center responses in kidney transplant recipients after mRNA vaccination152. The smaller 
germinal center responses may be due to weaker GC-TFH cell responses, as GC-TFH cell frequencies were 
severely reduced and associated with poor nAb titers152. germinal centers are observed to continue in 
draining LNs of healthy vaccinated individuals for at least 6 months after BNT162b2 immunization153,179,180. 
This is associated with presence of vaccine mRNA in germinal centers for at least a month, as well as 
detectable spike protein in the germinal centers167. Since the vast majority of the MBC response to COVID-
19 vaccines is class-switched and contains SHMs, the data indicate that the vast majority of the MBC 
response, and nAb response, to COVID-19 vaccines is TFH-dependent and germinal center-dependent.  
 
B cell memory in hybrid immunity 

Circulating spike and RBD IgG+ MBC frequencies increase substantially in hybrid immunity81,162,181, but 
become similar to 2-dose mRNA vaccination after 6 months81 (Figure 2). In hybrid immunity the RBD-
binding MBCs have substantially more SHM and affinity maturation than after vaccination alone81,162,181. 
Functionally this is observed most clearly with the significantly higher potency and variant breadth of nAbs 
from MBCs in people with hybrid immunity compared to vaccination alone or infection alone162,181. The 
robustness and quality of these responses is likely driven by memory TFH cells and MBCs, and can occur 
after infection + vax or vax + infection (“breakthrough”), discussed in the ”Antibody durability” section 
below. 
 
Antibody durability to SARS-CoV-2 infection or COVID-19 vaccines 
Abs are key components of protective immunity against SARS-CoV-2. Thus, durability of Abs is a major 
topic of interest for protective immunity against SARS-CoV-2 for previously-infected, vaccinated, or person 
with hybrid immunity. Acute Ab responses are primarily generated by B cells differentiating into short-
lived plasma cells (short-lived BPC ). These short-lived BPC only live for a few days. IgG protein has a long 
half-life of 21-28 days in the blood, and thus a large short-lived BPC response can result in detectable 
antibody titers in blood for months. Long-lived BPC can survive for many years producing large quantities 
of Abs daily. Long-lived BPC are typically the product of germinal center B (BGC) cells. 
 
Antibody durability to infection 

The vast majority of SARS-CoV-2-infected individuals seroconvert and develop nAbs (91-99%)182–184. 
While nAb titers decline during the first few months post-infection, nAb titers stabilize between 4-6 months 
post-infection, with little evidence of decline thereafter. After the initial decay phase (dominated by short-
lived BPC), the estimate SARS-CoV-2 nAb t1/2 is 254 days4. This may further stabilize over time (Figure 2). 
NAbs titers are detectable in ~80-90% of SARS-CoV-2-infected individuals at 6 months and 12 months 
post-infection3,4. Nevertheless, SARS-CoV-2 nAb titers in previously-infected individuals are relatively low, 
resulting in enhanced interest in understanding all of the other compartments of immune memory nAb 
titers in previously infected individuals are relatively low. The led to concern that low circulating nAb titers 
would be insufficient for protection, and increased interest in defining other branches of potential 
immunity to SARS-CoV-2, such as T cells. Nevertheless, immune memory overall in previously-infected 
individuals was robust,3 leading to a conclusion that natural immunity was likely sufficient to prevent 
reinfections of significant clinical concern in the majority of people for years 3,185.  

SARS-CoV-2 Spike- and RBD-binding IgG titers exhibit similar kinetics to that of nAbs3,4,186–189, though 



not identical, depending on the study, likely due to affinity differences between the assays. A multi-phasic 
decay kinetic is observed, with a t1/2 of > 700 days by six to nine months post-infection187,188. Long-lived 
BPC are found in bone marrow 7-8 months after infection189. SARS-CoV-2-specific IgM responses are not 
durable, consistent with IgM responses being short-lived for most antigen exposures. SARS-CoV-2-specific 
serum IgA responses are relatively low but are durable at low levels in most individuals3,4,190, with SARS-
CoV-2-specific IgA long-live BPC detected in ~50% of individuals189. 

Long-term antibody titers are lower in asymptomatic cases at 6 to 16 months post-infection191,192, with 
some individuals being seronegative, though some amount of this difference is due to false-positive PCR 
tests with high Ct values192.  
 Antibody titers against other HCoVs are also relatively stable over time4. This is consistent with human 
immunology findings for multiple acute viral infections and the live attenuated YFV, measles, and smallpox 
vaccines158,193,194. 
 Nucleocapsid antibody assays have been found to not be trustworthy indicators of previous infection 
at timepoints >6 months post-infection. This may be due to a faster decay kinetics of nucleocapsid Abs195, 
or a high background signal from crossreactive nucleocapsid Abs against other HCoVs187,196 which may be 
more problematic in certain assays formats, making it more challenging to definitively distinguish SARS-
CoV-2 nucleocapsid IgG. Thus, RBD IgG is more widely used as a serodiagnostic marker, though it cannot 
distinguish infection from vaccination.  
 Local immunity is important, and Abs are a key factor of local immunity, as they are the only component 
of adaptive immunity capable of providing sterilizing immunity (Figure 3). Circulating IgG is transudated 
into most mucosal tissues, and circulating IgG can provide protective immunity at mucosal surfaces. The 
most dramatic example of this is the human papillomavirus (HPV) vaccine, which provides 99% protective 
immunity in the vaginal tract, even though the vaccine is a conventional intramuscular immunization and 
elicits circulating IgG. For SARS-CoV-2 previously-infected individuals, the titers of circulating IgG correlate 
with saliva IgG55,190,197, and the correlation was sustained over a period of 9 months 55. Correlation between 
circulating IgA and saliva IgA in previously-infected individuals was also substantial over a 9-month 
period55. A more rapid decay of IgG and IgA titers was observed in saliva compared to blood, possibly 
indicating local production of Abs in salivary tissue for a limited number of months post-infection55. Few 
studies have examined nasal passage Abs, but spike IgG is detectable 6 months after infection in the 
majority of individuals101. Overall, the evidence suggests that nAbs at nasal, oral, and lung tissues are 
important for protective immunity against SARS-CoV-2 and are likely present proportionally to serum IgG 
titers after infection.  
  
Antibody durability to vaccination 

Two doses of an COVID-19 mRNA vaccine are incredibly successful at eliciting high titers of nAbs. 
However, the biggest shortcoming of the mRNA COVID-19 vaccines has been that the nAb titers decline 
continuously over a period of months. Vaccination with the mRNA-1273 mRNA vaccine generates peak 
RBD IgG and SARS-CoV-2 nAb titers 2-fold higher than the BNT162b2 mRNA vaccine, on average93,198; as 
a result, Ab durability analyses are confounded in studies that mix vaccinees receiving the two vaccines. 
In one large study of 2,600 recipients of the 2-dose BNT162b2 vaccine in Israel, RBD IgG continuously 
declined over 7-months from peak after the 2nd dose, with a 16-fold reduction in RBD IgG from peak199 
(Figure 2). In that study, a vaccinated cohort and a previous-infected cohort were directly compared; the 
RBD IgG titers declined extensively in the vaccinated individuals but were largely stable in the previously 
infected individuals199. NAb titers and RBD IgG similarly declined 5-fold and 10-fold to the mRNA-1273 
vaccine from peak over 6-months after the 2nd dose, ending with low but detectable levels of nAbs in 100% 
of subjects 200–202. 9- to 10-fold nAb declines were also observed for a low dose (25 µg) of the mRNA-1273 
mRNA COVID vaccine (instead of 100 µg)77, comparable to the BNT162b2 dose (30 µg), indicating that 



the durability of the Ab responses to 2-dose mRNA vaccines is consistent, and the kinetics are not 
determined by the vaccine dose, though the absolute magnitude of the Ab response is higher with a 
higher vaccine dose.  

Long-lived plasma cells specific for SARS-CoV-2 spike are detectable in a majority of individuals 6 
months after 2-dose mRNA vaccination179; however, given that nAb and RBD IgG titers continue to decline 
for at least 8 months after 2-dose RNA vaccination, these long-lived BPCs apparently represent low 
frequencies, or do not have the durability observed for BPCs generated to other antigen exposures.  

Due to the precipitous drop in nAb titers over 6-8 months after two doses, and the emergence of 
VOCs Delta and Omicron, 3-dose mRNA vaccine regimens have been implemented as the norm in many 
countries (i.e., 2-dose regimen plus a ‘booster’ at ~6 months) (Figure 3). A critical question about 3-dose 
mRNA regimens is whether they induce more durable Ab responses than 2-dose regimens. Given that the 
2-dose mRNA vaccines were immunogenic and elicited substantial memory CD8 T cells, memory CD4 T 
cells, MBCs, and at least a few long-lived PCs, it was reasonable to predict that 3-dose mRNA vaccine 
regimens would induce substantially more durable Abs than the 2-dose regimen. Results from previously-
infected individuals cleared demonstrated that the human immune system is capable of making durable 
Ab responses to SARS-CoV-2, and hybrid immunity also demonstrated that the human immune system is 
clearly capable of making high nAb titers to SARS-CoV-2. Additionally, many vaccines are three dose 
regimens, with durable Abs only being developed after the third dose. Teleologically, one can consider 
that this is because the immune system performs a cost-benefit analysis of durable memory to each antigen 
exposure. Durable Ab responses for 10 years or more have a high caloric resource cost commitment, 
whereas durable MBCs or T cells have significantly lower caloric costs. As such, it frequently takes multiple 
antigen exposures to trigger significant durable Ab responses. Nevertheless, it was unclear if mRNA 
vaccines were capable of triggering durable Ab responses. 

Acute Ab responses to a 3rd dose of mRNA vaccine were strong, with peak nAb titers above that of 2-
dose immunization203,204 . Two studies found much more durable nAb titers at 4-months or 6-months after 
a 3rd dose of mRNA vaccine compared to 2-doses202,205. NAb titers against Ac SARS-CoV-2 only declined 
1.6-fold for the BNT162b2 vaccine at 4-months and 2.3-fold for the mRNA-1273 vaccine at 6-months after 
a 3rd dose202,205. Those findings indicate robust long-lived Ab production after 3 doses (Figure 2). However, 
not all results agree. In the study of mRNA-1273 vaccinees, there was a substantial discordance between 
the durability of nAbs against Ac SARS-CoV-2 or Omicron, with nAbs against Ac SARS-CoV-2 only 
declining 2.3-fold after 6 months, but nAbs against Omicron declining 6.3-fold202. In a third study, of an 
Israeli population receiving the BNT162b2 vaccine, Ac SARS-CoV-2 nAbs declined 5.5-fold over ~4-
months after 3 doses206. Thus, conclusions about durability of Abs after 3-dose mRNA vaccination remain 
uncertain.  

Adenoviral vector COVID-19 vaccines ChAdOx1 (2-dose) and Ad26.COV2.S (1-dose) initially elicit 
substantially lower Ab responses than mRNA vaccines. Spike or RBD IgG titers after 1-dose Ad26.COV2.S 
are ~70-fold to 355-fold lower than 2-dose mRNA vaccines80,83,207. NAb titers are ~10- to 70-fold lower 30 
to 60 days after Ad26.COV2.S compared to mRNA vaccines 80,83,93. NAb titers increase some over time 
after Ad26.COV2.S in some individuals, but this is variable 80,83,87,208 (Figure 2). NAb titers are at least stably 
maintained in most individuals who receive Ad26.COV2.S vaccination, such that 6-8 months after 
Ad26.COV2.S vaccination nAb titers are detectable in almost all individuals, albeit at low levels 80,87, though 
not all studies agree, with some cohorts reporting many negative individuals (Table 40 ref. 208) and one 
study reporting higher levels92. ChAdOx1 vaccine (2-dose) generates early nAb titers that are also 
substantially lower than mRNA vaccine generated nAb titers. nAb titers are 8.3-fold lower after ChAdOx1 
compared to BNT162b2 one month after immunization 94. Spike IgG titers after 2-dose ChAdOx1 decline 
with a t1/2 comparable to that of 2-dose BNT162b219, with no evidence of greater durability. However, in 
one study the difference between ChAdOx1 and BNT162b2 nAb titers was only ~2-fold at 3-months after 



the 2nd dose 95. There are limited data for 2-dose ChAdOx1 at longer time points with head-to-head 
comparisons, but when comparing ChAdOx1/ChAdOx1 to ChAdOx1/ BNT162b2, spike Ab titers at 6-
months were 6-fold lower in the ChAdOx1/ChAdOx1 group.  

Protein-based COVID-19 vaccines are in two categories, recombinant spike vaccines, such as NVX-
CoV2373, and inactivated virus vaccines such as BBV152 and Sinovac. Minimal data on Ab durability are 
available for inactivated vaccines. NVX-CoV2373 generates significant nAb titers after two doses 209,210. 
NAb titers 6 months after the 2nd dose are approximately equivalent between individuals receiving NVX-
CoV2373, mRNA-1273, or BNT162b2 vaccines (Figure 2), suggesting that high nAb titers may wane after 
2-dose NVX-CoV237380. 

Mix & match vaccine strategies could potentially elicit more durable Ab responses. Limited data are 
available on immune memory after mix & match vaccination 93–95 . Given that peak nAb titers are higher 
with 2-dose mRNA or recombinant protein vaccination compared to adenoviral vaccines, but that 
adenoviral vaccines might elicit more stable Ab responses at 6 months, it is plausible that mix & match 
approaches may combine the best of both and result in higher level durable nAb titers. This may also be 
relevant for boosters95.  

Regarding local Abs in the respiratory tract and oral mucosa, the mRNA vaccines do elicit some 
circulating IgA101,173. IgA and IgG are detectable in saliva and nasal swabs in a fraction of vaccinated 
individuals, but both the IgA and IgG decline substantially over the course of 6 months after 2-dose mRNA 
vaccination, mirroring the declines in circulating IgG and IgA101,211,212. In immunized non-human primates, 
RBD IgG and IgA in bronchoalveolar lavage and nasal swabs directly correlated with circulating IgG and 
IgA levels213. 
 
Antibody durability in hybrid immunity 

The most prominent characteristic of hybrid immunity is the impressive improvement in nAb titers and 
the breadth of neutralization of SARS-CoV-2 variants. In some individuals, SARS-CoV-2 nAb titers increase 
100-fold after a single mRNA vaccination. Equally impressive, the nAbs are not only able to neutralize 
every known SARS-CoV-2 variant, including Omicron, they are also able to neutralize a different viral 
species, SARS-CoV. MBCs and memory CD4 T cells are at the root of these impressive outcomes. While 
circulating nAb titers are frequently low in previously-infected individuals, without much evidence of 
breadth, some MBCs from those same individuals encode Abs with impressive potency and 
breadth162,165,214,215. Those MBCs are then recalled after vaccination to generate an anamnestic Ab 
response, now composed of Abs capable of neutralizing breadth against VOCs such as Omicron, and even 
neutralization of SARS-CoV20,81,157,162,216,217, irrespective of original COVID-19 severity218.  
 Hybrid immunity can also occur in the reverse order—vaccination and then infection—with similarly 
high titer and broad nAb responses, irrespective of whether the infection was Alpha, Delta, or Omicron, 
and irrespective of disease severity20,21,212,219–221. These responses are again derived from MBCs, in this case 
MBCs generated in response to vaccination173,222. 
 Ab durability at 6 months is robust in a majority of individuals with hybrid immunity, as measured by 
nAb titers (Figure 2). NAb titers were stable in a majority of hybrid immunity individuals, declined less than 
2-fold over 6 months20,81. Of note, RBD binding titers exhibited larger declines, for unclear reasons81,101. 
After 6 months, people with hybrid immunity maintained 5- to 17-fold higher nAb titers against ancestral 
SARS-CoV-2, Beta, or Delta compared to individuals who were 2-dose mRNA vaccinated20,81; compared 
to individuals who were previously infected alone, people with hybrid immunity maintained 10- to 51-fold 
higher nAb titers against ancestral SARS-CoV-2, Beta, Delta, or Omicron20.  
 Higher nasal RBD IgG and IgA are found in individuals with hybrid immunity (either inf+vax or vax+inf) 
when sampled up to 10 months after vaccination 101,212. 
 



Interrelationships between immune memory compartments 
Studies of SARS-CoV-2 memory are the first time that large datasets have been collected of multiple 

antigen-specific memory cell compartments over a period of 6+ months after an acute infection. This 
provides key opportunities to understand relationships between different aspects of immune memory. It 
was observed that each compartment of immune memory after infection exhibit distinct kinetics over time, 
and different quantitative relationships to the other compartments of immune memory3. Some of the 
relationships changed dramatically over time3. Perhaps most importantly from a practical perspective, 
serum RBD IgG titers were not quantitatively predictive of the other components of immune memory, 
notably memory T cells3. Nevertheless, other relationships were observed3.  TFH cells, MBCs, and 
circulating Ab titers are functionally associated104. However, cTFH cell frequencies after infection were not 
quantitatively predictive of germinal centers153, or nAb titers110, suggesting more complex relationships 
between circulating T cell memory, germinal centers, and nAbs. 

For mRNA vaccines, relationships between nAbs and memory CD4 T cells are clear, and early TFH cell 
responses do correlate with subsequent nAb titers80. However, at any given memory timepoint, no clear 
association is observed between serum Ab titers and memory CD4 T cell and memory CD8 T cell 
frequencies80. CD4 T cells provide help for CD8 T cell differentiation and memory CD8 T cells in multiple 
contexts223. Nevertheless, memory CD4 T cell frequencies and memory CD8 T cell frequencies do not 
show a strong relationship in mRNA vaccinated individuals80. Overall, interrelationships between immune 
memory compartments exist, but much remains to be learned. 
 
Immune memory in special populations 
Immune memory in the immunocompromised or suppressed 
 Immune responses to COVID-19 vaccines in immunocompromised or immunosuppressed individuals 
varies depending on the specific immunocompromised or immunosuppressed condition. B cell depleted 
individuals (i.e., anti-CD20 mAb treatment) have defective Ab, MBC, and TFH cell responses to mRNA 
COVID-19 vaccines, but their TH1 and CD8 T cell responses are normal or elevated224. Thus, it is expected 
that immune memory will be substantially defect in those individuals for durable Abs, MBCs, and memory 
TFH cells; however, memory TH1 cells and CD8 T cells may or may not be compromised. Solid organ 
transplant patients frequently have reduced responses to COVID-19 vaccines because of their 
immunosuppressive drug therapies. Immune memory in such individuals is not well understood, but based 
on the severity of the germinal center, TFH cell, TH1 cell, and CD8 T cell response defects in kidney 
transplant individuals responding to COVID-19 mRNA vaccines152, it is likely that there are severe immune 
memory defects in those patients. Certain categories of cancer patients on similar immunosuppressive 
drug regimens are likely to also have immune memory defects. Fingolimod, the S1P receptor antagonist, 
appears to cause an almost complete block of Ab and T cell responses to COVID-19 vaccines225, and would 
be expected to result in severe immune memory defects to COVID-19 vaccines. More information is 
needed about immune memory to COVID-19 vaccines in a diverse range of immunocompromised or 
immunosuppressed individuals, given that the efficacy of the vaccines is predicated on immune memory. 
 
Boosters in persons with hybrid immunity 

Many papers show substantial immunological and epidemiological evidence that hybrid immunity is 
the most robust immunity against COVID-19 2,9. This includes vax+vax+inf20,212,226, inf+vax, 
and inf+vax+vax. These individuals have the best neutralizing Ab breadth—able to recognize every single 
known variant, include Omicron, and even able to recognize another species of virus (SARS)20,157,227 — and 
they also have substantially better local immunity in the nose and mouth 62,212, which is not generated by 
intramuscular vaccination. They also have more durable Ab responses, based on the available 
data3,4,101,186,200,228,229. However, many governments have booster vaccination requirements within 90 days 



of an infection. For people who had breakthrough infections with Delta or Omicron after being double 
vaccinated, this is most likely to be far sooner than needed, and may be counterproductive. It is plausible 
that such individuals may have such good immune memory that they do not need a booster for years. The 
quality of the Ab response needs time to develop. The immune system has done an amazing job making 
Ab responses and memory B cells against SARS-CoV-2 that are educated guesses about potential future 
variants 2,20,162,165,214,228,230,231. That is important for immunity against this virus, but takes time in germinal 
centers232, and it is likely disrupted by a new immunization. Hence immunizations too close together are 
shortsighted and result in poorer quality immunity. We also know that memory B cell frequencies increase 
for almost 6 months after infection3,214,228, or after vaccination162,228. We know that germinal centers can 
persist for more than 6 months after SARS-CoV-2 infection62. We know that germinal centers can persist 
and be productive for more than 6 months after two doses of COVID-19 mRNA vaccines 180,233,234. And we 
know that the quality of neutralizing Abs can improve over 3 to 6 months87,162,173,214,235, reflective of 
outcomes of these long processes of developing higher quality immune memory. Boosters too 
close together may disrupt those processes of generating broader protection against future variants. 
 
Concluding remarks 
A remarkable amount has been learned about immune memory after SARS-CoV-2 infection. A remarkable 
amount has also been learned about a multitude of COVID-19 vaccines, and hybrid immunity. Increasing 
our understanding of the deterministic relationships between early immune responses and immune 
memory outcomes remain a major knowledge gap for further research. There is much to be learned about 
local immune memory in mucosal tissues such as nasal passages, oral cavity, the URT broadly, the intestinal 
tract, and lungs. Investigation of the relationships between local immune memory and systemic immune 
memory is of particular significance. Longer term durability of each compartment of immune memory after 
SARS-CoV-2 infection or COVID-19 vaccination of course remains to be empirically determined. However, 
the wealth of scientific literature already accumulated regarding immune memory provides strong 
predictions regarding the durability of T cell memory, B cell memory, and long-lasting antibody responses 
that can be extrapolated for several years, if not decades, and may provide determining factors of 
sustained protection against disease. Lastly, clearly this knowledge and experience can also be leveraged 
towards vaccines against other diseases that affect humanity now, and prevent future plagues. 
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Figure 1. Components of immune memory. Virus-specific CD4 T cells, CD8 T cells, Abs, and MBCs constitute the 
four major components of immune memory to a viral infection. 
 
 
 
 
  



 
 
Figure 2. Kinetics of immune memory to SARS-CoV-2 infection and COVID-19 vaccines. 
Schematics of immune memory components against SARS-CoV-2. (a) Memory CD8 T cells, (b) memory CD4 T cells, 
(c) memory TFH cells, (d) neutralizing antibodies, and (e) MBCs. For T cell memory, with vaccines memory is to spike, 
and with infection memory is to the entire virus. For B cell memory, spike-specific is shown in all cases. "Inf" = SARS-
CoV-2 infected. "Hybrid" = Hybrid immunity, infected and then vaccinated. "mRNA"= Moderna mRNA-1273 or 
Pfizer/BioNTech BNT162b2, a 3 dose regimen. "NVX" = Novavax NVX-CoV2373, given as the 2-dose regimen in the 
main clinical trials. "J&J" = Janssen Ad26.COV2.S, given as the 1-dose approved by EUAs. Lines are color coded by 
vaccine. CD8 T cell % indicates the % of individuals with detectable CD8 T cell memory at 3 to 6 months. Scales are 
non-quantitative, but the antibody scale approximates log10 and the cellular scales approximate log2. For hybrid 
immunity, in this schematic, the vaccination occurs at ~6 months, indicated by the blue triangle. For mRNA vaccines, 
in this schematic, the 1st  two dose are given at d1 and d21-28, with the 3rd dose ("booster") given at ~8 months, 
indicated by the red arrows. 



 
 
 

 
Figure 3. Components of local tissue immunity. Human immune responses are most often measured in blood, but 
immune responses at local sites of infection and/or portals of entry are important and may not be directly reflected 
by blood measurements.  
 
 


