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Abstract In mathematics, the Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex numbers
with real part 1

2 . In 2011, Solé and and Planat stated that the Riemann hypothesis

is true if and only if the inequality ∏q≤qn

(
1+ 1

q

)
> eγ

ζ (2) × logθ(qn) is satisfied for
all primes qn > 3, where θ(x) is the Chebyshev function, γ ≈ 0.57721 is the Euler-
Mascheroni constant and ζ (x) is the Riemann zeta function. We call this inequality
the Dedekind inequality. We can deduce from that paper, if the Riemann hypothe-
sis is false, then the Dedekind inequality is not satisfied for infinitely many prime
numbers qn. Using this argument, we prove the Riemann hypothesis is true when
θ(qn)

1+ 1
qn ≥ θ(qn+1) holds for a sufficiently large prime number qn. We show this

is equivalent to state that the Riemann hypothesis is true when (1− 0.15
log3 x

)
1
x × x

1
x ≥

1+
log(1− 0.15

log3 x
)+logx

x is always satisfied for every sufficiently large positive number
x. However, we know that inequality is trivially satisfied for every sufficiently large
positive number x. In this way, we prove the Riemann hypothesis is true.

Keywords Riemann hypothesis · Prime numbers · Dedekind function · Chebyshev
function · Riemann zeta function
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1 Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros
only at the negative even integers and complex numbers with real part 1

2 . In mathe-
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matics, the Chebyshev function θ(x) is given by

θ(x) = ∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x [6].
We denote the nth prime number as qn. We know the following properties for the
Chebyshev function:

Theorem 1.1 For all n ≥ 2, we have [3]:

θ(qn)

logqn+1
≥ n× (1− 1

logn
+

log logn
4× log2 n

).

Theorem 1.2 For every x ≥ 19035709163 [1]:

θ(x)> (1− 0.15
log3 x

)× x.

Besides, we define the prime counting function π(x) as

π(x) = ∑
p≤x

1.

We also know this property for the prime counting function:

Theorem 1.3 For every x ≥ 19027490297 [1]:

π(x)> ηx

where

ηx =
x

logx
+

x
log2 x

+
2× x
log3 x

+
5.85× x

log4 x

+
23.85× x

log5 x
+

119.25× x
log6 x

+
715.5× x

log7 x
+

5008.5× x
log8 x

.

In mathematics, Ψ = n×∏q|n

(
1+ 1

q

)
is called the Dedekind Ψ function, where q | n

means the prime q divides n. Say Dedekind(qn) holds provided

∏
q≤qn

(
1+

1
q

)
>

eγ

ζ (2)
× logθ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural loga-
rithm and ζ (x) is the Riemann zeta function. The importance of this inequality is:

Theorem 1.4 Dedekind(qn) holds for all prime numbers qn > 3 if and only if the
Riemann hypothesis is true [7].

We define H = γ−B such that B≈ 0.2614972128 is the Meissel-Mertens constant [5].
We know from the constant H, the following formula:
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Theorem 1.5 We have that [5]:

∑
q

(
log(

q
q−1

)− 1
q

)
= γ −B = H.

We know this value of the Riemann zeta function:

Theorem 1.6 It is known that [7]:

ζ (2) =
∞

∏
k=1

1
1− 1

q2
k

=
∞

∏
k=1

q2
k

q2
k −1

=
π2

6
.

We have the following result:

Theorem 1.7 For every x >−1 [4]:

x ≥ log(1+ x).

Putting all together yields a proof for the Riemann hypothesis using the Chebyshev
function.

2 Results

Theorem 2.1 If the Riemann hypothesis is false, then there are infinitely many prime
numbers qn for which Dedekind(qn) do not hold.

Proof If the Riemann hypothesis is false, then we consider the function [7]:

g(x) =
eγ

ζ (2)
× logθ(x)×∏

q≤x

(
1+

1
q

)−1

.

We know the Riemann hypothesis is false, if there exists some x0 such that g(x0)> 1
or equivalent logg(x0)> 0 [7]. We know the bound [7]:

logg(x)≥ log f (x)− 2
x

where f is introduced in the Nicolas paper [6]:

f (x) = eγ × logθ(x)×∏
q≤x

(
1− 1

q

)
.

From the same paper [6], we know when the Riemann hypothesis is false, then there is
a 0< b< 1 such that limsupx−b× f (x)> 0 and hence limsuplog f (x)≫ logx, where
the symbol ≫ means “much greater than” [7]. In this way, if the Riemann hypothesis
is false, then there are infinitely many natural numbers x such that log f (x) ≥ logx
by the definition of limit superior. The result follows because of 2

x = o(logx) and
therefore, there would be infinitely many x0 such that logg(x0)> 0 [7].

The following is a key theorem.
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Theorem 2.2

∑
q

(
1
q
− log(1+

1
q
)

)
= log(ζ (2))−H.

Proof If we add H to

∑
q

(
1
q
− log(1+

1
q
)

)
then we obtain that

H +∑
q

(
1
q
− log(1+

1
q
)

)
= ∑

q

(
log(

q
q−1

)− 1
q

)
+∑

q

(
1
q
− log(

q+1
q

)

)
= ∑

q

(
log(

q
q−1

)− log(
q+1

q
)

)
= ∑

q

(
log(

q
q−1

)+ log(
q

q+1
)

)
= ∑

q

(
log(

q2

(q−1)× (q+1)
)

)
= ∑

q

(
log(

q2

(q2 −1)
)

)
= log(∏

q

q2

q2 −1
)

= log(ζ (2))

according to the theorems 1.5 and 1.6. Therefore, the proof is done.

This is a new criterion based on the Dedekind inequality.

Theorem 2.3 Dedekind(qn) holds for all prime numbers qn > 3 if and only if the
inequality

∑
q

1
q
> B+ ∑

q>qn

log(1+
1
q
)+ log logθ(qn)

is satisfied for all prime numbers qn > 3.

Proof We start from the inequality:

∏
q≤qn

(
1+

1
q

)
>

eγ

ζ (2)
× logθ(qn).

If we apply the logarithm to the both sides of the inequality, then

log(ζ (2))+ ∑
q≤qn

log(1+
1
q
)> γ + log logθ(qn).
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This is the same as

log(ζ (2))−H + ∑
q≤qn

log(1+
1
q
)> B+ log logθ(qn)

which is

∑
q

(
1
q
− log(1+

1
q
)

)
+ ∑

q≤qn

log(1+
1
q
)> B+ log logθ(qn)

according to the Theorem 2.2. Let’s distribute the elements of the inequality to obtain
that

∑
q

1
q
> B+ ∑

q>qn

log(1+
1
q
)+ log logθ(qn)

when Dedekind(qn) holds. The same happens in the reverse implication.

This is the main insight.

Theorem 2.4 The Riemann hypothesis is true if the inequality

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Proof The inequality

∑
q

1
q
> B+ ∑

q>qn

log(1+
1
q
)+ log logθ(qn)

is satisfied when

∑
q

1
q
> B+ ∑

q≥qn

log(1+
1
q
)+ log logθ(qn)

is also satisfied. Since in the inequality

∑
q

1
q
> B+ ∑

q≥qn

log(1+
1
q
)+ log logθ(qn)

only changes the value of

∑
q≥qn

log(1+
1
q
)+ log logθ(qn).

Hence, it is enough to show that

log(1+
1
qn

)+ log logθ(qn)≥ log logθ(qn+1)
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for all sufficiently large prime numbers qn according to the theorems 2.1 and 2.3.
Certainly, if the inequality

log(1+
1
qn

)+ log logθ(qn)≥ log logθ(qn+1)

is satisfied for all sufficiently large prime numbers qn, then it cannot exist infinitely
many prime numbers qn for which Dedekind(qn) do not hold. By contraposition, we
know that the Riemann hypothesis should be true. This is the same as

log
(
(1+

1
qn

)× logθ(qn)

)
≥ log logθ(qn+1).

That is equivalent to

log logθ(qn)
1+ 1

qn ≥ log logθ(qn+1).

Therefore, the Riemann hypothesis is true when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Theorem 2.5 The Riemann hypothesis is true when the inequality (1 − 0.15
log3 x

)
1
x ×

x
1
x ≥ 1+

log(1− 0.15
log3 x

)+logx

x is satisfied for all sufficiently large positive numbers x.

Proof Because of the Theorem 2.4, we know that the Riemann hypothesis is true
when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. This is the same as

θ(qn)
1+ 1

qn ≥ θ(qn)+ log(qn+1)

which is

θ(qn)
1

qn ≥ 1+
log(qn+1)

θ(qn)
.

We use the Theorem 1.2 to show that

θ(qn)
1

qn > (1− 0.15
log3 qn

)
1

qn ×q
1

qn
n

for a sufficiently large prime number qn. Under our assumption in this theorem, we
have that

(1− 0.15
log3 qn

)
1

qn ×q
1

qn
n ≥ 1+

log(1− 0.15
log3 qn

)+ logqn

qn
.
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Using the theorems 1.1 and 1.3, we only need to show that

θ(qn)

logqn+1
≥ n× (1− 1

logn
+

log logn
4× log2 n

)

> ηqn × (1− 1
logn

+
log logn

4× log2 n
)

>
qn

logqn + log(1− 0.15
log3 qn

)

for a sufficiently large prime number qn where

ηqn =
qn

logqn
+

qn

log2 qn
+

2×qn

log3 qn
+

5.85×qn

log4 qn

+
23.85×qn

log5 qn
+

119.25×qn

log6 qn
+

715.5×qn

log7 qn
+

5008.5×qn

log8 qn
.

Certainly, as the prime number qn increases, the value of (1− 1
logn +

log logn
4×log2 n

) gets

closer to 1 and the inequality ηqn ≫
qn

logqn+log(1− 0.15
log3 qn

)
starts to become trivially sat-

isfied, where the symbol ≫ means “much greater than” [7]. However, this implies
that

log(1− 0.15
log3 qn

)+ logqn

qn
>

log(qn+1)

θ(qn)

which is equal to

1+
log(1− 0.15

log3 qn
)+ logqn

qn
> 1+

log(qn+1)

θ(qn)

and finally, the proof is complete.

Theorem 2.6 The Riemann hypothesis is true.

Proof From the Theorem 1.7, we have that:

log(1− 0.15
log3 x

)+ logx

x
≥ log(1+

log(1− 0.15
log3 x

)+ logx

x
)

since
log(1− 0.15

log3 x
)+ logx

x
>−1

for all sufficiently large positive numbers x. We know that

log(1− 0.15
log3 x

)+ logx

x
=

log
(
(1− 0.15

log3 x
)× x

)
x

= log
(
(1− 0.15

log3 x
)

1
x × x

1
x

)



8 F. Vega

by the properties of the logarithm. This implies that

log((1− 0.15
log3 x

)
1
x × x

1
x )≥ log(1+

log(1− 0.15
log3 x

)+ logx

x
)

which is equivalent to

(1− 0.15
log3 x

)
1
x × x

1
x ≥ 1+

log(1− 0.15
log3 x

)+ logx

x

and so, this final result is a direct consequence of the Theorem 2.5.

3 Discussion

The practical uses of the Riemann hypothesis include many propositions which are
known as true under the Riemann hypothesis, and some that can be shown equivalent
to the Riemann hypothesis [2]. Certainly, the Riemann hypothesis is closed related to
various mathematical topics such as the distribution of prime numbers, the growth of
arithmetic functions, the Lindelöf hypothesis, the large prime gap conjecture, etc [2].
Indeed, a proof of the Riemann hypothesis could spur considerable advances in many
mathematical areas, such as the number theory and pure mathematics in general [2].
We consider that our paper has achieved this goal considered as the Holy Grail of
Mathematics by several authors [2].
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