
06 April 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Experimental Findings on the Sources of Detected Unrecoverable Errors in GPUs / Fernandes dos Santos, Fernando;
Malde, Sujit; Cazzaniga, Carlo; Frost, Cris; Carro, Luigi; Rech, Paolo. - In: IEEE TRANSACTIONS ON NUCLEAR
SCIENCE. - ISSN 0018-9499. - (2022).

Original

Experimental Findings on the Sources of Detected Unrecoverable Errors in GPUs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2948379 since: 2022-01-05T22:39:29Z

IEEE

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 1

Experimental Findings on the Sources of
Detected Unrecoverable Errors in GPUs

Fernando Fernandes dos Santos, Sujit Malde, Carlo Cazzaniga, Christopher Frost, Luigi Carro, and Paolo Rech

Abstract—We investigate the sources of Detected Unrecover-
able Errors (DUEs) in Graphics Processing Units (GPU) exposed
to a neutron beam. Illegal memory accesses and interface errors
are among the more likely sources of DUEs. ECC increases
the launch failure events. Our test procedure has shown that
ECC can reduce the DUEs caused by Illegal Address access up
to 92% for Kepler and up to 98% for Volta. Additionally, we
analyze if the compiler optimizations can impact the DUE sources
distribution for the Matrix Multiplication. We found that the
machine codes generated by the different optimization levels can
change the DUE source by no more than 24% on average.

Index Terms—Detected Unrecoverable Error, reliability, radi-
ation experiments, Graphic Processing Units

I. INTRODUCTION

Graphics Processing Units (GPUs) have evolved from
graphics rendering to general-purpose accelerators extensively
employed in HPC and safety-critical applications such as
autonomous vehicles for the automotive and aerospace mar-
kets. The GPUs’ highly parallel architecture fits most HPC
codes’ computational characteristics and machine learning
applications. The most recent GPU architecture advances, such
as tensor core and mixed-precision functional units, move
toward improving the performances and software flexibility
for HPC and deep learning applications [1].

Today, the reliability of parallel processors is a significant
concern for both safety-critical applications and HPC systems.
Unexpected errors in parallel devices’ may lead to catas-
trophic accidents in a self-driving vehicle, lower HPC systems
scientific productivity, lower operational efficiency, and even
significant monetary loss.

Most recent studies target Silent Data Corruption (SDC)
in their evaluation. SDCs, being undetectable, are, in fact,
considered the main threat for modern computing device’s
reliability [2], [3]. Detected Unrecoverable Errors (DUEs),
such as device hangs, application crashes, or functional in-
terruptions, are considered less harmful as, being detectable
by definition, they could be easily handled using solutions
such as checkpoints and software/hardware watchdogs [4]–
[6]. Nevertheless, the recovery from a DUE or the action
taken to reach a fail-safe state requires a significant amount of
time, which risks reducing supercomputers’ productivity [7].

F. F. dos Santos and L. Carro are with Institute of Informatics of Univer-
sidade Federal do Rio Grande do Sul (UFRGS), Brazil. E-mail: {ffsantos,
carro}@inf.ufrgs.br

S. Malde, C. Cazzaniga, and C. Frost are with Science and Technology
Facility Council (STFC), UKRI, United Kingdom. E-mail: {sujit.malde,
carlo.cazzaniga, christopher.frost}@stfc.ac.uk

P. Rech is with Department of Control and Computer Engineering of
Politecnico di Torino, Italy. E-mail: paolo.rech@polito.it

A small cluster with 32K cores would take almost an hour to
restart after a crash [4], without considering the overhead of
performing checkpointing time.

In safety-critical real-time systems, such as autonomous
vehicles, the DUE risk is even higher, as it may compromise
the system’s ability to complete the task before the deadline.
For instance, a GPU for autonomous vehicles must process
between 20 to 80 frames-per-second [8], [9]. The recovery
from a DUE must be sufficiently efficient not to miss any
frame, which is highly challenging. In this scenario, tracing the
DUEs software and hardware sources and quickly identifying
a DUE occurrence are essential tools to create more tolerant
applications against crashes and hangs. Additionally, as few
works cover the DUE analysis for GPUs [10], [11], it is still
unknown how much the compiler optimizations impact the
DUEs rate of an application.

In this paper, we investigate the sources of DUE in two
NVIDIA architectures: Kepler and Volta. We provide a novel
and detailed analysis of DUE sources on GPUs based on neu-
tron experimental data and system logs profile. We create an
experimental setup that allows the tracing of the GPU crashes
and hangs observed during radiation experiments. We select a
set of eight algorithms and compare their DUE and SDC rates,
considering both the case of ECC disabled and enabled. Each
code has peculiar characteristics regarding memory utilization,
computing power, control-flow operation, highlighting specific
architecture behaviors that could be generalized to similar
algorithms.

For a particular code, Matrix Multiplication, we also per-
form a deeper analysis of the DUEs by evaluating different
compiler versions and three optimization levels. We tested two
CUDA compilers, 10.2 and 11.3, to assess if the improvements
of a newer compiler can modify the error sources of an
application. The compiler optimizations analysis aims to find
if the machine code generated impacts the DUEs events. Addi-
tionally, we report findings from recently completed (remotely
controlled) neutron beam testing that represents a total of more
than 2 million years of operation in a natural environment.
Finally, we discuss how system log tracing can be used to
improve the detection and recovery from DUEs. The main
contributions of this work are as follows:

• A deep investigation on the DUE sources (i.e., manifes-
tation at software level) based on experimental data.

• Eight benchmarks reliability evaluation. The benchmarks
in this work come from broad domains, such as machine
learning (YOLOv3) and particle simulation (FLAVA).

• Experimental data and findings on the impact in the DUE
rate when Error Correction Code is enabled and disabled.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2

• Evaluation of the impact of optimization flags and com-
pilers on the DUE sources on beam experiments.

The remainder of the paper is organized as follows. The next
Section presents the Background on radiation-induced SDCs
and DUEs. The DUE classification is presented in Section III.
Section IV presents the tested devices, the selected parallel
algorithms and describes the evaluation methodology. Sec-
tion V shows the radiation experimental results, and Section VI
present the DUE source analysis. Section VII concludes the
paper.

II. RADIATION INDUCED SDCS AND DUES IN GPUS

Radiation-induced events are particularly critical, as they
dominate error rates in commercial devices [2]. A transient
fault may lead to one of the following outcomes: (1) No
effect on the program output (i.e., the fault is masked, or
the corrupted data is not used). (2) A Silent Data Corruption
(SDC) (i.e., an incorrect program output). (3) A Detected
Unrecoverable Error (DUE) (i.e., a program crash or device
reboot).

Previous studies have stated that parallel architectures,
particularly GPUs, have a high fault rate because of the
high amount of available resources [7], [12], [13]. Recent
works have identified some peculiar reliability weaknesses
of GPUs architecture, suspecting that the corruption of the
GPU hardware scheduler or shared memories can severely
impact the computation of several parallel threads [3], [7],
[12], [14], [15]. As a result, multiple GPU output elements
can potentially be corrupted, effectively undermining several
applications’ reliability, including CNNs [16], [17].

Even if DUEs are detectable, they still can lead to monetary
loss or harmful events. For instance, a self-driving car that
relies on a GPU to perform object detection, if rebooted, can
delay a response to a critical situation, thus putting human
lives in danger. DUEs are generated by data-driven control-
flow errors (the corruption of a memory address, an index, a
jump instruction, etc.) or by faults in control logic (scheduler,
memory controller, interfaces for synchronization, etc.). Ad-
ditionally, the available Single Error Correction Double Error
Detection (SECDED) ECC on GPUs crashes the application
when a double-bit flip is detected.

Few works have studied the DUEs on GPUs on beam exper-
iments [3], [10], [18]–[20]. However, most of the mentioned
works do not present a detailed analysis of the events that
cause DUEs on GPUs, not allowing a deep investigation of
the weakness of the GPUs. Kojiro et. Al. [11] perform DUE
analysis with neutron beam experiments and software fault
injection manipulating the Program Counter (PC) The authors
conducted experiments with two NVIDIA architectures and
two benchmarks, Matrix Multiplication and Object Detection.
The paper demonstrates that it is possible to trace the NVIDIA
driver error messages to monitor the errors generated by the
GPU in the radiation test. However, the article lacks generality
as only two benchmarks are presented. Additionally, it is
difficult to use the fault injection results to correlate with the
DUEs obtained on radiation experiments, as the fault injection
is limited to the application Program Counter. In contrast, on
the beam experiments, all the device is exposed.

Our paper’s goals are:
1) Understand the (software/hardware) causes of DUE in

GPU. DUEs events are expected to be generated in other
places than functional units [10], [11]. As we show,
DUEs come from incorrect memory addresses, errors
in the scheduler, errors in the stack, etc. (more details
Section III).

2) Show how GPU system logs can be used to have prompt
information about the DUE occurrence, triggering the
action to take faster. We demonstrate that by showing
the results for eight codes in two NVIDIA architectures.

3) Demonstrate how the compiler optimization levels (i.e.,
O0, O1, O3) and the compiler version (i.e., CUDA
10.2 and 11.1) can impact the DUE distribution of an
application.

III. GPU DUE SOURCE TRACING

While to detect SDC is sufficient to compare the experi-
mental output with the pre-computed expected one, to identify
the event that triggered the DUE, it is necessary to query the
device or the operating system to understand what happened.
GPUs feature the CUDA Runtime Application Programming
Interface (CUDA Runtime API), a layer between the operating
system and device hardware. With CUDA Runtime API, we
can directly control the GPU using function calls. For instance,
we can make a software reset on the GPU (i.e., delete all
memory and kernels resources) by calling cudaDeviceReset()
from a C++ code [21].

We used the CUDA Runtime API to trace and log the DUE
events. After each GPU kernel execution, we query the device
(cudaGetLastError followed by a cudaDeviceSynchronize) to
check if any error happened. If an error code is returned, we
finish the application and start a new one. All the possible
errors that an NVIDIA GPU can generate are described in the
CUDA Runtime API Guide, Section 6.3 [21].

It is worth noting that only the GPU is exposed to the
beam, while the host CPU and DDR memories are outside
of the beam. The GPU is connected to the motherboard with
a 25cm PCI-e extension, and the motherboard is covered with
boron plastic blocks to further reduce the probability of events
induced by scattering neutrons in the host PC. Consequentially,
the majority of the observed errors are caused by events on
the GPU.

In the following, we list and describe the possible DUEs
we have identified.
Devices Unavailable: the GPU is unavailable either in an
Exclusive or Prohibited mode or the previous execution has
not released the resources (the GPU is ”falsely” full).
Illegal Instruction: an illegal instruction is executed, leaving
the process in an inconsistent status.
Illegal or Misaligned Address: the address of a Load or Store
does not point to a valid memory address or is not aligned.
Initialization Error: the CUDA driver fails to initialize,
making it impossible for the API to continue.
Invalid Device or No Device: the GPU queried by the CPU
is invalid, or the CUDA driver cannot detects a valid GPU
device.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 3

Invalid PC: one of the kernel program counters is corrupted
and becomes invalid.
Invalid Address Space: a kernel can operate in different
memories spaces (i.e., global, shared, or local). This error
happens when an instruction that belongs to a specific memory
space tries to operate in a different one.
Memory Allocation: CUDA is not able to allocate memory
on GPU.
ECC Uncorrectable: the ECC detects more than one bit flip.
As this cannot be corrected, the ECC throws an exception to
the driver.
Launch Failure: the CPU tries to launch a kernel and fails.
There are many reasons it could happen, such as dereferencing
an invalid device pointer or accessing out-of-bounds shared
memory, etc.
Hardware Stack Error: an error in the call stack during ker-
nel execution, generally due to stack corruption or exceeding
the stack size limit.
Invalid Value: some kernel parameters are out of the accept-
able range of values, i.g., more threads than the GPU supports.
System Crash: a DUE triggered by the watchdog in our setup.
Then DUE source could not be traced or is generally unknown.

TABLE I: Benchmarks used for reliability evaluation

Domain Suite
Component Labeling - CCL Graph NUPAR [22]
Breadth First Search - BFS Graph

Rodinia [23]

Lava N-Body
Gaussian Linear Algebra
LU Decomposition - LUD Linear Algebra
Matrix Multiplication - MXM Linear Algebra
Optimized MXM - GEMM Linear Algebra
Mergesort Sorting NVIDIA SAMPLES
Quicksort Sorting NVIDIA SAMPLES
YOLOv3 Object Detection Darknet [24]

IV. EVALUATION METHODOLOGY

This section first describes the devices and codes we char-
acterize, the metrics adopted for the reliability evaluation of
computing devices, and how we measure them for GPUs.

Devices: We consider Kepler (Tesla K40) and Volta (Titan
V and Tesla V100) NVIDIA GPUs. The tested NVIDIA
K40 (Kepler) is built with the Kepler ISA and fabricated in
a 28nm TSMC standard CMOS technology [25]. This model
has 2880 CUDA cores divided into 15 Streaming Multipro-
cessors (SMs). Each K40 SM has 64K registers, 64KB of
L1/shared memory. The GPU has 1.5MB of L2 cache, and
6GB GDDR5 memory. Single Error Correction Double Error
Detection (SECDED) Error Correcting Code (ECC) protects
the register file, shared memory, and caches while read-only
data cache is parity protected. It is worth noting that even when
ECC is enabled, errors can still be generated in the address
calculation, the memory buffers, or any unprotected memory
resource, as we show in Section V.

The Titan V and Tesla V100 (Volta) are designed with
the Volta micro-architecture and built with TSMC FinFET
12nm [26]. Volta GPUs feature hardware acceleration for three
IEEE754 float point precisions: double, float, and half. Each
of the 80 Volta SMs has 64 FP32 cores, 64 INT32 cores, and

32 FP64 cores [27], [28]. Each Volta SM has 64K registers
and 96KB of configurable L1/shared memory. Titan V has
4.5MB of L2 cache, and V100 has 6MB of L2 cache. Volta
also includes eight tensor cores, i.e., specific hardware that
performs the Matrix Multiplication and Accumulate (MMA)
operation on 16x16 matrices. Only the V100 has SECDED
ECC on the register file, shared memory, and caches. The
difference between the Titan V and Tesla V100 is that while
V100 operates at 1246MHz as a base clock, Titan V operates
at 1200MHz. Tesla V100 has 16GB of HBM2 RAM. Titan V
has 12GB HBM2 RAM. Finally, and more importantly, only
the V100 has SECDED ECC on the main memories.

Our evaluation considers errors occurring only in the GPU
core, not in the main memory. For Kepler, we chose a beam
spot sufficiently small (2cm of diameter) not to hit the onboard
DDR when ECC is disabled. As Volta’s HBM2 memories are
on top of the chip, when ECC is disabled, all the global mem-
ory accesses are made through Triple Modular Redundancy
(TMR). For FMXM and FLAVA on Volta, when the ECC is
disabled, the kernel starts loading the input from three different
DDR positions, then compares the three memories and corrects
the divergence. The correct value is then stored in the shared
memory or in the register file to be used for computation.
When computation finishes, the output registers are written
in three different locations of the global output memory. The
CPU checks and corrects if there is a divergence between the
three outputs

Tested Codes: We chose the eight representative codes
listed in Table I from HPC and deep learning domains. The
choice of diverse codes increases this work’s quality and
can provide details for DUEs extendable to different applica-
tions [29]. Because of its importance in CNNs and HPC, we
choose to pay particular attention to Matrix Multiplication and
test both the naive version (MxM) and the optimized version
that digest data in the most suitable way for GPUs as General
Matrix Multiplication (GEMM) from the NVIDIA CUBLAS
libraries. To be highly efficient, GEMM kernel is tuned for
each input and device configuration. Float-based codes have
their precision in their names. D for double, F for float, and H
for half. INT32 based codes do not have their names modified.

Setup Server
Beam room

ChipIR

private
LAN

internet

Fig. 1: Remotely controlled beam experiment setup

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 4

Beam Experiment Setup: Beam experiments are the most
effective way to measure the FIT rate of code running
on a computing device, which is obtained by dividing the
number of observed errors by the received particles fluence
(neutrons/cm2). Our experiments were performed at the
ChipIR facility of the Rutherford Appleton Laboratory, UK.
Figure 1 shows the setup mounted in the ChipIR facility.
The facility delivers a beam of neutrons with a spectrum
of energies that resembles the atmospheric neutron one [30].
The available neutron flux was about 3.5 × 106n/(cm2/s),
∼8 orders of magnitude higher than the terrestrial flux (13
neutrons/(cm2 · h) at sea level [31]).

Since the terrestrial neutron flux is low, it is improbable to
see more than a single corruption during program execution
in a realistic application. We have carefully designed the
experiments to maintain this property (observed error rates
were lower than 1 error per 1,000 executions). Experimental
data can then be scaled to the natural terrestrial environment
without introducing artifacts. Each code was tested for at least
72 hours, not including the setup, result check, initialization,
and recovery from the crash time.

Most experiments were performed during the COVID-19
pandemic. Consequentially, the setup was adapted for remote
control as not all the scientists involved in this research
were physically present at the experiments. Figure 1 shows
the adapted setup for mobility restrictions. A Virtual Private
Network was created using Hamachi LogMeIn to connect
researchers in Brazil, Italy, and United Kingdom (ChipIR).
A researcher was in charge of assembling the hardware setup
on the ChipIR facility and configuring the network. The other
researchers were then able to monitor and adjust the irradiated
GPUs’ applications remotely.

We added the setup software and hardware watchdogs to
monitor and perform recovery from crashes. The software
watchdog controls the application under test, and if it stops
responding in a predefined time interval, the kernel is killed
and relaunched. This watchdog detects kernel crashes or
software hangs, i.e., application crashes or control flow errors
that prevent the GPU from completing assigned tasks (e.g., an
infinite loop). Before finishing the process related to the GPU’s
kernel, our setup makes a CUDA API call to get the last error
that happens inside the GPU. Then, the return of the API
call is logged in a structured file. The hardware watchdog is
an Ethernet-controlled switch that performs a host computer’s
power cycle if the host computer itself does not acknowledge
any ping requests in a predefined time interval. The hardware
watchdog is necessary to detect when the operating system
hangs.

V. NEUTRON BEAM EXPERIMENTS RESULTS

In this section, we present the results from radiation exper-
iments for the eight evaluated benchmarks. We show the SDC
and DUE rates for the codes when ECC is ON and when ECC
is OFF.

Figure 2 shows the experimentally measured SDC and
DUE normalized FIT rates for the GPUs executing the codes
with ECC disabled and enabled. The reported data is the

measured FIT rate divided by Mergesort SDC rate on Kepler
when ECC is ON. We report arbitrary units (a.u.) not to
reveal business-sensitive data. Values are reported with 95%
confidence intervals considering a Poisson distribution.

Not surprisingly, both the SDC and DUE FIT rates of Kepler
and Volta change significantly depending on the code. It is
interesting to notice that, on the Average, the SDC FIT rate
is higher than the DUE rate when ECC is OFF (1.2× for
Kepler, 4.1× for Volta), while when the ECC is ON, the
DUE rate is (significantly) higher than the SDC rate (2.2×
for Kepler, 2.7× for Volta). This is because the ECC reduces
(significantly) SDCs and increases DUEs, primarily because
of ECC Uncorrectable errors (details in Section III).

The average SDC FIT rate with ECC OFF is up to 3.5×
higher than with ECC ON for Kepler and 2.6× higher for
Volta. When ECC is ON, the DUE FIT rate is almost the same
as ECC OFF for Kepler (20% difference) and 4.2× higher
than ECC OFF for Volta. The DUE increase caused by ECC
is exacerbated in Volta GPUs because the main memory is
stacked on top of the chip, consequentially being irradiated as
the GPU core. It is then likely for neutrons to corrupt also
data in the DDR and, in the event of a double bit flip, the
ECC triggers a DUE. It is worth noting that, when the ECC
is OFF, we triplicate data in the DDR to avoid its corruption
to bias our SDC evaluation.

SDCs, being silent, are typically considered much more
critical than crashes and hangs. The most used techniques
to detect and correct SDCs require modular redundancy or
algorithm-based fault tolerance. On the other hand, DUEs
are more treatable as the event is, by definition, detected.
Nevertheless, even if a plethora of methods exist to mitigate
the impacts of DUEs (such as checkpoint-restart), the overhead
of the recovery from a DUE can be extremely high, as the
execution must be restored or the device (or even the whole
server) must be rebooted.

Figure 2 shows, for some codes, the DUEs FIT can be
higher than SDC FIT. Constant interruptions on complex
systems such as supercomputers and embedded safety-critical
systems can lead to performance degradation, causing signif-
icant impact as much as SDCs. For Mergesort and YOLOv3
(object detection CNN), on Kepler, even with ECC OFF,
the DUE rate is 4.4× and 5.1× higher than the SDC rate,
respectively. Mergesort continuously requires the GPU to
exchange data with the CPU as the host performs the input
array split. Similarly, YOLOv3, which is a neural network of
more than 100 layers, launches several kernels per layer and
requires a high amount of data transfer through the system bus
between the host processor and the GPU (each layer output is
used as input in the downstream layer), which increases the
probability of invalid device pointers to be corrupted leading
to a DUE. The synchronizations between CPU and GPU and
heavy memory exchange are also highly susceptible, and their
corruption is likely to cause a DUE. As a counter-proof,
Quicksort, despite solving the same sorting problem (with the
same input) as Mergesort, uses Dynamic Parallelism, which
allows launching kernel inside the GPU without requiring data
exchange with the CPU. As a result, Quicksort has a much
higher SDC rate than the DUE rate when ECC is OFF. Quick-

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 5

0

10

20

30

40

50
Q

U
IC

KS
O

R
T

M
ER

G
ES

O
R

T
FY

O
LO

V3
FM

XM
FL

AV
A

Av
er

ag
e

Q
U

IC
KS

O
R

T
M

ER
G

ES
O

R
T

FY
O

LO
V3

FM
XM

FL
AV

A
FG

AU
SS

IA
N

C
CL BF

S
FL

U
D

Av
er

ag
e

Fa
ilu

re
 In

 T
im

e
[a

.u
.]

ECC OFF ECC ONSDC DUE
Kepler

0
20
40

60
80

100

120

H
LA

VA

FL
AV

A

D
LA

VA

H
M

XM

FM
XM

D
M

XM

Av
er

ag
e

H
G

EM
M

H
G

EM
M

 T
.

FG
EM

M

FG
EM

M
 T

.

D
G

EM
M

Av
er

ag
e

Fa
ilu

re
 In

 T
im

e
[a

.u
.]

Volta

Fig. 2: Normalized FIT rates for Kepler and Volta.

sort uses the GPU resources better than Mergesort, avoiding
synchronization with Dynamic Parallelism. Consequentially,
increasing Quicksort SDC rate when ECC is OFF (that is
4.9× higher than Mergesort SDC rate) but, when ECC is ON,
most SDCs are corrected, making Quicksort more reliable than
Mergesort.

For Volta GPU, we also perform the analysis for FIT rates
of codes executed with different precisions: Double 64bit
(D), Float 32bit (F), and Half 16bit (H). A higher precision
functional unit has a higher area and a higher probability of
being hit by a neutron since the circuit area is bigger [1], [32].
Thus, higher precision implies more bits to store data, which
is linearly dependent on the FIT rate. The SDC FIT rates for
Volta in Figure 2 confirm this trend.

When ECC is OFF, the DUE rate is almost constant
for the different precisions (while it changes between Lava
and MxM). This is because the probability of faults in the
control circuit, interfaces, host-device communications (likely
to generate a DUE) does not depend on the data precision.
Other sources of DUEs, such as host-device synchronizations,
data-driven control-flow errors (corrupted indexes, addresses,
or jumps), depend on the application. So, when ECC is off,
the DUE will have other sources than ECC Uncorrectable
errors. Interestingly, when ECC is ON, the DUE FIT rate
increases linearly with data precision. This is again due to the
DDR being stacked over the GPU chip. In fact, the higher the
amount of data, and consequentially, the higher the probability
of having ECC uncorrectable errors. This is confirmed by the
analysis of the DUE sources we present in the next Section,
which shows that, for Volta with ECC ON, most DUEs come
from uncorrectable errors.

VI. DUE SOURCE

In this Section, we present our findings on the analysis of
DUE sources. First, we start discussing how the particularities
of each application, discussed in Section V, can change the
occurrences of DUEs. Then we select the FMXM app to
perform a deeper analysis of the compiler optimizations impact
on the final application DUE causes.

Thanks to the setup described in Section III, we can trace the
cause of the observed DUEs. Figure 3 shows, in percentage,

the sources of DUEs we have identified in our beam exper-
iments for Kepler and Volta. In Figure 3 we have grouped
Device Unavailable, Invalid Value, No Device, Initialization
Error, Hardware Stack Error, and Invalid Device events under
the category ”Other” as, on average, the combination of these
events caused less than 3% of DUEs in our experiments.

Figure 3 shows that DUEs’ source is code and architecture
dependent. When ECC is disabled, most DUEs are originated
by Illegal Address (i.e., the code tries to access an incorrect
memory address), which is to be expected since the Regis-
ter File (RF), shared, and cache memories are unprotected,
including the locations that store the memory addresses for
Load/Store instructions. A corruption in the memory address
is likely to violate the memory policy leading to an Illegal
Address. When ECC protects memories, there is a drastic
reduction of Illegal Address DUEs (less than 8% on Kepler
and less than 2% on Volta) and an expected increase in the
probability of ECC Uncorrectable errors (which are obviously
absent when ECC is off). As mentioned, the DUE rate is
exacerbated on Volta when ECC is enabled as DDR is on
top of the GPU. We have experienced that the combination
of transient, permanent, and intermittent errors in the stacked
DDR makes double-bit errors probability very high.

Launch Failures are also frequent, mainly for Kepler with
ECC on and for Volta. These DUEs happen when the GPU
is in an inconsistent state due to corrupted parameters or an
error at the kernel launch. For instance, an error invalidates the
memory pointers passed to the kernel as parameters, making
the GPU unable to launch the execution.

Generally, a System Crash source is hard to identify as this
DUE is generated by exceptions from the host operating sys-
tem or hanging kernels inside the device, preventing logging
API data. Our watchdogs kill the application, reset the GPU,
or perform a system power cycle in a System Crash event.
As the System Crash percentage is not negligible, it would be
necessary to investigate their causes deeper. As future work,
we plan to consider the operating system logs related to the
PCI bus and the GPU for an in-depth study of System Crashes.

Finally, BFS is the only code experiencing a large number
of Memory Allocation DUEs. BFS is a code that manages
the GPU memory inefficiently. BFS allocates a graph with

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 6

0%

20%

40%

60%

80%

100%

Q
U
IC
K
SO
R
T

M
E
R
G
E
SO
R
T

FY
O
LO
V
3

FM
X
M

FL
AV
A

Q
U
IC
K
SO
R
T

M
E
R
G
E
SO
R
T

FY
O
LO
V
3

FM
X
M

FL
AV
A

FG
A
U
SS
IA
N

C
C
L

B
FS

FL
U
D

Pe
rc

en
ta

ge
 o

f D
U

Es

0%

20%

40%

60%

80%

100%

H
M
XM

FM
X
M

D
M
XM

H
LA
V
A

FL
AV
A

D
LA
V
A

H
G
E
M
M

H
G
E
M
M
-M
M
A

FG
E
M
M

FG
E
M
M
-M
M
A

D
G
E
M
M

Pe
rc

en
ta

ge
 o

f D
U

Es

ECC OFF ECC ON ECC OFF ECC ON

ECC Uncorrectable Illegal Addr. Illegal Instr. Mem. Allocation Misaligned Addr. Sys. CrashLaunch Failure Other

Fig. 3: Detailed DUE sources for Kepler and Volta GPUs. Other Sources includes Devices Unavailable, Invalid Value, No
Device, Initialization Error, Hardware Stack Error, and Invalid Device.

1 million vertices for each CUDA parallel stream (i.e., a
CUDA stream is an instance of a BFS kernel that runs parallel
with other kernels). 50 CUDA streams will be launched.
Consequentially, there will be a high memory demand and
irregular memory accesses for each stream. Thus, it is expected
that BFS will have the majority of the DUEs coming from
memory errors.

In all the DUE sources we have seen but System Crash, in
which the only solution is a power cycle or a device reset,
the existing tools allow us to get data from the device to
have prompt information about the DUE occurrence. Tracing
logs can be used to design codes that can self-detect and
self-recover from DUEs. For instance, NVIDIA Management
Library gives details about ECC Uncorrectable errors. This
information could be used not to crash the application and
trigger a new data fetch or roll-back. We conclude that GPU
system logs can be used as DUE detection as already done in
other techniques that provide certification and code changes
to improve the software reliability [33]. The data presented in
this paper can be valuable to propose code certifications for
GPUs kernels to improve code reliability.

A software engineering methodology for safety-critical ap-
plications can define actions to be performed soon after a
traceable DUE occurs but before the watchdog triggers the
device or system reboot, saving precious time. We show
that for most of the benchmarks, most DUEs the source are
traceable and allow a soft GPU reboot (a driver reset) without
the need of a reboot of the whole system. If each each DUE
was considered simply as ”System Crash” most of the recovery
time would be spent in the power cycling, with an evident
waste of resources.

A. Code optimization impact on the DUE

Past works have shown that the compiler optimizations
can change the SDC rate on beam experiments and fault
injection [34]–[37]. As the compiler optimizations can also
change the DUE causes, we decided to analyze FMXM
running on Kepler to show the impact of different optimization

levels in the DUEs sources. We select three configurations,
00, 01, and O3, for two versions of the CUDA compiler
10.2 and 11.3. The O2 optimization was not tested as the
machine code generated for O2 is identical to the O1. Many
optimization and bug corrections were implemented after
CUDA 11, including memory allocation bugs and CUDA API
performance improvements [38]. Consequentially, we decide
to evaluate the DUE sources of two different compilers under
radiation.

0%

20%

40%

60%

80%

100%

O0 O1 O3 O0 O1 O3 O0 O1 O3 O0 O1 O3

CUDA 10.2 CUDA 11.3 CUDA 10.2 CUDA 11.3

P
e
rc

e
n

ta
g

e
 o

f
D

U
E

s

ECC Uncorrecatable Illegal Address Illegal Instruction

Memory Allocation Misaligned Address System Crash

Launch Failure

Other Sources

ECC OFF ECC ON

Fig. 4: Different optmizations levels on the MxM kernel
impact on the distribution of the DUE sources

Figure 4 shows the FMXM DUEs source distribution for
three optimization levels, i.e., O0, O1, and O3, for two CUDA
compilers, 10.2 and 11.3. On average, the different optimiza-
tion levels do not significantly change the DUE distribution,
and this holds for all configurations. The observed differences
are up to 24%. The most significant variation can be observed
between the compilers (10.2 vs 11.3) when ECC is ON. Inter-
estingly, we can see that Memory Allocation errors happen on
CUDA 10.2 and not in CUDA 11.3. The memory allocation
DUEs reduction on CUDA 11.3 may be related to memory
allocation bugs correction for CUDA versions higher than 11,
reducing these errors to the minimum at CUDA 11.3, reducing
these errors to the minimum at CUDA 11.3. A bug in the

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 7

CUDA driver can change the device’s behavior in the presence
of an error. Consequentially, when the application tries to
allocate memory, and the driver is in an inconsistent status, an
exception can be raised, generating Memory Allocation error.

When comparing the DUEs sources for ECC OFF and ON,
the distributions follow the same pattern presented for the other
codes. With the Illegal Address dominating the ECC OFF,
and ECC Uncorrectable errors and Launch Failures governing
when ECC ON. As shown in Figure 4, the code optimizations
are not enough to change the DUEs distribution drastically.
Even if we consider two different compiler versions, the
variations are not significantly different. Consequentially, we
can deduce that the DUEs are majorly governed by issues
generated in the hardware and the driver. The final machine
code generated by the compiler can only produce minor
variations at the DUE causes.

Even for a simple and naive code like MXM, the compiler
can still optimize the final machine code (removing dead
code and unnecessary memory movements) and change the
application’s outcome for some configurations when a fault
happens. For instance, while the O0 code size is up to 6×
larger than the O3 code, the O1 is almost the same as the
O3 code. Since different instructions have different error rates
and error probability, unnecessary instructions can generate
differences in the DUE rate and the DUE sources, as shown
in Figure 4.

It is worth noting that the performance is directly pro-
portional to the optimization flags. As the optimization level
increases, the execution time decreases. At the same time, as
the performance increases, the resources utilization increases
and so does the FIT rate. Nevertheless, the performance gain
is such that the useful output produced before experiencing a
failure is higher for the more optimized codes.

VII. CONCLUSIONS

We have discussed the causes of DUEs for various bench-
marks to precisely evaluate the GPU behavior under radiation.
The ECC, in fact, changed the outcome of the DUEs for
all the tested codes. We experimentally show that ECC is a
powerful technique to reduce the SDC rate for errors in the
GPU memories, but it can change how the GPU manifests the
DUE events.

Additionally, we show that the optimization performed by
the compiler can change the DUE source. However, it is more
dependent on the hardware and the driver than on the final
machine code. In future research, we plan to deeply study the
DUEs cause by ECC and find the causes of System Crashes.
We also plan to investigate more the impacts of other CUDA
optimization flags on the reliability of a code.

VIII. ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 886202
and from The Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior - Brazil (CAPES) - Finance Code
001. Neutron beam time was provided by ChipIR (DOI:
10.5286/ISIS.E.RB2000161).

REFERENCES

[1] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA Volta GPU architecture via microbenchmarking,” CoRR, vol.
abs/1804.06826, 2018. [Online]. Available: http://arxiv.org/abs/1804.
06826

[2] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[3] G. León, J. M. Badı́a, J. A. Belloch, A. Lindoso, and L. Entrena,
“Evaluating the soft error sensitivity of a GPU-based SoC for matrix
multiplication,” Microelectronics Reliability, vol. 114, pp. 856 – 861,
2020, 31st European Symposium on Reliability of Electron Devices,
Failure Physics and Analysis, ESREF 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026271420304558

[4] J. Cao, K. Arya, R. Garg, S. Matott, D. K. Panda, H. Subramoni,
J. Vienne, and G. Cooperman, “System-level scalable checkpoint-restart
for petascale computing,” in 2016 IEEE 22nd International Conference
on Parallel and Distributed Systems (ICPADS), 2016, pp. 932–941.

[5] X. Chen, J. Feng, M. Hiller, and V. Lauer, “Application of software
watchdog as a dependability software service for automotive safety
relevant systems,” in 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’07), 2007, pp. 596–600.

[6] A. Mahmood and E. McCluskey, “Concurrent error detection us-
ing watchdog processors-a survey,” IEEE Transactions on Computers,
vol. 37, no. 2, pp. 160–174, 1988.

[7] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding GPU errors on large-scale HPC systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 331–342.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[9] N. Tijtgat, W. Van Ranst, B. Volckaert, T. Goedemé, and F. De Turck,
“Embedded real-time object detection for a UAV warning system,” in
2017 IEEE International Conference on Computer Vision Workshops
(ICCVW), 2017, pp. 2110–2118.

[10] C. Lunardi, F. Previlon, D. Kaeli, and P. Rech, “On the efficacy of ECC
and the benefits of FinFET transistor layout for GPU reliability,” IEEE
Transactions on Nuclear Science, vol. 65, no. 8, pp. 1843–1850, 2018.

[11] K. Ito, Y. Zhang, H. Itsuji, T. Uezono, T. Toba, and M. Hashimoto,
“Analyzing due errors on GPUs with neutron irradiation test and fault
injection to control flow,” IEEE Transactions on Nuclear Science,
vol. 68, no. 8, pp. 1668–1674, 2021.

[12] N. DeBardeleben, S. Blanchard, L. Monroe, P. Romero, D. Grunau,
C. Idler, and C. Wright, “GPU behavior on a large HPC cluster,” in Euro-
Par 2013: Parallel Processing Workshops, D. an Mey, M. Alexander,
P. Bientinesi, M. Cannataro, C. Clauss, A. Costan, G. Kecskemeti,
C. Morin, L. Ricci, J. Sahuquillo, M. Schulz, V. Scarano, S. L. Scott, and
J. Weidendorfer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 680–689.

[13] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, K. Pattabiraman, P. Rech, and M. S. Reorda, “GPGPUs:
How to combine high computational power with high reliability,” in
2014 Design, Automation Test in Europe Conference Exhibition (DATE),
2014, pp. 1733–1741.

[14] D. A. G. D. Oliveira, L. L. Pilla, M. Hanzich, V. Fratin, F. Fernandes,
C. Lunardi, J. M. Cela, P. O. A. Navaux, L. Carro, and P. Rech,
“Radiation-induced error criticality in modern HPC parallel acceler-
ators,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 577–588.

[15] D. A. G. Gonçalves de Oliveira, L. L. Pilla, T. Santini, and P. Rech,
“Evaluation and Mitigation of Radiation-Induced Soft Errors in Graphics
Processing Units,” IEEE Transactions on Computers, vol. 65, no. 3, pp.
791–804, 2016.

[16] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on GPUs,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[17] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,”
IEEE Access, vol. 8, pp. 19 490–19 503, 2020.

[18] S. K. S. Hari, P. Rech, T. Tsai, M. Stephenson, A. Zulfiqar,
M. B. Sullivan, P. P. Shirvani, P. Racunas, J. S. Emer, and
S. W. Keckler, “Estimating silent data corruption rates using a two-

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 8

level model,” CoRR, vol. abs/2005.01445, 2020. [Online]. Available:
https://arxiv.org/abs/2005.01445

[19] F. F. d. Santos, S. K. S. Hari, P. M. Basso, L. Carro, and P. Rech,
“Demystifying GPU reliability: Comparing and combining beam ex-
periments, fault simulation, and profiling,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2021, pp. 289–
298.

[20] F. F. d. Santos and P. Rech, “Analyzing the criticality of transient
faults-induced SDCs on GPU applications,” in Proceedings of the
8th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, ser. ScalA ’17. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 6–13. [Online]. Available:
https://doi.org/10.1145/3148226.3148228

[21] NVIDIA. (2021) CUDA runtime API. [Online]. Available: https:
//docs.nvidia.com/cuda/cuda-runtime-api/index.html

[22] Y. Ukidave, F. N. Paravecino, L. Yu, C. Kalra, A. Momeni, Z. Chen,
N. Materise, B. Daley, P. Mistry, and D. Kaeli, “NUPAR: A benchmark
suite for modern GPU architectures,” ser. ICPE ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 253–264.
[Online]. Available: https://doi.org/10.1145/2668930.2688046

[23] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 42–52.

[24] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/
abs/1804.02767

[25] NVIDIA. (2012) Kepler GK110/210 whitepaper.
[Online]. Available: https://www.nvidia.com/content/
dam/en-zz/Solutions/Data-Center/tesla-product-literature/
NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[26] NVIDIA. (2017) NVIDIA Tesla V100 GPU architecture. [On-
line]. Available: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

[27] N.-M. Ho and W.-F. Wong, “Exploiting half precision arithmetic in
NVIDIA GPUs,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC), 2017, pp. 334–341.

[28] NVIDIA. Floating point and IEEE 754 compliance for NVIDIA
GPUs. [Online]. Available: https://docs.nvidia.com/cuda/floating-point/
index.html

[29] H. Quinn, “Challenges in testing complex systems,” IEEE Transactions
on Nuclear Science, vol. 61, no. 2, pp. 766–786, 2014.

[30] C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning
of a fast neutron beamline for chip irradiation,” vol. 1021. 22nd
Meeting of the International Collaboration on Advanced Neutron
Sources (ICANS XXII), may 2017, pp. 159–164. [Online]. Available:
https://doi.org/10.1088/1742-6596/1021/1/012037

[31] C. Slayman, JEDEC Standards on Measurement and Reporting of
Alpha Particle and Terrestrial Cosmic Ray Induced Soft Errors.
Boston, MA: Springer US, 2011, pp. 55–76. [Online]. Available:
https://doi.org/10.1007/978-1-4419-6993-4\ 3

[32] F. Fernandes dos Santos, C. Lunardi, D. Oliveira, F. Libano, and P. Rech,
“Reliability evaluation of mixed-precision architectures,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 238–249.

[33] P. A. Abdulla, J. Deneux, G. Stålmarck, H. Ågren, and O. Åkerlund,
“Designing safe, reliable systems using scade,” in Leveraging Applica-
tions of Formal Methods, T. Margaria and B. Steffen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 115–129.

[34] P. Rech, L. Pilla, P. Navaux, and L. Carro, “Impact of GPUs parallelism
management on safety-critical and HPC applications reliability,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 455–466.

[35] A. Serrano-Cases, J. Isaza-González, S. Cuenca-Asensi, and
A. Martı́nez-Álvarez, “On the influence of compiler optimizations
in the fault tolerance of embedded systems,” in 2016 IEEE 22nd
International Symposium on On-Line Testing and Robust System Design
(IOLTS), 2016, pp. 207–208.

[36] F. M. Lins, L. A. Tambara, F. L. Kastensmidt, and P. Rech, “Register
file criticality and compiler optimization effects on embedded micro-
processor reliability,” IEEE Transactions on Nuclear Science, vol. 64,
no. 8, pp. 2179–2187, 2017.

[37] M. Demertzi, M. Annavaram, and M. Hall, “Analyzing the effects
of compiler optimizations on application reliability,” in 2011 IEEE
International Symposium on Workload Characterization (IISWC), 2011,
pp. 184–193.

[38] NVIDIA. (2021) NVIDIA CUDA toolkit release notes. [On-
line]. Available: https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/
index.html\#title-new-cuda-libraries

