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Abstract
In this chapter, we present a brief description of compound datasets and
programs developed to serve chemoinformatics as well as, more specifically,
nanoinformatics purposes. Emphasis has been placed on publicly available tools
and particularly on KNIME (Konstanz Information Miner), the most widely used
freely available platform for data processing and analysis. Among a multitude
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of studies that have demonstrated the usefulness of chemoinformatics tools to
chemical and medicinal applications, herein we present indicative cases of five
successful KNIME-based approaches. The first two studies include the risk
assessment of nanoparticles (NPs) through the Enalos InSilicoNano platform,
namely, (1) the prediction of the toxicity of iron oxide NPs and (2) the cellular
uptake prediction of computationally designed NPs with the aid of reliable
quantitative nanostructure–activity relationships (QNAR) models. The third case
study deals with the recognition of organic substances as corrosion inhibitors
though the construction of predictive quantitative structure–property relation-
ships (QSPR) models with Enalos KNIME nodes. Finally, two more cases are
briefly described and involve the accurate prediction of yellow fever inhibitors
from the ChEMBL database and the de novo design of compounds with the
reaction vectors methodology. The aim of this work is to familiarize the interested
reader with the freely available in silico tools in KNIME analytics platform
and to demonstrate their value and effectiveness toward specific computational
applications.

Introduction

Chemoinformatics employs computational methods and information technology
to deal with chemical problems (Leach and Gillet 2007). Current efforts in the
field of drug discovery are particularly concerned with the handling of chemical
structural information so that properties of a ligand are optimized to address
the multiple demands of a potent drug (Brown 1998). Chemoinformatics mainly
emerged due to the enormous amount of data that has been generated by recent
drug discovery attempts, including high-throughput screening and combinatorial
chemistry methodologies (Russo 2002). Chemoinformatics include several model-
ing approaches aiming at successful drug design. For instance, the development
of quantitative relationships between the observed biological activities and the
chemical structures through construction of quantitative structure–activity relation-
ships (QSARs) models and the prediction of ligand-protein structures via docking
approaches are among the most widely used techniques. It is important to highlight
that the methods employed in chemoinformatics are usually developed to handle
large sets of chemical structures and their different properties (usually referred as
molecular descriptors) and thus should be appropriate for big data analysis.

Through the course of the years, the development of chemoinformatics
approaches has been greatly assisted by data mining tools and open-source
software. The recently released curated small-molecule databases are valuable
assets for testing and validating chemoinformatics algorithms and tools (Hu
and Bajorath 2012). There are many databases (either publicly available or
proprietary) containing a number of chemical substances. The size of typical
databases ranges between tens of thousands and millions of compound entries
(Leach and Gillet 2007). The most well used public databases are PubChem
(Wang et al. 2009), ZINC (Irwin et al. 2012), BindingDB (Liu et al. 2007), and
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ChEMBL (Gaulton et al. 2012). ZINC contains the three-dimensional structures of
commercially available compounds, which were constructed to be used in structure-
based virtual screening, while PubChem, BindingDB, and ChEMBL also include
(bio)activity information. Additionally, PubChem provides screening information
data sets (SIDS) and the three-dimensional structures of the majority of the
compounds, and in BindingDB and ChEMBL databases the activities of compounds
can be assembled into relevant classes. Activity classes are of particular usefulness
toward benchmarking of new computational methodologies (Hu and Bajorath 2012).

Recently, virtual databases have been built. Virtual compounds are substances
that have not been observed/synthesized so far, but they could be synthesized. This
broader consideration allows for the construction of even larger virtual libraries
containing billions of compounds (Leach and Gillet 2007).

The release of these important sources of information that can be systematically
explored have boosted the development of many software tools for chemoinfor-
matics that make extensive use of datasets. Among others, software tools have
been particularly emerged to tackle research practices, such as data mining, virtual
screening and machine learning, molecular selectivity analysis, and visualization of
structure-activity relationships (SARs).

In this chapter, we briefly review some of the most popular chemoinformatics
tools with particular emphasis on programs that are either publicly available or at
least free for academic purposes. Since KNIME is the most widely used, freely
available platform for chemoinformatics applications, we will specifically present
tools that have been integrated into KNIME and are offered as KNIME nodes to
execute several important tasks for chemoinformatics analysis. Such applications
include CDK, Indigo, RDKit, Vernalis, CACTVS, Enalos, Lhasa, OpenBabel,
OCHEM, Chemical Identifier Resolver, ErlWood, EMBL-EBI Nodes, and CheS-
Mapper.

Popular Software Tools for Chemoinformatics

Konstanz Information Miner (KNIME) is an open-source analytics platform, which
is the leading tool for wide-ranging data processing, integration, analysis, and
exploration (Berthold et al. 2008). It enables the visual creation of data flows
(so-called pipelines), the selective execution of specified analysis steps, and the
presentation of the results via interactive views on models and data. KNIME offers
intuitive use and high level of scalability, which currently render it the most popular
platform for chemoinformatics applications. Therefore, as already mentioned, this
chapter will be mostly devoted to the description of software tools that employ
KNIME to accomplish their functions.

The Chemistry Development Kit (CDK) is an open-source and development
chemoinformatics software (Steinbeck et al. 2003). In collaboration with the
KNIME group, the CDK nodes for KNIME have been recently developed. These
nodes provide features regarding chemical compound handling, such as several
file conversion applications for molecules, calculation and drawing of 2D and 3D
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structures, symmetry group calculations, fingerprint calculation, proper handling of
hydrogen atoms, and molecular property estimations, among others.

Indigo (developed by GGA Software Services LLC) is a software tool for
organic chemistry (http://lifescience.opensource.epam.com/indigo/). Manipulation
and functionality of organic structures with the Indigo nodes for KNIME can be
obtained through conversions to Kekulé and aromatic states, handling of hydrogen,
molecular properties generation, fingerprint comparison, R-group decomposition,
stereochemistry calculation, and component separation. Additional functionalities
include file conversions among SDF, SMILES, and CML formats; detection of
drawing errors in structures; 2D structure generation; and structure matching.

RDKit (http://www.rdkit.org/) also provides chemoinformatics applications
through KNIME, for instance, substructure filtering and searching, 2D and 3D
structure generation, chemical reactions, molecular fingerprinting, salt separation
from compounds, and R-group decomposition.

Vernalis Research (http://www.vernalis.com/research) employs its KNIME
nodes to assist structure-based and fragment-based drug discovery. It includes
several functionalities, such as flow control, PDB and sequence tools, I/O
applications, matched molecular pairs, and fingerprint properties.

Lhasa Limited nodes for KNIME offer additional operations on the evaluation of
binary classification models and table manipulation (http://www.lhasalimited.org/).

The OpenBabel chemoinformatics package (http://openbabel.org/) is primarily a
file converter toolbox (KNIME chemistry nodes). It can also filter molecular files
with SMARTS and has a wide applicability in analyzing molecular modeling and
bioinformatics data (O’Boyle et al. 2011).

The Online Chemical Modeling Environment (OCHEM) is a platform, which
aims to simplify the procedures for performing QSAR calculations (Sushko et al.
2011). This is achieved through combination of experimental results taken from
a database and a modeling procedure. The database contains thousands of entries
and a user-friendly application environment. The use of current KNIME nodes for
OCHEM is restricted to some running predictions and the data export/import.

KNIME nodes development from ErlWood also offers interpretation and han-
dling of structure-activity relationship data, as well as various compound viewing
facilities (https://tech.knime.org/community/erlwood).

The European Bioinformatics Institute (www.ebi.ac.uk) provides the EMBL-EBI
KNIME nodes, which make use of the Chemical Entities of Biological Interest
(ChEBI) database to obtain database files via ChEBI IDs, substructure, or keyword
searches. ChEBI is a publicly available depository of small chemical molecules.

The visualization node CheS-Mapper (Gutlein et al. 2012) employs the char-
acteristics of small molecule structures to perform clustering according to feature
similarity criteria. 3D structure depiction and embedding of compound datasets are
also supported.

The Chemical Identifier Resolver (CIR, developed by the CADD group at the
National Cancer Institute) nodes for KNIME enable the recognition of a chemical
structure provided that an identifier is known (http://cactus.nci.nih.gov/chemical/

http://lifescience.opensource.epam.com/indigo/
http://www.rdkit.org/
http://www.vernalis.com/research
http://www.lhasalimited.org/
http://openbabel.org/
https://tech.knime.org/community/erlwood
www.ebi.ac.uk
http://cactus.nci.nih.gov/chemical/structure
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Fig. 1 Freely available Enalos KNIME nodes

structure). CIR is a resolver for various structure identifiers and can also convert a
particular structure identifier into another one.

Finally, the functionality of the Enalos KNIME nodes (https://tech.knime.
org/community/enalos-nodes) developed by NovaMechanics Ltd will be briefly
described. Enalos nodes for the KNIME platform are associated with several
important aspects regarding data analysis and curation for chemoinformatics and
nanoinformatics. The Enalos nodes (Fig. 1) among others provide (1) domain-
similarity based on (i) euclidean distances or (ii) leverages, (2) fit quality and
predictive power of a QSAR model with the Model Acceptability Criteria node,
(3) the newly developed fast generation of all possible substitutions of a lead
compound, and (4) calculation of important molecular descriptors with the Mold2
node. Mold2 is able to evaluate large and diverse sets of molecular descriptors from
two-dimensional chemical structure information (Hong et al. 2008). Comparison
of Mold2 descriptors with descriptors calculated from commercial software on
several published datasets showed that Mold2 descriptors yield models with higher
quality than other packages and also produce sufficient structural information.

In the following section, we present three case studies of in silico approaches
developed by our group that involve the utilization of Enalos KNIME nodes for
building predictive models.

Chemoinformatics Studies Using the Enalos KNIME Nodes
and Enalos Cloud Platform

The KNIME analytics platform contains a multitude of processing nodes for data
I/O, modeling, analysis, and data mining. It integrates well with Weka programming
language for machine learning applications. Over the last 30 years, a vast amount
of data has been generated within the areas of chemo-, bio-, and nanoinformatics.
KNIME has emerged as one of the most reliable open-source data mining tools
for the prediction of chemical properties and applications, such as virtual screening
of chemicals and nanoparticles (NPs), chemical library enumeration, virtual library
creation, building QSAR/QSPR, ADMET, and pharmacokinetics models, as well as
prediction of various biological effects of organic compounds and NPs.

http://cactus.nci.nih.gov/chemical/structure
https://tech.knime.org/community/enalos-nodes
https://tech.knime.org/community/enalos-nodes


2206 G. Leonis et al.

In this section, we present three case studies that involve the use of Enalos
KNIME nodes in predicting (i) the toxicity of iron oxide NPs, (ii) the cellular uptake
of organic NPs (virtual screening is also demonstrated), and (iii) the inhibitory
potency of organic substances against corrosion.

In the first two case studies Enalos InSilico platform is also introduced. Enalos
InSilico platform is a Cloud platform built to host a variety of predictive models to
address the need for risk assessment and virtual screening. Workflows included in
Enalos InSilico platform are constructed based on reliable data information, and
each workflow combines advanced in silico tools to yield accurate predictions.
Predictive workflows are available in a user-friendly format and include toxicity,
biological activity, and property evaluation models.

Risk Assessment Tool for the Toxicity Prediction of Iron Oxide
Nanoparticles Through Enalos InSilicoNano Cloud Platform

Nanoparticles (NPs) are known for their unique optical, electronic, and mechanical
properties, which have led to the rapid evolution of nanotechnology materials being
applied in a wide range of commercial, technological, and therapeutic applications
in fields such as environment, industry, defense, electronics, and biomedicine.
The latter has enjoyed great scientific, technological, and commercial progress in
different NP applications (Gajewicz et al. 2012; Cohen et al. 2013).

Along with the apparent increasing use of NPs, concerns on their effect upon
the environment and human health have been raised. Since toxicity assessment of
NPs via traditional experimental routes often require expensive and time-consuming
procedures, computational approaches such as quantitative nanostructure–activity
relationships (QNARs) have been successfully used to predict the toxic effects of
NPs (Vrontaki et al. 2015; Kleandrova et al. 2014a, b; Speck-Planche et al. 2015;
Winkler et al. 2013, 2014; Shao et al. 2013; Toropov et al. 2013). However, the
computational investigation of NP toxicity is seriously hindered by the lack of
available NP descriptors, organized datasets, and systematic experimental data for
NPs. Only few organized datasets on NP toxicity are available so far. Among these
toxicity datasets on nanostructures, metal oxide NP data have been investigated in
several computational studies (Fourches et al. 2010; Liu et al. 2011, 2013a; Puzyn
et al. 2011; Zhang et al. 2012).

A fully validated QNAR model is presented, which was constructed based
on toxicity data of iron oxide NPs with different core, coating, and surface
modifications (Melagraki and Afantitis 2015; Shaw et al. 2008; Liu et al. 2013).
The initial dataset was constructed with 44 iron oxide NPs that comprised a core
with either Fe2O3 or Fe3O4 coating, including cross-linked dextran, PVA, or other,
and various surface modifications (Shaw et al. 2008; Liu et al. 2013). Values
for descriptors such as the size, R1 and R2 relaxivities, and zeta potential along
with a coating-indicative parameter were considered as independent variables for
the model development. The values of the input variables for each NP and the
corresponding toxicity class are shown in Table 1.
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Table 1 NP properties, bioactivity, and predictions

ID NPb Size ZP R1c R2 Coating NHitd Class Prediction Domain

1a NP1 36 �19.9 19 45 Cross-linked dextran 1 Inactive Inactive Reliable
2a NP2 30 �9.22 26 74 Cross-linked dextran 1 Inactive Inactive Reliable
3 NP3 32 5.9 21 54 Cross-linked dextran 3 Inactive Inactive –
4 NP4 74 �2.72 21 153 Cross-linked dextran 2 Inactive Inactive –
5 NP5 27 3.34 17 36 Cross-linked dextran 0 Inactive Inactive –
6a NP6 29 1.95 22 51 Cross-linked dextran 2 Inactive Inactive Reliable
7a NP7 38 �10.1 21 62 Cross-linked dextran 1 Inactive Inactive Reliable
8 NP8 33 �19.5 22 49 Cross-linked dextran 0 Inactive Inactive –
9 NP9 36 �14 19 45 Cross-linked dextran 3 Inactive Inactive –
10 NP10 28 3.24 19 39 Cross-linked dextran 1 Inactive Inactive –
11 NP11 31 �9.46 23 59 Cross-linked dextran 4 Inactive Inactive –
12 NP12 31 3.64 19 49 Cross-linked dextran 17 Active Active -
13a NP14 28 2.34 19 39 Cross-linked dextran 4 Inactive Inactive Reliable
14 NP15 24 �11.7 22 54 Cross-linked dextran 1 Inactive Inactive –
15 NP16 37 0.766 21 52 Cross-linked dextran 2 Inactive Inactive –
16 NP17 38 �20.7 21 62 Cross-linked dextran 3 Inactive Inactive –
17 NP18 38 �9.08 21 62 Cross-linked dextran 0 Inactive Inactive –
18 NP19 31 �3.61 19 49 Cross-linked dextran 8 Active Active –
19a NP20 38 �9.34 21 62 Cross-linked dextran 7 Active Inactive Reliable
20 NP21 28 �9.23 15 40 Cross-linked dextran 4 Inactive Inactive –
21 NP22 36 �21.9 36 122 Cross-linked dextran 2 Inactive Inactive –
22 NP23 31 �6.11 20 45 Cross-linked dextran 3 Inactive Inactive -
23 NP26 40 �12 15 30 PVA 3 Inactive Active -
24a NP27 40 �3.77 15 30 PVA 0 Inactive Active Reliable
25 NP28 40 �7.57 15 30 PVA 5 Active Active -
26 NP29 40 0.25 15 30 PVA 7 Active Active -
27 NP30 40 �6.05 15 30 PVA 5 Active Active -
28 NP31 20 �12.3 0.5 0.5 PVA 4 Inactive Active -
29 NP32 20 �4.22 0.5 0.5 PVA 8 Active Active -
30 NP33 20 �7.15 0.5 0.5 PVA 0 Inactive Active -
31a NP34 20 �4.3 0.5 0.5 Other 13 Active Active Reliable
32 NP35 20 �12.1 0.5 0.5 PVA 8 Active Active -
33 NP36 20 �15.6 0.5 0.5 Other 9 Active Active -
34 NP37 20 �16.1 0.5 0.5 PVA 5 Active Active -
35 NP38 20 �4.7 0.5 0.5 PVA 13 Active Active -
36 NP39 20 �6.47 0.5 0.5 PVA 9 Active Active -
37a NP40 20 �6.54 0.5 0.5 PVA 6 Active Active Reliable
38 NP41 20 �10.8 0.5 0.5 Other 2 Inactive Inactive -
39a NP42 20 �7.7 0.5 0.5 PVA 6 Active Active Reliable
40a NP43 20 �6.75 0.5 0.5 PVA 6 Active Active Reliable

(continued)
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Table 1 (continued)

ID NPb Size ZP R1c R2 Coating NHitd Class Prediction Domain

41 NP45 23 �13.6 29 62 Other 1 Inactive Inactive -
42 NP46 33 �14.5 36 106 Other 1 Inactive Inactive -
43a NP47 28 �9.23 32 60 Other 0 Inactive Inactive Reliable
44a NP48 25 �37 29 49 Other 1 Inactive Inactive Reliable

aTest Set
bThe 44 NPs were obtained from the following studies (Liu et al. 2011; Epa et al. 2012)
cR1: spin–lattice relaxivity; R2: spin–spin relaxivity
dNHit: the number of hits identified for each NP across the 64 bioactivity measures (4 cell lines
X 4 assays X 4 concentrations)

NPs were evaluated with different assays in various cell types and concentrations
that produced a 64-component vectorial metric. Each NP was characterized either
active or inactive according to the number of hits obtained across the 64 bioactivity
measures. For the QNAR developed KNIME workflow, the following steps have
been integrated: (1) data preprocessing, (2) variable selection, (3) model develop-
ment and (4) validation, and (5) determination of domain of applicability [via the
Enalos Domain – Similarity node that defines applicability domain (APD) based
on euclidean distances]. The publicly available set of Enalos KNIME nodes can be
accessed through either the KNIME Community or NovaMechanics website (www.
novamechanics.com/knime.php or www.insilicotox.com/index.php/products/
enalos-knime-nodes-community-contributions/) (Melagraki and Afantitis 2013).

Before model running, the available data were separated into training set and
test set with the partitioning node in KNIME. According to the data in the training
set, the most significant descriptors were selected (Witten et al. 2005; Hall et al.
2009). The NPs used in the validation set were not further employed during model
development. Among all available techniques, the J48 modeling method yielded the
most predictively powerful model for the available data.

The proposed predictive model was validated internally and externally regarding
goodness-of-fit, robustness, and predictivity, thus totally meeting the criteria recom-
mended by the Organization for Economic Cooperation and Development (OECD).

To validate the performance of the model, the following parameters were
considered (Afantitis et al. 2011; Mouchlis et al. 2012):

Precision D TP= .TP C FP/

Sensitivity D TP= .TP C FN/

Specificity D TN= .TN C FP/ and

Accuracy D .TP C TN/ = .TP C FP C FN C TN/ ;

where TP true positive, FP false positive, TN true negative, and FN false negative.

www.novamechanics.com/knime.php
www.novamechanics.com/knime.php
www.insilicotox.com/index.php/products/enalos-knime-nodes-community-contributions/
www.insilicotox.com/index.php/products/enalos-knime-nodes-community-contributions/
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The confusion matrix is presented below:

Positive predicted Negative predicted

Positive observed (Active) TP FN
Negative observed (Inactive) FP TN

Table 2 Confusion matrix (training set)

Positive predicted Negative predicted

Positive observed (Inactive) 16 0
Negative observed (Active) 4 11

Table 3 Confusion matrix (test set)

Positive predicted Negative predicted

Positive observed (Inactive) 7 1
Negative observed (Active) 1 4

Additionally, the Y-randomization test demonstrated the robustness and the
statistical significance of the predictive model.

The ability to perform virtual screening of NPs that were not originally included
in the dataset is particularly important, especially if there is an indication on its
reliability. For this purpose, it is crucial to determine the limits of the model’s
domain of applicability. This will identify NPs that are excluded from the area of
reliable predictions of the proposed model.

In this work, the Enalos Domain-Similarity node calculated the domain of
applicability using euclidean distances to estimate the similarity between NPs
belonging to the training and test sets. More details on the domain of applicability
calculation can be found elsewhere (Melagraki and Afantitis 2013; Afantitis et al.
2008; Tropsha 2010).

Based on the reported toxicity data for the 44 iron oxide NPs used in this study,
31 compounds were included in the training set while the other 13 in the test set. As
mentioned above, subsequent model development was based on the NP structures
of the training set. For the NPs, experimental parameters such as the size, R1 and
R2 relaxivities, and zeta potential were combined with a coating-specific parameter
and were used as inputs for the model development. The three coating categories
which have been considered are: PVA, cross-linked dextran, and other. Among the
above descriptors, the subset that best describes the variation of toxicity with NP
properties (as demonstrated by the variable selection algorithm) includes the R1
and R2 relaxivities and coating.

After the model development from the training data was achieved, the toxicity
prediction for the test set followed. Observed classes and predictions for the 44
NPs of the initial set are shown in Table 1. Confusion matrices for the training
and the test sets are shown in Tables 2 and 3, respectively. The evaluation of the
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performance of the training set yielded: precision D 80 %, sensitivity D 100 %,
specificity D 73.3 %, and accuracy D 87.1 %. Regarding the test set, the respective
parameters are: precision D 87.5 %, sensitivity D 87.5 %, specificity D 80 %, and
accuracy D 84.6 %.

The applicability domain was defined for NPs within the test set and the cutoff
value was estimated to be 0.906. For all structures of the test set, values range
from 0 to 0.448, therefore, all predictions are considered reliable. The above set
of validation measurements highlights the accuracy, significance, and robustness of
the produced model.

The predictive workflow is publicly available via the Enalos Cloud platform. In
silico design and screening may be performed through the Enalos Cloud platform by
visiting the iron oxide model web page (enalos.insilicotox.com/QNAR_IronOxide_
Toxicity/). The user can initiate a prediction by either manually entering the selected
NP properties (e.g., zeta potential, size etc.) or by importing a CSV file (.csv) with
NP properties for high-throughput virtual screening (HTVS) (Scheme 1).

When properties are uploaded for a set of NPs and the input values have been
included, the predictive model is used and a prediction is obtained. The generated

Scheme 1 Screenshot of Enalos iron oxide platform input page

enalos.insilicotox.com/QNAR_IronOxide_Toxicity/
enalos.insilicotox.com/QNAR_IronOxide_Toxicity/
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Scheme 2 Screenshot of Enalos QNAR iron oxide toxicity platform results

output provides a summary of the results in a pdf-like format or a CSV file, which
contains all relevant information for further analysis (Scheme 2). The results include
predicted values for each nanostructure and a notification on the reliability of
predictions based on the domain of applicability limits.

As already mentioned, the Enalos Cloud platform allows the performance of
a preliminary in silico testing by virtually screening a set of NPs, based on the
validated model. The predictive QNAR model described here can be accessed at the
web page of Enalos QNAR Iron Oxide Toxicity Platform (http://enalos.insilicotox.
com/QNAR_IronOxide_Toxicity/).

This study outlines Enalos InSilico platform as a useful tool to facilitate the
computer-aided NP design by acting as a source of toxicity prediction for novel
NPs.

Cellular Uptake Prediction and Virtual Screening of Nanoparticles
via Enalos InSilicoNano Platform

In this section, a validated quantitative nanostructure–activity relationships
(QNAR) model that can predict the cellular uptake of organic nanoparticles is
presented (Melagraki and Afantitis 2014). The model is publicly available through
Enalos InSilico Cloud platform in the QNAR_PaCa2 web page (http://enalos.
insilicotox.com/QNAR_PaCa2/) and can be used for new-structure predictions
that are designed and/or uploaded to the server. The Enalos InSilico web service
functionality was successfully used for the virtual screening of a set of PubChem
structures, which were selected to recognize structures similar to that of a known
active compound. The model was based on Mold2 descriptors and the k-nearest
neighbors (kNN) algorithm.

http://enalos.insilicotox.com/QNAR_IronOxide_Toxicity/
http://enalos.insilicotox.com/QNAR_IronOxide_Toxicity/
http://enalos.insilicotox.com/QNAR_PaCa2/
http://enalos.insilicotox.com/QNAR_PaCa2/
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The selected engineered NPs (ENPs) used for model development, possess
the same metal core but different organic coating (Weissleder et al. 2005). The
model building was based on a KNIME workflow, especially designed for this
purpose. Initially, for the development of the model, all data including organic
molecules and cellular uptake values were preprocessed and randomly divided
into training set (89 compounds, which were used in the model development) and
validation (25 compounds) set. The Enalos Mold2 KNIME node was used for the
calculation of 777 descriptors for each compound. During the correlation analysis
some descriptors were eliminated, thus leaving 382 of them to be used as inputs for
the QNAR model development.

Next, the CfsSubset variable selection with BestFirst evaluator method was
applied to identify nine descriptors as the most representatives of the structural
features that define the biological profile of the studied NPs.

The nine descriptors are: (D461) Geary topological structure autocorrelation
length-7 weighted by atomic van der Waals volume, (D467) Geary topological
structure autocorrelation length-5 weighted by atomic Sanderson electronegativi-
ties, (D599) number of total quaternary C-sp3, (D649) number of group secondary
aliphatic amines, (D712) number of group donor atoms for hydrogen bonds, (D714)
number of group CH3R and CH4, (D753) number of group phenol or enol or
carboxyl OH, (D758) number of group Al2–NH, and (D775) hydrophilic factor
index. The physical meaning of the above descriptors can be found in the original
publication (Melagraki and Afantitis 2014). The optimized value of k within kNN
application was 2 (Franco-Lopez et al. 2001).

The proposed model was successfully validated with the methodology applied in
the previous section. The validation results are shown in Fig. 2.

The R2
LOO was calculated to be 0.74. Also, the Y-randomization test verified

the model’s robustness and statistical significance. The decreased values of the
correlation coefficient indicate the low possibility of chance correlation.

After the model was validated, the reliability of a given prediction was suggested
through domain of applicability calculations (cutoff value D 2.153) (Mouchlis et al.

Fig. 2 Model evaluation summary results
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2012; Zhang et al. 1995; Papa et al. 2009). It was concluded that the proposed model
requires only the structural information from the organic compounds involved and
was confirmed to be accurate and reliable within applicability limits. Thus, the
model could be considered a useful tool toward cellular uptake determination of
NPs.

The model was made available online through Enalos InSilico platform for fast in
silico predictions for a set of given compounds. Screenshots of the Enalos InSilico
web service and the results page are presented in Schemes 3 and 4.

Scheme 3 Screenshot of Enalos InSilico platform input page for QNAR_PaCa2 model

Scheme 4 Screenshot of Enalos InSilico platform results for QNAR_PaCa2 model
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As shown in Schemes 3 and 4, the user can design or enter a chemical structure
and obtain a prediction. The aforementioned workflow will calculate the descriptors
and the output will be rapidly generated (within seconds). One may experiment with
different scaffolds and structures and observe the structural features that induce a
certain effect. Also, the user can exploit the proposed QNAR model and then scan
specific structures for a preliminary in silico testing. In this way, it is possible to offer
QSAR/QNAR results for immediate sharing and implementation. It was recently
pointed out (Tetko 2012) that the use of predictive models as software tools will
probably increase in the future, and this will activate the reuse of knowledge, which
in turn will result in further developments.

As already mentioned, the proposed model and web platform can be used in
virtual screening studies for the prioritization of new compounds. To demonstrate
the usefulness of the produced model, potent compounds from the PubChem
database were identified using similarity calculations based on molecular quantum
numbers (MQNs) (Melagraki and Afantitis 2014). The virtual screening procedure
was employed for the recognition of the first 1000 neighbors of compound 36
(isatoic ahydride), in terms of chemical similarity. The 1000 resulting compounds
were tested with the online tool through Enalos InSilico platform (via an sdf file,
which contains all the structures) regarding their cellular uptake. Compounds were
next classified by increasing potency and the most promising ones were selected for
screening. The predictions for the first 20 compounds are shown in Table 4.

Within the proposed framework, the Enalos InSilico platform emerges as an
invaluable application for the evaluation of novel NPs, which have not been exper-
imentally tested or synthesized. An additional, important aspect of the approach is
that the above tools can be further expanded and applied to polymer–NP structures
that are currently gaining increasing attention.

Identification of Organic Materials as Corrosion Inhibitors Based
on Enalos KNIME Nodes

One of the most efficient ways to prevent metal corrosion in acidic media is the
development of novel corrosion inhibitors (Ebenso et al. 2012). Organic inhibitors,
which contain heteroatoms (e.g., oxygen, nitrogen, sulfur) and possess multiple
bonds, have been considered for various corrosion systems, metals, and alloys.
Inhibition is obtained with creation of physical and/or chemical absorption film on
the surface of the metal (El Ashry et al. 2012). The planarity of heterocycles and the
presence of lone electron pairs on the heteroatoms are crucial factors that control
the absorption of these compounds on the metallic surface.

One drawback regarding the design of corrosion inhibitors is the time-consuming
and costly nature of the process. On the other hand, computational techniques,
such as the quantitative structure–property relationships (QSPR) methodology has
greatly advanced the efficient modeling and prediction of new or modified corrosion
inhibitors (Lee et al. 2012; Toropov et al. 2012).
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Table 4 Virtual screening results for the most promising compounds in PubChem database

ID Compound

Predicted value
PaCa2 cellular uptake
(log10 [NP]/cell)

Domain of applicability
(limit: 2.153)

679 O
N

HN

O 4.41 0.03

604 4.41 0.01

958 4.41 0.06

676 4.40 0.01

678 4.40 0.05

677 4.39 0.02

107 4.39 0.02

368 4.38 0.10

293 4.37 0.09

493 4.37 0.10

(continued)
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Table 4 (continued)

ID Compound

Predicted value
PaCa2 cellular uptake
(log10 [NP]/cell)

Domain of applicability
(limit: 2.153)

494 4.37 0.10

550 4.36 0.11

196 4.35 0.06

200 4.35 0.06

626 4.35 0.06

602 4.35 0.06

981 4.34 0.10

925 4.34 0.10

192 4.34 0.06

65 4.34 0.05
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In this study, the modeling and prediction of corrosion inhibition for steel in
acidic environment through the development of QSPR with the aid of the Enalos
KNIME nodes is described (Berthold et al. 2008; Melagraki and Afantitis 2013).
The development of a predictive kNN model was realized by first calculating Mold2
molecular descriptors for the organic inhibitors with the Enalos Mold2 KNIME
node. The predictive model was assessed with the Enalos Model Acceptability
Criteria KNIME node. The domain of model applicability was determined using
the Enalos Domain KNIME nodes.

Corrosion inhibition data for steel in acidic medium from various organic
chemicals were collected from the literature (El Ashry et al. 2012) and were assem-
bled in a single database. Inhibitors involve triazole, oxadiazole, and thiadiazole
derivatives; aromatic hydrazides and Schiff bases; benzimidazole and 2- substituted
derivatives; as well as pyridine derivatives. A set of 55 organic inhibitors in different
concentrations yielded a total of 186 inhibition data.

The structural features of the studied corrosion inhibitors were evaluated with
the Mold2 software. A total of 777 descriptors were initially calculated for each
compound based on topological, geometrical, and structural criteria. From these,
only 320 descriptors were used as possible inputs for the construction of the QSPR
model, since the remaining descriptors were filtered out due to poor discrimination
power (Ojha and Roy 2011).

Among the different modeling methodologies screened in KNIME platform, the
k-nearest neighbors (kNN) technique (with an optimized value k D 3) was selected
as the most appropriate for the specific data (Hall et al. 2009). Details on the kNN
algorithm and methodology can be found elsewhere (Franco-Lopez et al. 2001).

The predictive model was validated internally and externally according to the
standards of QSAR model acceptance, as imposed by the OECD. The complete
dataset was randomly split into 70:30 ratio (training set: validation set) with the
partitioning KNIME node. The combinations in the test set did not participate
in the training procedure. The statistical criteria that were used to determine the
robustness, reliability, and predictive ability of the model are: the coefficient of
determination between experimental values and predicted values (R2), validation
via external test set, leave-one-out cross validation procedure and quality of fit and
predictive ability of a continuous QSAR model based on Tropsha’s tests (Tropsha
2010). The statistics of the validation procedure are shown in Table 5.

Table 5 Statistical
parameters of the QSPR
model

R2 training (n D 131) 0.96

RMSE training 4.90
R2

LOO 0.73
R2pred (nD55) 0.84
RMSEpred 9.83
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The predictive scheme included a KNIME workflow, which operated the follow-
ing actions:

1. Compounds along with corrosion inhibition data were uploaded and prepro-
cessed.

2. The calculation and selection of descriptors was realized.
3. The kNN methodology was carried out.
4. The produced model was validated.
5. The domain of applicability was determined.

The initial dataset of 186 corrosion inhibitors was randomly divided into
131 training set compounds and 55 validation set compounds (ratio 70:30). As
mentioned above, only compounds from the training set were used to develop the
QSPR models, and 320 descriptors were selected as possible inputs during the
development.

The CfsSubset variable selection with the BestFirst evaluator method (Witten
et al. 2005) was next applied on the training set to identify the most significant
among the 320 descriptors. Thus, the concentration along with seven descriptors
was selected as the most important parameter for the model development.

The selected descriptors include number of oxygen (D026), structural infor-
mation content order-1 index (D282), Geary topological structure autocorrelation
length-8 weighted by atomic Sanderson electronegativities (D470), Moran topolog-
ical structure autocorrelation length-7 weighted by atomic polarizabilities (D509),
lowest eigenvalue from Burden matrix weighted by van der Waals order-6 (D545),
highest eigenvalue from Burden matrix weighted by van der Waals order-4 (D575),
number of group Ar-CHDX (D741), and the concentration (C in mM).

The description of the selected descriptors will be briefly discussed below
(Todeschini and Consonni 2009).

A combination of the descriptors offers a unified representation of the compound
and high selective power. Descriptors D026 and D741 indicate the number of oxy-
gen atoms and Ar-CHDX groups that may be present in the compound. Descriptor
D282 encodes the structural information content order-1 index. This descriptor
represents a graph theoretical invariant, which considers the molecular graph as
being a source of different probability distributions, to which the information theory
is applied (Todeschini and Consonni 2009). D470 encodes information as described
by Geary topological structure autocorrelation length-8 weighted by atomic Sander-
son electronegativities. The Geary index denotes spatial autocorrelation and is a
distance-type function which varies from zero to infinite. D509 encodes information
regarding the atomic polarizabilities combined with Moran topological structure
autocorrelation length-7. Moran coefficient (value range between �1 and C1)
indicates the spatial autocorrelation and is associated with atomic properties, the
number of atoms, and the topological distance between them. Descriptors D545 and
D575 represent the lowest eigenvalue from Burden matrix (Burden 1989) weighted
by van der Waals order-6 and the highest eigenvalue from Burden matrix weighted
by van der Waals order-4, respectively (Burden et al. 2009). Burden descriptors
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weighted by van der Waals have been shown to be very selective descriptors and
in turn useful for similarity searching (Todeschini and Consonni 2009).

The above descriptors are associated with different weights that affect the
corrosion inhibition across compounds. Therefore, according to the positive or
negative impact of each descriptor, novel compounds with specified properties may
be designed.

After comparison with the results from other methodologies (Melagraki and
Afantitis 2013), it was concluded that the kNN approach yielded an accurate
and powerful model that reliably predicts the efficiency of corrosion inhibition.
Then, one may safely conclude that the selected descriptors encode the structural
characteristics of the substances related to corrosion inhibition.

The experimental vs. predicted corrosion inhibition values for the training set and
test set compounds are shown in Fig. 3. Outliers have been indicated and presented
in the original article (Melagraki and Afantitis 2013).

The Enalos Model Acceptability Criteria KNIME node has been applied to
the data (Fig. 4) and the model passed Tropsha’s requirements for predictive
ability.

R2 is the determination coefficient between experimental and predicted values
and model prediction on the test set (R2

pred). The model was particularly stable
with respect to the inclusion/exclusion of compounds measured by the leave-one-
out (LOO) cross validation procedure (R2

LOO D 0.73).
Another measure of robustness and statistical significance of a QSPR model

is the Y-randomization test, which further validated our approach. An addi-
tional validation test was conducted to evaluate the predictive power of the
method independently of the partitioning of the dataset (Melagraki and Afantitis
2013).
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Fig. 4 Enalos Model Acceptability Criteria KNIME node screenshot

Fig. 5 Distribution of the RMSE values (100 random splits)

The distribution of the root mean squared error (RMSE) values is shown in Fig. 5.
The applicability domain cutoff value was estimated to be 3.774 and 0.183 for

similarity (Mouchlis et al. 2012) and leverage (Afantitis et al. 2008) calculations,
respectively. Similarity calculations for all compounds in the test set had values
which range between 0.015 and 1.23. However, the leverage predicted response of
a simple pyridine (0.378) resulted from a significant model extrapolation, and it is
the only prediction that may be considered unreliable.

The present approach, due to its high predictive power and the minimal require-
ment of only 2D structure information of a compound, could be a very useful
tool for the determination of the corrosion inhibition. Moreover, this modeling
method considerably decreases the time and cost required to experimentally design
corrosion inhibitors. Also, the method may be applied to the screening of regular
or virtual chemical databases, thus seeking new organic compounds with specific
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properties. For this purpose, the applicability domain will be an invaluable tool for
discarding “divergent” chemical structures.

KNIME-Based Design and Prediction of Compound Structures

The broad applicability of KNIME in the area of medicinal and pharmaceutical
chemistry has also rendered it a valuable tool for structure prediction and analysis.
Thus, KNIME workflows have been implemented over the years to perform drug
design, virtual screening, molecular modeling, QSAR, QSPR, structure classifica-
tion, and clustering applications among others.

In this section, we present two KNIME applications regarding the prediction of
yellow fever inhibitors and a knowledge-based method for the de novo design of
novel compounds.

Prediction of Yellow Fever Inhibitors from ChEMBL Database
Through KNIME Classification Analysis

Yellow fever (YF) is an acute infection, which is transmitted by arthropods and
mosquitoes to humans (Agnihotri et al. 2012), and is caused by the mosquito-
borne yellow fever flavivirus (YFV). The family of flaviviruses also includes other
RNA viruses, such as the hepatitis C virus (HCV), the dengue virus (DENV), the
West Nile virus (WNV), the Japanese encephalitis virus (JEV), and the bovine viral
diarrhea virus (BVDV) among others (Agnihotri et al. 2012; Julander 2013).

YFV is a major health risk in particular regions of South America and Africa
since almost 200,000 new infections and 30,000 deaths are observed every year
(Chatelain et al. 2013); importantly, the fatality rate may reach 60 % in severe cases.

Currently, several regular antiviral drugs have been tested against YF disease,
but no chemotherapeutic medication has been developed to specifically target YFV.
An anti-YFV vaccine (17D) is used to prevent the infection; however, it has been
observed to cause systemic infections and side effects in some patients (Julander
2013).

Therefore, computational approaches, such as virtual screening and modeling
are particularly suitable to assist the discovery of new anti-YFV compounds. In this
context, Moorthy and Poongavanam collected a number of compounds from the
literature that were found (experimentally or computationally) to inhibit the YFV
and employed them for the development of KNIME classification models using the
Naive Bayes approach (Narayana Moorthy and Poongavanam 2015).

For this purpose, a set of 379 YFV inhibitors were collected from the ChEMBL
database (https://www.ebi.ac.uk/chembl/). After the initial treatment of the data
(namely, salt removal, 3D structure generation, and energy minimization of the
structures), 30 two-dimensional descriptors of the compounds were calculated
with the CDK tool as implemented in KNIME (Berthold et al. 2008; Beisken
et al. 2013). In total, 16 classification models were developed using the Weka

https://www.ebi.ac.uk/chembl/
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data mining software (Hall et al. 2009). The first 12 models refer to individual
datasets, while models 13–16 were developed from a combined dataset, which
contained 309 compounds. Before the development of the models, the dataset
was partitioned into training (65 %) and test (35 %) set based on a sampling
consideration that distributes the inhibitors and noninhibitors evenly between sets.
The inhibitor definition was restricted to specific activity criteria (i.e., IC50 �

10 �M for inhibitors; IC50 > 10 �M for noninhibitors). The quality of models
was investigated through various activity thresholds (10, 30, 50, and 100 �M)
and statistical parameters, such as the sensitivity, specificity, G-mean, Matthew’s
correlation coefficient (MCC), and overall accuracy.

Principal component analysis (PCA) revealed that the dataset does not con-
tain distinct clusters and its diversity is adequately represented by the training
set. Despite the presence of some outliers, it was observed that they were not
structurally similar whatsoever. Additionally, it was shown that the majority of
inhibitors is highly affected by the topological polar surface area (TPSA) and polar
bonds. This indicated the more hydrophobic nature of noninhibitors compared to
inhibitors.

The BestFirst attribute selection module of Weka was employed to select a set of
24 physicochemical descriptors in order to construct the Naive Bayes classification
models for YFV inhibition. It was shown that the six datasets (activity cutoff 30 �M)
perform equally well with an overall accuracy for the test set being >75 %.

The model quality (based on MCC) was higher for all datasets except for
one, which performed poorly. Models derived from all datasets were statistically
significant with MCC and G-mean values >0.7. The significance of the dataset was
also verified by the high F–score values (>0.8), while sensitivity and specificity
parameters were >0.75 for most models. The F–score is calculated through the
following equation:

F–score D
Precision � Sensitivity

Precision C Sensitivity
(1)

Also, the predictive ability of the scheme was investigated by combining all the
datasets into one. Thus, 70 compounds (Krečmerová et al. 2007) were used in the
test set, while the remaining 309 compounds were combined into one dataset to
train the model. It was observed that an activity cutoff of 50 �M yields a relatively
good accuracy. Despite that models developed by different activity thresholds (10
or 30 �M) were successful in distinguishing inhibitors (>90 %) from noninhibitors
( 65 %), they lacked a balanced class distribution (predicting adequately both classes
instead of predicting accurately only one), which clearly affects the quality of
the model. Therefore, new models were constructed based on the 309 compounds
set (200 compounds in the training set, 109 compounds in the test set). From
the models for each activity threshold (10, 30, 50, and 100 �M), one model (at
50 �M) displayed superior performance over the others. That is, it predicted 92 % of
inhibitors and 78 % of noninhibitors with a MCC coefficient of 0.71, and a G-mean
score (0.84), which reflects the high quality. Finally, the best YFV inhibition model
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(at 50 �M) was implemented into KNIME workflow to become freely available for
use in medicinal chemistry applications.

De Novo Design of Synthetically Feasible Compounds Through
the Reaction Vectors Approach

Early attempts to develop successful de novo design programs for compounds have
been seriously hampered by the unfeasible synthesis of the proposed structures
(Boda and Johnson 2006; Lewis and Leach 1994; Schneider and Fechner 2005;
Gillet and Johnson 1998). More recent approaches that may facilitate synthetic
routes generate a fixed set of transformations, which are in turn applied to starting
structures to generate new molecules (Fechner and Schneider 2006, 2007; Lameijer
et al. 2006; Schürer et al. 2005; Vinkers et al. 2003). However, these methods are
usually restricted by the limited number of “reactions” that can be performed.

Reaction-like methodologies have been used in QSAR and data mining studies.
For instance, the “matched molecular pairs” scheme (Leach et al. 2006) evaluates
the change of a property with respect to a single structural change. Similar
approaches perform clustering of molecule pairs according to descriptor difference
vectors, which are constructed by subtracting the vector representation of the
“product” molecule from the vector representation of the “reactant” molecule
(Sheridan et al. 2006). Therefore, the pairs of molecules which belong to the same
cluster represent similar transformations. Thus, changes in activities associated
with the pairs may be used to estimate the effect of a particular transformation on
activity.

A knowledge-based approach regarding the de novo design of compounds based
on reaction vectors has been proposed by Patel et al. (Patel et al. 2009). The method
of reaction vectors is related to the descriptor difference vectors approach (Sheridan
et al. 2006) and characterizes the structural changes, which occur at the reaction
center.

The authors’ flexible procedure enabled the automatic collection of ever-
increasing data on reactions, which are available in several databases. Reaction
vectors could be applied to novel starting molecules through a structure generation
algorithm to predict new structures. Each applied transformation is derived from a
reactions database, and since it is associated with a reaction from the literature, one
may be confident toward the synthetic feasibility of the proposed molecules. The
vectors are automatically collected from a set of reactions, which is not restricted
by size or reaction type, therefore without involving any complex reaction strategy.

The principle of the method is the utilization of the information taken from a set
of reactions (parent reactions) in deriving reaction vectors. Reaction vectors are used
to describe the reaction environment as well as changes at the reaction center. Then,
the reaction vectors are extracted from the knowledge base and may be applied to
input starting materials in order to predict new product compounds for synthesis. In
some cases, successful predictions may require the operation of a reaction vector to
a second starting molecule.
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In the past years, reaction vectors have been used to search and classify
chemical reactions (Broughton et al. 2003). As already mentioned, a reaction vector
represents the changes that occur during a reaction. This is described in a descriptor
scheme that is enhanced in the products (positive descriptors, they represent bonds
gained in products) and is diminished from the reactants (negative descriptors, they
represent bonds lost from reactants). In de novo design, the practical role of reaction
vectors is to propose synthetic ways to new compounds by achieving a balance
between specificity and generality. Namely, the reaction vectors should be specific
enough in order to avoid their application in environments which disfavor the course
of a reaction, but encoding part of the environment will hamper their ability to
generate novel structures. It was shown that such a balance may be obtained by
combining atom pairs separated by one and two bonds (Patel et al. 2007). The
reaction vectors employed by Patel et al. are modifications of the original descriptors
developed by Carhart et al. (1985). More detailed information on reaction vectors
can be found in Patel et al. and references therein (Patel et al. 2009).

The authors revealed that many reactions in the Lilly database are incomplete,
and they implemented a reaction cleaning algorithm to overcome this drawback.
The reaction cleaning algorithm is applied to the reactions before calculating the
atom pair descriptors for the reactants and products. The reaction vector is next
calculated as follows:

D D P–R (2)

where D is the reaction vector, P is the product vector (the sum of the vectors
of individual products), and R is the reactant vector (the sum of the vectors of
individual reactants). The algorithms have been implemented with the aid of the
JoeLib toolkit (joelib.sourceforge.net/) with the de novo design tool available in
KNIME.

The de novo design algorithm was validated internally by reproducing reactions
in the Lilly database and externally by reproducing the already known synthetic
pathways of two drugs. Internal validation was achieved by generating 90 % of
the known parent products for each reaction in a dataset containing 5695 reactions
and 2866 reaction vectors. The external validation involved the syntheses of the
intermediate of the antithrombotic drug (S)-(C)-clopidogrel bisulfate (Wang et al.
2007) and the antidepressant venlafaxine (Kavitha and Rangappa 2004). In each
case, the products were successfully generated using a 5839 reagents set and a
dataset, which comprised 24,418 reactions and 16,859 reaction vectors. The reaction
vectors procedure was successful in reproducing the known synthetic routes for
both drugs; however, it was suggested that this approach also yields quite a few
alternative products.

The applicability of the algorithm to de novo design was demonstrated in three
cases: (1) the ability of a reaction vector to generate novel and diverse products
as regards the parent reaction, (2) prediction of analogs of a lead compound, and
(3) application to the enumeration of a compound library.

joelib.sourceforge.net/
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In the first case, 10 reactants were randomly selected from the smaller (2866
vectors/5695 reactions) dataset and were input to the de novo design tool. Products
were generated employing the 16,859 reaction vectors from the larger dataset.
Structures containing more functional groups than others usually yielded more
solutions, therefore, the number of products that were created lies within 0 and 44.
Moreover, the average similarities between predicted compounds and products of
the parent reactions vary significantly (0.15–0.96). It is therefore suggested that the
diversity of the products depends on both the starting molecule and the entries in
the reaction database.

Next, the predictive power of the algorithm in lead optimization cases was
explored by considering drugs as starting compounds and generating products
after single-step transformations. The products were assumed to be syntheti-
cally feasible if they were identified upon search in SciFinder Scholar. The
procedure was based on penicillin G, Prozac, and aspirin (starting structures)
and was performed with the larger set of reaction vectors (16,859) and the
5839 reagent set as described above. Penicillin G was associated with the most
potential products (24), while 20 and 12 products were generated for Prozac
and aspirin, respectively. The reaction vector methodology was shown to realize
the generation of synthetically accessible molecules that share close structural
similarities with a parent compound. Thus, this approach could be particularly
valuable in structure-activity relationship (SAR) studies by proposing structures for
synthesis that explore sufficiently the conformational space around a known lead
compound.

Finally, the proposed methodology can be used to construct a virtual library of
products by listing all possible products from a single reaction employing a specific
set of reagents. For instance, the authors used 6-bromoquinoxalin-2-one as starting
material, 628 boronic acids as the reagents (extracted from the ACD), and a Suzuki
coupling reaction to construct an enumerated library with 292 compounds. It was
shown that this scheme may be used to direct a parallel synthesis route according to
a single reaction with varying reagents.

Moreover, the way the reaction vector methodology recognizes the environment
of a reaction is clearly demonstrated. For the transformation that is applied, there
is a literature precedence, and thus a high level of confidence is achieved regarding
the completion of the reaction. However, this requires that complete coverage of
a generic reaction has been obtained through adequate examples in the reaction
database.

The approach has been implemented in KNIME and this allows the facile
customization of the procedure for a variety of applications. Overall, the usefulness
of the proposed algorithm is to provide sets of molecules, which are associated with
multiple purposes, and at the same time being synthetically feasible.
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