Published August 3, 2021 | Version 0
Dataset Open

Materials for Design Open Repository. High Entropy Alloys

  • 1. AIMEN Technology Centre , C/ Relva, 27 A. Torneiros - 36410 Porrino - Pontevedra, Spain

Description

The current dataset is composed of a collection of High Entropy Alloys (HEAs). It contains the alloy composition, the number of chemical elements (No), the phase in a simple form (S_Phase), where 4 classes of phases were considered, namely amorphous (AM), intermetallic (IM), solid solution (SS), and solid solution + intermetallic (SS+IM). It contains also a second phase column (Phase), where we added the type of phase present in alloys with SS and repeated the S_Phase entry for the other cases. We have calculated 13 design parameters (see their definition below) used to design HEAs, known as the parametric approach. Finally, a set of columns containing the chemical elements and their corresponding fraction in the alloy is included. This dataset was developed in the framework of the European project ACHIEF for the discovery of novel materials to be used in industrial processes.

  1. Mean atomic radius a (Å)
    • \(a = \displaystyle\sum_{i=1}^{n} c_i r_i\)
  2. Atomic size difference δ
    • \(\delta = \sqrt{\displaystyle\sum_{i=1}^{n} c_i \bigg(1 - \dfrac{r_i}{a} \bigg)^2}\)
  3. Average melting temperature Tm (K)
    • \(T_m = \displaystyle\sum_{i=1}^{n} c_i T_{mi}\)
  4. Average melting temperature standard deviation (K)
    • \(\sigma_{T_m} = \sqrt{\displaystyle\sum_{i=1}^{n} c_i \bigg(1 - \dfrac{T_{mi}}{T_m} \bigg)^2}\)
  5. Mixing enthalpy ΔHmix (kJ/mol)
    • \(\Delta H_{mix} = 4 \displaystyle\sum_{i \neq j} c_i c_j H_{ij}\)
  6. Mixing enthalpy standard deviation (kJ/mol)
    • \(\sigma_{\Delta H_{mix}} = \sqrt{\displaystyle\sum_{i \neq j} c_i c_j (H_{ij} - \Delta H_{mix})^2}\)
  7. Ideal mixing entropy Sid (R)*
    • \(S_{id} = \Delta S_{mix} = -R \displaystyle\sum_{i=1}^{n} c_i \ln c_i\)
  8. Electronegativity χ
    • \(\chi = \displaystyle\sum_{i=1}^{n} c_i \chi_i\)
  9. Electronegativity difference in a multi-component alloy system
    • \(\Delta\chi = \displaystyle\sqrt{\sum_{i=1}^{n} c_i(\chi_i - \chi)^2}\)
  10. Valence electron concentration VEC
    • \(VEC = \displaystyle\sum_{i=1}^{n} c_i \cdot VEC_i\)
  11. Valence electron concentration standard deviation
    • \(\sigma_{VEC} = \sqrt{\displaystyle\sum_{i=1}^{n} c_i (VEC_i - VEC)^2}\)
  12. Mean bulk modulus (GPa)
    • \(K = \displaystyle\sum_{i=1}^{n} c_i K_i\)
  13. Bulk modulus standard deviation (GPa)
    • \(\sigma_{K} = \sqrt{\displaystyle\sum_{i=1}^{n} c_i (K_i - K)^2}\)
  14. Young's modulus E (GPa)
    • \(E = \displaystyle\sum_{i=1}^{n} c_i E_i\)
  15. Shear modulus G (GPa)
    • \(G = \displaystyle\sum_{i=1}^{n} c_i G_i\)

where n is the number of components in the alloy system, ci is the stoichiometric ratio, ri is the atomic radius, Tmi is the melting temperature, χi is the Pauli electronegativity, VECi is the valence electron concentration, and Ki is the bulk modulus, Ei is the Young's modulus, and Gi is shear modulus for the i-th component of the alloy. Hij is the binary mixing enthalpy in the liquid phase, and R is the gas constant.

*Note: the ideal mixing entropy Sid units in the first version of the dataset appear as kJ/mol, but they should be written in terms of the gas constant R, e.g., the compound Ag2Al has Sid = 0.636 R, where R = 8.314 J · K−1 · mol−1. The second version the Sid units are corrected and two new features are included.

Files

Files (998.8 kB)

Name Size Download all
md5:6601fd468730bac58a39996f7fdc8fb4
447.7 kB Download
md5:63ca9a8f90d8d0e4341f44e5767a439a
551.1 kB Download

Additional details

Funding

ACHIEF – Innovative high performance Alloys and Coatings for HIghly EFficient intensive energy processes 958374
European Commission