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Abstract. The logarithms of John Napier (1614) and Henry Briggs
(1617) were landmarks in the history of mathematics, and their
work is well known to math historians, but not so much to math-
ematicians who learn calculus from modern texts. This is odd be-
cause so many of the basic ideas of analysis are directly related to
arithmetic techniques and concepts they employed or anticipated
without calculus, and they can all be explained in algebraic terms
with limiting values that are evident from calculus.

Napier called his logarithms wonderful, and they are. Napier’s
arithmetic model of continuous motion set up speed as a difference
quotient, and its limit is the instantaneous speed he postulated. In
effect, he used a Riemann sum for estimating his logarithm, inte-
grating the area under a rectangular hyperbola, proving accuracy
and preceding Gregory St. Vincent by some thirty years.

Briggs, perhaps with Napier, found an algorithm for natural
logarithms (but he did not recognize it that way) that is powerful
and practical for manual calculations. Incorporated in his golden
rule, it provided his first method for calculating base-10 logarithms.

Briggs method can be inverted easily to define the number e and
calculate it to seventeen significant figures with no more effort than
he used to calculate logarithms. Not until 1691 was e identified by
Leibniz and calculated to eight digits of accuracy. The formal
connection between Briggs’ method and the generating function
for the Bernoulli numbers yields a recursion formula for natural
logarithms.

This study explores the underlying mathematics of Napier and
Briggs in a manner that underscores some of the modern concepts
inherent in their work.

(Codes written in a Basic-like language are provided to demon-
strate the calculations using Casio’s online Keisan Calculator.)

Date: March 31, 2022 .
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Preface

This paper began as an exercise to answer questions about why an
arithmetic technique of Briggs leads directly to natural logarithms and
the Bernoulli numbers. It has resulted in an extended study of the di-
rect connections between modern calculus and the arithmetic methods
of Napier and Briggs. The paper draws heavily from Roegel’s Napier’s
ideal construction of the logarithms, but the perspective on calculus
here is different [35].

Because the major themes are treated fairly independently, with
cross references, the Table of Contents (and Index) can be used for
selective reading. Napier defined his logarithm by postulating time
spent by a kinematic point traversing intervals, so the first 4 Sections
illustrate and develop that idea. The difference equation and an early
stage of differential calculus appear in Section 2. Section 3 develops
theory used in Numerics. Section 4, Numerics, introduces the con-
struction tables Napier created to reduce the massive computations
required for a practical table. The numerics are complicated and are
not necessary for understanding the theory, but they show the intimate
connection between theory and applications.1 Napier’s close encounter
with integration is discussed in Section 5.

Further sections discuss an algorithm of Briggs with a final section
connecting it to a recursion formula for calculating natural logarithms
using Bernoulli numbers, as if to say they and logarithms are from the
same cradle. Short computer codes that can be executed online appear
throughout the paper to support or illustrate the text.

1. Introduction

Napier’s logarithms have been discussed so much by historians and
mathematicians for centuries that I wonder, does anything more need
to be said? 2 I have two reasons: (1) I have not seen any treatment
that simply converts the methods of Napier and Briggs into algebraic
forms with limiting values that can stand as prototypes for calculus,
and (2) Napier called his logarithms wonderful, and I think a younger

1"Although the logarithms are precisely defined by Napier’s procedure, their
computation is not obvious. This is particularly interesting, as Napier managed to
define a numerical concept, and to separate this concept from its actual computa-
tion," Roegel [35, p. 6].

2See the bibliography in Roegel [35, Pp.40–57].
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generation of mathematicians would find it wonderful to see how he
brought them to life using the arithmetic of decimal numbers.3

So I begin! I infer formulations based on the numerical methods of
Napier and Briggs, but they did not think in this way. Although I rely
on authors who explain the original methods in detail, primarily Denis
Roegel and Ian Bruce, my purpose has been different: it is to examine
the underlying mathematics lying close to the surface for eyes trained
in modern algebraic formulations and calculus [35, 8].4 This can help
us understand how deeply Napier and Briggs ventured into matters
that lay at the foundation of analysis.

Archimedes defined the archetypal logarithm by pairing integer ex-
ponents with a geometric progression to represent large numbers and
simplify arithmetic [3]. But not until Napier and his successor Briggs
was the idea fully realized with practical widely published tables of
logarithms.5

Napier’s Table of Logarithms was published in 1614 as Mirifici Log-
arithmorum Canonis Descriptio (The Description of the Wonderful
Canon of Logarithms), and his prior explanation of his logarithms was
published posthumously in 1617 as Mirifici Logarithmorum Canonis
Constructio (The Construction of the Wonderful Canon of Logarithms)
[36, 28, 27]. Briggs, professor of geometry at Gresham College in Lon-
don, visited Napier at Edinburgh in 1615 and 1616, where they planned
a better kind of logarithms (base-10) [26]. Briggs’ first table appeared
in 1617 [34].

Napier defined his logarithm kinematically, as a correlation between
the distance a point would move along a line at a constant speed with

3Ian Bruce writes: “This book [Napier’s Mirifici Logarithmorum Canonis Con-
structio] is a ‘must read’ for serious students of mathematics, young or old” [10].
Gauss, quoted by former student Moritz Cantor some fifty years later: “Sie ahnen
nicht, wieviel Poesie in der Berechnung einer Logarithmentafel enthalten ist.” “You
have no idea how much poetry there is in the construction of a table of logarithms”
[14, p. 254]. Gauss had a lifelong interest in logarithms, acquired a large collection
of tables making notes on their qualities, and he created his own table of “Gaussian
logarithms” for simplifying usage. See Karin Reich’s “Logarithmentafeln — Gauß’
‘tägliches Arbeitsgeräth’ ” in Carl Gauß in Göttingen [31, Pp. 73-89].

4Others I have consulted are Naux [29], Goldstine [20], Havil [21], Burn [12]
and Bower [5].

5For antecedents to Napier, see Naux for an encyclopedic history of logarithms
and consequential development of analysis in its wake: Volume I reviews history
up to the invention of differential and integral calculus; Volume II continues with
developments through the use of calculus [29, See Chronologies, p. 11, Tome I].
Truemper features the contemporaneous development of Bürgi’s logarithm [43, Ch.
3].
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another kinematic point moving along a parallel half-ray at an instan-
taneous rate equal to its distance from the end; he coordinated the two
by having both begin at the same initial velocity. Both points were
illustrated moving rightward. The analytical determination of this log-
arithm requires calculus not available to Napier, but Napier devised a
discretized method that he used arithmetically for approximation, and
his calculations did indeed approximate the calculus solution.

Napier and Briggs anticipated many foundational ideas in analysis.
In 1638, Galileo characterized motion at constant speeds and speeds
of constant acceleration some 24 years after Napier’s work had already
characterized hyperbolic motion as an instantaneous speed correspond-
ing to the limit of a difference quotient, a much more sophisticated
concept [18, 19]. This topic is discussed in Section 2.3. Napier’s dis-
cretization effectively integrates the area under a rectangular hyperbola
by Riemann sums, preceding Gregory St. Vincent by more than thirty
years [47, 12, 39]. And Riemann presented his integral in 1854, more
than 240 years after Napier had published his logarithmic tables [33,
Sec. 4]. This topic is discussed in Theory Part 2.

Briggs demonstrated in his golden rule that at the root of Napier’s
logarithm lies a powerful computational tool recognized by us as:6

lnx ≈ (xε − 1)

ε
, (ε small). (1)

This formulation, with ε a variable and x = e, presents a formal rela-
tionship to the generating function for the Bernoulli numbers. It will
be discussed in Section 9. Its inverse, the exponential function, can be
formulated as,

ex ≈
(

1 +
x

n

)n
, (n large) (2)

Briggs used progressive square roots (ε = 1/2n) in Equation 1, a refine-
ment of Napier’s idea that a base-10 logarithm for the number, say 5,
could be found by progressive combinations of square roots beginning
with 5.7

Equations 1 and 2 are expressions given later by Euler in his Intro-
ductio in Analysin Infinitorum Vol. 1 to characterize the “hyperbolic”
or “natural” logarithm and exponential function, but we will see how

6Equivalents of the two following formulas were published in Euler’s 1748 cal-
culus text Introductio In Analysisn Infinitorim, translated with original Latin text
and comments by Bruce [17, Vol 1, Ch. 7, p192]. The Latin with a German
translation appear in the Euler Archive [16, Summary].

7See [26, pp. 50–51, 61–63, 97–100] and [34, pp. 4–5].
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they arise by progressive root-taking from a method of Napier for esti-
mating logarithms.8 In Section 6 Equation 2 is used to calculate e to 17
significant figures with no more difficulty than Briggs would have used
Equation 1 to calculate his golden multiplier, log10 e, with comparable
accuracy, although e was not known until recognized by Leibniz.9

The expression on the right-hand side of Equation 2 and its expan-
sion as a power series were known later to Jacob Bernoulli but only as
a formula for compound interest; he estimated the value between 2.5
and 3.0 and did not record a connection with the natural logarithm.10

Briggs’ golden rule may have been conceived during his collaboration
with Napier, plausible because Equation 1 is implicit in Napier’s work.11
We can express the golden rule as the familiar identity, log10 x =
(log10 e)(lnx), or in words: To compute the base-10 logarithm of a
number, multiply its base-e logarithm by Briggs’ multiplier. A gen-
eralization of the golden rule, loga c = (loga b)(logb c) is now common
knowledge. It is a kind of compliment to Napier and Briggs that sev-
eral examples in Courant and John’s classic Introduction to Calculus
and Analysis could have been presented as adaptations of their results,
but they make no mention of priority [15]. Some examples of these are
referenced in the Conclusion.

8See Transition from Napier to Briggs, Section 6, below.
9 Bruce writes, “Napier’s tables gives e the value 2.71828288267020; the un-

derlined places are in error. Thus, one presumes for the first time in the history
of mathematics, a set of numbers had emerged from which one could calculate e.”
Bruce’s Modern Generation [28, Decriptio, Liber I, Item 9, p. 13].

10Raugh and Probst discuss what may be the first record of an accurate estimate
for e as the base of the natural logarithm, by Leibniz (ca. 1691); their footnote
7 provides references to the Bernoulli series and estimate [30]. At the time of our
study, we received an email in May 13 of 2018 from Niccolò Guicciardini informing
us that “In 1661 Huygens baptized the ‘logarithmic’ curve (y = cbx) and cal-
culated log10(e) to 18 decimals [0.434294481903251804] (see Oeuvres complètes,
vol. 14, p. 464: a number that appears also in Briggs, Arithmetica logarithmica
(1624), p. 455..... It is interesting to find log10(e) = 0.4342944819032518 in
Newton’s Mathematical Papers, vol. 3, p. 232 (in the so-called De methodis se-
rierum et fluxionum, early 1670s).” With a table of base 10 logarithms, they could
have found an approximation for e, since to high accuracy 10 0.434294481903251804 =
2.718281828459045087326.

11Napier himself originated the idea of base-10 logarithms, acknowledged by
Briggs [20, pp. 11-13]. Briggs, carrying out the program agreed with Napier,
invented powerful finite-difference methods for reducing the burdens of calculating
the logarithms. We will see the centrality of square roots in the Briggs method
in Section 7. “This must be regarded the first time the Binomial theorem was
developed for a noninteger exponent” [20, p. 19].
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2. Logarithms defined kinematically

Napier characterized his logarithm kinematically, in terms of instanta-
neous motion:

A precise definition of the logarithm was given by Napier
as follows. He considered two lines (Figure 1), with two
points moving from left to right at different speeds.

On the first line, the point Λ(t) is moving with a con-
stant speed equal to 107 units of distance per unit of
time. The figure shows the positions of the point at
time t.

On the second line (which is of length 107), the point
x(t) is moving geometrically, in the sense that the dis-
tances left to traverse at instants determined arithmeti-
cally at chosen times T, 2T, 3T, . . . , form a geometric
sequence.
(Adapted from Roegel [35, p.4, Sec. 2.2])

The preceding definition differs from Roegel’s only slightly. I use
different variable names. And the geometric point I have labelled x(t)
decreases from 107 to 0, whereas Roegel’s variable increases from 0 to
107. This reversal simplifies the algebra. I represent the logarithm Λ(t)
increasing from 0, the same as Roegel.

Napier’s model of a continuously declining speed requires calculus to
find the function connecting the number to its logarithm. But neither
the word “function” nor calculus was available at the time of Napier.

Napier’s Model Logarithm

Figure 1. In this paper, x(t) ∈ [L, 0) indicates that
x(t) is the positive distance of x from 0; t is time. The
point x begins at x(0) = L and travels toward 0 at a
rate equal to x(t) units of distance per unit of time. For
Napier, L = 107. This notation differs from Roegel’s
representation of Napier, but the resulting logarithm is
equivalent [35, p.4, Sec. 2.2].
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Napier used arithmetic. He discretized the motion into segments
partitioned by the numbers determined by a specified quasi-geometric
progression (a progression that doesn’t start with 1) beginning with
107, with the average speed over each segment equal to the distance
of a chosen point (near the segment’s midpoint) from the origin. This
method resulted in identical travel times over each segment, so that
his logarithm at any number in the progression was proportional to
the sum of the number of segments traveled from the start.

This is a straightforward concept. But it is impossibly laborious to
complete a practical table of logarithms so simply, and so the story
is complicated. To help clarify the exposition, I use special terms to
emphasize the distinctions mentioned above.

Napier’s model point, whose speed declined continuously, I refer to
as the continuous traveling point or model point; analytical character-
ization of that motion requires calculus, so I also use the term calculus
traveler, the choice of term depending on which seems most helpful in
context. Napier had to estimate the motion in discrete steps arith-
metically, so a point that is characterized by discrete positions is called
a discrete traveler. Napier made mistakes in his arithmetic that were
corrected by Roegel in “Napier’s ideal construction of the logarithms”
[35]. So, to refer to a point that moves in discrete steps correspond-
ing to Roegel’s corrected logarithms, I use terms like idealized traveler.
Finally, there is the log point, which moves at a constant speed over
distances that depend on the time spent by the traveling point it is
associated with.

These along with other basic terms used throughout are collected in
Ontology, Section 10. I think a reader would find it useful to look at
the ontology before going farther.

The following two subsections present the simplest examples of kine-
matic logarithms defined by a point moving at discrete speeds. The
third subsection sets Napier’s logarithm in a general class of Napier-
style logarithms, where basic theory is developed.

2.1. Simple example of a kinematic logarithm. The simplest il-
lustration is built from the partition of the unit interval using the geo-
metric progression (1/2)k, k = 0, 1, 2 . . . , separating progressive halves
of what remains:12

[1, 0.5), [0.5, 0, 25), [0.25, 0.125), . . . .

12Notice that the unit interval is represented here as [1, 0], reversing the standard
notation [0, 1]. This practice of placing the length of the interval first and 0 second
was mentioned above.
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A discretized traveling point starts at x = 1 and advances rightward
over each interval at a constant speed equal to the length of the interval;
in one unit of time, the discrete traveler has reached 0.5, in two units
0.25, etc. At that speed, the time taken by the traveler to reach the
end of the k-th interval at (1/2)k is k. Matching these two numbers
— the time taken and the position reached — gives an Archimedean
logarithm. Moreover, the speed of the traveling point over the n-th
interval is equal to the distance of the interval from the point x = 0.

2.2. A generic logarithm. Instead of restricting the partition to the
unit interval, let its length be L > 0, and instead of using a partition
by powers of 1/2, use powers of R > 0. Partition the interval into
segments by using the quasi-geometric progression xk = LRk, k =
0, 1, 2, . . . . Number the intervals Ik = [xk−1, xk), k = 1, 2, . . . . Suppose
a discretized traveler traverses the k-th interval at the constant rate of
xk = LRk units of distance per unit of time, and that the rate is equal
to the distance of the k-th interval from the origin.

At that rate, the length of time it takes the discretized traveler to
move over the kth interval is (LRk−1−LRk)/(LRk) = 1/R−1, a result
that depends only on R and is independent of k and of L. The time
TR(k) to traverse the first k intervals is therefore,13

TR(k) = k (1/R− 1). (3)

The function defining Tk has the value 0 at k = 0. Although there
is no interval numbered 0, we can pair TR(k) with xk = LRk for all
k = 0, 1, 2, . . . to obtain a match-up between an arithmetic progression
and a quasi-geometric progression. For the case L = 1, the result is
an Archimedean logarithm — with the qualification that a constant
multiple of k instead of simply k is used. For L 6= 1 it is a different
kind of logarithm. With a slight modification of the above, and R and
L suitably coordinated, it is Napier’s logarithm.

A Refinement. To see where this is leading, for a fixed integer n > 1
we can refine the partition by inserting intermediate n-th roots into
each of the original segments to define a refined quasi-geometric series
of terms x(n)k = LRk/n, k = 0, 1, 2, . . . , defining speed of travel over each
of these segments to be, again, the distance of the interval from the
origin. Higher roots could be interpolated for greater refinement. Table
1 shows an example, where cube roots are interpolated into Napier’s
fundamental progression.

13This expression is basic. Similar expressions will arise repeatedly at the basis
of the logarithms discussed in this paper.
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Table 1. Example: Interpolating cube roots into the se-
ries LRn

1 , k = 0, 1, 2, . . . where L = 107, R1 = 0.9999999.
Initial terms of the refined series are shown in the right-
most column; exponents of the interpolated cube roots
are in the third column. The original series is bolded.

n Exponent Interpolated Exp.

n γ γ LR γ
1

0 0 10000000.000000000000000
1 1/3 9999999.666666655555555
2 2/3 9999999.333333322222222
3 1 9999999.000000000000000
4 4/3 9999998.666666688888889
5 5/3 9999998.33333338888889
6 2 9999998.00000010000000
7 7/3 9999997.66666682222222
7 8/3 9999997.33333355555555
9 3 9999997.00000029999999

This scheme retains the endpoints points of the original partition
among the new ones created by interpolation, and it retains the original
speed at each of the original points, but it refines the speed at the
intermediate points. The travel time over each refined subinterval is
1/R1/n − 1, so the time it will take to cover n refined intervals is,

T
(n)
R = n

(
1/R1/n − 1

)
. (4)

Our derivation showed that for each n the result is a generic logarithm,
and so will the limit be. L’Hopital’s Rule shows that,14

lim
n→∞

T
(n)
R = ln(R).

The use of root-extraction to refine a quasi-geometric series is applied
again in Section 6.1 to improves the accuracy of Napier’s model loga-
rithm.15

2.3. Napier-style Logarithms: Stages of Construction. TheNapier-
style logarithm is based on a traveling point that travels at a rate pro-
portional to its distance from the origin. Napier postulated a point

14See the derivation for a similar case at Equation 24.
15The subtraction of 1 from the root in Equation 4 explains the systematic result

obtained by Briggs in his tabular process explained in Section 8.
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traveling at a rate exactly equal to its distance from the origin, but
his approximation resulted in a point that travels at a slightly different
proportional rate, as we shall see.

A Napier-style logarithm is discretized and allows the choice of a
point within each interval at a fixed proportion between the endpoints
to determine the constant speed on the interval. In Roegel’s exposition,
Napier chose a point near the midpoint of the interval [35, Sec. 2.4].
The logarithm defined here will be adapted to Napier’s logarithm in
Section 3, applying the parameters chosen by Napier:

(Stage 1) Napier’s model speed. A traveling point with coordinate
x(t), with t = time, traverses an interval [L, 0] moving rightward
from x(0) = L toward the origin at a speed σ∗(x) units of
distance per unit of time equal to its distance from the origin:

σ∗(x(t)) = x(t), t ≥ 0. (5)

This is an instantaneous speed decreasing rightward with x.

(Stage 2) The Fundamental Progression and Partition. Napier
assumed correctly that a point traveling at the speed expressed
by Equation 5 would traverse proportionate intervals in identi-
cal times. Suppose in general that we are given a partition on
the segment [L, 0) of proportionate intervals Ik = [xk−1, xk], n =
1, 2. . . . with the ratio of proportionality R = xk/xk−1.

xk = LRk, k = 0, 1, 2, . . . . (6)

The intervals defined in this way are referred to as Fundamen-
tal Intervals, and the set of all the intervals is a Fundamental
Partition. Napier used L = 107 and R = 0.9999999.

(Stage 3) Constancy of travel time across Fundamental Inter-
vals. Starting with a set of fundamental intervals, it requires
calculus to determine the mean speed of the ideal traveler over
each interval. Calculus was not available to Napier, so he had
to guess the mean speed, and we will see how he did that. To
generalize, we define a mean speed over each interval as

σ̄k = αxk−1 + βxk, k = 1, 2, . . . , (7)

with β = 1 − α. The restriction 0 ≤ α ≤ 1 would ensure that
σ̄k ∈ [xk−1, xk], but that is not required.
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Using the notation ∆k = xk−1 − xk, the travel time over Ik
may be expressed,

∆t(k) =
∆k

σ̄k
=

1− xk/xk−1
α + βxk/xk−1

=
1−R
α + βR

, (8)

a quantity that is independent of k and L, proving that if a
traveling point moves over proportionate intervals of ratio R,
and the mean speed over each interval is a fixed proportion
between its endpoints, then the travel times are identical.

Crucial for Napier, the converse is also true. Given the pro-
portionate intervals defined by Equation 6, suppose travel time
over each is a constant, say ∆t. Then, for mean speed over the
k-th interval, we have,

σ̄k =
∆k

∆t

= xk−1

(
1−R

∆t

)
= xk

(
1−R
R∆t

)
, k = 1, 2, . . .

(9)

whose proportional position x̄k within the interval Ik is,

x̄k =
xk−1 − σ̄k

∆k

=
xk−1 − σ̄k
xk−1(1−R)

=
1

1−R
− 1

∆t

, (10)

a constant for all k. Comparing this constant with the constant
final term of Equation 8, it is apparent that constant values for
α and β = 1 − α can be found, placing this case in the cate-
gory previously considered. This validates a key property that
Napier claimed for his model logarithm — proportionate inter-
vals have identical traversal times — proving this property for
Napier-style discretized logarithms : logarithms constructed on a
discrete set of intervals determined by a fundamental partition.

The constancy of travel times over fundamental intervals is
what makes it possible to use them to define a logarithm, be-
cause the travel time to traverse the first k intervals is just
k times that constant, providing an arithmetic progression to
pair with the quasi-geometric progression xk = LRk. In fact
any constant multiplied by k would yield a logarithmic pair-
ing. But the choice of that constant will determine how well
the resulting logarithm matches the ideal logarithm postulated
by Napier.

As we will see in Equation 13 of the next Stage, Napier’s
choice that we label C for convenience, approximates well the
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amount of time Napier’s postulated continuous traveler would
travel over each of Napier’s fundamental intervals, resulting in
Ck as an accurate estimate of the time taken to traverse the
first k intervals. Napier defined a log point that travels at a
constant rate of L units of distance in 1 unit of time, the same
as the initial speed of the model traveler. Then he defined
his logarithm as λN(xk) = LCk, which is just the distance
the log point travels in time Ck. Napier’s logarithm can be
defined as illustrated in Roegel’s Figure 1 for points defined by
a fundamental partition, [35, p.4, Sec. 2.2].16 One of the special
features of Napier’s method is that geometric proportionality
can be used to extend the definition to points not belonging to
the fundamental partition.

(Stage 4) Discrete Napier-style logarithms and the ideal case.
The foregoing provides the basis for a logarithm defined on the
discrete set of points xk = LRk, k = 0, 1, 2, . . . :

λ(xk) = k ·∆t, k = 0, 1, 2, . . . . (11)

This definition is broad. It pairs an arithmetic progression with
a geometric progression in the case L = 1 and with a “quasi-
geometric” progression in the case L 6= 1, called "quasi" because
the progression doesn’t start with 1. It covers the kinematic
logarithms discussed in earlier sections, and it includes Napier’s
logarithm.

The differential equation. Reinterpreting Equation 8 as a
functional relationship between ∆x and ∆t, it can be rewrit-
ten as a difference quotient that, taken to the limit, yields a
differential equation characteristic of kinematic logarithms.

Let xk−1 = x+ ∆x, xk = x, then

∆t

∆x

=
1

αx+ α∆x + βx
=

1

x+ α∆x

Taking the limit as ∆x → 0,

dx

dt
= x.

16Roegel’s axes and labels are different than ones I use, but Roegel gives Napier’s
own graphic description of his logarithm. See Figure 1 to see the convention for
this paper.
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Using L as the upper boundary value, the solution deter-
mines the time a continuous traveler going at Napier’s pos-
tulated speed takes to traverse the interval from x∗ to L (x
increases leftward):

T (x∗) =

∫ L

x∗

dx

x
= ln

L

x∗
. (12)

The result is independent of α (and β). It is implicit that the
model traveler, like the Napier-style discretized traveler, tra-
verses intervals with a common proportion in identical times.
This is true for proportionate intervals of arbitrary size, not just
the fundamental intervals of the discrete model.
T (x∗) can be multiplied by L, an effect achieved by Napier, to

synchronize the starting speeds of the continuous traveler and
the corresponding log traveler: L units of distance in 1 unit of
time.17

The determination of C and definition of c. The preceeding
theory was general for Napier-style logarithms. In the remain-
der of this Stage we assume the values used by Napier: L = 107

and R1 = 1− 1/L = 0.9999999.
Napier used the midpoint of his first fundamental interval as

an initial estimate for the mean speed: σ̄1 = (L + LR1))/2.
Equation 8, with L = 107, R1 = 1 − 1/L and α = β = 1/2,
gives as an estimate of time to travel over the first interval,

∆t = 2 · 1−R1

1 +R1

≈ 1.0000000500000025 · 10−7.

(13)

Napier settled on the value c = 1.00000005 · 10−7 discussed at
the end of (Stage 3).18

It is his approximation for the amount of time spent by his
model traveler on a fundamental interval defined by the series
LR1.

Scaling by L yields the constant c = LC we shall use through-
out the remainder of this study,

c = 1.00000005, (14)

17See the quote from Roegel at the head of Section 2.
18See Roegel [35, p.9, Sec. 2.4.1]
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fixing Napier’s definition of his logarithm on the fundamental
intervals as,

λN(xk) = LCk = ck. (15)

We will use a scaled version of the quotient in Equation 13
as a general estimator for interpolation; it will be referred to as
the midpoint estimator :19

MidpointEst([X1, X2]) = L · 2 ·
(
X1 −X2

X1 +X2

)
. (16)

The value for c fixed the definition of Napier’s logarithm at
points of the fundamental partition, and the Midpoint Estima-
tor can be used to interpolate the logarithm to other points
required for Napier’s tables. We shall see the unfolding conse-
quences. But let’s pause to understand more fully how Napier’s
logarithm differs from the behavior of his postulated continuous
model deduced by calculus in Equation 12.

What Napier’s logarithm is. According to Equation 9, the im-
plicit mean speed over the kth interval determined by xk = LRk

1

can be extended to a continuous function defining an instanta-
neous speed,

σ(x) = s · x, s =

(
1−R1

cR1

)
;

s ≈ 1.000000050000005.

(17)

To see how slight the difference is from the logarithm im-
plied by Napier’s model speed x, solve the differential equa-
tion dx/dt = σ(x) over the interval [L, x∗] and compare it with
Equation 12:

t(x∗) =

∫ L

x∗

dx

σ(x)
≈ 0.99999995 · ln(L/x∗). (18)

The full characterization of Napier’s logarithm is developed in
Section 3.

(Stage 5) Error in approximated travel time. This is not a defin-
ing property but a consequence of the foregoing. A gross error
bound for the approximated travel time follows from the fact
that the extreme speeds on the interval (x1, x2) are ζ · x1 and

19The midpoint estimator is accurate for λN (X2/X1) if R = X2/X1 ∈
[1, 0.9999999]. Note that for X2/X1 = R1, the rounded value is of the midpoint
estimator c.
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ζ · x2, where ζ = 1 for the calculus logarithm or ζ = s is nearly
1 as defined in Equation 17 for the continuous extension of
Napier’s discretized logarithm. So the error in a guessed mean
speed for traversal at the rate of σ(x) = ζx cannot exceed,

terror(x1, x2) ≤
∣∣∣∣(x1 − x2)( 1

ζx2
− 1

ζx1

)∣∣∣∣ =
(x2 − x1)2

ζx2x1
. (19)

Like the quotient in Equation 8, it is homogeneous of degree 0,
hence identical in value for proportionate intervals. Since 1 −
1/1.00000005 ≈ 5.0 ·10−8, the value chosen for ζ is insignificant,
so we will simplify numerics by using ζ = 1. This error in time
is converted to a distance error (i.e., error in a logarithm) by
multiplying by speed L.

For intervals on which the bound exceeded his desired accu-
racy, Napier used a proportionate interval with better accuracy;
see Roegel on construction of the third table [35, Sec. 2.4.3].

3. Napier’s Logarithm — Foundations for numerics

The basic theory of Napier’s logarithm has been consolidated in the
Stages of Construction of Section 2.3. It is only a matter of specifying
parameters to define Napier’s logarithm: For Napier, L = LN = 107,
and R = R1 = 1−1/LN = 0.9999999. The fundamental progression for
Napier was therefore xk = LNR

k
1 , k = 0, 1, 2, . . . . All the intervals of

the fundamental partition are proportionate, and so a point traveling
at a rate proportional to its distance from the origin will require the
identical traversal times for each interval. The midpoint estimator is
used to estimate times over intervals not in the fundamental partition.
Napier’s estimate for the time of traversal over a fundamental interval
was derived in (Stage 4) and multiplied by speed L to produce his basic
unit of the logarithm: c = 1.00000005. Therefore, repeating Equation
15, Napier’s logarithm was defined on the discrete set of points xk of
the fundamental progression as,

λN(xk) ≡ c · k, c = 1.00000005, k = 0, 1, , . . . . (20)

Napier’s first problem is that the definition could not be applied
directly for a complete table because it would have been impossible to
compute enough points manually. Napier’s first table, which presents
entries only for xk and λN(xk) for k = 0, 1, . . . , 100, illustrates the
problem. You can see them by executing the following code online
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using Casio’s Keisan Calculator.20 Napier’s numbers and logarithms for
this table are scaled by the factor L, rounded to the 8th decimal place.
The code shows that Table 1 reaches only so far as the final entry at
logarithm 100.0000050 corresponding to the number 9999900.0004950.
At that rate it would take about 6,900,000 entries to reach only about
half way down the interval [L, 0): x6900000 ≈ 5015761:

L=10^7; R1=0.9999999; c=1.00000005;
if( k >=0 and k <= 100) {
Xk = round(L*R1^k,8);
NapLogk = round(c*k,8);
print( NapLogk, Xk ); }

To overcome this problem, Napier used three more progressions to
construct tables with longer intervals, but he made some arithmetic er-
rors. Roegel has recomputed Napier’s Tables correctly based on these
progressions, and they are accessible online in Napier’s ideal construc-
tion of the logarithms ; see Tables 1, 2 and 3 [35, Pp. 58–83]. The
logarithms appear in a column to the right of the corresponding num-
bers : they are all scaled by L = 107, producing integer parts of up to
seven decimal digits.

Table 2 shows numbers that advance by an initial stride 100 times
longer than the stride of the Table 1 series, and the initial stride of
Table 3 5, 000 times longer than that of Table 1. Table 3 has elements
of an even longer stride. These comparisons translate into inversely
proportional numbers of computations required to fill the tables. The
Short Table is used to extend the reach of Table 3.

Napier’s second problem lies with Tables 2 and 3 and the Short Table.
They don’t match the defining fundamental progression exactly, and
their discrepancies need to be corrected to produce accuracy in the
logarithms. These are problems of approximation using the midpoint
estimator dealt with in Numerics, Section 4. Two analytical methods

20 Computations for this paper are specified by codes written for
use on Casio’s free service, the online Keisan Calculator (KC) at
https://keisan.casio.com/calculator. KC’s language is similar to Ba-
sic, explained in the KC’s How to use section. The codes can be pasted into the
expression field of the KC and executed using the KC standard settings with two
exceptions: (1) always select the Textarea editor instead of Ace, and (2) select
degrees instead of radians for codes executing trigonometric functions. The typical
accuracy used for this article is the KC standard 22 digits, but 38-digit accuracy
was used where noted, and much higher is possible.
For more, see https://keisan.casio.com/keisan/service.php and FAQ at

https://keisan.casio.com/keisan/faq.php\#faq.
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shown next will be helpful there as checks on accuracy, and they will
appear in several codes. But they are not necessary for understanding
Napier’s own methods.

Analytics. The coefficient c
transforms exponents into logarithms. Solving xk = LNR

k
1 for k:

k = ln(x/L)/ ln(R1), (21)

from which, by Equation 20,

λN(x) = c · ln(x/L)/ ln(R1) (22)

for x = xk, k = 0, 1, 2, . . . .
Napier could not know this formulation. But his given logarithm

of Table 1 is rigorously extended to a continuous function for all real
numbers x > 0 by letting x be any positive real number.21 We refer to
this extension as the idealized Napier logarithm. It is not the same as
the model logarithm derived by calculus as Equation 12.

The following code takes as input any number X from the tables cor-
rected by Roegel’s Napier’s ideal construction of the logarithms [35, Pp.
58–83] or Bruce’s Modern generation of Napier’s logarithms [11]. The
corresponding logarithm can be compared with the values produced by
Equation 22 and the calculus solution from Equation 12 scaled by L.
Reminder: Set the Keisan Editor to Textarea, not ACE.

L=10^7; R1=0.9999999; c=1.00000005;
IdealizedNapierLog = c* ln(X/L)/ln(R1);
CalculusLog = L*ln(L/X);
print ( IdealizedNapierLog, CalculusLog );
print ( IdealizedNapierLog - CalculusLog );

The extension of Napier’s logarithm by algebra. One further matter
of theoretical interest will conclude this section, demonstrating how
Equation 22 extends Napier’s logarithm beyond the original points
xk = LRk

1 .

21 This is not to be confused with the ideal logarithm of Equation 18 implied
by Napier’s choice of c. This is a subtle point worth making because it is not
clear exactly which logarithm Napier was striving to approximate: the logarithm
determined by a point traveling at a speed equal to its distance from the origin,
the logarithms of Equation 18 or the logarithm of Equation 22. It doesn’t matter
in practical terms because all three were within his error tolerance.
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For any integer n > 0, we can refine Napier’s logarithm by using
R

1/n
1 as the base of a partition finer than the one produced by LRk

1 :
22

x
(n)
k = LNR

k/n
1 , k = 0, 1, 2, . . . . (23)

This inserts n points between every point of the partition based on R1,
and the intervals they define are proportionate with ratio R1/n

1 . Any
choice of a time ∆t for traversing an interval will define a logarithm
as the accumulated time for traversing the first k intervals: λ(xk) =
∆t · k/n. Using Napier’s value we have denoted as c, the definition
λN(x

(n)
k ) ≡ ck/n retains Napier’s original values on all points kn, k =

0, 1, 2 . . . and preserves the logarithms on all the original intervals.
Let y > 0, choose integers such that k/n → y, then LNR

k/n
1 →

LNR
y
1, and λN(x

(n)
k ) = ck/n → cy. The function extending Napier’s

logarithm is λN(LRy
1) = cy. By construction, all finite extensions given

by integers k and n agree exactly at all coincident points and at Napier’s
fundamental progression; for all other points, it extends by arithmetic
Napier’s logarithm to the analytic limit of Equation 22.

To see how this extension works numerically, pick an integer power
m, and divide the first m fundamental intervals into n segments using
Equation 23. For example, try m = 4 and n = 2 and check the four
clusters against Roegel’s Table 1 [35, Pp. 58–59].

L=10^7; R1=0.9999999; c=1.00000005;
for(j=0; j <= m*n; j=j+1) {
Xjn = L*R1^(j/n);
IdealizedNapLog = c*ln(Xjn/L)/ln(R1);
CalculusIdealLog = L*ln(L/Xjn);
print( 8888888888888888888 );
print( round(Xjn,7) , c*j/n );
print( IdealizedNapLog, round(CalculusIdealLog,16) );}

The method used to divide the intervals L[Rk−1
1 , Rk

1 ], k = 1, 2, 3, . . .
into n proportionate slices was designed to merely extend the arithmetic
progression defined by Equation 20. It does not change the traversal
times over any combination of intervals previously evaluated.

The method just discussed differs from the method of Section 2.2,
where logarithms were recomputed on smaller slices to change and im-
prove the approximation of the model calculus logarithm. We can use

22This kind of refinement was introduced in Section 2.2. See Table 1.
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that method to refine the intervals of LR1 by using LR1/n
1 as the defin-

ing ratio of the fundamental partition. By setting the constant speed
over a fundamental interval [xk−1, xk] as the distance from the origin
by the coordinates of an intermediate point x̄k = αxk−1 + βxk, with
β = 1− α, gives a travel time tk over the kth interval of,

tk =
xk−1 − xk

x̄k
=

1−R1/n
1

α + βR
1/n
1

,

a result independent of k. So the travel time Tk to cover the first k
intervals is, Tk = ktk, and the time to reach the interval ending at LRN

1

is,

NTn = Nn
1−R1/n

1

α + βR
1/n
1

.

We want to find the limiting value of Tn. Since limn→∞ (α+βR
1/n
1 ) =

1, L’Hopital’s rule will verify that,

lim
n→∞

Tn = lim
n→∞

n · (1−R1/n
1 ) = − ln(R1). (24)

To see this, use ε = 1/n and rewrite the above as,

lim
n→∞

n · (1−R1/n
1 ) = lim

ε→0

1−R ε
1

ε
.

Regarding ε as a continuous variable, the second member of the preced-
ing equation has a numerator and denominator that are differentiable
functions of ε, and so the indeterminate quotient will have the same
limit as the quotient of the derivatives: 23

lim
ε→0

1−Rε
1

ε
= lim

ε→0

− ln(R1) e
ε ln(R1)

1
= − ln(R1).

A similar case was presented for Equation 4. Although Napier used
α = β = 0.5, the limiting result is independent of α and β = 1−α. We
saw above (Equation 13) that Napier used his midpoint approximation,

λN(R1) = 2L
1−R1

1 +R1

= 1.0000000500000025 · 10−7,

and here we see again (as a consequence of multiplying Equation 12
by L) that the ultimate refinement of his discretized model yields
Λ(R1) = −L ln(R1) = 1.000000050000003333334. (See Equation 30.)
So Λ(LRN

1 ) = −LN ln(R1).
23Courant and John index the name as “L’Hospital’s Rule.” See the rule at [15,

Indeterminate Expressions, A.I.3]. It can be found on the internet.
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4. Numerics — Napier’s Tables

Napier’s arithmetic methods were intricate, and so are the details of
this section. It is not needed for the theory of this paper, but here one
can understand the ingenuity and labor required by Napier to create
his Canonical Table. Short segments of computer code for the Keisan
Calculator support and illustrate the text.24 The codes are based on
algebraic representations inferred from Roegel’s exposition of Napier’s
methods set forth as the “Stages of Construction” of Section 2.3 above.
To see how Napier himself performed his computations, see also Napier
[26] and Havil [21].

Napier’s fundamental partition, marked off by the LRk
1 series, was

too refined for practical computation. He used alternative progressions
with larger subinterval sizes, and from these created four tables: three
construction tables (Tables 1,2, and 3), the third of which spanned a
little more than half of the interval [LN , 0]; the fourth table (Short
Table) enabled him to bring any number into the range of the third
table. Roegel published the Construction Tables 1–3 and the Short
Table in “Napier’s ideal construction of the logarithms” [35, Pp. 58–83]
and [35, Pp. 20-21].

Napier used the tables to derive logarithms for every sine of the
Canonical Table. For the Canonical Table, see Bruce’s A modern gen-
eration of Napier’s logarithms [11]. Also see Roegel’s Figures showing
the first page of Napier’s table from the publication of 1620, with slight
differences from Bruce’s first page [35, p. 25]. Napier’s full table ap-
pears in the English translation of The Wonderful Canon of Logarithms
[25].25 Specific references are given below for each table.

4.1. Recurring themes. Parameters, subtractive multiplication, and
other matter that appears repeatedly in codes for table calculations:

Parameters. We label the parameters Napier used to define his log-
arithm and tables:

L = 107,

R1 = 0.9999999, R2 = 0.99999, R3 = 0, 9995, R4 = 0.99,

c = 1.00000005.

(25)

Subtractive multiplication. Napier used the decimal system to sim-
plify multiplication. The representations R1 = 1 − 1/107, R2 = 1 −

24See Footnote 20.
25 With persistence, it is possible to find a complete and clear copy of the table

in “The Wonderful Canon” in Google Books.
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1/105, R3 = 1− 5/104, R4 = 1− 1/102 make it easy to recognize a sub-
traction method for performing repetitive multiplication: for example,
Rk+1

1 = Rk
1 −Rk

1/107 = Rk
1 − r1Rk

1 , where ri = 1−Ri.26

The following code emulates subtractive multiplication to generate
numbers, as distinguished from logarithms, for Tables 1 and 2, the first-
column entries for Table 3, and the LR4 series comprising the first row
of Table 3.27 Results can be compared with Roegel’s [35, Pp. 58–83].
Inputs are Tb for Table number and Row for row number. See Footnote
20 for instructions for the Keisan Calculator.

L=10^7;
r1=1/10^7; r2=1/10^5; r3=5/10^4; r4=1/10^2;
if (Tb==1) {R = r1; nRows=100;}
elseif (Tb==2) {R= r2; nRows=50;}
elseif (Tb==3) {R= r3; nRows=20; }
elseif (Tb==4) {R= r4; nRows=68; }
else {exit;}
print( L );
num=1;
for (k=0; k < nRows; k=k+1) {
num=num - R*num;
print( L*num ); }

Decimal points in the tables. Napier represented decimal numbers
with principal digits in the range [L, 1], with the decimal point placed
to the right of the unit’s digit. He used digits to the right of the decimal
point in computation and recorded logarithms to the seventh decimal
place in Tables 1 and 2, but only to the first decimal place in Table 3.
For his Canonical Table, the fractional parts are omitted and numbers
are expressed in 6 to 7 digits and their logarithms in 1 to 8 digits.

Calculations to assess accuracy. Three kinds of calculations are per-
formed for each table. Foremost are calculations that I suppose Napier
could carry out arithmetically; executed here on a modern computa-
tional platform, they are meant to stand in for methods that could be
done manually. Roegel explains Napier’s own methods for estimating
the accuracy of his calculations [35, Sec. 2.4.2].

Two codes using modern analytical formulations are implemented to
assess accuracy of the “arithmetic” calculations. They were expressed in

26Roegel uses r1, r2, etc., for parameters that I denote by R1, R2,....
27Table 3 comprises 69 columns (0–68). Napier simplifies the arithmetic for

computing the number in a given column (Col) by multiplying the leading row
term by RCol4 using the subtraction technique.
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Equations 21 and 22 and in Equation 12 with Napier’s synchronization
factor L included in the Analytics paragraphs above along with code
for assessing accuracy of Napier’s tables.

Error estimation by arithmetic. Equation 19 gives an error bound
for an estimated time to traverse an interval [x1, x2] where the speed
of the ideal point equals σ(x) = ζ · x, an arbitrary proportion of its
distance from the origin is given by,

TMaxErr[x1, x2] =
(∆x)2

ζ x1x2

As mentioned in (Stage 5), a satisfactory simplification for Napier’s
logarithm is given by the formula,

TMaxErr[x1, x2] =
(∆x)2

x1x2
.

For example, in estimating λN(LR2) it is necessary to estimate the
time taken to traverse the gap from x1 = LR100

1 to x2 = LR2 of length
∆x = x1 − x2. Denoting the ratio R = x2/x1 = R2/R

100
1 , and multi-

plying by speed L, the foregoing formula provides the error estimate,

L · TMaxErr[1, R] = L · (1−R)2

R
≈ Error2 = 2.4502831 · 10−14.

(26)

It can be used to validate the accuracy of an estimate for λN(LR2).
This case is simple. Napier defined λN(LR100

1 ) = 100 · c = 100.000005,
and all that is needed is to estimate the logarithm of the gap [LR100

1 , LR2]
using the midpoint estimator:

MidEst = 2L · LR
100
1 − LR2

LR 100
1 + LR2

= 4.95003333 · 10−4

Adding the two will give an estimate of λN(LR2) accurate to within
the bounds given by Equation 26:

λN(R2) ≈ 0.0004950033 + 100.000005

= 100.0005000033± 2.4502831 · 10−14.
(27)

Roegel’s value for λN(R2) is 100.0005000 [35, Sec. 10.2, p. 60]. The
comparative analytics computed by the Keisan Calculator are: Napier’s
idealized logarithm = 100.0005000033, and the calculus logarithm =
100.0005000033.
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Looking ahead. λN(LR2)/λN(R1) ≈ 100.000495 implies that it takes
about 100 computations of the LRk

1 series to get as far as one compu-
tation of the LRk

2 series; to reach the halfway mark with LRk
2 would

require about 69000 computations — still impracticable for manual
calculation. But in theory it would hold the error in the logarithm at
that point to within an outside estimate of ±69000 ·2.4502831 ·10−14 ≈
±1.69·10−9. Napier will reduce the burden of computation even farther
and ensure accuracy of the series LRk

3 and LRk
4 .

4.2. Tables 1, 2 and 3. See entry for each of Tables 1–3. The Short
Table is treated in the following subsection:

Table 1 [35, Sec. 10.1, Pp. 58–9]:
Table 1 consists of the first 101 terms of the fundamental progression,

xk = LNR
k
1 , k = 0, 1, . . . , 100, paired with their logarithms. The mag-

nitude of effort required to construct a complete table of logarithms
based on the “LR1” progression becomes evident on examining the
Table: x100 reaches only to 9999900.0004950. A stupifying 6,900,000
iterations of the ratio R1 would reach only to

LR6900000
1 = 5015760.5176168,

not quite halfway down the interval [L, 1]. Getting to halfway will be
Napier’s first objective. The code below uses the Keisan Calculator’s
methods for estimating x100 and x6900000.
Reminder: Set the Keisan Editor to Textarea, not ACE.

L=10^7; R1=0.9999999; print(L*R1^100, L*R1^6900000);

Napier defined his logarithm for LNRk
1 as λN(xk) = ck = 1.00000005 k,

for k a non-negative integer. The following code can be used to choose
k and find the entry xk and its logarithm λN(xk) for Table 1; although
these logarithms are known exactly, the values are rounded to 7 decimal
places to fit the table.
Reminder: Set the Keisan Editor to Textarea, not ACE.

L=10^7; R1=0.9999999; c=1.00000005;
Xk = round(L*R1^k, 7);
LogXk = round(c*k, 7);
print( Xk, LogXk );

Table 2 [35, Sec. 10.2, p. 60]:
The foregoing code shows that x100 = 9999900.000495 and λN(x100) =

100.0000050. The value of x100 is so close to 9999900 that Napier
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adopted R2 = 0.99999 as more convenient than R1 for iteration, in-
creasing advancement of the progression by a factor of 100. He com-
puted LRk

2 , k = 0, 1, . . . , 50 and included those terms with their loga-
rithms in Table 2. It would take 69,000 terms of LRk

2 to reach about
halfway down the interval [L, 1], still too large a number.

But there is another catch: there are gaps between terms of the
original LR1 series and the LR2 series. Because Napier’s logarithms
are defined by the LR1 series, he must assign logarithms for the LR2

series consistent with those of LR1, a problem solved by Equation 27.

Table 3 [35, Sec. 10.3 Pp. 61–83]:
The final entry of Table 2 is LR 50

2 = 9995001.2248040230, close to
9995000, leading to adoption of R3 = 0.9995, a number even more
convenient than R2 for iteration. The stride length of the LR3 series is
5000 times greater than that of the LR1 series, which implies it would
take about 1380 terms of the LR3 series to reach nearly halfway down
the interval: LR 1380

3 = 5014895.2580976.
Napier deemed this within reach of practical computation and made

R3 the basis for his Table 3, but to further simplify computation, he
interposed an extra step. The 21st term of the LR3 series is LR 20

3 =
9900473.5780232, showing that every term of the LR3 series is nearly
R4 = 0.99 times its 20-th predecessor. The ratio R4 is easier to iterate
than R3, so Napier arranged Table 3 in Rows 0-20 and Columns 0-68
using a computational process equivalent to LR row

3 R col
4 .

Deriving logarithms for Table 3 is more complex than for Table 2..
For example, the midpoint estimator gives too crude an estimate for the
gap between LR50

2 and LR3. With R = LR3/LR
50
2 the error estimate

is,

L · TMaxErr[1, R] = L · (1−R)2

R
< 1.50 · 10−7

This error bound is small alone, but it would be repeated 1449 times
in the construction of Table 3 and be compounded with the errors of
the LR2 series and the LR4 series that could undermine the accuracy
needed for computation of the canonical table. To improve the esti-
mate for a gap larger than the stride of the LR1 series, Napier “boot-
strapped,” using a related interval in the scope of Table 1 that can be
estimated more accurately. Roegel explains this in [35, Sec. 2.4.3, Pp.
12–15].

Here we use a procedure summarized in the following synopsis. We
seek a proportionate interval [L,X], where X must be calculated be-
forehand to locate its position in Table 1 or Table 2; by table lookup
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X ∈ [LR1, LR
2
1] in Table 1.28 The gap referred to is [LR1, X], smaller

than the LR1 stride. Note that λN(LR1) = c.

[L,X] ∼ [LR 50
2 , LR3] =

1

R50
2

· [L,L R3

R 50
2

]

X = L · R3

R50
2

= 9999998.77458341877102;

X ∈ [LR1, LR
2
1];

LogGap ≈ 2L ·
(
LR1 −X
LR1 +X

)
= 0.22541660631127269995;

Err3 = L · (LR1 −X)2/(LR1X) = 5.081264640089131368 · 10−9;

LogX = LogGap+ λN (LR1);

= 1.22541665631127269995± 5.08 · 10−9;

λN (R3) = LogX + 50 · λN (R2);

Error3 = Err3 + 50 · Error2 = 5.08248978 · 10−9;

λN (R3) = LogX + 50 ∗ 100.0005000033± Error3;

= 5001.2504168213112727± 5.08248978 · 10−9.

The logarithm of the k-th row in Column 0 of Table 3 are integer
multiples: k · 5001.2504168213112727± 5.1 · 10−9, k = 0, 1, 2, . . . , 20:

L=10^7;
R1=0.9999999; R2=0.99999; R3=0.9995; R4=0.99;
c=1.00000005;
Xk = L*R3^k;
LogXk = round(k * 5001.25041682, 1);
IdealizedNapLogXk = c*ln(Xk/L)/ln(R1);
CalcLog =L * ln(L/Xk);
print( k, LogXk, IdealizedNapLogXk, CalcLog );

The gap between LR 20
3 and LR4 presents an additional complication.

Its proportionate interval [L,X] based at L lies beyond Table 1 in
the 5th interval of Table 2. The following synopsis summarizes the
computation, where X is backtracked to Y in the 79th interval of Table
1, and the logarithm of Y is estimated by estimating the log of the
gap between it and LR78

1 and adding 78λN(LR1). Then two prior
estimations are used: 4λN(LR2) is added to the log of Y to compensate
for the backshift, and 20λN(LR3) is added to that to find λN(LR4) at

28Note that the error estimate is improved because the midpoint estimator is
applied to a value smaller than the stride of LR1.
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the end of the 21st interval of Table 3. Note that λN(LR78
1 ) = 78c.

[L,X] ∼ [LR 20
3 ,LR4] ∼ [L,L

R4

R 20
3

] =⇒

X = LR4/R
20
3 = 9999521.661242208371119;

X ∈ [LR 4
2 , LR

5
2 ] =⇒ Y =

X

R 4
2

∈ [L,LR2];

Y = 9999921.65210837971463 ∈ [LR78
1 , LR

79
1 ];

Gap = [LR 78
1 , Y ];

LogGap ≈ 2L ·
(
LR 78

1 − Y
LR 78

1 + Y

)
= 0.348194641494288;

Err4 = L · (LR 78
1 − Y )2

LR 78
1 Y

= 1.21239508365336 · 10−8;

LogY = LogGap+ 78c = 78.348198541494288

LogX = LogY + 4 · λN (R2) = 478.350198554694288;

λN (LR4) = LogX + 20 · λN (LR3);

= 100503.358534680919748;

Error4 = Err4 + 4 · Error2 + 20 · Error3 = 1.13773844 · 10−7.

With the error estimates for the LR2, LR3 and LR4 series in hand
(Error2, Error3 and Error4), we can make an estimate for error bounds
for the final entry of Table 3 at Column 68 of Row 20: 20 ·Error3 +68 ·
Error4 = 20 · 5.08122514155 · 10−9 + 68 · 1.13773844 · 10−7 < 8.0 · 10−6.

L=10^7; R1=0.9999999; R3=0.9995; R4=0.99;
c=1.00000005;
NLogR3 = 5001.2504167;
NLogR4 = 100503.35853468;
EstLog = Row*NLogR3 + Col*NLogR4;
Num= round(L*R3^Row*R4^Col,6);
IdealizedNapLogX =c*ln(Num/L)/ln(R1);
CalcLog =L * ln(L/Num);
print( Num, EstLog, IdealizedNapLogX, CalcLog );

The foregoing code calculate all the entries for Table 3, using the
estimates λN(LR3) = 5001.2504167 and λN(LR4) = 100503.35853468
calculated in the previous paragraphs. (See these two numbers rounded
in Roegel’s first page of Table 3 [35, Sec. 10.3, Pp. 61].) The input
parameters for the code entered by the user are Row (0 – 20) and
Column (0–68). Comparative analytics are included in the output.
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4.3. Short Table. [35, Sec. 2.5.4, Pp. 19–20]: The Short Table along
with Tables 1–3 enabled Napier to construct his Canonical Table for
the sine function. The problem with the construction tables, Tables
1,2 and 3 is that they reach only near the halfway mark of the interval
[10, 000, 000, 1]. The Short Table extends the reach of Table 3.
The Short-Table. The Short Table in effect provides augmenta-

tions to logarithms that divide or multipy the number associated with
the logarithm to fit it within the scope of Table 3: add to divide,
subtract to multiply.

Consider a number x and its logarithm λN(x), where x = LR
λN (x)/c
1 .29

To achieve multiplication by a > 0, find the augmentation α so that
a = R

α/c
1 , then ax = L ∗R λN (x)/c+α/c

1 , and therefore,30

λN(ax) = λN(x) + λN(La). (28)

The factor α = λN(La) (< 0) doesn’t depend on x and acts as a
universal multiplier, and −α (> 0) serves as a divider.

Equation 28 can be solved for λN(aL) if both x and ax are within
the scope of the construction tables, Tables 1, 2 or 3, because then
λN(ax) and λN(x) can be found. A likely problem is that not both
will be exact values of entries, and the missing logarithm(s) can be
be estimated with procedures like the ones demonstrated in finding
λN(LR3) and λN(LR4). Let us assume that any necessary prior steps
have been taken to ensure that the values λN(x) and λN(ax) are known.
Then we have,

λN(La) = λN(ax)− λN(x). (29)

And now, as a result of knowing λN(La), if given any positive number
x and its logarithm λN(x) we can know the logarithm of ax and x/a
by adding or subtracting λ(La) to it, just as in Equation 28 but with
the variable x freely chosen. Moreover, by adding λN(La) any number
of times, say n times, to λN(x) gives λN(anx) and subtraction gives
λN(a−nx).

Napier’s Short Table gives values −λN(La) for various powers of
a = 2 and a = 10 and their mixed products up to 10, 000, 000. See
Roegel [35, Pp. 20–21]. The positive values implement division to cut
down any number larger than 10,000,000 to fit the interval [L, 0] and
the negative values implement multiplication to amplify small numbers
to fit. For a numerical application, see the Short Table in Section 4.3
below.

29The role of c is discussed in relation to Equation 20.
30a = R

α/c
1 =⇒ La = LR

α/c
1 =⇒ α = λN (La).
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Here we follow the procedure prescribed above using Equation 29.
Napier’s method is discussed by Roegel [35, Sec. 2.5]

Example: The first entry for the Short Table. We will com-
pute the first entry of the Short Table for halving/doubling a given
number. Equation 29 is used with a = 2, X1 = L and X2 = L/2 to
find λN(2000000) = −λN(X2).

The next-to-last number of Table 3, at Row 19 and Column 68,
is the nearest number to X2 = 5000000.0, namely L ∗ R 19

3 R
68
4 ≈

5001109.956831605. We already know the logarithm of L: λN(L) = 0,
but we need to estimate λN(L/2) for use in Equation 29. An explana-
tion follows the synopsis:

X2 ∈ [LR19
3 R

68
4 , LR

20
3 R468]

X2/(R
19
3 R

68
4 ) ∈ [L,R3]

Y = X2/(R
19
3 R

68
4 ) = 9997780.57902908

∈ [LR22
2 , LR

23
2 ] =

1

R22
2

[L,LR2]

Z = Y/R22
2 = 9999980.34372056

∈ [LR19
1 , LR

20
1 ]

λN (Z) ≈ 2L(LR19
1 − Z)/(LR19

1 + Z) + 19 ∗ c
≈ 19.65629876

≈ 2219.667298836

λN (X2) = −λN (2000000)

= λN (Y ) + 19λN (LR3) + 68λN (LR4)

≈ 6931471.80559943 ≈ 6931471.81

To begin, we backstepped from Table 3 through Table 2 to Table 1.
Beginning with X2, the numbers at each step backward were indicated
by Y, and Z. To return to λN(X2), we compensated for the backsteps
using the known values for λN(R1), λN(R2), λN(R3) and λN(R4). Be-
cause Z is within the scope of Table 1, the midpoint estimator can be
used to estimate λN(Z). The computations are performed in the order
shown. The last number is the same as the first value in Roegel’s ideal
Short Table for halving a number [35, Sec. 2.5.4, p.21]. The negative of
that number is used for doubling a number. Doubling and tripling the
accurate value gives the second and third entries of the Short Table.
The comparative analytic values are 6931471.80559943 for the Napier
idealized logarithm and 6931471.80559945 for the calculus logarithm.

Example: The fourth entry for the Short Table. This is an
application of the Short Table using the value we computed in the
preceding example. The fourth entry of the Short Table is the number
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that when added to (or subtracted from) the logarithm of a number
gives the logarithm of one-tenth (or ten times) the number; in this case
a = 10, and we want to find λN(1000000).

We take two steps. Begin with X1 = L and X2 = L/10. The number
X2 = 1000000 is too small to be in any of the construction tables. But
8X2 is in the scope of Table 3. The strategy is to find λN(8X2) and
add the third entry of the Short Table to find our number as λN(10L)
using Equation 29. Let X3 = 8X2 = 8000000, then:

X3 ∈ [LR4
3R

22
4 ], LR4

3R422]

= R4
3R

22
4 [L,R3]

Y = X3/(R4
3R

22
4 ) = 9999643.38265446

∈ [LR3
2, LR

4
2] = R3

2[L,R2]

Z = Y/R3
2 = 9999943.377955824819007

∈ [LR56
1 , LR

57
1 ]

We have stepped back to find Z in the scope of Table 1 where the
midpoint estimator can be used. For the second step:

λN (Z) ≈ 2L(LR56
1 − Z)/(LR56

1 + Z) + 56 ∗ c
≈ 56.622204478580249

λN (Y ) = λN (Z) + 3λN (LR2)

≈ 56.622204478580249

λN (X3) = λN (800000) = λN (Y ) + 4λN (LR3) + 22λN (LR4)

≈ 2231435.51314209

Adding the third entry of the Short Table to λN(800000) and using
λN(L) = 0 in Equation 29, find:

λN(L/10) ≈ λN(800000) + 3 · 6931471.80559943

≈ 23025850.92994038.

The latter, rounded to two places, is the same as the fourth value in
Roegel’s exact Short Table in Figure 5 [35, Sec. 2.5.4, p.21]. The com-
parative analytic values are 23025850.92994038 and 23025850.92994045
for the Napier ideal logarithm and the calculus logarithm. All the other
values are found by adding integer multiples of the accurate versions
(found above) of the first and fourth entries. For example, the en-
try for 8000000 should be λN(L/8000000) = 3 · 6931471.80559943 +
6 · 23025850.92994038 = 158949520.99644057 ≈ 158949521.00 after
roundoff. Also all the other entries compare precisely with the ideal-
ized and calculus analytics after roundoff.
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Readers may check the entries of the short table by using the fol-
lowing code and rounding the results to two decimal places. To dou-
blecheck the above, use Entry = 8000000 and notice the negations
value:

L=10^7; R1=0.9999999; c=1.00000005;
IdealizedNapLogX =-c*ln(Entry)/ln(R1);
CalcLog =-L * ln(1/Entry);
print( Entry, IdealizedNapLogX, CalcLog );

Constructing the Canonical Table. Napier’s Canonical Table pre-
sented logarithms for the sines of all the degrees and minutes from 1 –
90. Napier’s Tables 1-3 and the Short Table were used by Napier for
constructing the table and were not included with the canonical table;
they were not published in Napier’s lifetime.

Roegel explains Napier’s method [35, Sec. 2.5]. The example of
this section is worked out in a different way, following the same pro-
cedures used above. The example uses data from Roegel’s Table 7 on
p.25, which lists the sines of angles as multiples of L = 107 with their
logarithms.

Example, λN(sin 3′). Napier’s value for 103 sin(3′) is given as 8727,
surely not as accurate as the value he knew, as we will see. This
number is not in the scope of Table 3, but its multiple by 103 is, so
the Short Table will be used. The procedure follows. The Short Table
data for 103 appears as an addition in the last line, for LogX:

X = 8727

X3 = 103X = 8727000

∈ [LR11
3 R

13
4 , LR

12
4 R

13
4 ] = R11

3 R
13
4 [L,LR3]

Y = X3/(R11
3 R

13
4 ) = 9999923.1677

∈ [LR76
1 , LR

77
1 ]

LogY = L · 2(LR76
1 − Y )/(LR76

1 − Y ) + 76c

≈ 76.832588473998395

LoxX3 = LogY + 11λN (R3) + 13λN (R4)

≈ 1361634.248128709584851

LogX = LogX3 + cλN (1/103)

≈ 70439187.0379498

Roegel’s entry for the logarithm published by Napier is presented as
70439560 in Roegel’s Figure 7 [35, Sec. 4, p25]. But the compara-
tive analytics for the preceding calculation are: 70439187.0379498 for
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the Idealized Napier logarithm and 70439187.03795008 for the calculus
logarithm, confirming the above.

This shows that Napier made arithmetic errors, as can be confirmed
by using the following code to compare data in Roegel and in Bruce’s
“A modern generation of Napier’s logarithms” [36, 11].
The code can be used to compare results in:

(1) Napier’s Table in Roegel’s Figure 7 [35, Sec. 4, p25],
(2) Roegel’s reconstruction of the tables of Napier’s Descriptio,
(3) Bruce’s modern generation of Napier’s logarithms,
(4) A fourth table online is referred to in Footnote 25.

Examination of Napier’s logarithms reveals they are often erroneous,
presumably due to arithmetic errors in the construction tables. Roegel
reconstructs the ideal table Napier would have obtained, using the given
(inaccurate) sine values, “assuming Napier did not round his values and
made no computation error.”31 Bruce computes values for the loga-
rithms that ideally Napier could have achieved with accurate sine val-
ues; they are comparable in roundoff with Napier’s postulated model,
tagged as the Calculus Log, and they differ from Roegel’s ideal recon-
struction. Set KC Mode to Degrees, Enter Degrees and Minutes from
the table, and enter X for the value given there as the sine.

L=10^7;
R1=0.9999999; R2=0.99999; R3=0.9995; R4=0.99;
c=1.00000005;
SinX = L*sin(D+M/60);
IdealizedNapLogX = c*ln(X/L)/ln(R1);
CalcLog =L * ln(L/X);
LogSineX = L*ln(L/SinX);
print( X, SinX);
print( IdealizedNapLogX, CalcLog, LogSineX );

I have examined cases for: 10k Deg, 3 Min. for k = 0, 1, 2, . . . 8, and
they confirm the distinctions noted above.

Roundoff Error estimation. In this paper, the Keisan Calculator
is entrusted to perform arithmetic operations to 22 decimal places.
But Napier would need to take care for himself. The following sketches
considerations for addition and subtraction, and for use of the midpoint
estimator.

When truncating a decimal number, the two possible extreme round-
off errors at the final digit after truncation are: ±0.5, so for truncation

31Roegel states that “this table does not give the ideal Napierian logarithm.”



JOHN NAPIER AND HENRY BRIGGS AT THE THRESHOLD 35

ofter the n-th digit, the maximum error for one operation would be
±0.5 · 10−n. Napier used iterative subtraction for computing the num-
bers for his tables and iterative additions for his logarithms.32 There
are at most 20 · 68 = 1360 in any one of these (the rows of Table 3), so
the maximum total roundoff error for that one stream of computation
would be 0.5 · 1360 · 10−n = 680 · 10−n; the latter is a 3-digit num-
ber, indicating that 3 digits of accuracy may be sacrificed in the final
number, with a carryover of at most ±0.5 on the (n − 4)th decimal..
So to ensure m decimals of accuracy with an error no greater than
±0.5 · 10−m, a conservative practice would be to compute each number
to at least m+ 3 digits, and truncate after the mth decimal.

An additional error comes into the calculation of logarithms, due
to the use of the midpoint estimator because there is always a gap
involved. The midpoint estimator is a quotient of the form 2(A −
B)/(A+B), where A is a known number like LRk

2 , LR
k
3 , LR

k
4 and B <

A, often of the form B ∈ [LRk
j , LR

k+1
J ], j = 2, 3, 4 and always of the

same order of magnitude L. Suppose both A and B have roundoff error
≤ e = 0.5 · 10−n, then:

∆MPE ≈ 2 · 2e+ A−B
2e+ A+B

− 2 · A−B
A+B

= 2 · 4Be

(A+B)(2e+ A+B)

<
2e

e+B
= 10−n · 1

LRj

∼ 10−n−7.

Therefore, the error due to use of the midpoint estimator is about 7
orders of magnitude smaller than the maximum roundoff error of A
and B, not much to worry about so long as e is kept sufficiently small
across all the subtractive multiplications used to compute the numbers
in the construction tables.

To see how Napier dealt with errors, see Roegel ([35, p. 7]).

4.4. Using the Canonical Table. Napier came at the end of an
heroic era of trigonometric table construction, a topic treated at length
by Glen Van Brummelen. See especially his entries for the 700-page

32See the discussion and code for subtractive multiplication in Section 4.1.
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Opus palatinum of Rheticus, and the works of other authors such as Re-
giomontanus, and Pitiscus in which the basic definitions of the trigono-
metric functions and their expression in terms of angles and lengths in
triangles rather than arcs of circles were established [44, 45, 46]. 33

Immediately on publication of the Descriptio, Napier’s Canonical
Table of logarithms was recognized as a means to simplify the ar-
duous arithmetic used in trigonometry for navigation and astronomy.
Briggs himself developed tables for naval use. And Kepler, deep in
massive computational problems in his Rudolphine Tables, came early
to the logarithms of Bürgi and Napier [42, Sec. 5.3] and [46, p. 75-76].
Van Brummelen finds in Kepler an adumbration of integral calculus, a
thought in harmony with Section 5 ahead [46, p. 111].

As important as this subject is — the purpose for which Napier devel-
oped his logarithms — we turn aside. This paper has been restricted to
themes of early analysis (calculus) suggested by Napier’s work, and to
explain and demonstrate how he constructed his tables of logarithms.
Samples of Napier’s applications can be found in Roegel [35, Sec. 6].
Napier covered the topic more extensively in his Descriptio [28].

5. Another Perspective — Riemann Sums

Napier’s logarithm was characterized in the “Stages of Construction”
explained in Section 2.3, and specialized by Napier’s choice of param-
eters, discussed in Section 3.

Napier characterized his logarithm pictorially as the correlation be-
tween a point moving rightward along a half-ray [L, 0) at a constant
speed — referred to as the traveling log point — and another point
also moving to the right along a parallel interval of length L = 107 at
an instantaneous rate such that proportional intervals are covered in
equal times [28, Descriptio, Liber I, p.2].34 Napier inferred that the
speed of the second point must be equal to its distance from its ter-
minal point. I have referred to this latter point as Napier’s model or
calculus traveling point.

A solution of the ideal problem, beyond the reach of mathematics
in Napier’s time, was derived from the Stages in Section 2.3 using dif-
ferential calculus (Equation 12). Multiplying that solution by Napier’s

33Roegel has published reconstructions of trigonometric tables extant at the time
of Napier at LOCOMAT: The Loria Collection of Mathematical Tables [38]. Van
Brummelen’s references thirteen of them [45, p. 351].

34In his solution of the catenary problem presented as a geometric construction
(1691), Leibniz defined the ordinates of his “logarithmic curve” as proportionate in
this way [30, Fig. 2, p. 4].



JOHN NAPIER AND HENRY BRIGGS AT THE THRESHOLD 37

value L = 107 to synchronize the initial speeds of the log point and the
kindematic point, yields Napier’s ideal solution:

Λ(x∗) = L

∫ L

x∗

dx

x
= L ln

L

x∗
, (L = 107). (30)

Here we’ll revert to the general Napier-style logarithm and derive
Equation Section 30 anew using integration, assuming the terms of
Section 3. A point moves at discrete speeds over intervals defined
by a progression of points defined by the quasi-geometric progression,
xk = LRk, k = 0, , 1, 2, . . . , where L > 0 and R > 0 are fixed. Define
intervals I(R)(k) = [xk−1, xk], let ∆k = xk−1 − xk, and select an inter-
mediate point x̄k ∈ I(R)(k). We will use the approximated travel time
of Equation 8, but here allow any intermediate point x̄k on each of the
intervals, and so traversal time over I(R)(k) is approximately,

∆t(k) =
∆k

σ∗(x̄k)
=

∆k

x̄k
, (xk ≤ x̄k ≤ xk−1). (31)

Therefore,

∆xk
xk−1

≤ ∆t(k) ≤ ∆xk
xk

By summing, we can find flanking approximations for the time the
discretized traveler takes to traverse the first k intervals. Pick a time
x∗ ∈ [L, 0) and sum the intervals up to x∗ to find the time of travel to
x∗. Choose k = K(x∗) = ln(x∗/L)/ ln(r) and get,35

K(x∗)∑
1

∆xk
xk−1

≤
K(x∗)∑

1

∆t(k) ≤
K(x∗)∑

1

∆xk
xk

. (32)

The flanking members are sums for a Riemann integral for the function
f(x) = 1/x with mesh controlled by R, and so as R→ 1 and mesh size
goes to 0, we have the limiting time T (x∗) for Napier’s model traveler
to travel from x∗ to L:,

T (x∗) =

∫ L

x∗

dx

x
. (33)

Multiplying by Napier’s value for L again yields the ideal logarithm
approximated by Napier displayed as Equation 30:

Λ(x∗) = L ln

(
L

x∗

)
, (L = 107).

35The brackets “[x]” denote here the standard “greatest integer not exceeding x.
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This same formula for Napier’s ideal logarithm has now been derived
by differential calculus and integral calculus as direct implications of
his arithmetic operations. Both derivations are valid for any x∗ > 0,
validating Napier’s logarithm for any positive value beyond the interval
[L, 0).

More can be inferred from Equation 32 by using the freedom
allowed by a Riemann sum to choose any intermediate points. Choose
x̄k = xk−1 so that discretized travel times are identically 1 − R for all
intervals. Using the relationships between R and K(x∗),

x∗ = LRK(x∗) ←→ R =

(
x∗

L

)1/K(x∗)

,

yields,

n∑
k=1

∆t(k) = n ·

(
1−

(
x∗

L

)1/n
)
, (n = K(x∗)).

This particular expression for total time is flanked by the first and
third members of Equation 32, so by their convergence to the same
integral as Riemann sums, we arrive at a root-extraction technique for
estimating Napier’s logarithms:36

λN(x∗) = L lim
n→∞

n

(
1−

(
x∗

L

)1/n
)

= L ln
L

x∗
, (x > 0). (34)

This result was obtained in a different manner in Section 2.2 for the
case L = 1. It implies two important approximation formulas:

λN(x∗) ≈ L · n

(
1−

(
x∗

L

)1/n
)
, (large n, x∗ > 0), (35)

which inverted yields the number nN paired with Napier’s logarithm,

nN(x∗) ≈ L

(
1− x∗

Ln

)n
, (large n, x∗ > 0). (36)

36A more general root-extraction technique will be presented in Section 6.1.
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For example, the last entry of Roegel’s of Table 3 is λN(4998609.401853) =
6934253.4 [35, p. 83]. For comparison, using L = 107 and n = 254 in
the two preceding formulas, the Keisan Calculator gives,37

λN(4998609.401853) = 6934253.388717818210612

nN(6934253.4) = 4998609.396213478006596.

6. Transition from Napier to Briggs

Goldstine: “Briggs must be viewed as one of the great figures in nu-
merical analysis. His ideas were far in advance of his time, and he
has never been accorded the honor which is his due. This is proba-
bly because of the fallacious theory which grew up that he was merely
the slavery of drudge who carried out the ideas of his master, Napier.
Briggs’ techniques were purely arithmetical and indicate that he must
have been one of the very first, if not the first, to use the calculus of
finite differences with great facility. His work is, however, difficult to
read since he gave no proofs.” [20, Pp. xi, 13].

But Briggs, if today still in the shadow of Napier, may finally be
coming into the light himself. Sonar’s major biography presents what
is known about the early life and distinguished career of Briggs before
his meetings with Napier [41].38

This section is transitional because it connects algebraic formulations
suggested by Napier’s methods that were incorporated into techniques
used by Briggs. Those techniques make it easy to derive several num-
bers used by Briggs. How Briggs discovered his method will be touched
on in Section 8, Briggs’ Discovery of his Golden Multiplier.

For L = 1 the approximation in Equation 34 gives the negation of
the natural logarithm, so:

ln(x) = lim
n→∞

n
(
x1/n − 1

)
, (x > 0), (37)

and its inverse,

E(x) = lim
n→∞

(
1 +

x

n

)n
, (x > 0). (38)

37Briggs used progressive square roots out to the 54-th in his “golden rule” for
computing base-10 logarithms of small integers, so the use of 54 squares in this
example is not outlandish.

38Unfortunately, not so much is known about Napier’s life. Havil summarizes
his life and militant Protestantism in the context of troubled times in Scotland. See
Footnote 48.
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Although inherent in Napier’s logarithms and utilized by Briggs, these
results were published first by Leonhard Euler [17, Vol 1, Ch. 7, p192].
They can be used to estimate the natural logarithm and exponential
functions.39

Briggs applied the expression n
(
x1/n − 1

)
from Equation 37 using

repeated square roots of x, as many as 54 (n = 254). Briggs’ preeminent
example was x = 10, providing him with the key multiplier for his
“golden rule,” discussed in Section 7. Briggs did not recognize his root-
extraction technique as producing logarithms, but we can see that it
produced base-e logarithms. Code for using Equation 37 is in the
following Section.

6.1. Root-extraction for increasing accuracy. Section 2.2 demon-
strated a method for inserting roots of the basis of a geometric pro-
gression to improve the accuracy of a logarithm. By other routes we
have come to formulas equivalent to Equation 37. The point now is
that root-extraction of positive numbers, using the distance from the
point x = L where λ(L) = 0 as speed of travel, is deeply connected to
the natural logarithm.

We start with the Fundamental Progression (Equation 6) of (Stage
2). There we assumed R < 1, but here set L = 1, change the direction
of motion away from the origin, take any R > 0 and let xk = Rk, k =
1, 2, . . . .

Because the intervals IR(xk−1, xk) = [xk−1, xk) are proportionate,
travel time over each is identical, say T , where,

T = 2 · R− 1

R + 1
.

The interval [1, R] can be divided into m proportionate slices:

[R(k−1)/m, Rk/m) k = 1, 2, . . . ,m,

and travel time over each of these is identical with an aggregate time
to traverse all m of them:

Tm = 2m · R
1/m − 1

R1/m + 1
. (40)

39Jacob Bernoulli demonstrated that,

lim
n→∞

(
1 +

x

n

)n
=

∞∑
n=0

xn

n!
, (39)

but he only considered this to be the limiting value for compound interest and said
nothing about it as an exponential function. That interpretation had to wait for
Euler, but we see that fact already near the surface in Napier.
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You can see accuracy improvement with increasing m by pasting the
following code in the Keisan Calculator. The code extracts square
roots. Try setting the upper limit (Lim) to any integer up to 54 (prac-
tical for Briggs) to see successive square roots for choices of R > 0. Try
R = 3, 5, 10 and compare the results with examples in the next section.
Reminder: Set Editor to Textarea:

for(j=1; j<=Lim; j=j+1) {
m=2^j;
EstLogR_m =2*m*(R^(1/m)-1)/(R^(1/m)+1);
Error=m*(R^(1/m)-1)^2/R^(1/m) ;
print( EstLogR_m );
}
print( 100000000000000001, ln(R), Error );

L’Hopital’s rule shows that limm→∞ Tm = ln(R), and this is displayed
numerically in the code’s final result from the Keisan Calculator’s ana-
lytic estimate for ln(R). An error estimate, analogous to Equation 19,
is also printed at the end, showing that the arithmetic error bound is
cruder than the correct error shown by the analytic result, but it does
provide persuasive numerical evidence that accuracy increases indefi-
niteley with increasing Lim.

7. Typical Examples Based on Briggs’ Golden Rule

Briggs based his golden rule for computing base-10 logarithms on ap-
proximations using what we have expressed formally in Equation 37,
where he used repetitious square roots. For example, let n = 2k for k
large, then we have,

lnx ≈ 2k(x1/2
k − 1). (41)

This formulation can be used to produce the natural logarithm of any
number x > 0. Performed manually, the results come at the cost of
laborious arithmetic.

Briggs began by computing ln 10, using k = 54. We find by use of
the Keisan Calculator that:

ln 10 ≈ 254(101/254−1) ≈ 2.302585092994045831175

The Keisan Calculator’s approximation is bolded to mark the correct
digits in Briggs’ computation:

ln 10 ≈ 2.302585092994045684018.
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Briggs used the reciprocal of this estimate as his multiplier. Next we
will see the use Briggs makes of it for his multiplier in the golden rule.

Briggs’ golden rule. The golden rule can be inferred from basic
operations of logarithms for exponentiation and root taking.40 Denote
the logarithms to bases a and b, respectively, as loga x and logb x, and
define,

y = (loga b)(logb x). (42)
Then,

ay = x =⇒ y = loga x, and loga b =
1

logb a
,

From these results, letting a = 10, we have the golden rule of Briggs:

Golden Rule: log10 c = (log10 e)(ln c),

where Briggs used as his multiplier the reciprocal of the number for
ln 10 calculated above,

M = log10 e =
1

loge 10
= 0.4342944819032517998956. (43)

Briggs’ value for the multiplier, 0.434294481903251804, correct in the
figures bolded above, can be seen in Arithmetica Logarithmica [7, p.
11]. To compute his base-10 logarithm of any number, he used Equation
41 to compute the natural logarithm of the number, then multiplied by
M , his multiplier. For examples,

ln 2 ≈ 254(1− 21/254) = 0.6931471805599453
×M
=⇒

log 2 = M ln 2 = 0.30102999566398

ln 5 ≈ 254(1− 51/254) = 1.609437912434100
×M
=⇒

log 5 = M ln 5 = 0.69897000433601

These results can be compared with Keisan Calculator values:

log 2 ≈ 0.3010299956639811952137

log 5 ≈ 0.6989700043360188047863

40For a logarithm of any base, log(xy) = log(x) + log(y) =⇒ log x(p/q) =
(p/q)(log x), where p and q are non-zero integers, and this leads to the rules for
manipulating exponents and the validity of the implications following Equation 42.
Apostol notes that proof of this is complicated if done from first principles [1, p
227]. But it is apparent from the rules for manipulating logarithms. Negative and
fractional exponents were used by Wallis (1685) and Newton (1712).[4, Indices, p.
42].
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The natural logarithm is fundamental. The golden rule has a
straightforward generalization:

loga c = (loga e)(ln c). (44)

In the unique case a = e, the multiplier M = loga e = 1, obviating the
need for multiplication. This is reason enough for regarding ln = loge
as the most natural logarithm.

Let’s use Equation 38 to estimate e, the number whose natural log-
arithm is 1, let x = 1.

e = lim
n→∞

(1 + 1/n)n.

An approximation can be carried out manually by setting n = 54 and
progressively squaring the expression in parentheses 53 times, a task
no more onerous than ones carried out by Napier and Briggs. Using
the Keisan Calculator, we find directly that

KC: (1 + 1/254)2
54 ≈ 2.718281828459045159913,

where the bolded digits are correct for e.

8. Briggs’ discovery of his golden multiplier

Briggs’ method of discovering his golden rule was altogether different
from the derivation given above in Section 6. This section describes the
table he used to derive his golden multiplier, published in Arithmetica
Logarithmica in 1624.41 An excerpt of the table is shown and code is
provided for computing the entries of the entire table to full accuracy.

We labeled Briggs’ multiplier M , the key factor used in his golden
rule, and calculated it above (see Equation 43). But here we turn to a
sample of Briggs’ arithmetic to illustrate his method of discovery.

To compute the multiplier, Briggs’ began with the number 10 and
extracted 54 progressive square-roots carried out to the 40th decimal
place. He wrote the results in a two-column table available online at the
references in Footnote 41. In the first column, for each n = 1, 2, . . . , 54
he tabulated the number 101/2n , and in the second column he tabulated

41 For the table in context, see Briggs, Arithmetica Logarithmica [7, p. 10]. A
clean copy can be viewed at Wikimedia [6]. Roegel provides a reconstruction of
the complete Briggs logarithmic tables with a full discussion of Briggs’ methodolgy
[34]. Bruce translates the Arithmetic into English and includes biographical notes
[9]. Goldstine and Sonar discuss Briggs’ finite differencing method [20] and [42,
Sec. 6.3.4, Pp. 299-310]. Sonar’s tutorial is available online [40]. See Naux.[29, pp.
99-127]
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the corresponding the base-10 logarithm 1/2n. Table 2 below shows the
1st, 2nd and 3rd and 52nd, 53rd and 54th entries. Code is provided
before Table 2 for computing all the entries.

Observe that the fractional parts of the roots become more accu-
rately halved at each extraction, which suggests re-doubling them in
compensation at each root-taking. That process, shown in Table 3,
converges to Briggs’ golden multiplier.42

The following code computes the full set of values for Table 2 shown
below. Reminder: Use the Textarea editor, not Ace. Set Digit to 30
to expose the significant digits Briggs calculated manually.

X=10; XRooted=X;
for(j=1; j<=54; j=j+1){
XRooted=sqrt(XRooted);
k=2^j;
Log=1/k;
print( j, XRooted, Log ); }

Table 2. From Briggs’ table of progressive square-roots
of 10. (Entries truncated to fit the page)

n Roots of 10 Logs of Roots of 10

n 101/2n 1/2n

1 3.162277660168379331999 0.5
2 1.778279410038922801225 0.25
3 1.333521432163324025676 0.125
* *
* *
52 1.000000000000000511277 2.220446049250313080847E-16
53 1.000000000000000255638 1.110223024625156540424E-16
54 1.000000000000000127819 5.551115123125782702118E-17

42This procedure used by Briggs — subtract 1 from the root and multiply by
the exponent — is less mysterious when viewed in light of Sections 2.2 and 6.1.
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X=10; XRooted=X;
for(j=1; j<=54; j=j+1){
XRooted=sqrt(XRooted);
k=2^j;
Y=XRooted-1;
kY=k*Y;
print( j, Y, kY);
}
print( 10000000000001 );
print( kY, ln(X), 1/kY, log(e) );

Table 3. Observation of Convergence to 1/M = ln(10).
(Entries truncated to fit the page)

n Subtract 1 from the Root Multiply by the Power of 2

n 101/2n − 1 ×2n

1 2.162277660168379331999 4.324555320336758663997787
2 0.778279410038922801225 3.113117640155691204901684
3 0.333521432163324025676 2.668171457306592205407453
* *
* *
52 5.11276597280129479E-16 2.302585092994046272646927
53 2.55638298640064707E-16 2.302585092994045978332459
54 1.27819149320032345E-16 2.302585092994045831175225

The last four lines produced by the code display the arithmetic and
comparative analytic results with correct digits in bold. We have seen
these values earlier,:

1/M = ln 10 = 2.3025850929940458311 and,

M = log10 e = 0.4342944819032517999097.

Briggs labelled the last number as a logarithm but did not identify a
base. In order to normalize similar logarithms to base 10, he multiplied
them by his golden multiplier M .

Table 3 along with the results from the code given above for produc-
ing its entries provide persuasive numerical evidence of convergence.
But that is not a proof. We have seen modern proofs by reference to
L’Hopital’s rule in Sections 2.2, 3 and 6.1. But an elementary proof
can be contrived easily from the use of the Riemann sums in Section
5.
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9. Briggs’ golden rule and the Bernoulli numbers

In the preceding sections we found by various arguments, from Napier
to Briggs, formulas equivalent to,

ln(x) = lim
k→∞

k · (x1/k − 1). (45)

This is fundamental. It expresses what may be the simplest practical
means of computing the natural logarithm by plain arithmetic in the
manner described for Equation 41.

The algebraic expression on the righthand side of Equation 45 has a
formal similarity to the generating function for the Bernoulli numbers.
This can be seen by changing x→ e, 1/k → x and taking the reciprocal.

x

ex − 1
=
∞∑
j=0

Bj

j!
xj. (46)

The generating function for the Bernoulli numbers was discovered
by Euler and used to define the numbers he named in honor of Jacob
Bernoulli [20, p. 127-8]. The formality is significant because the func-
tional relationship expressed by Equation 46 can be used numerically to
compute natural logarithms using the Bernoulli numbers, demonstrat-
ing close affiliation. A more obvious connection is with the exponential
function, which appears in the denominator in Equation 46. These
relationships are demonstrated by means of computer codes below.

The Bernoulli numbers appear throughout analysis and are the sub-
ject of an expansive literature. Kitagawa discusses their history [24].
The book by Arakawa, Ibukiyama and Kaneko, The Bernoulli num-
bers and Zeta Functions begins with history and elementary material;
the bibliography contains 109 references [2]. They were introduced to
European mathematics in Jacob Bernoulli’s formula for summing the
powers of the integers.43 Euler found them as coefficients in power
series for trigonometric functions and used them in his Euler-Maclaurin
summation formula.44 They appear in Euler’s zeta-function where they
are entwined with π at the even integers, and then in Riemann’s ex-
tension of Euler’s function to the complex plane, where they show up
again on the negative integers.

Wherever they appear, the Bernoulli numbers are noteworthy. In
the case dealt with in this article, they have a hidden role hinted at

43Kitagawa cites a contemporaneous discovery in Japan by Takakazu Seki.
44There is a small but important difference between Bernoulli’s version of the

numbers and Euler’s: B1 = −1/2 for Euler but +1/2 for Bernoulli. We’ll use Euler.
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by Equation 45 as noted above. That formula for defining the natu-
ral logarithms was published by Euler as a way to define the natural
logarithm [16, Chap.7, p. 192]. Euler developed a power series for
natural logarithms and used the results for converting those logarithm
to another base, equivalent in effect to Briggs’ golden rule. Similarly
he developed an expansion for the exponential function. His notation
and route of deduction are different than developed in this paper. As
far as I can determine, Euler does not mention an association with the
Bernoulli numbers.

9.1. Bernoulli numbers and the exponential function. The func-
tion on the lefthand side of Equation 46 has a removable singularity
at x = 1, so the series on the righthand side converges throughout the
entire complex plane.

Execute the following code in the Keisan Calculator to estimate ex
using Bernoulli numbers. Input parameters for the code are x and the
number numB of Bernoulli numbers to use. For the standard examples,
begin with x = 1 and x = −1. The code employs progressive partial
sums for both the exponential series and for the generating function of
the Bernoulli numbers. The formula for ex utilizing Bernoulli numbers
is derived directly from Equation 46. The number of iterations of the
code is set to numB, and the accuracy is limited thereby. The partial
sums for both series are shown. The partial sums of the exponential
series are shown to compare convergence rates and the last number
produced by the code is the Keisan Calculator’s value for ex for a
comparison of values.

The results below were obtained by using numB = 14. Higher ac-
curacy can be achieved by using larger numbers and setting Digits in
the KC to larger numbers, e.g, 38.
(Reminder: set the KC editor to Textarea.):

BernoulliSum_j = 0;
ExponentialSum = 0;
for(j=0; j<=numB-1; j=j+1){
BernoulliSum_j = BernoulliSum_j + x^j*bernoulli(j)/j!;
ExpByBernoulli= 1+x/BernoulliSum_j;
ExponentialSum = ExponentialSum +x^j/j!;
print(j, ExpByBernoulli, ExponentialSum );
}
print(1000000000001);
print( ExpByBernoulli, ExponentialSum, e^x);
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For x = 1, the final results are listed in order according to how
they were calculated: eBern using Bernoulli numbers, eExp using the
power series, eKC using the Keisan Calculator’s value, and eEul for
Euler’s first estimate for the number he was first to designated as e:
2.71828182845904523536028 [16, Chap.7, p. 189].

eBern ≈ 2.718281828497580996796,

eExp ≈ 2.718281828446759002315,

eKC = 2.71828182845904523536,

eEul = 2.718281828459045235360.

I have bolded the digits that match with the Keisan Calculator’s value;
Euler’s matches them all.

9.2. The recursion algorithm for natural logarithms. Briggs’
golden multiplier was expressed in Equation 43. A method like that
used by Briggs to calculate it can be encapsulate algebraically in mod-
ern language as

− loga(e) = lim
x→0

x

ax − 1
. (47)

The quotient on the righthand side of Equation 47 can be expanded in
term of the generating function for the Bernoulli numbers:

x

ax − 1
=

1

ln(a)
· x ln a

ex ln a − 1
=

1

ln(a)
·
∞∑
j=0

Bj

j!
(x ln(a))j . (48)

The lefthand side of Equation 48 states in algebra the arithmetic
method Briggs used to compute special logarithms. The righthand side
gives an equivalent expression in terms of the Bernoulli numbers. In
that equivalence, x, ax and ln(a) seem hopelessly entangled; the follow-
ing code, however, demonstrates a recursive procedure for computing
ln(a) to show that they are not.

We would like to solve that equation for ln(a), but x and ln(a) are
entwined. Rewriting:

x ln(a) = (ax − 1)
∞∑
j=0

Bj

j!
(x ln(a))j . (49)
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This formulation suggests a recursive algorithm for y = x ln(a):

yk+1 = (ax − 1)
K∑
j=0

Bj

j!
(yk)

j , (50)

We settle on a simpler formulation by putting x = 1 and substituting
d = a− 1:

y2 = d

∞∑
n=0

Bn

n!
yn1 = d

y1
ey1 − 1

. (51)

Notice that the third member short-circuits the middle one by simply
using the original formulation for the series. The third member is the
limiting value for the series, and so the accuracy of the series depends
on the value of the argument and the number of terms used.

Convergence criteria are established in an ancillary paper using the
final formulation of Equation 51. A constant D such that if d ≤ D, the
full series will converge, otherwise the series will diverge.45

In practice, only a truncated version of the power series can be used.
The code that follows uses the truncated series to estimate ln(d +
1), where, to see convergence, choose d < 3.9. But be aware that
convergence and divergence may require thousands of iterations for
values of d too close to D, and KC time limits may cause cancellation.46

The key input parameter is d, and when convergent the code will esti-
mate ln(d+1). Accuracy depends on the number of Bernoulli numbers
used (numB) and the number of recursions (recursions). For assess-
ment of the results, the last two values produced by the code show the
final value computed for y followed by the KC’s accurate calculation of
ln(d+ 1) for assessment.

As an example, start with d = 1 (a = 2) with numB = 14 and
recursions = 50 to find

ln(2) = 0.6931471805598889474459,

45A Recursive Algorithm for Calculating Natural Logarithms using Bernoulli
Numbers. Note that all solutions of Equation 51 occur where the curve meets
the line y = x, and there y = ln(d + 1). The critical point occurs for the
curve defined by d = D where the intersection is orthogonal. The critical val-
ues are D = 3.9215536345675050924567623117544787 . . . , and the value of x there
is x = 1.5936242600400400923230418758751602418 · · · = ln(D + 1).

46Using 50,000 iterations for the values d = 3.92155364 and d = 3.92155365
bracketing D, the upper and lower limit of the recursion values for each differed by
about 1.61 and 1.68, unsatisfactory for estimation.
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correct in the bold digits. Notice that full 12-decimal accuracy occurs
around the 33rd recursion. The theory shows that greater accuracy
can be attained using more Bernoulli numbers.

For additional trials, try d = 1 (a = 2), d = 3 (a = 4) and d = 4
(a = 5) to see how many iterations are needed to determine convergence
and achieve the maximum accuracy. The case for d = 4 diverges;

(Reminder: set the KC Editor to Textarea. The 22 decimal Digit is
sufficient but larger values when more Bernoulli numbers are used will
reveal greater accuracy.)

for(m=1; m <= recursions; m = m+1){
Sum=0;
for(j=0; j<=numB-1; j=j+1){
Sum = Sum + bernoulli(j)/j! * (y)^(j);
}
y =d*Sum;
print(m, y );
}
print(1000000000001);
print( y, ln(d+1));

The code is impractical. It would be difficult to test it without a
computer, and its applicability is limited to logarithms for numbers
a ∈ (1, D + 1). Other logarithms outside this range can be found by
combining results. For example, ln(10) can be estimated by doubling
ln(
√

10). Then ln(5) is the difference between ln(10) and ln(2). Adding
ln(2), ln(3) and ln(10) gives ln(60), and so forth. This strategy, using
practical formulations, was used by Briggs in his first computations for
base-10 logarithms.

Figures 2, 3 and 4 illustrate patterns of convergence and divergence
for recursion of Equation 51. The vertical value marks the value of the
recursion and the horizontal value marks the count. For example, in
each plot the evaluations begin at count 1, and the maximum count
varies among the plots to illustrate progress of the recursion. The
analytical solution was used in the Keisan Calculator, not the truncated
power series.

The code to generate Figure 2 follows. Input parameters are d and an
initial value for y. The values of d used were 3.5 illustrating convergence
and 5 for divergence. Figure 3 shows a more detailed illustration of the
oscillations, which in Figure 2 blend together in a solid color. The
startig value y = 5 was used in both cases; this choice is arbitrary, but



JOHN NAPIER AND HENRY BRIGGS AT THE THRESHOLD 51

(a) d = 3.5. (b) d = 5.

Figure 2. Convergence occurs only if d ≤ D. Panel A
shows the curve of the generating function from Equa-
tion 51, its recursion, and the line x = y. The unique
solution ln(d + 1) always occurs at the intersection of
the generating function and x = y. Panel B shows the
densely colored recursive oscillation between polar values
for d > D. See text for explanation and code to generate
the figure.

it will determine the shape of the convergence pattern as can be seen
in comparing Panel B of Figure 3 with Figure 4. To produce examples
like Figure 2, execute the code in the Keisan Calculator then press the
Chart button:

iterates=int( 100*d );
for( j=1; j=<iterates; j=j+1 ) {
x = j/100; y = d*y/(e^y-1); z = d*x/(e^x-1);
println( j, x, z, y ); }

Figure 3 on the next page shows the initial portions of the plots in
Figure 2 to emphasize the oscillations that occur in cases of convergence
and divergence. Figure 4 separates the alternate values of the recursion
for the case d = 5 to illustrate convergence to the opposing polar limits.
Panel A of Figure 4 provides a hint that oscillation occurs around each
pole just as it does in the case of convergence around ln(d + 1) in the
Panel A of Figures 3 and 4, respectively.
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(a) d = 3.5. (b) d = 5.

Figure 3. These plots show the initial behavior of re-
cursion using Equation 51. They illustrate converging
and diverging oscillatory behavior for d ≤ D and d > D.

(a) d = 5. (b) d = 5.

Figure 4. Continuing example of divergence for d = 5.
Upper and lower oscillations are shown as they stabi-
lize at limiting polar values above and below the line for
ln(d+ 1).

Results of Newton’s method are shown on the following page. Polar
limits were found for the case d = 5 for the oscillations around the line
y = ln(5 + 1). It produced the limiting poles x and y shown. Their
accuracy as oscillating opposites is demonstrated in computations per-
formed by the Keisan Calculator using the standard Digits = 22:
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x = 4.29382403889703194825

dy/(ey − 1) = 4.293824038897031948244 (d = 5)

ln(5 + 1) = 1.791759469228055000813

y = 0.29716678415392511284

dx/(ex − 1) = 0.297166784153925112838 (d = 5)

10. Conclusion

This work is based primarily on expositions of the logarithms of John
Napier and Henry Briggs by Denis Roegel and Ian Bruce [35, 8]. Roegel
describes Napier’s methods and applies them to computing corrected
tables, and he does the same thing for Briggs. Roegel provides an
extensive bibliography. Bruce translates and annotates Napier’s and
Briggs’ original documents and postumous editions. See the Bibliog-
raphy for the numerous citations of Roegel and Bruce, where some are
listed under Napier.47 This work includes codes written for immediate
execution on Casio’s free online Keisan Calculator to produce any of
the entries of the tables in Roegel’s Napier’s ideal construction of the
logarithms and to demonstrate the recursion formula for computing
natural logarithms using Bernoulli numbers.

I have relied on several other authors cited throughout the study.
Goldstine provides a succinct modern description of Napier’s logarithm
as well as an homage to the pioneering numerics of Briggs [20]. Havil
explains, with step-by-step arithmetic, Napier’s actual methods for cal-
culating the numbers and logarithms in his tables [21].48 Burn gives
a chronology relevant to Napier’s logarithms [13]. Naux’s history of

47Roegel has published reconstructions of the important trigonometric tables
extant at the time of Napier in his Loria Collection of Mathematical Tables [38].
Bruce is a prolific author of translations and commentaries alongside original texts
in his Mathematical Works of the 17th & 18th Centuries [10].

48 Havil’s book, written in the Year of the Quadcentenary celebration of Napier’s
Descriptio, is more than a gloss on Napier’s Constructio. The title, John Napier —
Life Logarithms and Legacy declares its reach, including 12 appendixes with two
abbreviated histories of Scotland and the Reformation, discussions of devices like
the slide rule, the Logarithms of Briggs and Bürgi, and Kepler’s use of Napier in the
Rudolphine Tables. The chapter “Revelation and Recognition” discusses another
less-known side of Napier as apocalyptic theologian; his Plaine Revelation was a
thoroughgoing anti-papist interpretation of the Book of Revelations predicting the
end times, circulated throughout Europe, indicative of the tumultuous religious
upheaval of the time.
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logarithms from the earliest beginnings to Napier and onward to devel-
opments in the era of analysis is encyclopedic [29]. Truemper’s recent
book, The Daring Invention of Logarithm Tables: How Jost Bürgi,
John Napier and Henry Briggs Simplified Arithmetic and Started the
Computing Revolution explains Bürgi’s logarithm in elementary lan-
guage [43].49

My purpose has been different from any of these authors. I have
shown how direct algebraic formulations of Napier’s and Briggs’ arith-
metic techniques and their limits according to elementary calculus
demonstrate how remarkably their work forshadows modern analysis.50

In some places I have dealt freely with ideas that to me seemed close
enough to the methods of Napier and Briggs to be within the spirit of
their methods.

Here are brief discussions of several themes in the paper:
Napier defined his logarithm in terms of a kinematic traveling point

that moves at a continuously decelerating rate equal to its distance from
the endpoint. From this he devised a discretized method, resulting in a
function closely related to the natural logarithm. The term “function”
was not used at the time, but Napier’s table of logarithms was a prime
early example.

Briggs continued work after meeting with Napier by devising meth-
ods to produce the more convenient base-10 logarithm. How much of
the ideas published later by Briggs were already known to Napier is a
question for historians, but Napier already had the idea of a base-10
logarithm at the time he met with Briggs and expressed a desire to
improve the accuracy of his tables and correct errors.

Napier’s method used a summation of travel times across discretized
sub-intervals of [L, 0), determined by the quasi-geometric progression
LRk

1 , k = 0, 1, 2, · · · with L = 107, R1 = 0.9999999, that can be in-
terpreted as Riemann sums, and he calculated error bounds, implying
that he could control accuracy by choice of L and R1. Having tied the
speed of travel to the distance of the traveler to the terminal point, his

49Two additional references were brought to my attention after the research for
this paper was completed: The Life and Works of John Napier by Brian Rice et al,
provides commentary and English translations of the known works [32]; Napier’s
Plaine Revelation is covered in full. See also “Napier revisited: A new look at the
computation of his logarithms,” by Joachim Fischer and Bärbel Ruess [23].

50Truemper’s Note #106, referenced in the section Napier’s Model, uses modern

calculus to estimate time by integrating from y to y+dy: T (z) =

∫ z

0

dy

(N − y)
. The

chain of reasoning from Equations 32 and 33 to the modern integral is very short
[43, Pp. 66, 127].
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numerics approximated the ideal kinematic traveler, no matter what
quasi-geometric progression he used so long as the selection of points
was sufficiently refined, and it allowed interpolations and adjustments
consistent with the speed requirements. The implication is that Napier
had essentially discovered and characterized the integral

∫
dx/x, and

evaluated it in fine detail some thirty years before Gregory St. Vincent
had introduced logarithms into the language of calculus.

Napier’s method for computing the average speed of the traveling-
point across discretized intervals was essentially a difference quotient
with limiting value equal to the distance of the traveler from the ter-
minal point. In selecting that limit as the ideal speed for his traveler,
it can be said that he had defined instantaneous speed as the limit of a
difference quotient. The rules for finding products, divisions and pow-
ers of numbers using logarithms allowed manipulations of the numbers
as a field, and that implies associated rules for exponents not formu-
lated in convenient symbols until the time of Wallis and Newton [4,
Indics, p. 43].

Napier popularized the use of the decimal system by adroit usage.51

He used a method of successive subtractions to duplicate progressive
multiplications. He presented logarithms by arranging that the signifi-
cant figures would stand before the decimal point, facilitating multipli-
cation and division by shifts of the decimal point [35, Sec 5, Decimal
fractions, pp. 27-28]. Napier understood he could make logarithms ar-
bitrarily accurate by choice of two parameters denoted in the text as L
and R1. He specified the possibility of using L = 108, R1 = 0.99999999,
and so doing he could increase the number of digits of accuracy ar-
bitrarily [35, Sec. 7.1]. This implies limiting values of definite but
never-ending decimal numbers, real numbers. Napier couldn’t know
that there are too many real numbers for all of them to be defined by
an algorithm, but imagining infinite decimals as defining all numbers
anticipated the real number system.

Napier recognized errors in his tables and discussed with Briggs how
to make a better logarithm using the base 10 [27, 34]. Briggs’ golden
rule for computing base-10 logarithms is closely allied with Napier’s
methods. It is plausible that the golden rule was a joint discovery
during their consultation. Algorithms based directly in Napier’s and
Briggs’ work can be used to compute base-e and base-10 logarithms,

51Truemper reviews the early history of the decimal system in European math-
ematics [43, Pp. 20–21]. See also the discussion of Napier’s use of the decimal
system in William Rae Macdonald’s translation into English of Napier’s The Con-
struction of the Wonderful Canon of Logarithms with a catalog of Napier’s works
and appendixes listed here under Napier [26].
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and for computing e and the exponential function, to high accuracy.
For example:

e ≈ 2.7182818284590451,

ln 2 ≈ 0.6931471805599453,

log10 e ≈ 0.434294481903251.

The latter term, computed by Briggs, was the multiplicative factor
(we designated as M) he used in his golden rule. Briggs method for
calculating M is based on the fact that,

lim
x→0

x

10x − 1
= log10 e.

More generally, a conversion to base-a logarithms can use approxi-
mations for,

lim
x→0

x

ax − 1
= ln a.

Setting a = e in the preceding form yields the generating function
for the Bernoulli numbers:

x

ex − 1
=
∞∑
k=0

Bk

k!
xk,

and we found,

x

ax − 1
=

1

ln(a)
·
∞∑
j=0

Bj

j!
(x ln(a))j . (52)

The generating function is well known, so to see it connected with the
exponential function ex is not new. But it may come as a surprise
to find the Bernoulli numbers lodged with the definition of the natu-
ral logarithm. A recursive code derived from Equation 52 for x = 1
was presented in the text for calculating natural logarithms using the
Bernoulli numbers.

The classic calculus text by Courant and John provides examples of
ideas that could be adapted straight out of Napier and Briggs. They use
geometric subdivision for integrating the area under a parabola, similar
to Napier’s discretization for producing logarithms under a rectangular
hyperbola. Their limit formula for the natural logarithm is equivalent
to one we derived from the limit of Riemann sums used by Napier, as
does their limit formulas for the exponential function and for e. They
express Briggs golden rule for calculating base-10 logarithms without
mentioning any of these connections [15, pp. 132,145,149,154].
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The number of modern conceptions Napier and Briggs touched upon
using arithmetic is astonishing. They probed deeply into a new world,
acquiring insight through countless hours of calculations. Although
their aims were practical and achievements great— to improve com-
putational methods for astronomers and navigators in an age of naval
rivalry — their work had equally important implications for theoretical
analysis.
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Ontology

• ln and log denote the base-e and base-10 logarithms, and λN

and Λ are used to denote the idealized Napier logarithm and the
calculus logarithm postulated by Napier. Because the theory
of Napier’s logarithm is set up here in a general framework —
dubbed a Napier-style logarithm — λ(x) without the subscript
N is used to denote a general Napier-style logarithm.
• Archimedian logarithms index a geometric progression with
its exponents: loga ak = k, k = 0,1,2, . . . . Napier’s loga-
rithm was more complicated than an Archimedean logarithm.
• Progressions of the typeLRk, k = 0,1,2, · · · are distinguished
according to whether L = 1 or L 6= 1: the former is a con-
ventional geometric progression resulting in an Archimediean
logarithm, and the latter is quasi-geometric that yields a dif-
ferent type of logarithm, notably Napier’s. The shorthand LR
is used to dentote the full progression.
• The stride of a progression is the length of its first interval:
L− LR. The density of two progressions is compared by the
ratio of their strides.
• Napier’s Canonical Table : the table published originaly by
Napier of his logarithms for the sines of all the degrees and
minutes from 1 – 90. (See Numerics, Section 4.)
• Coordinate Values vs Name of Moving Point: For ex-
ample, x can be the value of a variable named x, and x can
be the name of a moving point that has values also denoted
by x: this was metaphysical for Napier because he postulated
instantaneous motion without calculus.
• Traveling points are points that move. Napier used kine-
matics to define his logarithm. His model for a logarithm was
defined in terms of a point that moves at a speed equal to
its distance from the origin, a motion that can be determined
definitively only by calculus, so it is referred to as the calcu-
lus point, the model point or continuous point depending on
context. Napier had to use discretized motion to approximate
the model arithmetically, so discrete traveler refers to a point
that moves at constant speeds over finite intervals. A log point
travels at a constant rate of L = 107 units of distance in 1 unit
of time. The idealized traveler refers to a point that moves in
discrete steps corresponding to Roegel’s corrected logarithms.
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These terms are used throughout the text, where their distinc-
tive meanings should become clear by usage and in turn help
to clarify the text.
• Ambiguities in the word logarithm: here it can mean the
logarithm of a particular number to a particular base, or it can
mean the entire canon of logarithms to a particular base, or
it can even mean an entire category of logarithms of different
kinds.
• Discretized logarithm or discrete logarithm refers to the
discretization of the function y = 1/x to approximate

∫
dx/x

using arithmetic. It does not refer to the discrete logarithm of
cryptology.
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